[ intros (x y); apply (match x with [ true ⇒ match y with [ true ⇒ True | _ ⇒ False] | false ⇒ match y with [ true ⇒ False | false ⇒ True ]]);
| whd; simplify; intros; cases x; apply I;
| whd; simplify; intros 2; cases x; cases y; simplify; intros; assumption;
-| whd; simplify; intros 3; cases x; cases y; cases z; simplify; intros; try assumption; apply I]
+| whd; simplify; intros 3; cases x; cases y; cases z; simplify; intros;
+ try assumption; apply I]
qed.
-definition hint: objs1 SET → setoid.
- intros; apply o;
-qed.
+definition setoid_OF_SET: objs1 SET → setoid.
+ intros; apply o; qed.
-coercion hint.
+coercion setoid_OF_SET.
lemma IF_THEN_ELSE_p :
∀S:setoid.∀a,b:S.∀x,y:BOOL.x = y →
(λm.match m with [ true ⇒ a | false ⇒ b ]) x =
(λm.match m with [ true ⇒ a | false ⇒ b ]) y.
+whd in ⊢ (?→?→?→%→?);
intros; cases x in H; cases y; simplify; intros; try apply refl; whd in H; cases H;
qed.
-
interpretation "unary morphism comprehension with no proof" 'comprehension T P =
(mk_unary_morphism T _ P _).
interpretation "unary morphism comprehension with proof" 'comprehension_by s \eta.f p =
(mk_unary_morphism s _ f p).
-
record OAlgebra : Type := {
oa_P :> SET;
oa_leq : binary_morphism1 oa_P oa_P CPROP; (* CPROP is setoid1 *)
oa_overlap_preservers_meet:
∀p,q.oa_overlap p q → oa_overlap p
(oa_meet ? { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p oa_P p q });
- (*(oa_meet BOOL (if_then_else oa_P p q));*)
- oa_join_split: (* ha I → oa_P da castare a funX (ums A oa_P) *)
+ oa_join_split:
∀I:SET.∀p.∀q:arrows1 SET I oa_P.oa_overlap p (oa_join I q) ⇔ ∃i:I.oa_overlap p (q i);
(*oa_base : setoid;
oa_enum : ums oa_base oa_P;
(fun_1 __ (oa_join __) (mk_unary_morphism _ _ f _)).
record ORelation (P,Q : OAlgebra) : Type ≝ {
- or_f :> arrows1 SET P Q;
- or_f_minus_star : arrows1 SET P Q;
- or_f_star : arrows1 SET Q P;
- or_f_minus : arrows1 SET Q P;
- or_prop1 : ∀p,q. (or_f p ≤ q) = (p ≤ or_f_star q);
- or_prop2 : ∀p,q. (or_f_minus p ≤ q) = (p ≤ or_f_minus_star q);
- or_prop3 : ∀p,q. (or_f p >< q) = (p >< or_f_minus q)
+ or_f_ : arrows1 SET P Q;
+ or_f_minus_star_ : arrows1 SET P Q;
+ or_f_star_ : arrows1 SET Q P;
+ or_f_minus_ : arrows1 SET Q P;
+ or_prop1_ : ∀p,q. (or_f_ p ≤ q) = (p ≤ or_f_star_ q);
+ or_prop2_ : ∀p,q. (or_f_minus_ p ≤ q) = (p ≤ or_f_minus_star_ q);
+ or_prop3_ : ∀p,q. (or_f_ p >< q) = (p >< or_f_minus_ q)
}.
-notation "r \sup *" non associative with precedence 90 for @{'OR_f_star $r}.
-notation > "r *" non associative with precedence 90 for @{'OR_f_star $r}.
-interpretation "o-relation f*" 'OR_f_star r = (or_f_star _ _ r).
-
-notation "r \sup (⎻* )" non associative with precedence 90 for @{'OR_f_minus_star $r}.
-notation > "r⎻*" non associative with precedence 90 for @{'OR_f_minus_star $r}.
-interpretation "o-relation f⎻*" 'OR_f_minus_star r = (or_f_minus_star _ _ r).
-
-notation "r \sup ⎻" non associative with precedence 90 for @{'OR_f_minus $r}.
-notation > "r⎻" non associative with precedence 90 for @{'OR_f_minus $r}.
-interpretation "o-relation f⎻" 'OR_f_minus r = (or_f_minus _ _ r).
definition ORelation_setoid : OAlgebra → OAlgebra → setoid1.
intros (P Q);
constructor 1;
[ apply (ORelation P Q);
| constructor 1;
- [ apply (λp,q. And4 (eq1 ? p⎻* q⎻* ) (eq1 ? p⎻ q⎻) (eq1 ? p q) (eq1 ? p* q* ));
+ [ apply (λp,q. And4 (eq1 ? (or_f_minus_star_ ?? p) (or_f_minus_star_ ?? q))
+ (eq1 ? (or_f_minus_ ?? p) (or_f_minus_ ?? q))
+ (eq1 ? (or_f_ ?? p) (or_f_ ?? q))
+ (eq1 ? (or_f_star_ ?? p) (or_f_star_ ?? q)));
| whd; simplify; intros; repeat split; intros; apply refl1;
| whd; simplify; intros; cases H; clear H; split;
intro a; apply sym; generalize in match a;assumption;
| apply (.= (H5 a)); apply H9;]]]
qed.
-lemma hint1 : ∀P,Q. ORelation_setoid P Q → arrows1 SET P Q. intros; apply (or_f ?? c);qed.
-coercion hint1.
-
-lemma hint3 : ∀P,Q. arrows1 SET P Q → P ⇒ Q. intros; apply c;qed.
-coercion hint3.
-
-lemma hint2: OAlgebra → setoid. intros; apply (oa_P o). qed.
-coercion hint2.
-
-definition or_f_minus_star2: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET P Q.
+definition or_f_minus_star: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET P Q.
intros; constructor 1;
- [ apply or_f_minus_star;
+ [ apply or_f_minus_star_;
| intros; cases H; assumption]
qed.
-definition or_f2: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET P Q.
+definition or_f: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET P Q.
intros; constructor 1;
- [ apply or_f;
+ [ apply or_f_;
| intros; cases H; assumption]
qed.
-definition or_f_minus2: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET Q P.
+coercion or_f.
+
+definition or_f_minus: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET Q P.
intros; constructor 1;
- [ apply or_f_minus;
+ [ apply or_f_minus_;
| intros; cases H; assumption]
qed.
-definition or_f_star2: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET Q P.
+definition or_f_star: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET Q P.
intros; constructor 1;
- [ apply or_f_star;
+ [ apply or_f_star_;
| intros; cases H; assumption]
qed.
-interpretation "o-relation f⎻* 2" 'OR_f_minus_star r = (fun_1 __ (or_f_minus_star2 _ _) r).
-interpretation "o-relation f⎻ 2" 'OR_f_minus r = (fun_1 __ (or_f_minus2 _ _) r).
-interpretation "o-relation f* 2" 'OR_f_star r = (fun_1 __ (or_f_star2 _ _) r).
-coercion or_f2.
+lemma arrows1_OF_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → arrows1 SET P Q.
+intros; apply (or_f ?? c);
+qed.
+
+coercion arrows1_OF_ORelation_setoid nocomposites.
+
+lemma umorphism_OF_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → P ⇒ Q.
+intros; apply (or_f ?? c);
+qed.
+
+coercion umorphism_OF_ORelation_setoid.
+
+
+lemma uncurry_arrows : ∀B,C. arrows1 SET B C → B → C.
+intros; apply ((fun_1 ?? c) t);
+qed.
+
+coercion uncurry_arrows 1.
+
+lemma hint3 : ∀P,Q. arrows1 SET P Q → P ⇒ Q. intros; apply c;qed.
+coercion hint3 nocomposites.
+
+(*
+lemma hint2: OAlgebra → setoid. intros; apply (oa_P o). qed.
+coercion hint2 nocomposites.
+*)
+
+
+notation "r \sup *" non associative with precedence 90 for @{'OR_f_star $r}.
+notation > "r *" non associative with precedence 90 for @{'OR_f_star $r}.
+
+notation "r \sup (⎻* )" non associative with precedence 90 for @{'OR_f_minus_star $r}.
+notation > "r⎻*" non associative with precedence 90 for @{'OR_f_minus_star $r}.
+
+notation "r \sup ⎻" non associative with precedence 90 for @{'OR_f_minus $r}.
+notation > "r⎻" non associative with precedence 90 for @{'OR_f_minus $r}.
+
+interpretation "o-relation f⎻*" 'OR_f_minus_star r = (fun_1 __ (or_f_minus_star _ _) r).
+interpretation "o-relation f⎻" 'OR_f_minus r = (fun_1 __ (or_f_minus _ _) r).
+interpretation "o-relation f*" 'OR_f_star r = (fun_1 __ (or_f_star _ _) r).
+
+definition or_prop1 : ∀P,Q:OAlgebra.∀F:ORelation_setoid P Q.∀p,q.
+ (F p ≤ q) = (p ≤ F* q).
+intros; apply (or_prop1_ ?? F p q);
+qed.
+
+definition or_prop2 : ∀P,Q:OAlgebra.∀F:ORelation_setoid P Q.∀p,q.
+ (F⎻ p ≤ q) = (p ≤ F⎻* q).
+intros; apply (or_prop2_ ?? F p q);
+qed.
+
+definition or_prop3 : ∀P,Q:OAlgebra.∀F:ORelation_setoid P Q.∀p,q.
+ (F p >< q) = (p >< F⎻ q).
+intros; apply (or_prop3_ ?? F p q);
+qed.
definition ORelation_composition : ∀P,Q,R.
binary_morphism1 (ORelation_setoid P Q) (ORelation_setoid Q R) (ORelation_setoid P R).
constructor 1;
[ intros (F G);
constructor 1;
- [ apply (or_f2 ?? G ∘ or_f2 ?? F);
- | alias symbol "compose" = "category1 composition".
- apply (G⎻* ∘ F⎻* );
+ [ lapply (G ∘ F);
+ apply (G ∘ F);
+ | apply (G⎻* ∘ F⎻* );
| apply (F* ∘ G* );
| apply (F⎻ ∘ G⎻);
- | intros;
- alias symbol "eq" = "setoid1 eq".
+ | intros;
change with ((G (F p) ≤ q) = (p ≤ (F* (G* q))));
- apply (.= or_prop1 ??? (F p) ?);
- apply (.= or_prop1 ??? p ?);
- apply refl1
- | intros; alias symbol "eq" = "setoid1 eq".
+ apply (.= (or_prop1 :?));
+ apply (or_prop1 :?);
+ | intros;
change with ((F⎻ (G⎻ p) ≤ q) = (p ≤ (G⎻* (F⎻* q))));
- alias symbol "trans" = "trans1".
- apply (.= or_prop2 ?? F ??);
- apply (.= or_prop2 ?? G ??);
- apply refl1;
+ apply (.= (or_prop2 :?));
+ apply or_prop2 ;
| intros; change with ((G (F (p)) >< q) = (p >< (F⎻ (G⎻ q))));
- apply (.= or_prop3 ??? (F p) ?);
- apply (.= or_prop3 ??? p ?);
- apply refl1
+ apply (.= (or_prop3 :?));
+ apply or_prop3;
]
-| intros; split; simplify; [1,3: apply ((†H)‡(†H1)); | 2,4: apply ((†H1)‡(†H));]]
+| intros; split; simplify;
+ [1,3: unfold arrows1_OF_ORelation_setoid; apply ((†H)‡(†H1));
+ |2,4: apply ((†H1)‡(†H));]]
qed.
definition OA : category1.
[1,2,3,4: apply id1;
|5,6,7:intros; apply refl1;]
| apply ORelation_composition;
-| intros; split;
- [ apply (comp_assoc1 ????? (a12⎻* ) (a23⎻* ) (a34⎻* ));
- | alias symbol "invert" = "setoid1 symmetry".
- apply ((comp_assoc1 ????? (a34⎻) (a23⎻) (a12⎻)) \sup -1);
- | apply (comp_assoc1 ????? a12 a23 a34);
- | apply ((comp_assoc1 ????? (a34* ) (a23* ) (a12* )) \sup -1);]
+| intros (P Q R S F G H); split;
+ [ change with (H⎻* ∘ G⎻* ∘ F⎻* = H⎻* ∘ (G⎻* ∘ F⎻* ));
+ apply (comp_assoc1 ????? (F⎻* ) (G⎻* ) (H⎻* ));
+ | apply ((comp_assoc1 ????? (H⎻) (G⎻) (F⎻))^-1);
+ | apply ((comp_assoc1 ????? F G H)^-1);
+ | apply ((comp_assoc1 ????? H* G* F* ));]
| intros; split; unfold ORelation_composition; simplify; apply id_neutral_left1;
| intros; split; unfold ORelation_composition; simplify; apply id_neutral_right1;]
qed.
\ No newline at end of file
notation "□ \sub b" non associative with precedence 90 for @{'box $b}.
notation > "□_term 90 b" non associative with precedence 90 for @{'box $b}.
-interpretation "Universal image ⊩⎻*" 'box x = (or_f_minus_star _ _ (rel x)).
+interpretation "Universal image ⊩⎻*" 'box x = (fun_1 _ _ (or_f_minus_star _ _) (rel x)).
notation "◊ \sub b" non associative with precedence 90 for @{'diamond $b}.
notation > "◊_term 90 b" non associative with precedence 90 for @{'diamond $b}.
-interpretation "Existential image ⊩" 'diamond x = (or_f _ _ (rel x)).
+interpretation "Existential image ⊩" 'diamond x = (fun_1 _ _ (or_f _ _) (rel x)).
notation "'Rest' \sub b" non associative with precedence 90 for @{'rest $b}.
notation > "'Rest'⎽term 90 b" non associative with precedence 90 for @{'rest $b}.
-interpretation "Universal pre-image ⊩*" 'rest x = (or_f_star _ _ (rel x)).
+interpretation "Universal pre-image ⊩*" 'rest x = (fun_1 _ _ (or_f_star _ _) (rel x)).
notation "'Ext' \sub b" non associative with precedence 90 for @{'ext $b}.
notation > "'Ext'⎽term 90 b" non associative with precedence 90 for @{'ext $b}.
-interpretation "Existential pre-image ⊩⎻" 'ext x = (or_f_minus _ _ (rel x)).
+interpretation "Existential pre-image ⊩⎻" 'ext x = (fun_1 _ _ (or_f_minus _ _) (rel x)).
+
+lemma hint : ∀p,q.arrows1 OA p q → ORelation_setoid p q.
+intros; assumption;
+qed.
+
+coercion hint nocomposites.
definition A : ∀b:BP. unary_morphism (oa_P (form b)) (oa_P (form b)).
intros; constructor 1;
[ apply (λx.□_b (Ext⎽b x));
- | do 2 unfold FunClass_1_OF_carr1; intros; apply (†(†H));]
+ | do 2 unfold uncurry_arrows; intros; apply (†(†H));]
qed.
lemma xxx : ∀x.carr x → carr1 (setoid1_of_setoid x). intros; assumption; qed.
-coercion xxx.
+coercion xxx nocomposites.
-definition d_p_i :
- ∀S,I:SET.∀d:unary_morphism S S.∀p:arrows1 SET I S.arrows1 SET I S.
-intros; constructor 1;
- [ apply (λi:I. u (c i));
- | unfold FunClass_1_OF_carr1; intros; apply (†(†H));].
+lemma down_p : ∀S,I:SET.∀u:S⇒S.∀c:arrows1 SET I S.∀a:I.∀a':I.a=a'→u (c a)=u (c a').
+intros; unfold uncurry_arrows; apply (†(†H));
qed.
alias symbol "eq" = "setoid eq".
(Ext⎽bp q1 ∧ (Ext⎽bp q2)) = (Ext⎽bp ((downarrow q1) ∧ (downarrow q2)));
all_covered: Ext⎽bp (oa_one (form bp)) = oa_one (concr bp);
il2: ∀I:SET.∀p:arrows1 SET I (oa_P (form bp)).
- downarrow (oa_join ? I (d_p_i ?? downarrow p)) =
- oa_join ? I (d_p_i ?? downarrow p);
+ downarrow (∨ { x ∈ I | downarrow (p x) | down_p ???? }) =
+ ∨ { x ∈ I | downarrow (p x) | down_p ???? };
il1: ∀q.downarrow (A ? q) = A ? q
}.
-interpretation "o-concrete space downarrow" 'downarrow x = (fun_1 __ (downarrow _) x).
+interpretation "o-concrete space downarrow" 'downarrow x =
+ (fun_1 __ (downarrow _) x).
definition bp': concrete_space → basic_pair ≝ λc.bp c.
coercion bp'.