(* This file was automatically generated: do not edit *********************)
-include "Basic-1/pr0/fwd.ma".
+include "basic_1/pr0/props.ma".
-include "Basic-1/subst0/dec.ma".
+include "basic_1/subst0/dec.ma".
-include "Basic-1/T/dec.ma".
+include "basic_1/T/dec.ma".
-include "Basic-1/T/props.ma".
+include "basic_1/T/props.ma".
theorem nf0_dec:
\forall (t1: T).(or (\forall (t2: T).((pr0 t1 t2) \to (eq T t1 t2))) (ex2 T
\to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abbr) t t0)
t2)) (THead (Bind Abbr) t (lift (S O) O x)) (\lambda (H4: (eq T (THead (Bind
Abbr) t t0) (THead (Bind Abbr) t (lift (S O) O x)))).(\lambda (P: Prop).(let
-H5 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T)
-with [(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t2)
-\Rightarrow t2])) (THead (Bind Abbr) t t0) (THead (Bind Abbr) t (lift (S O) O
-x)) H4) in (let H6 \def (eq_ind T t0 (\lambda (t2: T).(subst0 O t t2 (lift (S
-O) O x))) H3 (lift (S O) O x) H5) in (subst0_refl t (lift (S O) O x) O H6
-P))))) (pr0_delta t t (pr0_refl t) t0 t0 (pr0_refl t0) (lift (S O) O x) H3)))
-(\lambda (H3: (eq T t0 (lift (S O) O x))).(eq_ind_r T (lift (S O) O x)
-(\lambda (t2: T).(ex2 T (\lambda (t3: T).((eq T (THead (Bind Abbr) t t2) t3)
-\to (\forall (P: Prop).P))) (\lambda (t3: T).(pr0 (THead (Bind Abbr) t t2)
-t3)))) (ex_intro2 T (\lambda (t2: T).((eq T (THead (Bind Abbr) t (lift (S O)
-O x)) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind
-Abbr) t (lift (S O) O x)) t2)) x (\lambda (H4: (eq T (THead (Bind Abbr) t
-(lift (S O) O x)) x)).(\lambda (P: Prop).(thead_x_lift_y_y (Bind Abbr) x t (S
-O) O H4 P))) (pr0_zeta Abbr not_abbr_abst x x (pr0_refl x) t)) t0 H3)) H2)))
-H1)))) (let H1 \def H in (or_ind (\forall (t2: T).((pr0 t t2) \to (eq T t
-t2))) (ex2 T (\lambda (t2: T).((eq T t t2) \to (\forall (P: Prop).P)))
-(\lambda (t2: T).(pr0 t t2))) (or (\forall (t2: T).((pr0 (THead (Bind Abst) t
-t0) t2) \to (eq T (THead (Bind Abst) t t0) t2))) (ex2 T (\lambda (t2: T).((eq
-T (THead (Bind Abst) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2:
-T).(pr0 (THead (Bind Abst) t t0) t2)))) (\lambda (H2: ((\forall (t2: T).((pr0
-t t2) \to (eq T t t2))))).(let H3 \def H0 in (or_ind (\forall (t2: T).((pr0
-t0 t2) \to (eq T t0 t2))) (ex2 T (\lambda (t2: T).((eq T t0 t2) \to (\forall
-(P: Prop).P))) (\lambda (t2: T).(pr0 t0 t2))) (or (\forall (t2: T).((pr0
-(THead (Bind Abst) t t0) t2) \to (eq T (THead (Bind Abst) t t0) t2))) (ex2 T
+H5 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow t0
+| (TLRef _) \Rightarrow t0 | (THead _ _ t2) \Rightarrow t2])) (THead (Bind
+Abbr) t t0) (THead (Bind Abbr) t (lift (S O) O x)) H4) in (let H6 \def
+(eq_ind T t0 (\lambda (t2: T).(subst0 O t t2 (lift (S O) O x))) H3 (lift (S
+O) O x) H5) in (subst0_refl t (lift (S O) O x) O H6 P))))) (pr0_delta t t
+(pr0_refl t) t0 t0 (pr0_refl t0) (lift (S O) O x) H3))) (\lambda (H3: (eq T
+t0 (lift (S O) O x))).(eq_ind_r T (lift (S O) O x) (\lambda (t2: T).(ex2 T
+(\lambda (t3: T).((eq T (THead (Bind Abbr) t t2) t3) \to (\forall (P:
+Prop).P))) (\lambda (t3: T).(pr0 (THead (Bind Abbr) t t2) t3)))) (ex_intro2 T
+(\lambda (t2: T).((eq T (THead (Bind Abbr) t (lift (S O) O x)) t2) \to
+(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abbr) t (lift (S
+O) O x)) t2)) x (\lambda (H4: (eq T (THead (Bind Abbr) t (lift (S O) O x))
+x)).(\lambda (P: Prop).(thead_x_lift_y_y (Bind Abbr) x t (S O) O H4 P)))
+(pr0_zeta Abbr not_abbr_abst x x (pr0_refl x) t)) t0 H3)) H2))) H1)))) (let
+H1 \def H in (or_ind (\forall (t2: T).((pr0 t t2) \to (eq T t t2))) (ex2 T
+(\lambda (t2: T).((eq T t t2) \to (\forall (P: Prop).P))) (\lambda (t2:
+T).(pr0 t t2))) (or (\forall (t2: T).((pr0 (THead (Bind Abst) t t0) t2) \to
+(eq T (THead (Bind Abst) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead
+(Bind Abst) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0
+(THead (Bind Abst) t t0) t2)))) (\lambda (H2: ((\forall (t2: T).((pr0 t t2)
+\to (eq T t t2))))).(let H3 \def H0 in (or_ind (\forall (t2: T).((pr0 t0 t2)
+\to (eq T t0 t2))) (ex2 T (\lambda (t2: T).((eq T t0 t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 t0 t2))) (or (\forall (t2: T).((pr0 (THead
+(Bind Abst) t t0) t2) \to (eq T (THead (Bind Abst) t t0) t2))) (ex2 T
(\lambda (t2: T).((eq T (THead (Bind Abst) t t0) t2) \to (\forall (P:
Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abst) t t0) t2)))) (\lambda
(H4: ((\forall (t2: T).((pr0 t0 t2) \to (eq T t0 t2))))).(or_introl (\forall
(\lambda (t2: T).((eq T (THead (Bind Abst) t t0) t2) \to (\forall (P:
Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abst) t t0) t2)) (THead (Bind
Abst) t x) (\lambda (H7: (eq T (THead (Bind Abst) t t0) (THead (Bind Abst) t
-x))).(\lambda (P: Prop).(let H8 \def (f_equal T T (\lambda (e: T).(match e in
-T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0 | (TLRef _)
-\Rightarrow t0 | (THead _ _ t2) \Rightarrow t2])) (THead (Bind Abst) t t0)
-(THead (Bind Abst) t x) H7) in (let H9 \def (eq_ind_r T x (\lambda (t2:
-T).(pr0 t0 t2)) H6 t0 H8) in (let H10 \def (eq_ind_r T x (\lambda (t2:
-T).((eq T t0 t2) \to (\forall (P0: Prop).P0))) H5 t0 H8) in (H10 (refl_equal
-T t0) P)))))) (pr0_comp t t (pr0_refl t) t0 x H6 (Bind Abst))))))) H4)) H3)))
-(\lambda (H2: (ex2 T (\lambda (t2: T).((eq T t t2) \to (\forall (P:
-Prop).P))) (\lambda (t2: T).(pr0 t t2)))).(ex2_ind T (\lambda (t2: T).((eq T
-t t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t t2)) (or (\forall
-(t2: T).((pr0 (THead (Bind Abst) t t0) t2) \to (eq T (THead (Bind Abst) t t0)
-t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind Abst) t t0) t2) \to
-(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abst) t t0) t2))))
-(\lambda (x: T).(\lambda (H3: (((eq T t x) \to (\forall (P:
-Prop).P)))).(\lambda (H4: (pr0 t x)).(or_intror (\forall (t2: T).((pr0 (THead
+x))).(\lambda (P: Prop).(let H8 \def (f_equal T T (\lambda (e: T).(match e
+with [(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t2)
+\Rightarrow t2])) (THead (Bind Abst) t t0) (THead (Bind Abst) t x) H7) in
+(let H9 \def (eq_ind_r T x (\lambda (t2: T).(pr0 t0 t2)) H6 t0 H8) in (let
+H10 \def (eq_ind_r T x (\lambda (t2: T).((eq T t0 t2) \to (\forall (P0:
+Prop).P0))) H5 t0 H8) in (H10 (refl_equal T t0) P)))))) (pr0_comp t t
+(pr0_refl t) t0 x H6 (Bind Abst))))))) H4)) H3))) (\lambda (H2: (ex2 T
+(\lambda (t2: T).((eq T t t2) \to (\forall (P: Prop).P))) (\lambda (t2:
+T).(pr0 t t2)))).(ex2_ind T (\lambda (t2: T).((eq T t t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 t t2)) (or (\forall (t2: T).((pr0 (THead
(Bind Abst) t t0) t2) \to (eq T (THead (Bind Abst) t t0) t2))) (ex2 T
(\lambda (t2: T).((eq T (THead (Bind Abst) t t0) t2) \to (\forall (P:
-Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abst) t t0) t2))) (ex_intro2 T
-(\lambda (t2: T).((eq T (THead (Bind Abst) t t0) t2) \to (\forall (P:
-Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abst) t t0) t2)) (THead (Bind
-Abst) x t0) (\lambda (H5: (eq T (THead (Bind Abst) t t0) (THead (Bind Abst) x
-t0))).(\lambda (P: Prop).(let H6 \def (f_equal T T (\lambda (e: T).(match e
-in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t | (TLRef _)
-\Rightarrow t | (THead _ t2 _) \Rightarrow t2])) (THead (Bind Abst) t t0)
+Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abst) t t0) t2)))) (\lambda (x:
+T).(\lambda (H3: (((eq T t x) \to (\forall (P: Prop).P)))).(\lambda (H4: (pr0
+t x)).(or_intror (\forall (t2: T).((pr0 (THead (Bind Abst) t t0) t2) \to (eq
+T (THead (Bind Abst) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind
+Abst) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead
+(Bind Abst) t t0) t2))) (ex_intro2 T (\lambda (t2: T).((eq T (THead (Bind
+Abst) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead
+(Bind Abst) t t0) t2)) (THead (Bind Abst) x t0) (\lambda (H5: (eq T (THead
+(Bind Abst) t t0) (THead (Bind Abst) x t0))).(\lambda (P: Prop).(let H6 \def
+(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow t | (TLRef
+_) \Rightarrow t | (THead _ t2 _) \Rightarrow t2])) (THead (Bind Abst) t t0)
(THead (Bind Abst) x t0) H5) in (let H7 \def (eq_ind_r T x (\lambda (t2:
T).(pr0 t t2)) H4 t H6) in (let H8 \def (eq_ind_r T x (\lambda (t2: T).((eq T
t t2) \to (\forall (P0: Prop).P0))) H3 t H6) in (H8 (refl_equal T t) P))))))
H10 \def (eq_ind T t0 (\lambda (t3: T).(subst0 O t t3 (lift (S O) O x))) H3
(lift (S O) O t2) H_y) in (eq_ind_r T (lift (S O) O t2) (\lambda (t3: T).(eq
T (THead (Bind Void) t t3) t2)) (subst0_gen_lift_false t2 t (lift (S O) O x)
-(S O) O O (le_n O) (eq_ind_r nat (plus (S O) O) (\lambda (n: nat).(lt O n))
+(S O) O O (le_O_n O) (eq_ind_r nat (plus (S O) O) (\lambda (n: nat).(lt O n))
(le_n (plus (S O) O)) (plus O (S O)) (plus_sym O (S O))) H10 (eq T (THead
(Bind Void) t (lift (S O) O t2)) t2)) t0 H_y)))) (pr0_gen_void t t0 t2
H8)))))) (\lambda (H7: (ex2 T (\lambda (t2: T).((eq T t0 t2) \to (\forall (P:
Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Void) t t0) t2)) (THead (Bind
Void) t x0) (\lambda (H10: (eq T (THead (Bind Void) t t0) (THead (Bind Void)
t x0))).(\lambda (P: Prop).(let H11 \def (f_equal T T (\lambda (e: T).(match
-e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0 | (TLRef _)
-\Rightarrow t0 | (THead _ _ t2) \Rightarrow t2])) (THead (Bind Void) t t0)
-(THead (Bind Void) t x0) H10) in (let H12 \def (eq_ind_r T x0 (\lambda (t2:
-T).(pr0 t0 t2)) H9 t0 H11) in (let H13 \def (eq_ind_r T x0 (\lambda (t2:
-T).((eq T t0 t2) \to (\forall (P0: Prop).P0))) H8 t0 H11) in (H13 (refl_equal
-T t0) P)))))) (pr0_comp t t (pr0_refl t) t0 x0 H9 (Bind Void))))))) H7))
-H6))) (\lambda (H5: (ex2 T (\lambda (t2: T).((eq T t t2) \to (\forall (P:
-Prop).P))) (\lambda (t2: T).(pr0 t t2)))).(ex2_ind T (\lambda (t2: T).((eq T
-t t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t t2)) (or (\forall
-(t2: T).((pr0 (THead (Bind Void) t t0) t2) \to (eq T (THead (Bind Void) t t0)
-t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind Void) t t0) t2) \to
-(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Void) t t0) t2))))
-(\lambda (x0: T).(\lambda (H6: (((eq T t x0) \to (\forall (P:
-Prop).P)))).(\lambda (H7: (pr0 t x0)).(or_intror (\forall (t2: T).((pr0
-(THead (Bind Void) t t0) t2) \to (eq T (THead (Bind Void) t t0) t2))) (ex2 T
-(\lambda (t2: T).((eq T (THead (Bind Void) t t0) t2) \to (\forall (P:
-Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Void) t t0) t2))) (ex_intro2 T
+e with [(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t2)
+\Rightarrow t2])) (THead (Bind Void) t t0) (THead (Bind Void) t x0) H10) in
+(let H12 \def (eq_ind_r T x0 (\lambda (t2: T).(pr0 t0 t2)) H9 t0 H11) in (let
+H13 \def (eq_ind_r T x0 (\lambda (t2: T).((eq T t0 t2) \to (\forall (P0:
+Prop).P0))) H8 t0 H11) in (H13 (refl_equal T t0) P)))))) (pr0_comp t t
+(pr0_refl t) t0 x0 H9 (Bind Void))))))) H7)) H6))) (\lambda (H5: (ex2 T
+(\lambda (t2: T).((eq T t t2) \to (\forall (P: Prop).P))) (\lambda (t2:
+T).(pr0 t t2)))).(ex2_ind T (\lambda (t2: T).((eq T t t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 t t2)) (or (\forall (t2: T).((pr0 (THead
+(Bind Void) t t0) t2) \to (eq T (THead (Bind Void) t t0) t2))) (ex2 T
(\lambda (t2: T).((eq T (THead (Bind Void) t t0) t2) \to (\forall (P:
-Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Void) t t0) t2)) (THead (Bind
-Void) x0 t0) (\lambda (H8: (eq T (THead (Bind Void) t t0) (THead (Bind Void)
-x0 t0))).(\lambda (P: Prop).(let H9 \def (f_equal T T (\lambda (e: T).(match
-e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t | (TLRef _)
-\Rightarrow t | (THead _ t2 _) \Rightarrow t2])) (THead (Bind Void) t t0)
-(THead (Bind Void) x0 t0) H8) in (let H10 \def (eq_ind_r T x0 (\lambda (t2:
-T).(pr0 t t2)) H7 t H9) in (let H11 \def (eq_ind_r T x0 (\lambda (t2: T).((eq
-T t t2) \to (\forall (P0: Prop).P0))) H6 t H9) in (H11 (refl_equal T t)
-P)))))) (pr0_comp t x0 H7 t0 t0 (pr0_refl t0) (Bind Void))))))) H5)) H4)))
-(\lambda (H3: (eq T t0 (lift (S O) O x))).(let H4 \def (eq_ind T t0 (\lambda
-(t2: T).(or (\forall (t3: T).((pr0 t2 t3) \to (eq T t2 t3))) (ex2 T (\lambda
-(t3: T).((eq T t2 t3) \to (\forall (P: Prop).P))) (\lambda (t3: T).(pr0 t2
-t3))))) H0 (lift (S O) O x) H3) in (eq_ind_r T (lift (S O) O x) (\lambda (t2:
-T).(or (\forall (t3: T).((pr0 (THead (Bind Void) t t2) t3) \to (eq T (THead
-(Bind Void) t t2) t3))) (ex2 T (\lambda (t3: T).((eq T (THead (Bind Void) t
-t2) t3) \to (\forall (P: Prop).P))) (\lambda (t3: T).(pr0 (THead (Bind Void)
-t t2) t3))))) (or_intror (\forall (t2: T).((pr0 (THead (Bind Void) t (lift (S
-O) O x)) t2) \to (eq T (THead (Bind Void) t (lift (S O) O x)) t2))) (ex2 T
-(\lambda (t2: T).((eq T (THead (Bind Void) t (lift (S O) O x)) t2) \to
+Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Void) t t0) t2)))) (\lambda
+(x0: T).(\lambda (H6: (((eq T t x0) \to (\forall (P: Prop).P)))).(\lambda
+(H7: (pr0 t x0)).(or_intror (\forall (t2: T).((pr0 (THead (Bind Void) t t0)
+t2) \to (eq T (THead (Bind Void) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T
+(THead (Bind Void) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2:
+T).(pr0 (THead (Bind Void) t t0) t2))) (ex_intro2 T (\lambda (t2: T).((eq T
+(THead (Bind Void) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2:
+T).(pr0 (THead (Bind Void) t t0) t2)) (THead (Bind Void) x0 t0) (\lambda (H8:
+(eq T (THead (Bind Void) t t0) (THead (Bind Void) x0 t0))).(\lambda (P:
+Prop).(let H9 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _)
+\Rightarrow t | (TLRef _) \Rightarrow t | (THead _ t2 _) \Rightarrow t2]))
+(THead (Bind Void) t t0) (THead (Bind Void) x0 t0) H8) in (let H10 \def
+(eq_ind_r T x0 (\lambda (t2: T).(pr0 t t2)) H7 t H9) in (let H11 \def
+(eq_ind_r T x0 (\lambda (t2: T).((eq T t t2) \to (\forall (P0: Prop).P0))) H6
+t H9) in (H11 (refl_equal T t) P)))))) (pr0_comp t x0 H7 t0 t0 (pr0_refl t0)
+(Bind Void))))))) H5)) H4))) (\lambda (H3: (eq T t0 (lift (S O) O x))).(let
+H4 \def (eq_ind T t0 (\lambda (t2: T).(or (\forall (t3: T).((pr0 t2 t3) \to
+(eq T t2 t3))) (ex2 T (\lambda (t3: T).((eq T t2 t3) \to (\forall (P:
+Prop).P))) (\lambda (t3: T).(pr0 t2 t3))))) H0 (lift (S O) O x) H3) in
+(eq_ind_r T (lift (S O) O x) (\lambda (t2: T).(or (\forall (t3: T).((pr0
+(THead (Bind Void) t t2) t3) \to (eq T (THead (Bind Void) t t2) t3))) (ex2 T
+(\lambda (t3: T).((eq T (THead (Bind Void) t t2) t3) \to (\forall (P:
+Prop).P))) (\lambda (t3: T).(pr0 (THead (Bind Void) t t2) t3))))) (or_intror
+(\forall (t2: T).((pr0 (THead (Bind Void) t (lift (S O) O x)) t2) \to (eq T
+(THead (Bind Void) t (lift (S O) O x)) t2))) (ex2 T (\lambda (t2: T).((eq T
+(THead (Bind Void) t (lift (S O) O x)) t2) \to (\forall (P: Prop).P)))
+(\lambda (t2: T).(pr0 (THead (Bind Void) t (lift (S O) O x)) t2))) (ex_intro2
+T (\lambda (t2: T).((eq T (THead (Bind Void) t (lift (S O) O x)) t2) \to
(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Void) t (lift (S
-O) O x)) t2))) (ex_intro2 T (\lambda (t2: T).((eq T (THead (Bind Void) t
-(lift (S O) O x)) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0
-(THead (Bind Void) t (lift (S O) O x)) t2)) x (\lambda (H5: (eq T (THead
-(Bind Void) t (lift (S O) O x)) x)).(\lambda (P: Prop).(thead_x_lift_y_y
-(Bind Void) x t (S O) O H5 P))) (pr0_zeta Void (sym_not_eq B Abst Void
-not_abst_void) x x (pr0_refl x) t))) t0 H3))) H2))) H1))) b)) (\lambda (f:
-F).(F_ind (\lambda (f0: F).(or (\forall (t2: T).((pr0 (THead (Flat f0) t t0)
-t2) \to (eq T (THead (Flat f0) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T
-(THead (Flat f0) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0
-(THead (Flat f0) t t0) t2))))) (let H_x \def (binder_dec t0) in (let H1 \def
-H_x in (or_ind (ex_3 B T T (\lambda (b: B).(\lambda (w: T).(\lambda (u:
-T).(eq T t0 (THead (Bind b) w u)))))) (\forall (b: B).(\forall (w:
-T).(\forall (u: T).((eq T t0 (THead (Bind b) w u)) \to (\forall (P:
-Prop).P))))) (or (\forall (t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq
-T (THead (Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat
-Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead
-(Flat Appl) t t0) t2)))) (\lambda (H2: (ex_3 B T T (\lambda (b: B).(\lambda
-(w: T).(\lambda (u: T).(eq T t0 (THead (Bind b) w u))))))).(ex_3_ind B T T
+O) O x)) t2)) x (\lambda (H5: (eq T (THead (Bind Void) t (lift (S O) O x))
+x)).(\lambda (P: Prop).(thead_x_lift_y_y (Bind Void) x t (S O) O H5 P)))
+(pr0_zeta Void not_void_abst x x (pr0_refl x) t))) t0 H3))) H2))) H1))) b))
+(\lambda (f: F).(F_ind (\lambda (f0: F).(or (\forall (t2: T).((pr0 (THead
+(Flat f0) t t0) t2) \to (eq T (THead (Flat f0) t t0) t2))) (ex2 T (\lambda
+(t2: T).((eq T (THead (Flat f0) t t0) t2) \to (\forall (P: Prop).P)))
+(\lambda (t2: T).(pr0 (THead (Flat f0) t t0) t2))))) (let H_x \def
+(binder_dec t0) in (let H1 \def H_x in (or_ind (ex_3 B T T (\lambda (b:
+B).(\lambda (w: T).(\lambda (u: T).(eq T t0 (THead (Bind b) w u))))))
+(\forall (b: B).(\forall (w: T).(\forall (u: T).((eq T t0 (THead (Bind b) w
+u)) \to (\forall (P: Prop).P))))) (or (\forall (t2: T).((pr0 (THead (Flat
+Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T (\lambda (t2:
+T).((eq T (THead (Flat Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda
+(t2: T).(pr0 (THead (Flat Appl) t t0) t2)))) (\lambda (H2: (ex_3 B T T
(\lambda (b: B).(\lambda (w: T).(\lambda (u: T).(eq T t0 (THead (Bind b) w
-u))))) (or (\forall (t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq T
-(THead (Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat
-Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead
-(Flat Appl) t t0) t2)))) (\lambda (x0: B).(\lambda (x1: T).(\lambda (x2:
-T).(\lambda (H3: (eq T t0 (THead (Bind x0) x1 x2))).(let H4 \def (eq_ind T t0
-(\lambda (t2: T).(or (\forall (t3: T).((pr0 t2 t3) \to (eq T t2 t3))) (ex2 T
-(\lambda (t3: T).((eq T t2 t3) \to (\forall (P: Prop).P))) (\lambda (t3:
-T).(pr0 t2 t3))))) H0 (THead (Bind x0) x1 x2) H3) in (eq_ind_r T (THead (Bind
-x0) x1 x2) (\lambda (t2: T).(or (\forall (t3: T).((pr0 (THead (Flat Appl) t
-t2) t3) \to (eq T (THead (Flat Appl) t t2) t3))) (ex2 T (\lambda (t3: T).((eq
-T (THead (Flat Appl) t t2) t3) \to (\forall (P: Prop).P))) (\lambda (t3:
-T).(pr0 (THead (Flat Appl) t t2) t3))))) (B_ind (\lambda (b: B).((or (\forall
-(t2: T).((pr0 (THead (Bind b) x1 x2) t2) \to (eq T (THead (Bind b) x1 x2)
-t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind b) x1 x2) t2) \to (\forall
-(P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind b) x1 x2) t2)))) \to (or
-(\forall (t2: T).((pr0 (THead (Flat Appl) t (THead (Bind b) x1 x2)) t2) \to
-(eq T (THead (Flat Appl) t (THead (Bind b) x1 x2)) t2))) (ex2 T (\lambda (t2:
-T).((eq T (THead (Flat Appl) t (THead (Bind b) x1 x2)) t2) \to (\forall (P:
-Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t (THead (Bind b) x1 x2))
-t2)))))) (\lambda (_: (or (\forall (t2: T).((pr0 (THead (Bind Abbr) x1 x2)
-t2) \to (eq T (THead (Bind Abbr) x1 x2) t2))) (ex2 T (\lambda (t2: T).((eq T
-(THead (Bind Abbr) x1 x2) t2) \to (\forall (P: Prop).P))) (\lambda (t2:
-T).(pr0 (THead (Bind Abbr) x1 x2) t2))))).(or_intror (\forall (t2: T).((pr0
-(THead (Flat Appl) t (THead (Bind Abbr) x1 x2)) t2) \to (eq T (THead (Flat
-Appl) t (THead (Bind Abbr) x1 x2)) t2))) (ex2 T (\lambda (t2: T).((eq T
-(THead (Flat Appl) t (THead (Bind Abbr) x1 x2)) t2) \to (\forall (P:
-Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t (THead (Bind Abbr) x1
-x2)) t2))) (ex_intro2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t (THead
-(Bind Abbr) x1 x2)) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0
-(THead (Flat Appl) t (THead (Bind Abbr) x1 x2)) t2)) (THead (Bind Abbr) x1
-(THead (Flat Appl) (lift (S O) O t) x2)) (\lambda (H6: (eq T (THead (Flat
-Appl) t (THead (Bind Abbr) x1 x2)) (THead (Bind Abbr) x1 (THead (Flat Appl)
-(lift (S O) O t) x2)))).(\lambda (P: Prop).(let H7 \def (eq_ind T (THead
-(Flat Appl) t (THead (Bind Abbr) x1 x2)) (\lambda (ee: T).(match ee in T
-return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
-\Rightarrow False | (THead _ _ t2) \Rightarrow (match t2 in T return (\lambda
-(_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False
-| (THead k0 _ _) \Rightarrow (match k0 in K return (\lambda (_: K).Prop) with
-[(Bind _) \Rightarrow True | (Flat _) \Rightarrow False])])])) I (THead (Bind
-Abbr) x1 (THead (Flat Appl) (lift (S O) O t) x2)) H6) in (False_ind P H7))))
-(pr0_upsilon Abbr not_abbr_abst t t (pr0_refl t) x1 x1 (pr0_refl x1) x2 x2
-(pr0_refl x2))))) (\lambda (_: (or (\forall (t2: T).((pr0 (THead (Bind Abst)
-x1 x2) t2) \to (eq T (THead (Bind Abst) x1 x2) t2))) (ex2 T (\lambda (t2:
-T).((eq T (THead (Bind Abst) x1 x2) t2) \to (\forall (P: Prop).P))) (\lambda
-(t2: T).(pr0 (THead (Bind Abst) x1 x2) t2))))).(or_intror (\forall (t2:
-T).((pr0 (THead (Flat Appl) t (THead (Bind Abst) x1 x2)) t2) \to (eq T (THead
-(Flat Appl) t (THead (Bind Abst) x1 x2)) t2))) (ex2 T (\lambda (t2: T).((eq T
-(THead (Flat Appl) t (THead (Bind Abst) x1 x2)) t2) \to (\forall (P:
-Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t (THead (Bind Abst) x1
-x2)) t2))) (ex_intro2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t (THead
-(Bind Abst) x1 x2)) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0
-(THead (Flat Appl) t (THead (Bind Abst) x1 x2)) t2)) (THead (Bind Abbr) t x2)
-(\lambda (H6: (eq T (THead (Flat Appl) t (THead (Bind Abst) x1 x2)) (THead
-(Bind Abbr) t x2))).(\lambda (P: Prop).(let H7 \def (eq_ind T (THead (Flat
-Appl) t (THead (Bind Abst) x1 x2)) (\lambda (ee: T).(match ee in T return
-(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
-\Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in K return (\lambda
-(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow
-True])])) I (THead (Bind Abbr) t x2) H6) in (False_ind P H7)))) (pr0_beta x1
-t t (pr0_refl t) x2 x2 (pr0_refl x2))))) (\lambda (_: (or (\forall (t2:
-T).((pr0 (THead (Bind Void) x1 x2) t2) \to (eq T (THead (Bind Void) x1 x2)
-t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind Void) x1 x2) t2) \to
-(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Void) x1 x2)
+u))))))).(ex_3_ind B T T (\lambda (b: B).(\lambda (w: T).(\lambda (u: T).(eq
+T t0 (THead (Bind b) w u))))) (or (\forall (t2: T).((pr0 (THead (Flat Appl) t
+t0) t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq
+T (THead (Flat Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2:
+T).(pr0 (THead (Flat Appl) t t0) t2)))) (\lambda (x0: B).(\lambda (x1:
+T).(\lambda (x2: T).(\lambda (H3: (eq T t0 (THead (Bind x0) x1 x2))).(let H4
+\def (eq_ind T t0 (\lambda (t2: T).(or (\forall (t3: T).((pr0 t2 t3) \to (eq
+T t2 t3))) (ex2 T (\lambda (t3: T).((eq T t2 t3) \to (\forall (P: Prop).P)))
+(\lambda (t3: T).(pr0 t2 t3))))) H0 (THead (Bind x0) x1 x2) H3) in (eq_ind_r
+T (THead (Bind x0) x1 x2) (\lambda (t2: T).(or (\forall (t3: T).((pr0 (THead
+(Flat Appl) t t2) t3) \to (eq T (THead (Flat Appl) t t2) t3))) (ex2 T
+(\lambda (t3: T).((eq T (THead (Flat Appl) t t2) t3) \to (\forall (P:
+Prop).P))) (\lambda (t3: T).(pr0 (THead (Flat Appl) t t2) t3))))) (B_ind
+(\lambda (b: B).((or (\forall (t2: T).((pr0 (THead (Bind b) x1 x2) t2) \to
+(eq T (THead (Bind b) x1 x2) t2))) (ex2 T (\lambda (t2: T).((eq T (THead
+(Bind b) x1 x2) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead
+(Bind b) x1 x2) t2)))) \to (or (\forall (t2: T).((pr0 (THead (Flat Appl) t
+(THead (Bind b) x1 x2)) t2) \to (eq T (THead (Flat Appl) t (THead (Bind b) x1
+x2)) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t (THead (Bind
+b) x1 x2)) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat
+Appl) t (THead (Bind b) x1 x2)) t2)))))) (\lambda (_: (or (\forall (t2:
+T).((pr0 (THead (Bind Abbr) x1 x2) t2) \to (eq T (THead (Bind Abbr) x1 x2)
+t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind Abbr) x1 x2) t2) \to
+(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abbr) x1 x2)
t2))))).(or_intror (\forall (t2: T).((pr0 (THead (Flat Appl) t (THead (Bind
-Void) x1 x2)) t2) \to (eq T (THead (Flat Appl) t (THead (Bind Void) x1 x2))
-t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t (THead (Bind Void)
+Abbr) x1 x2)) t2) \to (eq T (THead (Flat Appl) t (THead (Bind Abbr) x1 x2))
+t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t (THead (Bind Abbr)
x1 x2)) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat
-Appl) t (THead (Bind Void) x1 x2)) t2))) (ex_intro2 T (\lambda (t2: T).((eq T
-(THead (Flat Appl) t (THead (Bind Void) x1 x2)) t2) \to (\forall (P:
-Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t (THead (Bind Void) x1
-x2)) t2)) (THead (Bind Void) x1 (THead (Flat Appl) (lift (S O) O t) x2))
+Appl) t (THead (Bind Abbr) x1 x2)) t2))) (ex_intro2 T (\lambda (t2: T).((eq T
+(THead (Flat Appl) t (THead (Bind Abbr) x1 x2)) t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t (THead (Bind Abbr) x1
+x2)) t2)) (THead (Bind Abbr) x1 (THead (Flat Appl) (lift (S O) O t) x2))
+(\lambda (H6: (eq T (THead (Flat Appl) t (THead (Bind Abbr) x1 x2)) (THead
+(Bind Abbr) x1 (THead (Flat Appl) (lift (S O) O t) x2)))).(\lambda (P:
+Prop).(let H7 \def (eq_ind T (THead (Flat Appl) t (THead (Bind Abbr) x1 x2))
+(\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead _ _ t2) \Rightarrow (match t2 with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow
+(match k0 with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow False])])]))
+I (THead (Bind Abbr) x1 (THead (Flat Appl) (lift (S O) O t) x2)) H6) in
+(False_ind P H7)))) (pr0_upsilon Abbr not_abbr_abst t t (pr0_refl t) x1 x1
+(pr0_refl x1) x2 x2 (pr0_refl x2))))) (\lambda (_: (or (\forall (t2: T).((pr0
+(THead (Bind Abst) x1 x2) t2) \to (eq T (THead (Bind Abst) x1 x2) t2))) (ex2
+T (\lambda (t2: T).((eq T (THead (Bind Abst) x1 x2) t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abst) x1 x2) t2))))).(or_intror
+(\forall (t2: T).((pr0 (THead (Flat Appl) t (THead (Bind Abst) x1 x2)) t2)
+\to (eq T (THead (Flat Appl) t (THead (Bind Abst) x1 x2)) t2))) (ex2 T
+(\lambda (t2: T).((eq T (THead (Flat Appl) t (THead (Bind Abst) x1 x2)) t2)
+\to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t (THead
+(Bind Abst) x1 x2)) t2))) (ex_intro2 T (\lambda (t2: T).((eq T (THead (Flat
+Appl) t (THead (Bind Abst) x1 x2)) t2) \to (\forall (P: Prop).P))) (\lambda
+(t2: T).(pr0 (THead (Flat Appl) t (THead (Bind Abst) x1 x2)) t2)) (THead
+(Bind Abbr) t x2) (\lambda (H6: (eq T (THead (Flat Appl) t (THead (Bind Abst)
+x1 x2)) (THead (Bind Abbr) t x2))).(\lambda (P: Prop).(let H7 \def (eq_ind T
+(THead (Flat Appl) t (THead (Bind Abst) x1 x2)) (\lambda (ee: T).(match ee
+with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _
+_) \Rightarrow (match k0 with [(Bind _) \Rightarrow False | (Flat _)
+\Rightarrow True])])) I (THead (Bind Abbr) t x2) H6) in (False_ind P H7))))
+(pr0_beta x1 t t (pr0_refl t) x2 x2 (pr0_refl x2))))) (\lambda (_: (or
+(\forall (t2: T).((pr0 (THead (Bind Void) x1 x2) t2) \to (eq T (THead (Bind
+Void) x1 x2) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind Void) x1 x2)
+t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Void) x1
+x2) t2))))).(or_intror (\forall (t2: T).((pr0 (THead (Flat Appl) t (THead
+(Bind Void) x1 x2)) t2) \to (eq T (THead (Flat Appl) t (THead (Bind Void) x1
+x2)) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t (THead (Bind
+Void) x1 x2)) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead
+(Flat Appl) t (THead (Bind Void) x1 x2)) t2))) (ex_intro2 T (\lambda (t2:
+T).((eq T (THead (Flat Appl) t (THead (Bind Void) x1 x2)) t2) \to (\forall
+(P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t (THead (Bind Void)
+x1 x2)) t2)) (THead (Bind Void) x1 (THead (Flat Appl) (lift (S O) O t) x2))
(\lambda (H6: (eq T (THead (Flat Appl) t (THead (Bind Void) x1 x2)) (THead
(Bind Void) x1 (THead (Flat Appl) (lift (S O) O t) x2)))).(\lambda (P:
Prop).(let H7 \def (eq_ind T (THead (Flat Appl) t (THead (Bind Void) x1 x2))
-(\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _)
-\Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ t2) \Rightarrow
-(match t2 in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False
-| (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in K
-return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow True | (Flat _)
-\Rightarrow False])])])) I (THead (Bind Void) x1 (THead (Flat Appl) (lift (S
-O) O t) x2)) H6) in (False_ind P H7)))) (pr0_upsilon Void (sym_not_eq B Abst
-Void not_abst_void) t t (pr0_refl t) x1 x1 (pr0_refl x1) x2 x2 (pr0_refl
-x2))))) x0 H4) t0 H3)))))) H2)) (\lambda (H2: ((\forall (b: B).(\forall (w:
-T).(\forall (u: T).((eq T t0 (THead (Bind b) w u)) \to (\forall (P:
-Prop).P))))))).(let H3 \def H in (or_ind (\forall (t2: T).((pr0 t t2) \to (eq
-T t t2))) (ex2 T (\lambda (t2: T).((eq T t t2) \to (\forall (P: Prop).P)))
-(\lambda (t2: T).(pr0 t t2))) (or (\forall (t2: T).((pr0 (THead (Flat Appl) t
+(\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead _ _ t2) \Rightarrow (match t2 with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow
+(match k0 with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow False])])]))
+I (THead (Bind Void) x1 (THead (Flat Appl) (lift (S O) O t) x2)) H6) in
+(False_ind P H7)))) (pr0_upsilon Void not_void_abst t t (pr0_refl t) x1 x1
+(pr0_refl x1) x2 x2 (pr0_refl x2))))) x0 H4) t0 H3)))))) H2)) (\lambda (H2:
+((\forall (b: B).(\forall (w: T).(\forall (u: T).((eq T t0 (THead (Bind b) w
+u)) \to (\forall (P: Prop).P))))))).(let H3 \def H in (or_ind (\forall (t2:
+T).((pr0 t t2) \to (eq T t t2))) (ex2 T (\lambda (t2: T).((eq T t t2) \to
+(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t t2))) (or (\forall (t2:
+T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0)
+t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to
+(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2))))
+(\lambda (H4: ((\forall (t2: T).((pr0 t t2) \to (eq T t t2))))).(let H5 \def
+H0 in (or_ind (\forall (t2: T).((pr0 t0 t2) \to (eq T t0 t2))) (ex2 T
+(\lambda (t2: T).((eq T t0 t2) \to (\forall (P: Prop).P))) (\lambda (t2:
+T).(pr0 t0 t2))) (or (\forall (t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to
+(eq T (THead (Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead
+(Flat Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0
+(THead (Flat Appl) t t0) t2)))) (\lambda (H6: ((\forall (t2: T).((pr0 t0 t2)
+\to (eq T t0 t2))))).(or_introl (\forall (t2: T).((pr0 (THead (Flat Appl) t
t0) t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq
T (THead (Flat Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2:
-T).(pr0 (THead (Flat Appl) t t0) t2)))) (\lambda (H4: ((\forall (t2: T).((pr0
-t t2) \to (eq T t t2))))).(let H5 \def H0 in (or_ind (\forall (t2: T).((pr0
-t0 t2) \to (eq T t0 t2))) (ex2 T (\lambda (t2: T).((eq T t0 t2) \to (\forall
-(P: Prop).P))) (\lambda (t2: T).(pr0 t0 t2))) (or (\forall (t2: T).((pr0
-(THead (Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T
-(\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to (\forall (P:
-Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2)))) (\lambda
-(H6: ((\forall (t2: T).((pr0 t0 t2) \to (eq T t0 t2))))).(or_introl (\forall
-(t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0)
-t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to
-(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2)))
-(\lambda (t2: T).(\lambda (H7: (pr0 (THead (Flat Appl) t t0) t2)).(or3_ind
-(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u2
-t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 t u2))) (\lambda (_: T).(\lambda
-(t3: T).(pr0 t0 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1:
+T).(pr0 (THead (Flat Appl) t t0) t2))) (\lambda (t2: T).(\lambda (H7: (pr0
+(THead (Flat Appl) t t0) t2)).(or3_ind (ex3_2 T T (\lambda (u2: T).(\lambda
+(t3: T).(eq T t2 (THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(pr0 t u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t0 t3)))) (ex4_4 T T T
+T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t0
+(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2 t3)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr0 t u2))))) (\lambda
+(_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3))))))
+(ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T t0 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (v2: T).(\lambda (t3: T).(eq T
+t2 (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O u2) t3)))))))))
+(\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_:
+T).(\lambda (_: T).(pr0 t u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2)))))))
+(\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (t3: T).(pr0 z1 t3)))))))) (eq T (THead (Flat Appl) t t0) t2)
+(\lambda (H8: (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead
+(Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 t u2))) (\lambda
+(_: T).(\lambda (t3: T).(pr0 t0 t3))))).(ex3_2_ind T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 t u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t0
+t3))) (eq T (THead (Flat Appl) t t0) t2) (\lambda (x0: T).(\lambda (x1:
+T).(\lambda (H9: (eq T t2 (THead (Flat Appl) x0 x1))).(\lambda (H10: (pr0 t
+x0)).(\lambda (H11: (pr0 t0 x1)).(let H_y \def (H6 x1 H11) in (let H_y0 \def
+(H4 x0 H10) in (let H12 \def (eq_ind_r T x1 (\lambda (t3: T).(pr0 t0 t3)) H11
+t0 H_y) in (let H13 \def (eq_ind_r T x1 (\lambda (t3: T).(eq T t2 (THead
+(Flat Appl) x0 t3))) H9 t0 H_y) in (let H14 \def (eq_ind_r T x0 (\lambda (t3:
+T).(pr0 t t3)) H10 t H_y0) in (let H15 \def (eq_ind_r T x0 (\lambda (t3:
+T).(eq T t2 (THead (Flat Appl) t3 t0))) H13 t H_y0) in (eq_ind_r T (THead
+(Flat Appl) t t0) (\lambda (t3: T).(eq T (THead (Flat Appl) t t0) t3))
+(refl_equal T (THead (Flat Appl) t t0)) t2 H15)))))))))))) H8)) (\lambda (H8:
+(ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_:
+T).(eq T t0 (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2 t3))))))
+(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr0 t
+u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3:
+T).(pr0 z1 t3))))))).(ex4_4_ind T T T T (\lambda (y1: T).(\lambda (z1:
T).(\lambda (_: T).(\lambda (_: T).(eq T t0 (THead (Bind Abst) y1 z1))))))
(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T t2
(THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
T).(\lambda (_: T).(pr0 t u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda
-(_: T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T (\lambda (b:
+(_: T).(\lambda (t3: T).(pr0 z1 t3))))) (eq T (THead (Flat Appl) t t0) t2)
+(\lambda (x0: T).(\lambda (x1: T).(\lambda (x2: T).(\lambda (x3: T).(\lambda
+(H9: (eq T t0 (THead (Bind Abst) x0 x1))).(\lambda (H10: (eq T t2 (THead
+(Bind Abbr) x2 x3))).(\lambda (_: (pr0 t x2)).(\lambda (_: (pr0 x1
+x3)).(eq_ind_r T (THead (Bind Abbr) x2 x3) (\lambda (t3: T).(eq T (THead
+(Flat Appl) t t0) t3)) (let H13 \def (eq_ind T t0 (\lambda (t3: T).(\forall
+(t4: T).((pr0 t3 t4) \to (eq T t3 t4)))) H6 (THead (Bind Abst) x0 x1) H9) in
+(let H14 \def (eq_ind T t0 (\lambda (t3: T).(\forall (b: B).(\forall (w:
+T).(\forall (u: T).((eq T t3 (THead (Bind b) w u)) \to (\forall (P:
+Prop).P)))))) H2 (THead (Bind Abst) x0 x1) H9) in (eq_ind_r T (THead (Bind
+Abst) x0 x1) (\lambda (t3: T).(eq T (THead (Flat Appl) t t3) (THead (Bind
+Abbr) x2 x3))) (H14 Abst x0 x1 (H13 (THead (Bind Abst) x0 x1) (pr0_refl
+(THead (Bind Abst) x0 x1))) (eq T (THead (Flat Appl) t (THead (Bind Abst) x0
+x1)) (THead (Bind Abbr) x2 x3))) t0 H9))) t2 H10))))))))) H8)) (\lambda (H8:
+(ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T t0 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (v2: T).(\lambda (t3: T).(eq T
+t2 (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O u2) t3)))))))))
+(\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_:
+T).(\lambda (_: T).(pr0 t u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2)))))))
+(\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (t3: T).(pr0 z1 t3))))))))).(ex6_6_ind B T T T T T (\lambda (b:
B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t0 (THead (Bind
u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_:
B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
-(t3: T).(pr0 z1 t3)))))))) (eq T (THead (Flat Appl) t t0) t2) (\lambda (H8:
-(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u2
-t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 t u2))) (\lambda (_: T).(\lambda
-(t3: T).(pr0 t0 t3))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda (t3: T).(eq
-T t2 (THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 t
-u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t0 t3))) (eq T (THead (Flat Appl)
-t t0) t2) (\lambda (x0: T).(\lambda (x1: T).(\lambda (H9: (eq T t2 (THead
-(Flat Appl) x0 x1))).(\lambda (H10: (pr0 t x0)).(\lambda (H11: (pr0 t0
-x1)).(let H_y \def (H6 x1 H11) in (let H_y0 \def (H4 x0 H10) in (let H12 \def
-(eq_ind_r T x1 (\lambda (t3: T).(pr0 t0 t3)) H11 t0 H_y) in (let H13 \def
-(eq_ind_r T x1 (\lambda (t3: T).(eq T t2 (THead (Flat Appl) x0 t3))) H9 t0
-H_y) in (let H14 \def (eq_ind_r T x0 (\lambda (t3: T).(pr0 t t3)) H10 t H_y0)
-in (let H15 \def (eq_ind_r T x0 (\lambda (t3: T).(eq T t2 (THead (Flat Appl)
-t3 t0))) H13 t H_y0) in (eq_ind_r T (THead (Flat Appl) t t0) (\lambda (t3:
-T).(eq T (THead (Flat Appl) t t0) t3)) (refl_equal T (THead (Flat Appl) t
-t0)) t2 H15)))))))))))) H8)) (\lambda (H8: (ex4_4 T T T T (\lambda (y1:
-T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t0 (THead (Bind
-Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
-(t3: T).(eq T t2 (THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_:
-T).(\lambda (u2: T).(\lambda (_: T).(pr0 t u2))))) (\lambda (_: T).(\lambda
-(z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3))))))).(ex4_4_ind T T T T
-(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t0
-(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
-T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2 t3)))))) (\lambda (_:
-T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr0 t u2))))) (\lambda
-(_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3))))) (eq
-T (THead (Flat Appl) t t0) t2) (\lambda (x0: T).(\lambda (x1: T).(\lambda
-(x2: T).(\lambda (x3: T).(\lambda (H9: (eq T t0 (THead (Bind Abst) x0
-x1))).(\lambda (H10: (eq T t2 (THead (Bind Abbr) x2 x3))).(\lambda (_: (pr0 t
-x2)).(\lambda (_: (pr0 x1 x3)).(eq_ind_r T (THead (Bind Abbr) x2 x3) (\lambda
-(t3: T).(eq T (THead (Flat Appl) t t0) t3)) (let H13 \def (eq_ind T t0
-(\lambda (t3: T).(\forall (t4: T).((pr0 t3 t4) \to (eq T t3 t4)))) H6 (THead
-(Bind Abst) x0 x1) H9) in (let H14 \def (eq_ind T t0 (\lambda (t3:
-T).(\forall (b: B).(\forall (w: T).(\forall (u: T).((eq T t3 (THead (Bind b)
-w u)) \to (\forall (P: Prop).P)))))) H2 (THead (Bind Abst) x0 x1) H9) in
-(eq_ind_r T (THead (Bind Abst) x0 x1) (\lambda (t3: T).(eq T (THead (Flat
-Appl) t t3) (THead (Bind Abbr) x2 x3))) (H14 Abst x0 x1 (H13 (THead (Bind
-Abst) x0 x1) (pr0_refl (THead (Bind Abst) x0 x1))) (eq T (THead (Flat Appl) t
-(THead (Bind Abst) x0 x1)) (THead (Bind Abbr) x2 x3))) t0 H9))) t2
-H10))))))))) H8)) (\lambda (H8: (ex6_6 B T T T T T (\lambda (b: B).(\lambda
-(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not
-(eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1:
-T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t0 (THead (Bind b)
-y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2:
-T).(\lambda (v2: T).(\lambda (t3: T).(eq T t2 (THead (Bind b) v2 (THead (Flat
-Appl) (lift (S O) O u2) t3))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda
-(_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0 t u2)))))))
-(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
-(v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_: B).(\lambda (_:
-T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1
-t3))))))))).(ex6_6_ind B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda
-(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b
-Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
-T).(\lambda (_: T).(\lambda (_: T).(eq T t0 (THead (Bind b) y1 z1))))))))
-(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
-(v2: T).(\lambda (t3: T).(eq T t2 (THead (Bind b) v2 (THead (Flat Appl) (lift
-(S O) O u2) t3))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_:
-T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0 t u2))))))) (\lambda
-(_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (v2:
-T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda
-(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))))
-(eq T (THead (Flat Appl) t t0) t2) (\lambda (x0: B).(\lambda (x1: T).(\lambda
-(x2: T).(\lambda (x3: T).(\lambda (x4: T).(\lambda (x5: T).(\lambda (_: (not
-(eq B x0 Abst))).(\lambda (H10: (eq T t0 (THead (Bind x0) x1 x2))).(\lambda
-(H11: (eq T t2 (THead (Bind x0) x4 (THead (Flat Appl) (lift (S O) O x3)
-x5)))).(\lambda (_: (pr0 t x3)).(\lambda (_: (pr0 x1 x4)).(\lambda (_: (pr0
-x2 x5)).(eq_ind_r T (THead (Bind x0) x4 (THead (Flat Appl) (lift (S O) O x3)
-x5)) (\lambda (t3: T).(eq T (THead (Flat Appl) t t0) t3)) (let H15 \def
-(eq_ind T t0 (\lambda (t3: T).(\forall (t4: T).((pr0 t3 t4) \to (eq T t3
-t4)))) H6 (THead (Bind x0) x1 x2) H10) in (let H16 \def (eq_ind T t0 (\lambda
-(t3: T).(\forall (b: B).(\forall (w: T).(\forall (u: T).((eq T t3 (THead
-(Bind b) w u)) \to (\forall (P: Prop).P)))))) H2 (THead (Bind x0) x1 x2) H10)
-in (eq_ind_r T (THead (Bind x0) x1 x2) (\lambda (t3: T).(eq T (THead (Flat
-Appl) t t3) (THead (Bind x0) x4 (THead (Flat Appl) (lift (S O) O x3) x5))))
-(H16 x0 x1 x2 (H15 (THead (Bind x0) x1 x2) (pr0_refl (THead (Bind x0) x1
-x2))) (eq T (THead (Flat Appl) t (THead (Bind x0) x1 x2)) (THead (Bind x0) x4
-(THead (Flat Appl) (lift (S O) O x3) x5)))) t0 H10))) t2 H11)))))))))))))
-H8)) (pr0_gen_appl t t0 t2 H7)))))) (\lambda (H6: (ex2 T (\lambda (t2:
-T).((eq T t0 t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t0
-t2)))).(ex2_ind T (\lambda (t2: T).((eq T t0 t2) \to (\forall (P: Prop).P)))
-(\lambda (t2: T).(pr0 t0 t2)) (or (\forall (t2: T).((pr0 (THead (Flat Appl) t
-t0) t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq
-T (THead (Flat Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2:
-T).(pr0 (THead (Flat Appl) t t0) t2)))) (\lambda (x: T).(\lambda (H7: (((eq T
-t0 x) \to (\forall (P: Prop).P)))).(\lambda (H8: (pr0 t0 x)).(or_intror
-(\forall (t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq T (THead (Flat
-Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2)
-\to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0)
-t2))) (ex_intro2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to
-(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2))
-(THead (Flat Appl) t x) (\lambda (H9: (eq T (THead (Flat Appl) t t0) (THead
-(Flat Appl) t x))).(\lambda (P: Prop).(let H10 \def (f_equal T T (\lambda (e:
-T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0 |
-(TLRef _) \Rightarrow t0 | (THead _ _ t2) \Rightarrow t2])) (THead (Flat
-Appl) t t0) (THead (Flat Appl) t x) H9) in (let H11 \def (eq_ind_r T x
-(\lambda (t2: T).(pr0 t0 t2)) H8 t0 H10) in (let H12 \def (eq_ind_r T x
-(\lambda (t2: T).((eq T t0 t2) \to (\forall (P0: Prop).P0))) H7 t0 H10) in
-(H12 (refl_equal T t0) P)))))) (pr0_comp t t (pr0_refl t) t0 x H8 (Flat
-Appl))))))) H6)) H5))) (\lambda (H4: (ex2 T (\lambda (t2: T).((eq T t t2) \to
-(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t t2)))).(ex2_ind T (\lambda
-(t2: T).((eq T t t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t t2))
-(or (\forall (t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq T (THead
-(Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t
-t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl)
-t t0) t2)))) (\lambda (x: T).(\lambda (H5: (((eq T t x) \to (\forall (P:
-Prop).P)))).(\lambda (H6: (pr0 t x)).(or_intror (\forall (t2: T).((pr0 (THead
-(Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T
+(t3: T).(pr0 z1 t3))))))) (eq T (THead (Flat Appl) t t0) t2) (\lambda (x0:
+B).(\lambda (x1: T).(\lambda (x2: T).(\lambda (x3: T).(\lambda (x4:
+T).(\lambda (x5: T).(\lambda (_: (not (eq B x0 Abst))).(\lambda (H10: (eq T
+t0 (THead (Bind x0) x1 x2))).(\lambda (H11: (eq T t2 (THead (Bind x0) x4
+(THead (Flat Appl) (lift (S O) O x3) x5)))).(\lambda (_: (pr0 t x3)).(\lambda
+(_: (pr0 x1 x4)).(\lambda (_: (pr0 x2 x5)).(eq_ind_r T (THead (Bind x0) x4
+(THead (Flat Appl) (lift (S O) O x3) x5)) (\lambda (t3: T).(eq T (THead (Flat
+Appl) t t0) t3)) (let H15 \def (eq_ind T t0 (\lambda (t3: T).(\forall (t4:
+T).((pr0 t3 t4) \to (eq T t3 t4)))) H6 (THead (Bind x0) x1 x2) H10) in (let
+H16 \def (eq_ind T t0 (\lambda (t3: T).(\forall (b: B).(\forall (w:
+T).(\forall (u: T).((eq T t3 (THead (Bind b) w u)) \to (\forall (P:
+Prop).P)))))) H2 (THead (Bind x0) x1 x2) H10) in (eq_ind_r T (THead (Bind x0)
+x1 x2) (\lambda (t3: T).(eq T (THead (Flat Appl) t t3) (THead (Bind x0) x4
+(THead (Flat Appl) (lift (S O) O x3) x5)))) (H16 x0 x1 x2 (H15 (THead (Bind
+x0) x1 x2) (pr0_refl (THead (Bind x0) x1 x2))) (eq T (THead (Flat Appl) t
+(THead (Bind x0) x1 x2)) (THead (Bind x0) x4 (THead (Flat Appl) (lift (S O) O
+x3) x5)))) t0 H10))) t2 H11))))))))))))) H8)) (pr0_gen_appl t t0 t2 H7))))))
+(\lambda (H6: (ex2 T (\lambda (t2: T).((eq T t0 t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 t0 t2)))).(ex2_ind T (\lambda (t2: T).((eq T
+t0 t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t0 t2)) (or (\forall
+(t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0)
+t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to
+(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2))))
+(\lambda (x: T).(\lambda (H7: (((eq T t0 x) \to (\forall (P:
+Prop).P)))).(\lambda (H8: (pr0 t0 x)).(or_intror (\forall (t2: T).((pr0
+(THead (Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T
(\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to (\forall (P:
Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2))) (ex_intro2 T
(\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to (\forall (P:
Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2)) (THead (Flat
-Appl) x t0) (\lambda (H7: (eq T (THead (Flat Appl) t t0) (THead (Flat Appl) x
-t0))).(\lambda (P: Prop).(let H8 \def (f_equal T T (\lambda (e: T).(match e
-in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t | (TLRef _)
-\Rightarrow t | (THead _ t2 _) \Rightarrow t2])) (THead (Flat Appl) t t0)
+Appl) t x) (\lambda (H9: (eq T (THead (Flat Appl) t t0) (THead (Flat Appl) t
+x))).(\lambda (P: Prop).(let H10 \def (f_equal T T (\lambda (e: T).(match e
+with [(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t2)
+\Rightarrow t2])) (THead (Flat Appl) t t0) (THead (Flat Appl) t x) H9) in
+(let H11 \def (eq_ind_r T x (\lambda (t2: T).(pr0 t0 t2)) H8 t0 H10) in (let
+H12 \def (eq_ind_r T x (\lambda (t2: T).((eq T t0 t2) \to (\forall (P0:
+Prop).P0))) H7 t0 H10) in (H12 (refl_equal T t0) P)))))) (pr0_comp t t
+(pr0_refl t) t0 x H8 (Flat Appl))))))) H6)) H5))) (\lambda (H4: (ex2 T
+(\lambda (t2: T).((eq T t t2) \to (\forall (P: Prop).P))) (\lambda (t2:
+T).(pr0 t t2)))).(ex2_ind T (\lambda (t2: T).((eq T t t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 t t2)) (or (\forall (t2: T).((pr0 (THead
+(Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T
+(\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2)))) (\lambda (x:
+T).(\lambda (H5: (((eq T t x) \to (\forall (P: Prop).P)))).(\lambda (H6: (pr0
+t x)).(or_intror (\forall (t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq
+T (THead (Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat
+Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead
+(Flat Appl) t t0) t2))) (ex_intro2 T (\lambda (t2: T).((eq T (THead (Flat
+Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead
+(Flat Appl) t t0) t2)) (THead (Flat Appl) x t0) (\lambda (H7: (eq T (THead
+(Flat Appl) t t0) (THead (Flat Appl) x t0))).(\lambda (P: Prop).(let H8 \def
+(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow t | (TLRef
+_) \Rightarrow t | (THead _ t2 _) \Rightarrow t2])) (THead (Flat Appl) t t0)
(THead (Flat Appl) x t0) H7) in (let H9 \def (eq_ind_r T x (\lambda (t2:
T).(pr0 t t2)) H6 t H8) in (let H10 \def (eq_ind_r T x (\lambda (t2: T).((eq
T t t2) \to (\forall (P0: Prop).P0))) H5 t H8) in (H10 (refl_equal T t)
(Flat Cast) t t0) t2)) t0 (\lambda (H1: (eq T (THead (Flat Cast) t t0)
t0)).(\lambda (P: Prop).(thead_x_y_y (Flat Cast) t t0 H1 P))) (pr0_tau t0 t0
(pr0_refl t0) t))) f)) k)))))) t1).
-(* COMMENTS
-Initial nodes: 10459
-END *)
(* This file was automatically generated: do not edit *********************)
-include "Basic-1/subst0/defs.ma".
+include "basic_1/subst0/defs.ma".
inductive pr0: T \to (T \to Prop) \def
| pr0_refl: \forall (t: T).(pr0 t t)
(* This file was automatically generated: do not edit *********************)
-include "Basic-1/pr0/props.ma".
+include "basic_1/pr0/defs.ma".
+
+include "basic_1/subst0/fwd.ma".
+
+let rec pr0_ind (P: (T \to (T \to Prop))) (f: (\forall (t: T).(P t t))) (f0:
+(\forall (u1: T).(\forall (u2: T).((pr0 u1 u2) \to ((P u1 u2) \to (\forall
+(t1: T).(\forall (t2: T).((pr0 t1 t2) \to ((P t1 t2) \to (\forall (k: K).(P
+(THead k u1 t1) (THead k u2 t2)))))))))))) (f1: (\forall (u: T).(\forall (v1:
+T).(\forall (v2: T).((pr0 v1 v2) \to ((P v1 v2) \to (\forall (t1: T).(\forall
+(t2: T).((pr0 t1 t2) \to ((P t1 t2) \to (P (THead (Flat Appl) v1 (THead (Bind
+Abst) u t1)) (THead (Bind Abbr) v2 t2)))))))))))) (f2: (\forall (b: B).((not
+(eq B b Abst)) \to (\forall (v1: T).(\forall (v2: T).((pr0 v1 v2) \to ((P v1
+v2) \to (\forall (u1: T).(\forall (u2: T).((pr0 u1 u2) \to ((P u1 u2) \to
+(\forall (t1: T).(\forall (t2: T).((pr0 t1 t2) \to ((P t1 t2) \to (P (THead
+(Flat Appl) v1 (THead (Bind b) u1 t1)) (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t2)))))))))))))))))) (f3: (\forall (u1: T).(\forall (u2:
+T).((pr0 u1 u2) \to ((P u1 u2) \to (\forall (t1: T).(\forall (t2: T).((pr0 t1
+t2) \to ((P t1 t2) \to (\forall (w: T).((subst0 O u2 t2 w) \to (P (THead
+(Bind Abbr) u1 t1) (THead (Bind Abbr) u2 w))))))))))))) (f4: (\forall (b:
+B).((not (eq B b Abst)) \to (\forall (t1: T).(\forall (t2: T).((pr0 t1 t2)
+\to ((P t1 t2) \to (\forall (u: T).(P (THead (Bind b) u (lift (S O) O t1))
+t2))))))))) (f5: (\forall (t1: T).(\forall (t2: T).((pr0 t1 t2) \to ((P t1
+t2) \to (\forall (u: T).(P (THead (Flat Cast) u t1) t2))))))) (t: T) (t0: T)
+(p: pr0 t t0) on p: P t t0 \def match p with [(pr0_refl t1) \Rightarrow (f
+t1) | (pr0_comp u1 u2 p0 t1 t2 p1 k) \Rightarrow (f0 u1 u2 p0 ((pr0_ind P f
+f0 f1 f2 f3 f4 f5) u1 u2 p0) t1 t2 p1 ((pr0_ind P f f0 f1 f2 f3 f4 f5) t1 t2
+p1) k) | (pr0_beta u v1 v2 p0 t1 t2 p1) \Rightarrow (f1 u v1 v2 p0 ((pr0_ind
+P f f0 f1 f2 f3 f4 f5) v1 v2 p0) t1 t2 p1 ((pr0_ind P f f0 f1 f2 f3 f4 f5) t1
+t2 p1)) | (pr0_upsilon b n v1 v2 p0 u1 u2 p1 t1 t2 p2) \Rightarrow (f2 b n v1
+v2 p0 ((pr0_ind P f f0 f1 f2 f3 f4 f5) v1 v2 p0) u1 u2 p1 ((pr0_ind P f f0 f1
+f2 f3 f4 f5) u1 u2 p1) t1 t2 p2 ((pr0_ind P f f0 f1 f2 f3 f4 f5) t1 t2 p2)) |
+(pr0_delta u1 u2 p0 t1 t2 p1 w s0) \Rightarrow (f3 u1 u2 p0 ((pr0_ind P f f0
+f1 f2 f3 f4 f5) u1 u2 p0) t1 t2 p1 ((pr0_ind P f f0 f1 f2 f3 f4 f5) t1 t2 p1)
+w s0) | (pr0_zeta b n t1 t2 p0 u) \Rightarrow (f4 b n t1 t2 p0 ((pr0_ind P f
+f0 f1 f2 f3 f4 f5) t1 t2 p0) u) | (pr0_tau t1 t2 p0 u) \Rightarrow (f5 t1 t2
+p0 ((pr0_ind P f f0 f1 f2 f3 f4 f5) t1 t2 p0) u)].
theorem pr0_gen_sort:
\forall (x: T).(\forall (n: nat).((pr0 (TSort n) x) \to (eq T x (TSort n))))
(_: (((eq T u1 (TSort n)) \to (eq T u2 u1)))).(\lambda (t1: T).(\lambda (t2:
T).(\lambda (_: (pr0 t1 t2)).(\lambda (_: (((eq T t1 (TSort n)) \to (eq T t2
t1)))).(\lambda (k: K).(\lambda (H5: (eq T (THead k u1 t1) (TSort n))).(let
-H6 \def (eq_ind T (THead k u1 t1) (\lambda (ee: T).(match ee in T return
-(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
-\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TSort n) H5) in
-(False_ind (eq T (THead k u2 t2) (THead k u1 t1)) H6)))))))))))) (\lambda (u:
-T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (pr0 v1 v2)).(\lambda (_:
-(((eq T v1 (TSort n)) \to (eq T v2 v1)))).(\lambda (t1: T).(\lambda (t2:
-T).(\lambda (_: (pr0 t1 t2)).(\lambda (_: (((eq T t1 (TSort n)) \to (eq T t2
-t1)))).(\lambda (H5: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t1))
-(TSort n))).(let H6 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u
-t1)) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with
-[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _)
-\Rightarrow True])) I (TSort n) H5) in (False_ind (eq T (THead (Bind Abbr) v2
-t2) (THead (Flat Appl) v1 (THead (Bind Abst) u t1))) H6)))))))))))) (\lambda
-(b: B).(\lambda (_: (not (eq B b Abst))).(\lambda (v1: T).(\lambda (v2:
+H6 \def (eq_ind T (THead k u1 t1) (\lambda (ee: T).(match ee with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow
+True])) I (TSort n) H5) in (False_ind (eq T (THead k u2 t2) (THead k u1 t1))
+H6)))))))))))) (\lambda (u: T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_:
+(pr0 v1 v2)).(\lambda (_: (((eq T v1 (TSort n)) \to (eq T v2 v1)))).(\lambda
+(t1: T).(\lambda (t2: T).(\lambda (_: (pr0 t1 t2)).(\lambda (_: (((eq T t1
+(TSort n)) \to (eq T t2 t1)))).(\lambda (H5: (eq T (THead (Flat Appl) v1
+(THead (Bind Abst) u t1)) (TSort n))).(let H6 \def (eq_ind T (THead (Flat
+Appl) v1 (THead (Bind Abst) u t1)) (\lambda (ee: T).(match ee with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow
+True])) I (TSort n) H5) in (False_ind (eq T (THead (Bind Abbr) v2 t2) (THead
+(Flat Appl) v1 (THead (Bind Abst) u t1))) H6)))))))))))) (\lambda (b:
+B).(\lambda (_: (not (eq B b Abst))).(\lambda (v1: T).(\lambda (v2:
T).(\lambda (_: (pr0 v1 v2)).(\lambda (_: (((eq T v1 (TSort n)) \to (eq T v2
v1)))).(\lambda (u1: T).(\lambda (u2: T).(\lambda (_: (pr0 u1 u2)).(\lambda
(_: (((eq T u1 (TSort n)) \to (eq T u2 u1)))).(\lambda (t1: T).(\lambda (t2:
T).(\lambda (_: (pr0 t1 t2)).(\lambda (_: (((eq T t1 (TSort n)) \to (eq T t2
t1)))).(\lambda (H8: (eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t1))
(TSort n))).(let H9 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u1
-t1)) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with
-[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _)
-\Rightarrow True])) I (TSort n) H8) in (False_ind (eq T (THead (Bind b) u2
-(THead (Flat Appl) (lift (S O) O v2) t2)) (THead (Flat Appl) v1 (THead (Bind
-b) u1 t1))) H9))))))))))))))))) (\lambda (u1: T).(\lambda (u2: T).(\lambda
-(_: (pr0 u1 u2)).(\lambda (_: (((eq T u1 (TSort n)) \to (eq T u2
-u1)))).(\lambda (t1: T).(\lambda (t2: T).(\lambda (_: (pr0 t1 t2)).(\lambda
-(_: (((eq T t1 (TSort n)) \to (eq T t2 t1)))).(\lambda (w: T).(\lambda (_:
-(subst0 O u2 t2 w)).(\lambda (H6: (eq T (THead (Bind Abbr) u1 t1) (TSort
-n))).(let H7 \def (eq_ind T (THead (Bind Abbr) u1 t1) (\lambda (ee: T).(match
-ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False |
-(TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TSort n)
-H6) in (False_ind (eq T (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u1 t1))
+t1)) (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TSort n) H8) in
+(False_ind (eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t2))
+(THead (Flat Appl) v1 (THead (Bind b) u1 t1))) H9))))))))))))))))) (\lambda
+(u1: T).(\lambda (u2: T).(\lambda (_: (pr0 u1 u2)).(\lambda (_: (((eq T u1
+(TSort n)) \to (eq T u2 u1)))).(\lambda (t1: T).(\lambda (t2: T).(\lambda (_:
+(pr0 t1 t2)).(\lambda (_: (((eq T t1 (TSort n)) \to (eq T t2 t1)))).(\lambda
+(w: T).(\lambda (_: (subst0 O u2 t2 w)).(\lambda (H6: (eq T (THead (Bind
+Abbr) u1 t1) (TSort n))).(let H7 \def (eq_ind T (THead (Bind Abbr) u1 t1)
+(\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TSort n) H6) in
+(False_ind (eq T (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u1 t1))
H7))))))))))))) (\lambda (b: B).(\lambda (_: (not (eq B b Abst))).(\lambda
(t1: T).(\lambda (t2: T).(\lambda (_: (pr0 t1 t2)).(\lambda (_: (((eq T t1
(TSort n)) \to (eq T t2 t1)))).(\lambda (u: T).(\lambda (H4: (eq T (THead
(Bind b) u (lift (S O) O t1)) (TSort n))).(let H5 \def (eq_ind T (THead (Bind
-b) u (lift (S O) O t1)) (\lambda (ee: T).(match ee in T return (\lambda (_:
-T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False |
-(THead _ _ _) \Rightarrow True])) I (TSort n) H4) in (False_ind (eq T t2
-(THead (Bind b) u (lift (S O) O t1))) H5)))))))))) (\lambda (t1: T).(\lambda
-(t2: T).(\lambda (_: (pr0 t1 t2)).(\lambda (_: (((eq T t1 (TSort n)) \to (eq
-T t2 t1)))).(\lambda (u: T).(\lambda (H3: (eq T (THead (Flat Cast) u t1)
-(TSort n))).(let H4 \def (eq_ind T (THead (Flat Cast) u t1) (\lambda (ee:
-T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
-False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow True])) I
-(TSort n) H3) in (False_ind (eq T t2 (THead (Flat Cast) u t1)) H4)))))))) y x
-H0))) H))).
-(* COMMENTS
-Initial nodes: 1045
-END *)
+b) u (lift (S O) O t1)) (\lambda (ee: T).(match ee with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow
+True])) I (TSort n) H4) in (False_ind (eq T t2 (THead (Bind b) u (lift (S O)
+O t1))) H5)))))))))) (\lambda (t1: T).(\lambda (t2: T).(\lambda (_: (pr0 t1
+t2)).(\lambda (_: (((eq T t1 (TSort n)) \to (eq T t2 t1)))).(\lambda (u:
+T).(\lambda (H3: (eq T (THead (Flat Cast) u t1) (TSort n))).(let H4 \def
+(eq_ind T (THead (Flat Cast) u t1) (\lambda (ee: T).(match ee with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow
+True])) I (TSort n) H3) in (False_ind (eq T t2 (THead (Flat Cast) u t1))
+H4)))))))) y x H0))) H))).
theorem pr0_gen_lref:
\forall (x: T).(\forall (n: nat).((pr0 (TLRef n) x) \to (eq T x (TLRef n))))
(_: (((eq T u1 (TLRef n)) \to (eq T u2 u1)))).(\lambda (t1: T).(\lambda (t2:
T).(\lambda (_: (pr0 t1 t2)).(\lambda (_: (((eq T t1 (TLRef n)) \to (eq T t2
t1)))).(\lambda (k: K).(\lambda (H5: (eq T (THead k u1 t1) (TLRef n))).(let
-H6 \def (eq_ind T (THead k u1 t1) (\lambda (ee: T).(match ee in T return
-(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
-\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TLRef n) H5) in
-(False_ind (eq T (THead k u2 t2) (THead k u1 t1)) H6)))))))))))) (\lambda (u:
-T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (pr0 v1 v2)).(\lambda (_:
-(((eq T v1 (TLRef n)) \to (eq T v2 v1)))).(\lambda (t1: T).(\lambda (t2:
-T).(\lambda (_: (pr0 t1 t2)).(\lambda (_: (((eq T t1 (TLRef n)) \to (eq T t2
-t1)))).(\lambda (H5: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t1))
-(TLRef n))).(let H6 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u
-t1)) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with
-[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _)
-\Rightarrow True])) I (TLRef n) H5) in (False_ind (eq T (THead (Bind Abbr) v2
-t2) (THead (Flat Appl) v1 (THead (Bind Abst) u t1))) H6)))))))))))) (\lambda
-(b: B).(\lambda (_: (not (eq B b Abst))).(\lambda (v1: T).(\lambda (v2:
+H6 \def (eq_ind T (THead k u1 t1) (\lambda (ee: T).(match ee with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow
+True])) I (TLRef n) H5) in (False_ind (eq T (THead k u2 t2) (THead k u1 t1))
+H6)))))))))))) (\lambda (u: T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_:
+(pr0 v1 v2)).(\lambda (_: (((eq T v1 (TLRef n)) \to (eq T v2 v1)))).(\lambda
+(t1: T).(\lambda (t2: T).(\lambda (_: (pr0 t1 t2)).(\lambda (_: (((eq T t1
+(TLRef n)) \to (eq T t2 t1)))).(\lambda (H5: (eq T (THead (Flat Appl) v1
+(THead (Bind Abst) u t1)) (TLRef n))).(let H6 \def (eq_ind T (THead (Flat
+Appl) v1 (THead (Bind Abst) u t1)) (\lambda (ee: T).(match ee with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow
+True])) I (TLRef n) H5) in (False_ind (eq T (THead (Bind Abbr) v2 t2) (THead
+(Flat Appl) v1 (THead (Bind Abst) u t1))) H6)))))))))))) (\lambda (b:
+B).(\lambda (_: (not (eq B b Abst))).(\lambda (v1: T).(\lambda (v2:
T).(\lambda (_: (pr0 v1 v2)).(\lambda (_: (((eq T v1 (TLRef n)) \to (eq T v2
v1)))).(\lambda (u1: T).(\lambda (u2: T).(\lambda (_: (pr0 u1 u2)).(\lambda
(_: (((eq T u1 (TLRef n)) \to (eq T u2 u1)))).(\lambda (t1: T).(\lambda (t2:
T).(\lambda (_: (pr0 t1 t2)).(\lambda (_: (((eq T t1 (TLRef n)) \to (eq T t2
t1)))).(\lambda (H8: (eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t1))
(TLRef n))).(let H9 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u1
-t1)) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with
-[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _)
-\Rightarrow True])) I (TLRef n) H8) in (False_ind (eq T (THead (Bind b) u2
-(THead (Flat Appl) (lift (S O) O v2) t2)) (THead (Flat Appl) v1 (THead (Bind
-b) u1 t1))) H9))))))))))))))))) (\lambda (u1: T).(\lambda (u2: T).(\lambda
-(_: (pr0 u1 u2)).(\lambda (_: (((eq T u1 (TLRef n)) \to (eq T u2
-u1)))).(\lambda (t1: T).(\lambda (t2: T).(\lambda (_: (pr0 t1 t2)).(\lambda
-(_: (((eq T t1 (TLRef n)) \to (eq T t2 t1)))).(\lambda (w: T).(\lambda (_:
-(subst0 O u2 t2 w)).(\lambda (H6: (eq T (THead (Bind Abbr) u1 t1) (TLRef
-n))).(let H7 \def (eq_ind T (THead (Bind Abbr) u1 t1) (\lambda (ee: T).(match
-ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False |
-(TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TLRef n)
-H6) in (False_ind (eq T (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u1 t1))
+t1)) (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TLRef n) H8) in
+(False_ind (eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t2))
+(THead (Flat Appl) v1 (THead (Bind b) u1 t1))) H9))))))))))))))))) (\lambda
+(u1: T).(\lambda (u2: T).(\lambda (_: (pr0 u1 u2)).(\lambda (_: (((eq T u1
+(TLRef n)) \to (eq T u2 u1)))).(\lambda (t1: T).(\lambda (t2: T).(\lambda (_:
+(pr0 t1 t2)).(\lambda (_: (((eq T t1 (TLRef n)) \to (eq T t2 t1)))).(\lambda
+(w: T).(\lambda (_: (subst0 O u2 t2 w)).(\lambda (H6: (eq T (THead (Bind
+Abbr) u1 t1) (TLRef n))).(let H7 \def (eq_ind T (THead (Bind Abbr) u1 t1)
+(\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TLRef n) H6) in
+(False_ind (eq T (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u1 t1))
H7))))))))))))) (\lambda (b: B).(\lambda (_: (not (eq B b Abst))).(\lambda
(t1: T).(\lambda (t2: T).(\lambda (_: (pr0 t1 t2)).(\lambda (_: (((eq T t1
(TLRef n)) \to (eq T t2 t1)))).(\lambda (u: T).(\lambda (H4: (eq T (THead
(Bind b) u (lift (S O) O t1)) (TLRef n))).(let H5 \def (eq_ind T (THead (Bind
-b) u (lift (S O) O t1)) (\lambda (ee: T).(match ee in T return (\lambda (_:
-T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False |
-(THead _ _ _) \Rightarrow True])) I (TLRef n) H4) in (False_ind (eq T t2
-(THead (Bind b) u (lift (S O) O t1))) H5)))))))))) (\lambda (t1: T).(\lambda
-(t2: T).(\lambda (_: (pr0 t1 t2)).(\lambda (_: (((eq T t1 (TLRef n)) \to (eq
-T t2 t1)))).(\lambda (u: T).(\lambda (H3: (eq T (THead (Flat Cast) u t1)
-(TLRef n))).(let H4 \def (eq_ind T (THead (Flat Cast) u t1) (\lambda (ee:
-T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
-False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow True])) I
-(TLRef n) H3) in (False_ind (eq T t2 (THead (Flat Cast) u t1)) H4)))))))) y x
-H0))) H))).
-(* COMMENTS
-Initial nodes: 1045
-END *)
+b) u (lift (S O) O t1)) (\lambda (ee: T).(match ee with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow
+True])) I (TLRef n) H4) in (False_ind (eq T t2 (THead (Bind b) u (lift (S O)
+O t1))) H5)))))))))) (\lambda (t1: T).(\lambda (t2: T).(\lambda (_: (pr0 t1
+t2)).(\lambda (_: (((eq T t1 (TLRef n)) \to (eq T t2 t1)))).(\lambda (u:
+T).(\lambda (H3: (eq T (THead (Flat Cast) u t1) (TLRef n))).(let H4 \def
+(eq_ind T (THead (Flat Cast) u t1) (\lambda (ee: T).(match ee with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow
+True])) I (TLRef n) H3) in (False_ind (eq T t2 (THead (Flat Cast) u t1))
+H4)))))))) y x H0))) H))).
theorem pr0_gen_abst:
\forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr0 (THead (Bind Abst) u1
(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3:
T).(pr0 t1 t3))))))).(\lambda (k: K).(\lambda (H5: (eq T (THead k u0 t0)
(THead (Bind Abst) u1 t1))).(let H6 \def (f_equal T K (\lambda (e: T).(match
-e in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow k | (TLRef _)
-\Rightarrow k | (THead k0 _ _) \Rightarrow k0])) (THead k u0 t0) (THead (Bind
-Abst) u1 t1) H5) in ((let H7 \def (f_equal T T (\lambda (e: T).(match e in T
-return (\lambda (_: T).T) with [(TSort _) \Rightarrow u0 | (TLRef _)
-\Rightarrow u0 | (THead _ t _) \Rightarrow t])) (THead k u0 t0) (THead (Bind
-Abst) u1 t1) H5) in ((let H8 \def (f_equal T T (\lambda (e: T).(match e in T
-return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0 | (TLRef _)
-\Rightarrow t0 | (THead _ _ t) \Rightarrow t])) (THead k u0 t0) (THead (Bind
-Abst) u1 t1) H5) in (\lambda (H9: (eq T u0 u1)).(\lambda (H10: (eq K k (Bind
-Abst))).(eq_ind_r K (Bind Abst) (\lambda (k0: K).(ex3_2 T T (\lambda (u3:
-T).(\lambda (t3: T).(eq T (THead k0 u2 t2) (THead (Bind Abst) u3 t3))))
-(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3:
-T).(pr0 t1 t3))))) (let H11 \def (eq_ind T t0 (\lambda (t: T).((eq T t (THead
-(Bind Abst) u1 t1)) \to (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t2
+e with [(TSort _) \Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _)
+\Rightarrow k0])) (THead k u0 t0) (THead (Bind Abst) u1 t1) H5) in ((let H7
+\def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow u0 |
+(TLRef _) \Rightarrow u0 | (THead _ t _) \Rightarrow t])) (THead k u0 t0)
+(THead (Bind Abst) u1 t1) H5) in ((let H8 \def (f_equal T T (\lambda (e:
+T).(match e with [(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 |
+(THead _ _ t) \Rightarrow t])) (THead k u0 t0) (THead (Bind Abst) u1 t1) H5)
+in (\lambda (H9: (eq T u0 u1)).(\lambda (H10: (eq K k (Bind Abst))).(eq_ind_r
+K (Bind Abst) (\lambda (k0: K).(ex3_2 T T (\lambda (u3: T).(\lambda (t3:
+T).(eq T (THead k0 u2 t2) (THead (Bind Abst) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3))))) (let H11 \def (eq_ind T t0 (\lambda (t: T).((eq T t (THead (Bind
+Abst) u1 t1)) \to (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t2
(THead (Bind Abst) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3)))
(\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))))) H4 t1 H8) in (let H12 \def
(eq_ind T t0 (\lambda (t: T).(pr0 t t2)) H3 t1 H8) in (let H13 \def (eq_ind T
T).(\lambda (t3: T).(pr0 t1 t3))))))).(\lambda (H5: (eq T (THead (Flat Appl)
v1 (THead (Bind Abst) u t0)) (THead (Bind Abst) u1 t1))).(let H6 \def (eq_ind
T (THead (Flat Appl) v1 (THead (Bind Abst) u t0)) (\lambda (ee: T).(match ee
-in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef
-_) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K return
-(\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow
-True])])) I (THead (Bind Abst) u1 t1) H5) in (False_ind (ex3_2 T T (\lambda
-(u2: T).(\lambda (t3: T).(eq T (THead (Bind Abbr) v2 t2) (THead (Bind Abst)
-u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
-T).(\lambda (t3: T).(pr0 t1 t3)))) H6)))))))))))) (\lambda (b: B).(\lambda
-(_: (not (eq B b Abst))).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (pr0
-v1 v2)).(\lambda (_: (((eq T v1 (THead (Bind Abst) u1 t1)) \to (ex3_2 T T
-(\lambda (u2: T).(\lambda (t2: T).(eq T v2 (THead (Bind Abst) u2 t2))))
-(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2:
-T).(pr0 t1 t2))))))).(\lambda (u0: T).(\lambda (u2: T).(\lambda (_: (pr0 u0
-u2)).(\lambda (_: (((eq T u0 (THead (Bind Abst) u1 t1)) \to (ex3_2 T T
-(\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead (Bind Abst) u3 t2))))
-(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t2:
-T).(pr0 t1 t2))))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0
-t2)).(\lambda (_: (((eq T t0 (THead (Bind Abst) u1 t1)) \to (ex3_2 T T
-(\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abst) u3 t3))))
-(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3:
-T).(pr0 t1 t3))))))).(\lambda (H8: (eq T (THead (Flat Appl) v1 (THead (Bind
-b) u0 t0)) (THead (Bind Abst) u1 t1))).(let H9 \def (eq_ind T (THead (Flat
-Appl) v1 (THead (Bind b) u0 t0)) (\lambda (ee: T).(match ee in T return
-(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
-\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda
-(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow
+with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _
+_) \Rightarrow (match k with [(Bind _) \Rightarrow False | (Flat _)
+\Rightarrow True])])) I (THead (Bind Abst) u1 t1) H5) in (False_ind (ex3_2 T
+T (\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind Abbr) v2 t2) (THead
+(Bind Abst) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
+(_: T).(\lambda (t3: T).(pr0 t1 t3)))) H6)))))))))))) (\lambda (b:
+B).(\lambda (_: (not (eq B b Abst))).(\lambda (v1: T).(\lambda (v2:
+T).(\lambda (_: (pr0 v1 v2)).(\lambda (_: (((eq T v1 (THead (Bind Abst) u1
+t1)) \to (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T v2 (THead (Bind
+Abst) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
+T).(\lambda (t2: T).(pr0 t1 t2))))))).(\lambda (u0: T).(\lambda (u2:
+T).(\lambda (_: (pr0 u0 u2)).(\lambda (_: (((eq T u0 (THead (Bind Abst) u1
+t1)) \to (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead (Bind
+Abst) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_:
+T).(\lambda (t2: T).(pr0 t1 t2))))))).(\lambda (t0: T).(\lambda (t2:
+T).(\lambda (_: (pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Bind Abst) u1
+t1)) \to (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Bind
+Abst) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_:
+T).(\lambda (t3: T).(pr0 t1 t3))))))).(\lambda (H8: (eq T (THead (Flat Appl)
+v1 (THead (Bind b) u0 t0)) (THead (Bind Abst) u1 t1))).(let H9 \def (eq_ind T
+(THead (Flat Appl) v1 (THead (Bind b) u0 t0)) (\lambda (ee: T).(match ee with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _)
+\Rightarrow (match k with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow
True])])) I (THead (Bind Abst) u1 t1) H8) in (False_ind (ex3_2 T T (\lambda
(u3: T).(\lambda (t3: T).(eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S
O) O v2) t2)) (THead (Bind Abst) u3 t3)))) (\lambda (u3: T).(\lambda (_:
T).(pr0 t1 t3))))))).(\lambda (w: T).(\lambda (_: (subst0 O u2 t2
w)).(\lambda (H6: (eq T (THead (Bind Abbr) u0 t0) (THead (Bind Abst) u1
t1))).(let H7 \def (eq_ind T (THead (Bind Abbr) u0 t0) (\lambda (ee:
-T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
-False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K
-return (\lambda (_: K).Prop) with [(Bind b) \Rightarrow (match b in B return
-(\lambda (_: B).Prop) with [Abbr \Rightarrow True | Abst \Rightarrow False |
-Void \Rightarrow False]) | (Flat _) \Rightarrow False])])) I (THead (Bind
-Abst) u1 t1) H6) in (False_ind (ex3_2 T T (\lambda (u3: T).(\lambda (t3:
-T).(eq T (THead (Bind Abbr) u2 w) (THead (Bind Abst) u3 t3)))) (\lambda (u3:
-T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
-t3)))) H7))))))))))))) (\lambda (b: B).(\lambda (H1: (not (eq B b
-Abst))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0 t2)).(\lambda
-(H3: (((eq T t0 (THead (Bind Abst) u1 t1)) \to (ex3_2 T T (\lambda (u2:
-T).(\lambda (t3: T).(eq T t2 (THead (Bind Abst) u2 t3)))) (\lambda (u2:
-T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
-t3))))))).(\lambda (u: T).(\lambda (H4: (eq T (THead (Bind b) u (lift (S O) O
-t0)) (THead (Bind Abst) u1 t1))).(let H5 \def (f_equal T B (\lambda (e:
-T).(match e in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow b |
-(TLRef _) \Rightarrow b | (THead k _ _) \Rightarrow (match k in K return
-(\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow
-b])])) (THead (Bind b) u (lift (S O) O t0)) (THead (Bind Abst) u1 t1) H4) in
-((let H6 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_:
-T).T) with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | (THead _ t _)
-\Rightarrow t])) (THead (Bind b) u (lift (S O) O t0)) (THead (Bind Abst) u1
-t1) H4) in ((let H7 \def (f_equal T T (\lambda (e: T).(match e in T return
-(\lambda (_: T).T) with [(TSort _) \Rightarrow ((let rec lref_map (f: ((nat
-\to nat))) (d: nat) (t: T) on t: T \def (match t with [(TSort n) \Rightarrow
-(TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with [true
-\Rightarrow i | false \Rightarrow (f i)])) | (THead k u0 t3) \Rightarrow
-(THead k (lref_map f d u0) (lref_map f (s k d) t3))]) in lref_map) (\lambda
-(x0: nat).(plus x0 (S O))) O t0) | (TLRef _) \Rightarrow ((let rec lref_map
-(f: ((nat \to nat))) (d: nat) (t: T) on t: T \def (match t with [(TSort n)
-\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with
-[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k u0 t3)
-\Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) t3))]) in
-lref_map) (\lambda (x0: nat).(plus x0 (S O))) O t0) | (THead _ _ t)
-\Rightarrow t])) (THead (Bind b) u (lift (S O) O t0)) (THead (Bind Abst) u1
-t1) H4) in (\lambda (_: (eq T u u1)).(\lambda (H9: (eq B b Abst)).(let H10
-\def (eq_ind B b (\lambda (b0: B).(not (eq B b0 Abst))) H1 Abst H9) in (let
-H11 \def (eq_ind_r T t1 (\lambda (t: T).((eq T t0 (THead (Bind Abst) u1 t))
-\to (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abst)
-u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
-T).(\lambda (t3: T).(pr0 t t3)))))) H3 (lift (S O) O t0) H7) in (eq_ind T
-(lift (S O) O t0) (\lambda (t: T).(ex3_2 T T (\lambda (u2: T).(\lambda (t3:
-T).(eq T t2 (THead (Bind Abst) u2 t3)))) (\lambda (u2: T).(\lambda (_:
-T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t t3))))) (let H12
-\def (match (H10 (refl_equal B Abst)) in False return (\lambda (_:
-False).(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind
+T).(match ee with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False
+| (THead k _ _) \Rightarrow (match k with [(Bind b) \Rightarrow (match b with
+[Abbr \Rightarrow True | Abst \Rightarrow False | Void \Rightarrow False]) |
+(Flat _) \Rightarrow False])])) I (THead (Bind Abst) u1 t1) H6) in (False_ind
+(ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Bind Abbr) u2 w)
+(THead (Bind Abst) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3)))
+(\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) H7))))))))))))) (\lambda (b:
+B).(\lambda (H1: (not (eq B b Abst))).(\lambda (t0: T).(\lambda (t2:
+T).(\lambda (_: (pr0 t0 t2)).(\lambda (H3: (((eq T t0 (THead (Bind Abst) u1
+t1)) \to (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind
Abst) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
-T).(\lambda (t3: T).(pr0 (lift (S O) O t0) t3))))) with []) in H12) t1
-H7)))))) H6)) H5)))))))))) (\lambda (t0: T).(\lambda (t2: T).(\lambda (_:
-(pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Bind Abst) u1 t1)) \to (ex3_2 T
-T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abst) u2 t3))))
-(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3:
-T).(pr0 t1 t3))))))).(\lambda (u: T).(\lambda (H3: (eq T (THead (Flat Cast) u
-t0) (THead (Bind Abst) u1 t1))).(let H4 \def (eq_ind T (THead (Flat Cast) u
-t0) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort
-_) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _)
-\Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
-\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind Abst) u1
-t1) H3) in (False_ind (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2
+T).(\lambda (t3: T).(pr0 t1 t3))))))).(\lambda (u: T).(\lambda (H4: (eq T
+(THead (Bind b) u (lift (S O) O t0)) (THead (Bind Abst) u1 t1))).(let H5 \def
+(f_equal T B (\lambda (e: T).(match e with [(TSort _) \Rightarrow b | (TLRef
+_) \Rightarrow b | (THead k _ _) \Rightarrow (match k with [(Bind b0)
+\Rightarrow b0 | (Flat _) \Rightarrow b])])) (THead (Bind b) u (lift (S O) O
+t0)) (THead (Bind Abst) u1 t1) H4) in ((let H6 \def (f_equal T T (\lambda (e:
+T).(match e with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | (THead
+_ t _) \Rightarrow t])) (THead (Bind b) u (lift (S O) O t0)) (THead (Bind
+Abst) u1 t1) H4) in ((let H7 \def (f_equal T T (\lambda (e: T).(match e with
+[(TSort _) \Rightarrow (lref_map (\lambda (x0: nat).(plus x0 (S O))) O t0) |
+(TLRef _) \Rightarrow (lref_map (\lambda (x0: nat).(plus x0 (S O))) O t0) |
+(THead _ _ t) \Rightarrow t])) (THead (Bind b) u (lift (S O) O t0)) (THead
+(Bind Abst) u1 t1) H4) in (\lambda (_: (eq T u u1)).(\lambda (H9: (eq B b
+Abst)).(let H10 \def (eq_ind B b (\lambda (b0: B).(not (eq B b0 Abst))) H1
+Abst H9) in (let H11 \def (eq_ind_r T t1 (\lambda (t: T).((eq T t0 (THead
+(Bind Abst) u1 t)) \to (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2
(THead (Bind Abst) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2)))
-(\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) H4)))))))) y x H0))) H)))).
-(* COMMENTS
-Initial nodes: 2838
-END *)
+(\lambda (_: T).(\lambda (t3: T).(pr0 t t3)))))) H3 (lift (S O) O t0) H7) in
+(eq_ind T (lift (S O) O t0) (\lambda (t: T).(ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T t2 (THead (Bind Abst) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t
+t3))))) (let H12 \def (match (H10 (refl_equal B Abst)) in False with []) in
+H12) t1 H7)))))) H6)) H5)))))))))) (\lambda (t0: T).(\lambda (t2: T).(\lambda
+(_: (pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Bind Abst) u1 t1)) \to
+(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abst) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr0 t1 t3))))))).(\lambda (u: T).(\lambda (H3: (eq T
+(THead (Flat Cast) u t0) (THead (Bind Abst) u1 t1))).(let H4 \def (eq_ind T
+(THead (Flat Cast) u t0) (\lambda (ee: T).(match ee with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow
+(match k with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I
+(THead (Bind Abst) u1 t1) H3) in (False_ind (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T t2 (THead (Bind Abst) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) H4)))))))) y x H0))) H)))).
theorem pr0_gen_appl:
\forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr0 (THead (Flat Appl) u1
(\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_:
T).(\lambda (t3: T).(pr0 z1 t3)))))))))))).(\lambda (k: K).(\lambda (H5: (eq
T (THead k u0 t0) (THead (Flat Appl) u1 t1))).(let H6 \def (f_equal T K
-(\lambda (e: T).(match e in T return (\lambda (_: T).K) with [(TSort _)
-\Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _) \Rightarrow k0]))
-(THead k u0 t0) (THead (Flat Appl) u1 t1) H5) in ((let H7 \def (f_equal T T
-(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
-\Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t _) \Rightarrow t]))
-(THead k u0 t0) (THead (Flat Appl) u1 t1) H5) in ((let H8 \def (f_equal T T
-(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
-\Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t) \Rightarrow t]))
-(THead k u0 t0) (THead (Flat Appl) u1 t1) H5) in (\lambda (H9: (eq T u0
-u1)).(\lambda (H10: (eq K k (Flat Appl))).(eq_ind_r K (Flat Appl) (\lambda
-(k0: K).(or3 (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T (THead k0 u2
-t2) (THead (Flat Appl) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1
-u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda
-(y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead
-(Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3:
-T).(\lambda (t3: T).(eq T (THead k0 u2 t2) (THead (Bind Abbr) u3 t3))))))
-(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(pr0 u1
-u3))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3:
-T).(pr0 z1 t3)))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_:
-T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B
-b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
-T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind b) y1 z1))))))))
-(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda
-(v2: T).(\lambda (t3: T).(eq T (THead k0 u2 t2) (THead (Bind b) v2 (THead
-(Flat Appl) (lift (S O) O u3) t3))))))))) (\lambda (_: B).(\lambda (_:
-T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1
-u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
-T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_:
-B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
-(t3: T).(pr0 z1 t3)))))))))) (let H11 \def (eq_ind T t0 (\lambda (t: T).((eq
-T t (THead (Flat Appl) u1 t1)) \to (or3 (ex3_2 T T (\lambda (u3: T).(\lambda
-(t3: T).(eq T t2 (THead (Flat Appl) u3 t3)))) (\lambda (u3: T).(\lambda (_:
-T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (ex4_4 T T T
-T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
-(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3:
-T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u3 t3)))))) (\lambda (_:
+(\lambda (e: T).(match e with [(TSort _) \Rightarrow k | (TLRef _)
+\Rightarrow k | (THead k0 _ _) \Rightarrow k0])) (THead k u0 t0) (THead (Flat
+Appl) u1 t1) H5) in ((let H7 \def (f_equal T T (\lambda (e: T).(match e with
+[(TSort _) \Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t _)
+\Rightarrow t])) (THead k u0 t0) (THead (Flat Appl) u1 t1) H5) in ((let H8
+\def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow t0 |
+(TLRef _) \Rightarrow t0 | (THead _ _ t) \Rightarrow t])) (THead k u0 t0)
+(THead (Flat Appl) u1 t1) H5) in (\lambda (H9: (eq T u0 u1)).(\lambda (H10:
+(eq K k (Flat Appl))).(eq_ind_r K (Flat Appl) (\lambda (k0: K).(or3 (ex3_2 T
+T (\lambda (u3: T).(\lambda (t3: T).(eq T (THead k0 u2 t2) (THead (Flat Appl)
+u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_:
+T).(\lambda (t3: T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t3:
+T).(eq T (THead k0 u2 t2) (THead (Bind Abbr) u3 t3)))))) (\lambda (_:
T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))))) (\lambda
(_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3))))))
(ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
(_: T).(eq T t1 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_:
T).(\lambda (_: T).(\lambda (u3: T).(\lambda (v2: T).(\lambda (t3: T).(eq T
-t2 (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O u3) t3)))))))))
-(\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_:
-T).(\lambda (_: T).(pr0 u1 u3))))))) (\lambda (_: B).(\lambda (y1:
-T).(\lambda (_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1
-v2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_:
-T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3))))))))))) H4 t1 H8) in (let
-H12 \def (eq_ind T t0 (\lambda (t: T).(pr0 t t2)) H3 t1 H8) in (let H13 \def
-(eq_ind T u0 (\lambda (t: T).((eq T t (THead (Flat Appl) u1 t1)) \to (or3
-(ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T u2 (THead (Flat Appl) u3
+(THead k0 u2 t2) (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O u3)
+t3))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u3:
+T).(\lambda (_: T).(\lambda (_: T).(pr0 u1 u3))))))) (\lambda (_: B).(\lambda
+(y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0
+y1 v2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))))))) (let H11 \def
+(eq_ind T t0 (\lambda (t: T).((eq T t (THead (Flat Appl) u1 t1)) \to (or3
+(ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u3
t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_:
T).(\lambda (t3: T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1
z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t3:
-T).(eq T u2 (THead (Bind Abbr) u3 t3)))))) (\lambda (_: T).(\lambda (_:
+T).(eq T t2 (THead (Bind Abbr) u3 t3)))))) (\lambda (_: T).(\lambda (_:
T).(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))))) (\lambda (_: T).(\lambda
(z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T
(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
-T).(\lambda (u3: T).(\lambda (v2: T).(\lambda (t3: T).(eq T u2 (THead (Bind
+T).(\lambda (u3: T).(\lambda (v2: T).(\lambda (t3: T).(eq T t2 (THead (Bind
b) v2 (THead (Flat Appl) (lift (S O) O u3) t3))))))))) (\lambda (_:
B).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(\lambda
(_: T).(pr0 u1 u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_:
T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2)))))))
(\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_:
-T).(\lambda (t3: T).(pr0 z1 t3))))))))))) H2 u1 H9) in (let H14 \def (eq_ind
-T u0 (\lambda (t: T).(pr0 t u2)) H1 u1 H9) in (or3_intro0 (ex3_2 T T (\lambda
-(u3: T).(\lambda (t3: T).(eq T (THead (Flat Appl) u2 t2) (THead (Flat Appl)
-u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_:
+T).(\lambda (t3: T).(pr0 z1 t3))))))))))) H4 t1 H8) in (let H12 \def (eq_ind
+T t0 (\lambda (t: T).(pr0 t t2)) H3 t1 H8) in (let H13 \def (eq_ind T u0
+(\lambda (t: T).((eq T t (THead (Flat Appl) u1 t1)) \to (or3 (ex3_2 T T
+(\lambda (u3: T).(\lambda (t3: T).(eq T u2 (THead (Flat Appl) u3 t3))))
+(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3:
+T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda
+(_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t3: T).(eq T u2 (THead (Bind
+Abbr) u3 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda
+(_: T).(pr0 u1 u3))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(u3: T).(\lambda (v2: T).(\lambda (t3: T).(eq T u2 (THead (Bind b) v2 (THead
+(Flat Appl) (lift (S O) O u3) t3))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1
+u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(t3: T).(pr0 z1 t3))))))))))) H2 u1 H9) in (let H14 \def (eq_ind T u0
+(\lambda (t: T).(pr0 t u2)) H1 u1 H9) in (or3_intro0 (ex3_2 T T (\lambda (u3:
+T).(\lambda (t3: T).(eq T (THead (Flat Appl) u2 t2) (THead (Flat Appl) u3
+t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_:
T).(\lambda (t3: T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1
z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t3:
(\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_:
T).(\lambda (t3: T).(pr0 z1 t3)))))))))))).(\lambda (H5: (eq T (THead (Flat
Appl) v1 (THead (Bind Abst) u t0)) (THead (Flat Appl) u1 t1))).(let H6 \def
-(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
-[(TSort _) \Rightarrow v1 | (TLRef _) \Rightarrow v1 | (THead _ t _)
-\Rightarrow t])) (THead (Flat Appl) v1 (THead (Bind Abst) u t0)) (THead (Flat
-Appl) u1 t1) H5) in ((let H7 \def (f_equal T T (\lambda (e: T).(match e in T
-return (\lambda (_: T).T) with [(TSort _) \Rightarrow (THead (Bind Abst) u
-t0) | (TLRef _) \Rightarrow (THead (Bind Abst) u t0) | (THead _ _ t)
-\Rightarrow t])) (THead (Flat Appl) v1 (THead (Bind Abst) u t0)) (THead (Flat
-Appl) u1 t1) H5) in (\lambda (H8: (eq T v1 u1)).(let H9 \def (eq_ind T v1
-(\lambda (t: T).((eq T t (THead (Flat Appl) u1 t1)) \to (or3 (ex3_2 T T
+(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow v1 | (TLRef
+_) \Rightarrow v1 | (THead _ t _) \Rightarrow t])) (THead (Flat Appl) v1
+(THead (Bind Abst) u t0)) (THead (Flat Appl) u1 t1) H5) in ((let H7 \def
+(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow (THead
+(Bind Abst) u t0) | (TLRef _) \Rightarrow (THead (Bind Abst) u t0) | (THead _
+_ t) \Rightarrow t])) (THead (Flat Appl) v1 (THead (Bind Abst) u t0)) (THead
+(Flat Appl) u1 t1) H5) in (\lambda (H8: (eq T v1 u1)).(let H9 \def (eq_ind T
+v1 (\lambda (t: T).((eq T t (THead (Flat Appl) u1 t1)) \to (or3 (ex3_2 T T
(\lambda (u2: T).(\lambda (t3: T).(eq T v2 (THead (Flat Appl) u2 t3))))
(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3:
T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda
(\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_:
T).(\lambda (t3: T).(pr0 z1 t3)))))))))))).(\lambda (H8: (eq T (THead (Flat
Appl) v1 (THead (Bind b) u0 t0)) (THead (Flat Appl) u1 t1))).(let H9 \def
-(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
-[(TSort _) \Rightarrow v1 | (TLRef _) \Rightarrow v1 | (THead _ t _)
-\Rightarrow t])) (THead (Flat Appl) v1 (THead (Bind b) u0 t0)) (THead (Flat
-Appl) u1 t1) H8) in ((let H10 \def (f_equal T T (\lambda (e: T).(match e in T
-return (\lambda (_: T).T) with [(TSort _) \Rightarrow (THead (Bind b) u0 t0)
-| (TLRef _) \Rightarrow (THead (Bind b) u0 t0) | (THead _ _ t) \Rightarrow
-t])) (THead (Flat Appl) v1 (THead (Bind b) u0 t0)) (THead (Flat Appl) u1 t1)
-H8) in (\lambda (H11: (eq T v1 u1)).(let H12 \def (eq_ind T v1 (\lambda (t:
-T).((eq T t (THead (Flat Appl) u1 t1)) \to (or3 (ex3_2 T T (\lambda (u3:
-T).(\lambda (t3: T).(eq T v2 (THead (Flat Appl) u3 t3)))) (\lambda (u3:
-T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
-t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
-T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow v1 | (TLRef
+_) \Rightarrow v1 | (THead _ t _) \Rightarrow t])) (THead (Flat Appl) v1
+(THead (Bind b) u0 t0)) (THead (Flat Appl) u1 t1) H8) in ((let H10 \def
+(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow (THead
+(Bind b) u0 t0) | (TLRef _) \Rightarrow (THead (Bind b) u0 t0) | (THead _ _
+t) \Rightarrow t])) (THead (Flat Appl) v1 (THead (Bind b) u0 t0)) (THead
+(Flat Appl) u1 t1) H8) in (\lambda (H11: (eq T v1 u1)).(let H12 \def (eq_ind
+T v1 (\lambda (t: T).((eq T t (THead (Flat Appl) u1 t1)) \to (or3 (ex3_2 T T
+(\lambda (u3: T).(\lambda (t3: T).(eq T v2 (THead (Flat Appl) u3 t3))))
+(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3:
+T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda
+(_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_:
T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t3: T).(eq T v2 (THead (Bind
Abbr) u3 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda
(_: T).(pr0 u1 u3))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
T).(\lambda (t3: T).(pr0 z1 t3)))))))))))).(\lambda (w: T).(\lambda (_:
(subst0 O u2 t2 w)).(\lambda (H6: (eq T (THead (Bind Abbr) u0 t0) (THead
(Flat Appl) u1 t1))).(let H7 \def (eq_ind T (THead (Bind Abbr) u0 t0)
-(\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _)
-\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow
-(match k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow True |
-(Flat _) \Rightarrow False])])) I (THead (Flat Appl) u1 t1) H6) in (False_ind
-(or3 (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Bind Abbr) u2
-w) (THead (Flat Appl) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1
-u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda
-(y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead
-(Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3:
-T).(\lambda (t3: T).(eq T (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u3
-t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_:
-T).(pr0 u1 u3))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda
-(t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_:
-T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B
-b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
-T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind b) y1 z1))))))))
-(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda
-(v2: T).(\lambda (t3: T).(eq T (THead (Bind Abbr) u2 w) (THead (Bind b) v2
-(THead (Flat Appl) (lift (S O) O u3) t3))))))))) (\lambda (_: B).(\lambda (_:
-T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1
-u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
-T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_:
-B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
-(t3: T).(pr0 z1 t3))))))))) H7))))))))))))) (\lambda (b: B).(\lambda (_: (not
-(eq B b Abst))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0
-t2)).(\lambda (_: (((eq T t0 (THead (Flat Appl) u1 t1)) \to (or3 (ex3_2 T T
-(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u2 t3))))
-(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3:
-T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda
-(_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_:
-T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind
-Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
-(_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
-T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T (\lambda (b0:
-B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
-(_: T).(not (eq B b0 Abst)))))))) (\lambda (b0: B).(\lambda (y1: T).(\lambda
-(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
-b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda
-(u2: T).(\lambda (v2: T).(\lambda (t3: T).(eq T t2 (THead (Bind b0) v2 (THead
-(Flat Appl) (lift (S O) O u2) t3))))))))) (\lambda (_: B).(\lambda (_:
-T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1
-u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
-T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_:
-B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
-(t3: T).(pr0 z1 t3)))))))))))).(\lambda (u: T).(\lambda (H4: (eq T (THead
-(Bind b) u (lift (S O) O t0)) (THead (Flat Appl) u1 t1))).(let H5 \def
-(eq_ind T (THead (Bind b) u (lift (S O) O t0)) (\lambda (ee: T).(match ee in
-T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
-\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda
-(_: K).Prop) with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow
-False])])) I (THead (Flat Appl) u1 t1) H4) in (False_ind (or3 (ex3_2 T T
-(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u2 t3))))
-(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3:
-T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda
-(_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_:
-T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind
-Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
-(_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
-T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T (\lambda (b0:
-B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
-(_: T).(not (eq B b0 Abst)))))))) (\lambda (b0: B).(\lambda (y1: T).(\lambda
-(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
-b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda
-(u2: T).(\lambda (v2: T).(\lambda (t3: T).(eq T t2 (THead (Bind b0) v2 (THead
-(Flat Appl) (lift (S O) O u2) t3))))))))) (\lambda (_: B).(\lambda (_:
-T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1
-u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
-T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_:
-B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
-(t3: T).(pr0 z1 t3))))))))) H5)))))))))) (\lambda (t0: T).(\lambda (t2:
-T).(\lambda (_: (pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Flat Appl) u1
-t1)) \to (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead
+(\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead k _ _) \Rightarrow (match k with [(Bind _)
+\Rightarrow True | (Flat _) \Rightarrow False])])) I (THead (Flat Appl) u1
+t1) H6) in (False_ind (or3 (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T
+(THead (Bind Abbr) u2 w) (THead (Flat Appl) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Bind Abbr)
+u2 w) (THead (Bind Abbr) u3 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda
+(u3: T).(\lambda (_: T).(pr0 u1 u3))))) (\lambda (_: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u3: T).(\lambda (v2: T).(\lambda (t3: T).(eq T (THead (Bind
+Abbr) u2 w) (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O u3)
+t3))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u3:
+T).(\lambda (_: T).(\lambda (_: T).(pr0 u1 u3))))))) (\lambda (_: B).(\lambda
+(y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0
+y1 v2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3))))))))) H7)))))))))))))
+(\lambda (b: B).(\lambda (_: (not (eq B b Abst))).(\lambda (t0: T).(\lambda
+(t2: T).(\lambda (_: (pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Flat Appl)
+u1 t1)) \to (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead
(Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
(_: T).(\lambda (t3: T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda (y1:
T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
(t3: T).(eq T t2 (THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_:
T).(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda
(z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T
-(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
-T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+(\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b0 Abst)))))))) (\lambda (b0: B).(\lambda (y1:
T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
-(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+(THead (Bind b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_:
T).(\lambda (u2: T).(\lambda (v2: T).(\lambda (t3: T).(eq T t2 (THead (Bind
-b) v2 (THead (Flat Appl) (lift (S O) O u2) t3))))))))) (\lambda (_:
+b0) v2 (THead (Flat Appl) (lift (S O) O u2) t3))))))))) (\lambda (_:
B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda
(_: T).(pr0 u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_:
T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2)))))))
(\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_:
-T).(\lambda (t3: T).(pr0 z1 t3)))))))))))).(\lambda (u: T).(\lambda (H3: (eq
-T (THead (Flat Cast) u t0) (THead (Flat Appl) u1 t1))).(let H4 \def (eq_ind T
-(THead (Flat Cast) u t0) (\lambda (ee: T).(match ee in T return (\lambda (_:
-T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False |
-(THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).Prop) with
-[(Bind _) \Rightarrow False | (Flat f) \Rightarrow (match f in F return
-(\lambda (_: F).Prop) with [Appl \Rightarrow False | Cast \Rightarrow
+T).(\lambda (t3: T).(pr0 z1 t3)))))))))))).(\lambda (u: T).(\lambda (H4: (eq
+T (THead (Bind b) u (lift (S O) O t0)) (THead (Flat Appl) u1 t1))).(let H5
+\def (eq_ind T (THead (Bind b) u (lift (S O) O t0)) (\lambda (ee: T).(match
+ee with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k
+_ _) \Rightarrow (match k with [(Bind _) \Rightarrow True | (Flat _)
+\Rightarrow False])])) I (THead (Flat Appl) u1 t1) H4) in (False_ind (or3
+(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3:
+T).(eq T t2 (THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T
+(\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b0 Abst)))))))) (\lambda (b0: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (v2: T).(\lambda (t3: T).(eq T t2 (THead (Bind
+b0) v2 (THead (Flat Appl) (lift (S O) O u2) t3))))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda
+(_: T).(pr0 u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2)))))))
+(\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (t3: T).(pr0 z1 t3))))))))) H5)))))))))) (\lambda (t0:
+T).(\lambda (t2: T).(\lambda (_: (pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead
+(Flat Appl) u1 t1)) \to (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq
+T t2 (THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1
+u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda
+(y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead
+(Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2 t3)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))))) (\lambda
+(_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3))))))
+(ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T t1 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (v2: T).(\lambda (t3: T).(eq T
+t2 (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O u2) t3)))))))))
+(\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_:
+T).(\lambda (_: T).(pr0 u1 u2))))))) (\lambda (_: B).(\lambda (y1:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1
+v2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))))))))).(\lambda (u:
+T).(\lambda (H3: (eq T (THead (Flat Cast) u t0) (THead (Flat Appl) u1
+t1))).(let H4 \def (eq_ind T (THead (Flat Cast) u t0) (\lambda (ee: T).(match
+ee with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k
+_ _) \Rightarrow (match k with [(Bind _) \Rightarrow False | (Flat f)
+\Rightarrow (match f with [Appl \Rightarrow False | Cast \Rightarrow
True])])])) I (THead (Flat Appl) u1 t1) H3) in (False_ind (or3 (ex3_2 T T
(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u2 t3))))
(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3:
T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_:
B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
(t3: T).(pr0 z1 t3))))))))) H4)))))))) y x H0))) H)))).
-(* COMMENTS
-Initial nodes: 12299
-END *)
theorem pr0_gen_cast:
\forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr0 (THead (Flat Cast) u1
T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
t3)))) (pr0 t1 t2))))).(\lambda (k: K).(\lambda (H5: (eq T (THead k u0 t0)
(THead (Flat Cast) u1 t1))).(let H6 \def (f_equal T K (\lambda (e: T).(match
-e in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow k | (TLRef _)
-\Rightarrow k | (THead k0 _ _) \Rightarrow k0])) (THead k u0 t0) (THead (Flat
-Cast) u1 t1) H5) in ((let H7 \def (f_equal T T (\lambda (e: T).(match e in T
-return (\lambda (_: T).T) with [(TSort _) \Rightarrow u0 | (TLRef _)
-\Rightarrow u0 | (THead _ t _) \Rightarrow t])) (THead k u0 t0) (THead (Flat
-Cast) u1 t1) H5) in ((let H8 \def (f_equal T T (\lambda (e: T).(match e in T
-return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0 | (TLRef _)
-\Rightarrow t0 | (THead _ _ t) \Rightarrow t])) (THead k u0 t0) (THead (Flat
-Cast) u1 t1) H5) in (\lambda (H9: (eq T u0 u1)).(\lambda (H10: (eq K k (Flat
-Cast))).(eq_ind_r K (Flat Cast) (\lambda (k0: K).(or (ex3_2 T T (\lambda (u3:
-T).(\lambda (t3: T).(eq T (THead k0 u2 t2) (THead (Flat Cast) u3 t3))))
-(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3:
-T).(pr0 t1 t3)))) (pr0 t1 (THead k0 u2 t2)))) (let H11 \def (eq_ind T t0
-(\lambda (t: T).((eq T t (THead (Flat Cast) u1 t1)) \to (or (ex3_2 T T
-(\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) u3 t3))))
-(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3:
-T).(pr0 t1 t3)))) (pr0 t1 t2)))) H4 t1 H8) in (let H12 \def (eq_ind T t0
-(\lambda (t: T).(pr0 t t2)) H3 t1 H8) in (let H13 \def (eq_ind T u0 (\lambda
-(t: T).((eq T t (THead (Flat Cast) u1 t1)) \to (or (ex3_2 T T (\lambda (u3:
-T).(\lambda (t3: T).(eq T u2 (THead (Flat Cast) u3 t3)))) (\lambda (u3:
+e with [(TSort _) \Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _)
+\Rightarrow k0])) (THead k u0 t0) (THead (Flat Cast) u1 t1) H5) in ((let H7
+\def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow u0 |
+(TLRef _) \Rightarrow u0 | (THead _ t _) \Rightarrow t])) (THead k u0 t0)
+(THead (Flat Cast) u1 t1) H5) in ((let H8 \def (f_equal T T (\lambda (e:
+T).(match e with [(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 |
+(THead _ _ t) \Rightarrow t])) (THead k u0 t0) (THead (Flat Cast) u1 t1) H5)
+in (\lambda (H9: (eq T u0 u1)).(\lambda (H10: (eq K k (Flat Cast))).(eq_ind_r
+K (Flat Cast) (\lambda (k0: K).(or (ex3_2 T T (\lambda (u3: T).(\lambda (t3:
+T).(eq T (THead k0 u2 t2) (THead (Flat Cast) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 (THead k0 u2 t2)))) (let H11 \def (eq_ind T t0 (\lambda (t:
+T).((eq T t (THead (Flat Cast) u1 t1)) \to (or (ex3_2 T T (\lambda (u3:
+T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) u3 t3)))) (\lambda (u3:
T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
-t3)))) (pr0 t1 u2)))) H2 u1 H9) in (let H14 \def (eq_ind T u0 (\lambda (t:
-T).(pr0 t u2)) H1 u1 H9) in (or_introl (ex3_2 T T (\lambda (u3: T).(\lambda
-(t3: T).(eq T (THead (Flat Cast) u2 t2) (THead (Flat Cast) u3 t3)))) (\lambda
-(u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0
-t1 t3)))) (pr0 t1 (THead (Flat Cast) u2 t2)) (ex3_2_intro T T (\lambda (u3:
+t3)))) (pr0 t1 t2)))) H4 t1 H8) in (let H12 \def (eq_ind T t0 (\lambda (t:
+T).(pr0 t t2)) H3 t1 H8) in (let H13 \def (eq_ind T u0 (\lambda (t: T).((eq T
+t (THead (Flat Cast) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda
+(t3: T).(eq T u2 (THead (Flat Cast) u3 t3)))) (\lambda (u3: T).(\lambda (_:
+T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1
+u2)))) H2 u1 H9) in (let H14 \def (eq_ind T u0 (\lambda (t: T).(pr0 t u2)) H1
+u1 H9) in (or_introl (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T
+(THead (Flat Cast) u2 t2) (THead (Flat Cast) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 (THead (Flat Cast) u2 t2)) (ex3_2_intro T T (\lambda (u3:
T).(\lambda (t3: T).(eq T (THead (Flat Cast) u2 t2) (THead (Flat Cast) u3
t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_:
T).(\lambda (t3: T).(pr0 t1 t3))) u2 t2 (refl_equal T (THead (Flat Cast) u2
T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
t3)))) (pr0 t1 t2))))).(\lambda (H5: (eq T (THead (Flat Appl) v1 (THead (Bind
Abst) u t0)) (THead (Flat Cast) u1 t1))).(let H6 \def (eq_ind T (THead (Flat
-Appl) v1 (THead (Bind Abst) u t0)) (\lambda (ee: T).(match ee in T return
-(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
-\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda
-(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat f) \Rightarrow (match f
-in F return (\lambda (_: F).Prop) with [Appl \Rightarrow True | Cast
-\Rightarrow False])])])) I (THead (Flat Cast) u1 t1) H5) in (False_ind (or
-(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind Abbr) v2 t2)
-(THead (Flat Cast) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2)))
-(\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (THead (Bind Abbr) v2
-t2))) H6)))))))))))) (\lambda (b: B).(\lambda (_: (not (eq B b
-Abst))).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (pr0 v1 v2)).(\lambda
-(_: (((eq T v1 (THead (Flat Cast) u1 t1)) \to (or (ex3_2 T T (\lambda (u2:
-T).(\lambda (t2: T).(eq T v2 (THead (Flat Cast) u2 t2)))) (\lambda (u2:
-T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1
-t2)))) (pr0 t1 v2))))).(\lambda (u0: T).(\lambda (u2: T).(\lambda (_: (pr0 u0
-u2)).(\lambda (_: (((eq T u0 (THead (Flat Cast) u1 t1)) \to (or (ex3_2 T T
-(\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead (Flat Cast) u3 t2))))
-(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t2:
-T).(pr0 t1 t2)))) (pr0 t1 u2))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda
-(_: (pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Flat Cast) u1 t1)) \to (or
-(ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) u3
-t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_:
-T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 t2))))).(\lambda (H8: (eq T (THead
-(Flat Appl) v1 (THead (Bind b) u0 t0)) (THead (Flat Cast) u1 t1))).(let H9
-\def (eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u0 t0)) (\lambda (ee:
-T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
-False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K
-return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat f)
-\Rightarrow (match f in F return (\lambda (_: F).Prop) with [Appl \Rightarrow
-True | Cast \Rightarrow False])])])) I (THead (Flat Cast) u1 t1) H8) in
-(False_ind (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t2)) (THead (Flat Cast) u3
-t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_:
-T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (THead (Bind b) u2 (THead (Flat
-Appl) (lift (S O) O v2) t2)))) H9))))))))))))))))) (\lambda (u0: T).(\lambda
-(u2: T).(\lambda (_: (pr0 u0 u2)).(\lambda (_: (((eq T u0 (THead (Flat Cast)
-u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead
-(Flat Cast) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda
-(_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 u2))))).(\lambda (t0:
-T).(\lambda (t2: T).(\lambda (_: (pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead
-(Flat Cast) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq
-T t2 (THead (Flat Cast) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1
-u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1
-t2))))).(\lambda (w: T).(\lambda (_: (subst0 O u2 t2 w)).(\lambda (H6: (eq T
-(THead (Bind Abbr) u0 t0) (THead (Flat Cast) u1 t1))).(let H7 \def (eq_ind T
-(THead (Bind Abbr) u0 t0) (\lambda (ee: T).(match ee in T return (\lambda (_:
-T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False |
-(THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).Prop) with
-[(Bind _) \Rightarrow True | (Flat _) \Rightarrow False])])) I (THead (Flat
-Cast) u1 t1) H6) in (False_ind (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3:
-T).(eq T (THead (Bind Abbr) u2 w) (THead (Flat Cast) u3 t3)))) (\lambda (u3:
-T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
-t3)))) (pr0 t1 (THead (Bind Abbr) u2 w))) H7))))))))))))) (\lambda (b:
-B).(\lambda (_: (not (eq B b Abst))).(\lambda (t0: T).(\lambda (t2:
-T).(\lambda (_: (pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Flat Cast) u1
-t1)) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead
-(Flat Cast) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
-(_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 t2))))).(\lambda (u:
-T).(\lambda (H4: (eq T (THead (Bind b) u (lift (S O) O t0)) (THead (Flat
-Cast) u1 t1))).(let H5 \def (eq_ind T (THead (Bind b) u (lift (S O) O t0))
-(\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _)
+Appl) v1 (THead (Bind Abst) u t0)) (\lambda (ee: T).(match ee with [(TSort _)
\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow
-(match k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow True |
-(Flat _) \Rightarrow False])])) I (THead (Flat Cast) u1 t1) H4) in (False_ind
-(or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast)
-u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
-T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 t2)) H5)))))))))) (\lambda (t0:
-T).(\lambda (t2: T).(\lambda (H1: (pr0 t0 t2)).(\lambda (H2: (((eq T t0
-(THead (Flat Cast) u1 t1)) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
-T).(eq T t2 (THead (Flat Cast) u2 t3)))) (\lambda (u2: T).(\lambda (_:
-T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1
-t2))))).(\lambda (u: T).(\lambda (H3: (eq T (THead (Flat Cast) u t0) (THead
-(Flat Cast) u1 t1))).(let H4 \def (f_equal T T (\lambda (e: T).(match e in T
-return (\lambda (_: T).T) with [(TSort _) \Rightarrow u | (TLRef _)
-\Rightarrow u | (THead _ t _) \Rightarrow t])) (THead (Flat Cast) u t0)
-(THead (Flat Cast) u1 t1) H3) in ((let H5 \def (f_equal T T (\lambda (e:
-T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0 |
-(TLRef _) \Rightarrow t0 | (THead _ _ t) \Rightarrow t])) (THead (Flat Cast)
-u t0) (THead (Flat Cast) u1 t1) H3) in (\lambda (_: (eq T u u1)).(let H7 \def
-(eq_ind T t0 (\lambda (t: T).((eq T t (THead (Flat Cast) u1 t1)) \to (or
-(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) u2
-t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
-T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 t2)))) H2 t1 H5) in (let H8 \def
-(eq_ind T t0 (\lambda (t: T).(pr0 t t2)) H1 t1 H5) in (or_intror (ex3_2 T T
-(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) u2 t3))))
-(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3:
-T).(pr0 t1 t3)))) (pr0 t1 t2) H8))))) H4)))))))) y x H0))) H)))).
-(* COMMENTS
-Initial nodes: 2911
-END *)
-
-theorem pr0_gen_abbr:
- \forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr0 (THead (Bind Abbr) u1
-t1) x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead
-(Bind Abbr) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
-(u2: T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T (\lambda (y: T).(pr0 t1 y))
-(\lambda (y: T).(subst0 O u2 y t2))))))) (pr0 t1 (lift (S O) O x))))))
-\def
- \lambda (u1: T).(\lambda (t1: T).(\lambda (x: T).(\lambda (H: (pr0 (THead
-(Bind Abbr) u1 t1) x)).(insert_eq T (THead (Bind Abbr) u1 t1) (\lambda (t:
-T).(pr0 t x)) (\lambda (_: T).(or (ex3_2 T T (\lambda (u2: T).(\lambda (t2:
-T).(eq T x (THead (Bind Abbr) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0
-u1 u2))) (\lambda (u2: T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T (\lambda
-(y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O u2 y t2))))))) (pr0 t1 (lift (S
-O) O x)))) (\lambda (y: T).(\lambda (H0: (pr0 y x)).(pr0_ind (\lambda (t:
-T).(\lambda (t0: T).((eq T t (THead (Bind Abbr) u1 t1)) \to (or (ex3_2 T T
-(\lambda (u2: T).(\lambda (t2: T).(eq T t0 (THead (Bind Abbr) u2 t2))))
-(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t2:
-T).(or (pr0 t1 t2) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0:
-T).(subst0 O u2 y0 t2))))))) (pr0 t1 (lift (S O) O t0)))))) (\lambda (t:
-T).(\lambda (H1: (eq T t (THead (Bind Abbr) u1 t1))).(let H2 \def (f_equal T
-T (\lambda (e: T).e) t (THead (Bind Abbr) u1 t1) H1) in (eq_ind_r T (THead
-(Bind Abbr) u1 t1) (\lambda (t0: T).(or (ex3_2 T T (\lambda (u2: T).(\lambda
-(t2: T).(eq T t0 (THead (Bind Abbr) u2 t2)))) (\lambda (u2: T).(\lambda (_:
-T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T
-(\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u2 y0 t2))))))) (pr0
-t1 (lift (S O) O t0)))) (or_introl (ex3_2 T T (\lambda (u2: T).(\lambda (t2:
-T).(eq T (THead (Bind Abbr) u1 t1) (THead (Bind Abbr) u2 t2)))) (\lambda (u2:
-T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t2: T).(or (pr0
-t1 t2) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u2 y0
-t2))))))) (pr0 t1 (lift (S O) O (THead (Bind Abbr) u1 t1))) (ex3_2_intro T T
-(\lambda (u2: T).(\lambda (t2: T).(eq T (THead (Bind Abbr) u1 t1) (THead
-(Bind Abbr) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
-(u2: T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T (\lambda (y0: T).(pr0 t1 y0))
-(\lambda (y0: T).(subst0 O u2 y0 t2)))))) u1 t1 (refl_equal T (THead (Bind
-Abbr) u1 t1)) (pr0_refl u1) (or_introl (pr0 t1 t1) (ex2 T (\lambda (y0:
-T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u1 y0 t1))) (pr0_refl t1)))) t
-H2)))) (\lambda (u0: T).(\lambda (u2: T).(\lambda (H1: (pr0 u0 u2)).(\lambda
-(H2: (((eq T u0 (THead (Bind Abbr) u1 t1)) \to (or (ex3_2 T T (\lambda (u3:
-T).(\lambda (t2: T).(eq T u2 (THead (Bind Abbr) u3 t2)))) (\lambda (u3:
-T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t2: T).(or (pr0
-t1 t2) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u3 y0
-t2))))))) (pr0 t1 (lift (S O) O u2)))))).(\lambda (t0: T).(\lambda (t2:
-T).(\lambda (H3: (pr0 t0 t2)).(\lambda (H4: (((eq T t0 (THead (Bind Abbr) u1
-t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead
-(Bind Abbr) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda
-(u3: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0))
-(\lambda (y0: T).(subst0 O u3 y0 t3))))))) (pr0 t1 (lift (S O) O
-t2)))))).(\lambda (k: K).(\lambda (H5: (eq T (THead k u0 t0) (THead (Bind
-Abbr) u1 t1))).(let H6 \def (f_equal T K (\lambda (e: T).(match e in T return
-(\lambda (_: T).K) with [(TSort _) \Rightarrow k | (TLRef _) \Rightarrow k |
-(THead k0 _ _) \Rightarrow k0])) (THead k u0 t0) (THead (Bind Abbr) u1 t1)
-H5) in ((let H7 \def (f_equal T T (\lambda (e: T).(match e in T return
-(\lambda (_: T).T) with [(TSort _) \Rightarrow u0 | (TLRef _) \Rightarrow u0
-| (THead _ t _) \Rightarrow t])) (THead k u0 t0) (THead (Bind Abbr) u1 t1)
-H5) in ((let H8 \def (f_equal T T (\lambda (e: T).(match e in T return
-(\lambda (_: T).T) with [(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0
-| (THead _ _ t) \Rightarrow t])) (THead k u0 t0) (THead (Bind Abbr) u1 t1)
-H5) in (\lambda (H9: (eq T u0 u1)).(\lambda (H10: (eq K k (Bind
-Abbr))).(eq_ind_r K (Bind Abbr) (\lambda (k0: K).(or (ex3_2 T T (\lambda (u3:
-T).(\lambda (t3: T).(eq T (THead k0 u2 t2) (THead (Bind Abbr) u3 t3))))
-(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t3:
-T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0:
-T).(subst0 O u3 y0 t3))))))) (pr0 t1 (lift (S O) O (THead k0 u2 t2))))) (let
-H11 \def (eq_ind T t0 (\lambda (t: T).((eq T t (THead (Bind Abbr) u1 t1)) \to
-(or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr)
-u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3:
-T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0))
-(\lambda (y0: T).(subst0 O u3 y0 t3))))))) (pr0 t1 (lift (S O) O t2))))) H4
-t1 H8) in (let H12 \def (eq_ind T t0 (\lambda (t: T).(pr0 t t2)) H3 t1 H8) in
-(let H13 \def (eq_ind T u0 (\lambda (t: T).((eq T t (THead (Bind Abbr) u1
-t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T u2 (THead
-(Bind Abbr) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda
-(u3: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0))
-(\lambda (y0: T).(subst0 O u3 y0 t3))))))) (pr0 t1 (lift (S O) O u2))))) H2
-u1 H9) in (let H14 \def (eq_ind T u0 (\lambda (t: T).(pr0 t u2)) H1 u1 H9) in
-(or_introl (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Bind
-Abbr) u2 t2) (THead (Bind Abbr) u3 t3)))) (\lambda (u3: T).(\lambda (_:
-T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T
-(\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u3 y0 t3))))))) (pr0
-t1 (lift (S O) O (THead (Bind Abbr) u2 t2))) (ex3_2_intro T T (\lambda (u3:
-T).(\lambda (t3: T).(eq T (THead (Bind Abbr) u2 t2) (THead (Bind Abbr) u3
-t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3:
-T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0))
-(\lambda (y0: T).(subst0 O u3 y0 t3)))))) u2 t2 (refl_equal T (THead (Bind
-Abbr) u2 t2)) H14 (or_introl (pr0 t1 t2) (ex2 T (\lambda (y0: T).(pr0 t1 y0))
-(\lambda (y0: T).(subst0 O u2 y0 t2))) H12))))))) k H10)))) H7))
-H6)))))))))))) (\lambda (u: T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_:
-(pr0 v1 v2)).(\lambda (_: (((eq T v1 (THead (Bind Abbr) u1 t1)) \to (or
-(ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T v2 (THead (Bind Abbr) u2
-t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2:
-T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T (\lambda (y0: T).(pr0 t1 y0))
-(\lambda (y0: T).(subst0 O u2 y0 t2))))))) (pr0 t1 (lift (S O) O
-v2)))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0 t2)).(\lambda
-(_: (((eq T t0 (THead (Bind Abbr) u1 t1)) \to (or (ex3_2 T T (\lambda (u2:
-T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2 t3)))) (\lambda (u2:
-T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t3: T).(or (pr0
-t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u2 y0
-t3))))))) (pr0 t1 (lift (S O) O t2)))))).(\lambda (H5: (eq T (THead (Flat
-Appl) v1 (THead (Bind Abst) u t0)) (THead (Bind Abbr) u1 t1))).(let H6 \def
-(eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u t0)) (\lambda (ee:
-T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
-False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K
-return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _)
-\Rightarrow True])])) I (THead (Bind Abbr) u1 t1) H5) in (False_ind (or
-(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind Abbr) v2 t2)
-(THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2)))
-(\lambda (u2: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0:
-T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u2 y0 t3))))))) (pr0 t1 (lift (S
-O) O (THead (Bind Abbr) v2 t2)))) H6)))))))))))) (\lambda (b: B).(\lambda (_:
-(not (eq B b Abst))).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (pr0 v1
-v2)).(\lambda (_: (((eq T v1 (THead (Bind Abbr) u1 t1)) \to (or (ex3_2 T T
-(\lambda (u2: T).(\lambda (t2: T).(eq T v2 (THead (Bind Abbr) u2 t2))))
-(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t2:
-T).(or (pr0 t1 t2) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0:
-T).(subst0 O u2 y0 t2))))))) (pr0 t1 (lift (S O) O v2)))))).(\lambda (u0:
+(match k with [(Bind _) \Rightarrow False | (Flat f) \Rightarrow (match f
+with [Appl \Rightarrow True | Cast \Rightarrow False])])])) I (THead (Flat
+Cast) u1 t1) H5) in (False_ind (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T (THead (Bind Abbr) v2 t2) (THead (Flat Cast) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 (THead (Bind Abbr) v2 t2))) H6)))))))))))) (\lambda (b:
+B).(\lambda (_: (not (eq B b Abst))).(\lambda (v1: T).(\lambda (v2:
+T).(\lambda (_: (pr0 v1 v2)).(\lambda (_: (((eq T v1 (THead (Flat Cast) u1
+t1)) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T v2 (THead
+(Flat Cast) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
+(_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 v2))))).(\lambda (u0:
T).(\lambda (u2: T).(\lambda (_: (pr0 u0 u2)).(\lambda (_: (((eq T u0 (THead
-(Bind Abbr) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq
-T u2 (THead (Bind Abbr) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1
-u3))) (\lambda (u3: T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T (\lambda (y0:
-T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u3 y0 t2))))))) (pr0 t1 (lift (S
-O) O u2)))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0
-t2)).(\lambda (_: (((eq T t0 (THead (Bind Abbr) u1 t1)) \to (or (ex3_2 T T
-(\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u3 t3))))
-(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t3:
-T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0:
-T).(subst0 O u3 y0 t3))))))) (pr0 t1 (lift (S O) O t2)))))).(\lambda (H8: (eq
-T (THead (Flat Appl) v1 (THead (Bind b) u0 t0)) (THead (Bind Abbr) u1
-t1))).(let H9 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u0 t0))
-(\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _)
-\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow
-(match k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False |
-(Flat _) \Rightarrow True])])) I (THead (Bind Abbr) u1 t1) H8) in (False_ind
-(or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Bind b) u2
-(THead (Flat Appl) (lift (S O) O v2) t2)) (THead (Bind Abbr) u3 t3))))
-(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t3:
-T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0:
-T).(subst0 O u3 y0 t3))))))) (pr0 t1 (lift (S O) O (THead (Bind b) u2 (THead
-(Flat Appl) (lift (S O) O v2) t2))))) H9))))))))))))))))) (\lambda (u0:
-T).(\lambda (u2: T).(\lambda (H1: (pr0 u0 u2)).(\lambda (H2: (((eq T u0
-(THead (Bind Abbr) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2:
-T).(eq T u2 (THead (Bind Abbr) u3 t2)))) (\lambda (u3: T).(\lambda (_:
-T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T
-(\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u3 y0 t2))))))) (pr0
-t1 (lift (S O) O u2)))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (H3:
-(pr0 t0 t2)).(\lambda (H4: (((eq T t0 (THead (Bind Abbr) u1 t1)) \to (or
-(ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u3
-t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3:
-T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0))
-(\lambda (y0: T).(subst0 O u3 y0 t3))))))) (pr0 t1 (lift (S O) O
-t2)))))).(\lambda (w: T).(\lambda (H5: (subst0 O u2 t2 w)).(\lambda (H6: (eq
-T (THead (Bind Abbr) u0 t0) (THead (Bind Abbr) u1 t1))).(let H7 \def (f_equal
-T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
-\Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t _) \Rightarrow t]))
-(THead (Bind Abbr) u0 t0) (THead (Bind Abbr) u1 t1) H6) in ((let H8 \def
-(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
-[(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t)
-\Rightarrow t])) (THead (Bind Abbr) u0 t0) (THead (Bind Abbr) u1 t1) H6) in
-(\lambda (H9: (eq T u0 u1)).(let H10 \def (eq_ind T t0 (\lambda (t: T).((eq T
-t (THead (Bind Abbr) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda
-(t3: T).(eq T t2 (THead (Bind Abbr) u3 t3)))) (\lambda (u3: T).(\lambda (_:
-T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T
-(\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u3 y0 t3))))))) (pr0
-t1 (lift (S O) O t2))))) H4 t1 H8) in (let H11 \def (eq_ind T t0 (\lambda (t:
-T).(pr0 t t2)) H3 t1 H8) in (let H12 \def (eq_ind T u0 (\lambda (t: T).((eq T
-t (THead (Bind Abbr) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda
-(t3: T).(eq T u2 (THead (Bind Abbr) u3 t3)))) (\lambda (u3: T).(\lambda (_:
-T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T
-(\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u3 y0 t3))))))) (pr0
-t1 (lift (S O) O u2))))) H2 u1 H9) in (let H13 \def (eq_ind T u0 (\lambda (t:
-T).(pr0 t u2)) H1 u1 H9) in (or_introl (ex3_2 T T (\lambda (u3: T).(\lambda
-(t3: T).(eq T (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u3 t3)))) (\lambda
-(u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t3: T).(or
-(pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O
-u3 y0 t3))))))) (pr0 t1 (lift (S O) O (THead (Bind Abbr) u2 w))) (ex3_2_intro
-T T (\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Bind Abbr) u2 w) (THead
-(Bind Abbr) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda
-(u3: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0))
-(\lambda (y0: T).(subst0 O u3 y0 t3)))))) u2 w (refl_equal T (THead (Bind
-Abbr) u2 w)) H13 (or_intror (pr0 t1 w) (ex2 T (\lambda (y0: T).(pr0 t1 y0))
-(\lambda (y0: T).(subst0 O u2 y0 w))) (ex_intro2 T (\lambda (y0: T).(pr0 t1
-y0)) (\lambda (y0: T).(subst0 O u2 y0 w)) t2 H11 H5)))))))))) H7)))))))))))))
-(\lambda (b: B).(\lambda (H1: (not (eq B b Abst))).(\lambda (t0: T).(\lambda
-(t2: T).(\lambda (H2: (pr0 t0 t2)).(\lambda (H3: (((eq T t0 (THead (Bind
-Abbr) u1 t1)) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2
-(THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2)))
-(\lambda (u2: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0:
-T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u2 y0 t3))))))) (pr0 t1 (lift (S
-O) O t2)))))).(\lambda (u: T).(\lambda (H4: (eq T (THead (Bind b) u (lift (S
-O) O t0)) (THead (Bind Abbr) u1 t1))).(let H5 \def (f_equal T B (\lambda (e:
-T).(match e in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow b |
-(TLRef _) \Rightarrow b | (THead k _ _) \Rightarrow (match k in K return
-(\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow
-b])])) (THead (Bind b) u (lift (S O) O t0)) (THead (Bind Abbr) u1 t1) H4) in
-((let H6 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_:
-T).T) with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | (THead _ t _)
-\Rightarrow t])) (THead (Bind b) u (lift (S O) O t0)) (THead (Bind Abbr) u1
-t1) H4) in ((let H7 \def (f_equal T T (\lambda (e: T).(match e in T return
-(\lambda (_: T).T) with [(TSort _) \Rightarrow ((let rec lref_map (f: ((nat
-\to nat))) (d: nat) (t: T) on t: T \def (match t with [(TSort n) \Rightarrow
-(TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with [true
-\Rightarrow i | false \Rightarrow (f i)])) | (THead k u0 t3) \Rightarrow
-(THead k (lref_map f d u0) (lref_map f (s k d) t3))]) in lref_map) (\lambda
-(x0: nat).(plus x0 (S O))) O t0) | (TLRef _) \Rightarrow ((let rec lref_map
-(f: ((nat \to nat))) (d: nat) (t: T) on t: T \def (match t with [(TSort n)
-\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with
-[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k u0 t3)
-\Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) t3))]) in
-lref_map) (\lambda (x0: nat).(plus x0 (S O))) O t0) | (THead _ _ t)
-\Rightarrow t])) (THead (Bind b) u (lift (S O) O t0)) (THead (Bind Abbr) u1
-t1) H4) in (\lambda (_: (eq T u u1)).(\lambda (H9: (eq B b Abbr)).(let H10
-\def (eq_ind B b (\lambda (b0: B).(not (eq B b0 Abst))) H1 Abbr H9) in (let
-H11 \def (eq_ind_r T t1 (\lambda (t: T).((eq T t0 (THead (Bind Abbr) u1 t))
-\to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind
-Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2:
-T).(\lambda (t3: T).(or (pr0 t t3) (ex2 T (\lambda (y0: T).(pr0 t y0))
-(\lambda (y0: T).(subst0 O u2 y0 t3))))))) (pr0 t (lift (S O) O t2))))) H3
-(lift (S O) O t0) H7) in (eq_ind T (lift (S O) O t0) (\lambda (t: T).(or
-(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2
-t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2:
-T).(\lambda (t3: T).(or (pr0 t t3) (ex2 T (\lambda (y0: T).(pr0 t y0))
-(\lambda (y0: T).(subst0 O u2 y0 t3))))))) (pr0 t (lift (S O) O t2))))
-(or_intror (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind
-Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2:
-T).(\lambda (t3: T).(or (pr0 (lift (S O) O t0) t3) (ex2 T (\lambda (y0:
-T).(pr0 (lift (S O) O t0) y0)) (\lambda (y0: T).(subst0 O u2 y0 t3)))))))
-(pr0 (lift (S O) O t0) (lift (S O) O t2)) (pr0_lift t0 t2 H2 (S O) O)) t1
-H7)))))) H6)) H5)))))))))) (\lambda (t0: T).(\lambda (t2: T).(\lambda (_:
-(pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Bind Abbr) u1 t1)) \to (or
-(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2
-t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2:
-T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0))
-(\lambda (y0: T).(subst0 O u2 y0 t3))))))) (pr0 t1 (lift (S O) O
-t2)))))).(\lambda (u: T).(\lambda (H3: (eq T (THead (Flat Cast) u t0) (THead
-(Bind Abbr) u1 t1))).(let H4 \def (eq_ind T (THead (Flat Cast) u t0) (\lambda
-(ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _)
+(Flat Cast) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq
+T u2 (THead (Flat Cast) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1
+u3))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1
+u2))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0 t2)).(\lambda
+(_: (((eq T t0 (THead (Flat Cast) u1 t1)) \to (or (ex3_2 T T (\lambda (u3:
+T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 t2))))).(\lambda (H8: (eq T (THead (Flat Appl) v1 (THead (Bind
+b) u0 t0)) (THead (Flat Cast) u1 t1))).(let H9 \def (eq_ind T (THead (Flat
+Appl) v1 (THead (Bind b) u0 t0)) (\lambda (ee: T).(match ee with [(TSort _)
\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow
-(match k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False |
-(Flat _) \Rightarrow True])])) I (THead (Bind Abbr) u1 t1) H3) in (False_ind
-(or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr)
-u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2:
-T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0))
-(\lambda (y0: T).(subst0 O u2 y0 t3))))))) (pr0 t1 (lift (S O) O t2)))
-H4)))))))) y x H0))) H)))).
-(* COMMENTS
-Initial nodes: 4711
-END *)
-
-theorem pr0_gen_void:
- \forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr0 (THead (Bind Void) u1
-t1) x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead
-(Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
-(_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O x))))))
-\def
- \lambda (u1: T).(\lambda (t1: T).(\lambda (x: T).(\lambda (H: (pr0 (THead
-(Bind Void) u1 t1) x)).(insert_eq T (THead (Bind Void) u1 t1) (\lambda (t:
-T).(pr0 t x)) (\lambda (_: T).(or (ex3_2 T T (\lambda (u2: T).(\lambda (t2:
-T).(eq T x (THead (Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0
-u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 (lift (S O)
-O x)))) (\lambda (y: T).(\lambda (H0: (pr0 y x)).(pr0_ind (\lambda (t:
-T).(\lambda (t0: T).((eq T t (THead (Bind Void) u1 t1)) \to (or (ex3_2 T T
-(\lambda (u2: T).(\lambda (t2: T).(eq T t0 (THead (Bind Void) u2 t2))))
-(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2:
-T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O t0)))))) (\lambda (t: T).(\lambda
-(H1: (eq T t (THead (Bind Void) u1 t1))).(let H2 \def (f_equal T T (\lambda
-(e: T).e) t (THead (Bind Void) u1 t1) H1) in (eq_ind_r T (THead (Bind Void)
-u1 t1) (\lambda (t0: T).(or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq
-T t0 (THead (Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1
-u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O
-t0)))) (or_introl (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T (THead
-(Bind Void) u1 t1) (THead (Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_:
-T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1
-(lift (S O) O (THead (Bind Void) u1 t1))) (ex3_2_intro T T (\lambda (u2:
-T).(\lambda (t2: T).(eq T (THead (Bind Void) u1 t1) (THead (Bind Void) u2
-t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
-T).(\lambda (t2: T).(pr0 t1 t2))) u1 t1 (refl_equal T (THead (Bind Void) u1
-t1)) (pr0_refl u1) (pr0_refl t1))) t H2)))) (\lambda (u0: T).(\lambda (u2:
-T).(\lambda (H1: (pr0 u0 u2)).(\lambda (H2: (((eq T u0 (THead (Bind Void) u1
-t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead
-(Bind Void) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda
-(_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O
-u2)))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (H3: (pr0 t0
-t2)).(\lambda (H4: (((eq T t0 (THead (Bind Void) u1 t1)) \to (or (ex3_2 T T
-(\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Bind Void) u3 t3))))
-(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3:
-T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O t2)))))).(\lambda (k: K).(\lambda
-(H5: (eq T (THead k u0 t0) (THead (Bind Void) u1 t1))).(let H6 \def (f_equal
-T K (\lambda (e: T).(match e in T return (\lambda (_: T).K) with [(TSort _)
-\Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _) \Rightarrow k0]))
-(THead k u0 t0) (THead (Bind Void) u1 t1) H5) in ((let H7 \def (f_equal T T
-(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
-\Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t _) \Rightarrow t]))
-(THead k u0 t0) (THead (Bind Void) u1 t1) H5) in ((let H8 \def (f_equal T T
-(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
-\Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t) \Rightarrow t]))
-(THead k u0 t0) (THead (Bind Void) u1 t1) H5) in (\lambda (H9: (eq T u0
-u1)).(\lambda (H10: (eq K k (Bind Void))).(eq_ind_r K (Bind Void) (\lambda
-(k0: K).(or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T (THead k0 u2
-t2) (THead (Bind Void) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1
-u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O
-(THead k0 u2 t2))))) (let H11 \def (eq_ind T t0 (\lambda (t: T).((eq T t
-(THead (Bind Void) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3:
-T).(eq T t2 (THead (Bind Void) u3 t3)))) (\lambda (u3: T).(\lambda (_:
-T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1
-(lift (S O) O t2))))) H4 t1 H8) in (let H12 \def (eq_ind T t0 (\lambda (t:
-T).(pr0 t t2)) H3 t1 H8) in (let H13 \def (eq_ind T u0 (\lambda (t: T).((eq T
-t (THead (Bind Void) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda
-(t3: T).(eq T u2 (THead (Bind Void) u3 t3)))) (\lambda (u3: T).(\lambda (_:
-T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1
-(lift (S O) O u2))))) H2 u1 H9) in (let H14 \def (eq_ind T u0 (\lambda (t:
-T).(pr0 t u2)) H1 u1 H9) in (or_introl (ex3_2 T T (\lambda (u3: T).(\lambda
-(t3: T).(eq T (THead (Bind Void) u2 t2) (THead (Bind Void) u3 t3)))) (\lambda
-(u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0
-t1 t3)))) (pr0 t1 (lift (S O) O (THead (Bind Void) u2 t2))) (ex3_2_intro T T
-(\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Bind Void) u2 t2) (THead
-(Bind Void) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda
-(_: T).(\lambda (t3: T).(pr0 t1 t3))) u2 t2 (refl_equal T (THead (Bind Void)
-u2 t2)) H14 H12)))))) k H10)))) H7)) H6)))))))))))) (\lambda (u: T).(\lambda
-(v1: T).(\lambda (v2: T).(\lambda (_: (pr0 v1 v2)).(\lambda (_: (((eq T v1
-(THead (Bind Void) u1 t1)) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2:
-T).(eq T v2 (THead (Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_:
-T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1
-(lift (S O) O v2)))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0
-t2)).(\lambda (_: (((eq T t0 (THead (Bind Void) u1 t1)) \to (or (ex3_2 T T
-(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Void) u2 t3))))
-(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3:
-T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O t2)))))).(\lambda (H5: (eq T (THead
-(Flat Appl) v1 (THead (Bind Abst) u t0)) (THead (Bind Void) u1 t1))).(let H6
-\def (eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u t0)) (\lambda (ee:
-T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
-False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K
-return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _)
-\Rightarrow True])])) I (THead (Bind Void) u1 t1) H5) in (False_ind (or
-(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind Abbr) v2 t2)
-(THead (Bind Void) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2)))
-(\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O (THead
-(Bind Abbr) v2 t2)))) H6)))))))))))) (\lambda (b: B).(\lambda (_: (not (eq B
-b Abst))).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (pr0 v1
-v2)).(\lambda (_: (((eq T v1 (THead (Bind Void) u1 t1)) \to (or (ex3_2 T T
-(\lambda (u2: T).(\lambda (t2: T).(eq T v2 (THead (Bind Void) u2 t2))))
-(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2:
-T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O v2)))))).(\lambda (u0: T).(\lambda
-(u2: T).(\lambda (_: (pr0 u0 u2)).(\lambda (_: (((eq T u0 (THead (Bind Void)
-u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead
-(Bind Void) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda
-(_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O
-u2)))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0 t2)).(\lambda
-(_: (((eq T t0 (THead (Bind Void) u1 t1)) \to (or (ex3_2 T T (\lambda (u3:
-T).(\lambda (t3: T).(eq T t2 (THead (Bind Void) u3 t3)))) (\lambda (u3:
+(match k with [(Bind _) \Rightarrow False | (Flat f) \Rightarrow (match f
+with [Appl \Rightarrow True | Cast \Rightarrow False])])])) I (THead (Flat
+Cast) u1 t1) H8) in (False_ind (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3:
+T).(eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t2)) (THead
+(Flat Cast) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda
+(_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t2)))) H9))))))))))))))))) (\lambda (u0:
+T).(\lambda (u2: T).(\lambda (_: (pr0 u0 u2)).(\lambda (_: (((eq T u0 (THead
+(Flat Cast) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq
+T u2 (THead (Flat Cast) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1
+u3))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1
+u2))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0 t2)).(\lambda
+(_: (((eq T t0 (THead (Flat Cast) u1 t1)) \to (or (ex3_2 T T (\lambda (u3:
+T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) u3 t3)))) (\lambda (u3:
T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
-t3)))) (pr0 t1 (lift (S O) O t2)))))).(\lambda (H8: (eq T (THead (Flat Appl)
-v1 (THead (Bind b) u0 t0)) (THead (Bind Void) u1 t1))).(let H9 \def (eq_ind T
-(THead (Flat Appl) v1 (THead (Bind b) u0 t0)) (\lambda (ee: T).(match ee in T
-return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
-\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda
-(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow
-True])])) I (THead (Bind Void) u1 t1) H8) in (False_ind (or (ex3_2 T T
-(\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Bind b) u2 (THead (Flat Appl)
-(lift (S O) O v2) t2)) (THead (Bind Void) u3 t3)))) (\lambda (u3: T).(\lambda
-(_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1
-(lift (S O) O (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t2)))))
-H9))))))))))))))))) (\lambda (u0: T).(\lambda (u2: T).(\lambda (_: (pr0 u0
-u2)).(\lambda (_: (((eq T u0 (THead (Bind Void) u1 t1)) \to (or (ex3_2 T T
-(\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead (Bind Void) u3 t2))))
-(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t2:
-T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O u2)))))).(\lambda (t0: T).(\lambda
-(t2: T).(\lambda (_: (pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Bind Void)
-u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead
-(Bind Void) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda
-(_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O
-t2)))))).(\lambda (w: T).(\lambda (_: (subst0 O u2 t2 w)).(\lambda (H6: (eq T
-(THead (Bind Abbr) u0 t0) (THead (Bind Void) u1 t1))).(let H7 \def (eq_ind T
-(THead (Bind Abbr) u0 t0) (\lambda (ee: T).(match ee in T return (\lambda (_:
-T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False |
-(THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).Prop) with
-[(Bind b) \Rightarrow (match b in B return (\lambda (_: B).Prop) with [Abbr
-\Rightarrow True | Abst \Rightarrow False | Void \Rightarrow False]) | (Flat
-_) \Rightarrow False])])) I (THead (Bind Void) u1 t1) H6) in (False_ind (or
+t3)))) (pr0 t1 t2))))).(\lambda (w: T).(\lambda (_: (subst0 O u2 t2
+w)).(\lambda (H6: (eq T (THead (Bind Abbr) u0 t0) (THead (Flat Cast) u1
+t1))).(let H7 \def (eq_ind T (THead (Bind Abbr) u0 t0) (\lambda (ee:
+T).(match ee with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False
+| (THead k _ _) \Rightarrow (match k with [(Bind _) \Rightarrow True | (Flat
+_) \Rightarrow False])])) I (THead (Flat Cast) u1 t1) H6) in (False_ind (or
(ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Bind Abbr) u2 w)
-(THead (Bind Void) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3)))
-(\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O (THead
-(Bind Abbr) u2 w)))) H7))))))))))))) (\lambda (b: B).(\lambda (H1: (not (eq B
-b Abst))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (H2: (pr0 t0
-t2)).(\lambda (H3: (((eq T t0 (THead (Bind Void) u1 t1)) \to (or (ex3_2 T T
-(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Void) u2 t3))))
-(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3:
-T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O t2)))))).(\lambda (u: T).(\lambda
-(H4: (eq T (THead (Bind b) u (lift (S O) O t0)) (THead (Bind Void) u1
-t1))).(let H5 \def (f_equal T B (\lambda (e: T).(match e in T return (\lambda
-(_: T).B) with [(TSort _) \Rightarrow b | (TLRef _) \Rightarrow b | (THead k
-_ _) \Rightarrow (match k in K return (\lambda (_: K).B) with [(Bind b0)
-\Rightarrow b0 | (Flat _) \Rightarrow b])])) (THead (Bind b) u (lift (S O) O
-t0)) (THead (Bind Void) u1 t1) H4) in ((let H6 \def (f_equal T T (\lambda (e:
-T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u |
-(TLRef _) \Rightarrow u | (THead _ t _) \Rightarrow t])) (THead (Bind b) u
-(lift (S O) O t0)) (THead (Bind Void) u1 t1) H4) in ((let H7 \def (f_equal T
-T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
-\Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat) (t: T) on t: T
-\def (match t with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow
-(TLRef (match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)]))
-| (THead k u0 t3) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d)
-t3))]) in lref_map) (\lambda (x0: nat).(plus x0 (S O))) O t0) | (TLRef _)
-\Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat) (t: T) on t: T
-\def (match t with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow
-(TLRef (match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)]))
-| (THead k u0 t3) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d)
-t3))]) in lref_map) (\lambda (x0: nat).(plus x0 (S O))) O t0) | (THead _ _ t)
-\Rightarrow t])) (THead (Bind b) u (lift (S O) O t0)) (THead (Bind Void) u1
-t1) H4) in (\lambda (_: (eq T u u1)).(\lambda (H9: (eq B b Void)).(let H10
-\def (eq_ind B b (\lambda (b0: B).(not (eq B b0 Abst))) H1 Void H9) in (let
-H11 \def (eq_ind_r T t1 (\lambda (t: T).((eq T t0 (THead (Bind Void) u1 t))
-\to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind
-Void) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
-T).(\lambda (t3: T).(pr0 t t3)))) (pr0 t (lift (S O) O t2))))) H3 (lift (S O)
-O t0) H7) in (eq_ind T (lift (S O) O t0) (\lambda (t: T).(or (ex3_2 T T
-(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Void) u2 t3))))
-(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3:
-T).(pr0 t t3)))) (pr0 t (lift (S O) O t2)))) (or_intror (ex3_2 T T (\lambda
-(u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Void) u2 t3)))) (\lambda (u2:
-T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 (lift
-(S O) O t0) t3)))) (pr0 (lift (S O) O t0) (lift (S O) O t2)) (pr0_lift t0 t2
-H2 (S O) O)) t1 H7)))))) H6)) H5)))))))))) (\lambda (t0: T).(\lambda (t2:
-T).(\lambda (_: (pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Bind Void) u1
-t1)) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead
-(Bind Void) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
-(_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O
-t2)))))).(\lambda (u: T).(\lambda (H3: (eq T (THead (Flat Cast) u t0) (THead
-(Bind Void) u1 t1))).(let H4 \def (eq_ind T (THead (Flat Cast) u t0) (\lambda
-(ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _)
+(THead (Flat Cast) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3)))
+(\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (THead (Bind Abbr) u2
+w))) H7))))))))))))) (\lambda (b: B).(\lambda (_: (not (eq B b
+Abst))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0 t2)).(\lambda
+(_: (((eq T t0 (THead (Flat Cast) u1 t1)) \to (or (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 t2))))).(\lambda (u: T).(\lambda (H4: (eq T (THead (Bind b) u
+(lift (S O) O t0)) (THead (Flat Cast) u1 t1))).(let H5 \def (eq_ind T (THead
+(Bind b) u (lift (S O) O t0)) (\lambda (ee: T).(match ee with [(TSort _)
\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow
-(match k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False |
-(Flat _) \Rightarrow True])])) I (THead (Bind Void) u1 t1) H3) in (False_ind
-(or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Void)
-u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
-T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O t2))) H4)))))))) y x
-H0))) H)))).
-(* COMMENTS
-Initial nodes: 3436
-END *)
+(match k with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow False])])) I
+(THead (Flat Cast) u1 t1) H4) in (False_ind (or (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 t2)) H5)))))))))) (\lambda (t0: T).(\lambda (t2: T).(\lambda
+(H1: (pr0 t0 t2)).(\lambda (H2: (((eq T t0 (THead (Flat Cast) u1 t1)) \to (or
+(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 t2))))).(\lambda (u: T).(\lambda
+(H3: (eq T (THead (Flat Cast) u t0) (THead (Flat Cast) u1 t1))).(let H4 \def
+(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow u | (TLRef
+_) \Rightarrow u | (THead _ t _) \Rightarrow t])) (THead (Flat Cast) u t0)
+(THead (Flat Cast) u1 t1) H3) in ((let H5 \def (f_equal T T (\lambda (e:
+T).(match e with [(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 |
+(THead _ _ t) \Rightarrow t])) (THead (Flat Cast) u t0) (THead (Flat Cast) u1
+t1) H3) in (\lambda (_: (eq T u u1)).(let H7 \def (eq_ind T t0 (\lambda (t:
+T).((eq T t (THead (Flat Cast) u1 t1)) \to (or (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 t2)))) H2 t1 H5) in (let H8 \def (eq_ind T t0 (\lambda (t:
+T).(pr0 t t2)) H1 t1 H5) in (or_intror (ex3_2 T T (\lambda (u2: T).(\lambda
+(t3: T).(eq T t2 (THead (Flat Cast) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 t2)
+H8))))) H4)))))))) y x H0))) H)))).
theorem pr0_gen_lift:
\forall (t1: T).(\forall (x: T).(\forall (h: nat).(\forall (d: nat).((pr0
x2))).(\lambda (H7: (eq T (lift (S O) O t2) (lift h (S x1) x3))).(eq_ind_r T
(THead (Bind b) x2 x3) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T t3 (lift
h x1 t4))) (\lambda (t4: T).(pr0 t t4)))) (let H8 \def (eq_ind_r nat (plus (S
-O) x1) (\lambda (n: nat).(eq nat (S x1) n)) (refl_equal nat (plus (S O) x1))
-(plus x1 (S O)) (plus_sym x1 (S O))) in (let H9 \def (eq_ind nat (S x1)
-(\lambda (n: nat).(eq T (lift (S O) O t2) (lift h n x3))) H7 (plus x1 (S O))
-H8) in (ex2_ind T (\lambda (t4: T).(eq T x3 (lift (S O) O t4))) (\lambda (t4:
-T).(eq T t2 (lift h x1 t4))) (ex2 T (\lambda (t4: T).(eq T t3 (lift h x1
-t4))) (\lambda (t4: T).(pr0 (THead (Bind b) x2 x3) t4))) (\lambda (x4:
-T).(\lambda (H10: (eq T x3 (lift (S O) O x4))).(\lambda (H11: (eq T t2 (lift
-h x1 x4))).(eq_ind_r T (lift (S O) O x4) (\lambda (t: T).(ex2 T (\lambda (t4:
-T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Bind b) x2 t)
-t4)))) (ex2_ind T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4:
-T).(pr0 x4 t4)) (ex2 T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda
-(t4: T).(pr0 (THead (Bind b) x2 (lift (S O) O x4)) t4))) (\lambda (x5:
-T).(\lambda (H_x: (eq T t3 (lift h x1 x5))).(\lambda (H12: (pr0 x4
-x5)).(eq_ind_r T (lift h x1 x5) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T
-t (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Bind b) x2 (lift (S O) O
-x4)) t4)))) (ex_intro2 T (\lambda (t4: T).(eq T (lift h x1 x5) (lift h x1
-t4))) (\lambda (t4: T).(pr0 (THead (Bind b) x2 (lift (S O) O x4)) t4)) x5
-(refl_equal T (lift h x1 x5)) (pr0_zeta b H1 x4 x5 H12 x2)) t3 H_x)))) (H3 x4
-x1 H11)) x3 H10)))) (lift_gen_lift t2 x3 (S O) h O x1 (le_O_n x1) H9)))) x0
-H5)))))) (lift_gen_bind b u (lift (S O) O t2) x0 h x1 H4)))))))))))) (\lambda
-(t2: T).(\lambda (t3: T).(\lambda (_: (pr0 t2 t3)).(\lambda (H2: ((\forall
-(x0: T).(\forall (x1: nat).((eq T t2 (lift h x1 x0)) \to (ex2 T (\lambda (t4:
-T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 x0 t4)))))))).(\lambda (u:
-T).(\lambda (x0: T).(\lambda (x1: nat).(\lambda (H3: (eq T (THead (Flat Cast)
-u t2) (lift h x1 x0))).(ex3_2_ind T T (\lambda (y0: T).(\lambda (z: T).(eq T
-x0 (THead (Flat Cast) y0 z)))) (\lambda (y0: T).(\lambda (_: T).(eq T u (lift
-h x1 y0)))) (\lambda (_: T).(\lambda (z: T).(eq T t2 (lift h x1 z)))) (ex2 T
-(\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 x0 t4)))
-(\lambda (x2: T).(\lambda (x3: T).(\lambda (H4: (eq T x0 (THead (Flat Cast)
-x2 x3))).(\lambda (_: (eq T u (lift h x1 x2))).(\lambda (H6: (eq T t2 (lift h
-x1 x3))).(eq_ind_r T (THead (Flat Cast) x2 x3) (\lambda (t: T).(ex2 T
-(\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 t t4))))
-(ex2_ind T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0
-x3 t4)) (ex2 T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4:
-T).(pr0 (THead (Flat Cast) x2 x3) t4))) (\lambda (x4: T).(\lambda (H_x: (eq T
-t3 (lift h x1 x4))).(\lambda (H7: (pr0 x3 x4)).(eq_ind_r T (lift h x1 x4)
-(\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T t (lift h x1 t4))) (\lambda
-(t4: T).(pr0 (THead (Flat Cast) x2 x3) t4)))) (ex_intro2 T (\lambda (t4:
-T).(eq T (lift h x1 x4) (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat
-Cast) x2 x3) t4)) x4 (refl_equal T (lift h x1 x4)) (pr0_tau x3 x4 H7 x2)) t3
-H_x)))) (H2 x3 x1 H6)) x0 H4)))))) (lift_gen_flat Cast u t2 x0 h x1
-H3)))))))))) y x H0))))) H))))).
-(* COMMENTS
-Initial nodes: 7569
-END *)
+O) x1) (\lambda (n: nat).(eq nat (S x1) n)) (le_antisym (S x1) (plus (S O)
+x1) (le_n (plus (S O) x1)) (le_n (S x1))) (plus x1 (S O)) (plus_sym x1 (S
+O))) in (let H9 \def (eq_ind nat (S x1) (\lambda (n: nat).(eq T (lift (S O) O
+t2) (lift h n x3))) H7 (plus x1 (S O)) H8) in (ex2_ind T (\lambda (t4: T).(eq
+T x3 (lift (S O) O t4))) (\lambda (t4: T).(eq T t2 (lift h x1 t4))) (ex2 T
+(\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Bind
+b) x2 x3) t4))) (\lambda (x4: T).(\lambda (H10: (eq T x3 (lift (S O) O
+x4))).(\lambda (H11: (eq T t2 (lift h x1 x4))).(eq_ind_r T (lift (S O) O x4)
+(\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda
+(t4: T).(pr0 (THead (Bind b) x2 t) t4)))) (ex2_ind T (\lambda (t4: T).(eq T
+t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 x4 t4)) (ex2 T (\lambda (t4: T).(eq
+T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Bind b) x2 (lift (S O) O
+x4)) t4))) (\lambda (x5: T).(\lambda (H_x: (eq T t3 (lift h x1 x5))).(\lambda
+(H12: (pr0 x4 x5)).(eq_ind_r T (lift h x1 x5) (\lambda (t: T).(ex2 T (\lambda
+(t4: T).(eq T t (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Bind b) x2
+(lift (S O) O x4)) t4)))) (ex_intro2 T (\lambda (t4: T).(eq T (lift h x1 x5)
+(lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Bind b) x2 (lift (S O) O x4))
+t4)) x5 (refl_equal T (lift h x1 x5)) (pr0_zeta b H1 x4 x5 H12 x2)) t3
+H_x)))) (H3 x4 x1 H11)) x3 H10)))) (lift_gen_lift t2 x3 (S O) h O x1 (le_O_n
+x1) H9)))) x0 H5)))))) (lift_gen_bind b u (lift (S O) O t2) x0 h x1
+H4)))))))))))) (\lambda (t2: T).(\lambda (t3: T).(\lambda (_: (pr0 t2
+t3)).(\lambda (H2: ((\forall (x0: T).(\forall (x1: nat).((eq T t2 (lift h x1
+x0)) \to (ex2 T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4:
+T).(pr0 x0 t4)))))))).(\lambda (u: T).(\lambda (x0: T).(\lambda (x1:
+nat).(\lambda (H3: (eq T (THead (Flat Cast) u t2) (lift h x1 x0))).(ex3_2_ind
+T T (\lambda (y0: T).(\lambda (z: T).(eq T x0 (THead (Flat Cast) y0 z))))
+(\lambda (y0: T).(\lambda (_: T).(eq T u (lift h x1 y0)))) (\lambda (_:
+T).(\lambda (z: T).(eq T t2 (lift h x1 z)))) (ex2 T (\lambda (t4: T).(eq T t3
+(lift h x1 t4))) (\lambda (t4: T).(pr0 x0 t4))) (\lambda (x2: T).(\lambda
+(x3: T).(\lambda (H4: (eq T x0 (THead (Flat Cast) x2 x3))).(\lambda (_: (eq T
+u (lift h x1 x2))).(\lambda (H6: (eq T t2 (lift h x1 x3))).(eq_ind_r T (THead
+(Flat Cast) x2 x3) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T t3 (lift h
+x1 t4))) (\lambda (t4: T).(pr0 t t4)))) (ex2_ind T (\lambda (t4: T).(eq T t3
+(lift h x1 t4))) (\lambda (t4: T).(pr0 x3 t4)) (ex2 T (\lambda (t4: T).(eq T
+t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat Cast) x2 x3) t4)))
+(\lambda (x4: T).(\lambda (H_x: (eq T t3 (lift h x1 x4))).(\lambda (H7: (pr0
+x3 x4)).(eq_ind_r T (lift h x1 x4) (\lambda (t: T).(ex2 T (\lambda (t4:
+T).(eq T t (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat Cast) x2 x3)
+t4)))) (ex_intro2 T (\lambda (t4: T).(eq T (lift h x1 x4) (lift h x1 t4)))
+(\lambda (t4: T).(pr0 (THead (Flat Cast) x2 x3) t4)) x4 (refl_equal T (lift h
+x1 x4)) (pr0_tau x3 x4 H7 x2)) t3 H_x)))) (H2 x3 x1 H6)) x0 H4))))))
+(lift_gen_flat Cast u t2 x0 h x1 H3)))))))))) y x H0))))) H))))).
(* This file was automatically generated: do not edit *********************)
-include "Basic-1/pr0/fwd.ma".
+include "basic_1/pr0/subst0.ma".
-include "Basic-1/lift/tlt.ma".
+include "basic_1/lift/tlt.ma".
+
+include "basic_1/tlt/fwd.ma".
theorem pr0_confluence__pr0_cong_upsilon_refl:
\forall (b: B).((not (eq B b Abst)) \to (\forall (u0: T).(\forall (u3:
(THead (Flat Appl) (lift (S O) O x) t5) (pr0_comp (lift (S O) O v2) (lift (S
O) O x) (pr0_lift v2 x H3 (S O) O) t5 t5 (pr0_refl t5) (Flat Appl)) (Bind
b))))))))))))))).
-(* COMMENTS
-Initial nodes: 257
-END *)
theorem pr0_confluence__pr0_cong_upsilon_cong:
\forall (b: B).((not (eq B b Abst)) \to (\forall (u2: T).(\forall (v2:
Appl) (lift (S O) O v2) t5) (THead (Flat Appl) (lift (S O) O x) x0) (pr0_comp
(lift (S O) O v2) (lift (S O) O x) (pr0_lift v2 x H1 (S O) O) t5 x0 H3 (Flat
Appl)) (Bind b))))))))))))))))))).
-(* COMMENTS
-Initial nodes: 269
-END *)
theorem pr0_confluence__pr0_cong_upsilon_delta:
(not (eq B Abbr Abst)) \to (\forall (u5: T).(\forall (t2: T).(\forall (w:
(THead (Flat Appl) (lift (S O) O x) x2) (subst0_snd (Flat Appl) x1 x2 x0 O H9
(lift (S O) O x))))))) H7)) (pr0_subst0 t2 x0 H3 u5 w O H0 x1
H5))))))))))))))))))).
-(* COMMENTS
-Initial nodes: 769
-END *)
theorem pr0_confluence__pr0_cong_upsilon_zeta:
\forall (b: B).((not (eq B b Abst)) \to (\forall (u0: T).(\forall (u3:
Appl) x0 x1) (pr0_comp v2 x0 H2 x x1 H3 (Flat Appl)) u3)) (THead (Flat Appl)
(lift (S O) O v2) (lift (S O) O x)) (lift_flat Appl v2 x (S O)
O)))))))))))))))).
-(* COMMENTS
-Initial nodes: 283
-END *)
theorem pr0_confluence__pr0_cong_delta:
\forall (u3: T).(\forall (t5: T).(\forall (w: T).((subst0 O u3 t5 w) \to
(t: T).(pr0 (THead (Bind Abbr) u3 w) t)) (THead (Bind Abbr) x x1) (pr0_delta
u2 x H0 t3 x0 H2 x1 H6) (pr0_comp u3 x H1 w x1 H5 (Bind Abbr)))))) H4))
(pr0_subst0 t5 x0 H3 u3 w O H x H1))))))))))))).
-(* COMMENTS
-Initial nodes: 409
-END *)
theorem pr0_confluence__pr0_upsilon_upsilon:
\forall (b: B).((not (eq B b Abst)) \to (\forall (v1: T).(\forall (v2:
H3 (THead (Flat Appl) (lift (S O) O v2) t2) (THead (Flat Appl) (lift (S O) O
x0) x2) (pr0_comp (lift (S O) O v2) (lift (S O) O x0) (pr0_lift v2 x0 H1 (S
O) O) t2 x2 H5 (Flat Appl)) (Bind b))))))))))))))))))).
-(* COMMENTS
-Initial nodes: 347
-END *)
theorem pr0_confluence__pr0_delta_delta:
\forall (u2: T).(\forall (t3: T).(\forall (w: T).((subst0 O u2 t3 w) \to
(Bind Abbr)) (pr0_delta u3 x H2 w0 x1 H6 x2 H11))) (subst0_confluence_eq x0
x2 x O H10 x1 H7))))) H8)) (pr0_subst0 t3 x0 H3 u2 w O H x H1))))) H5))
(pr0_subst0 t5 x0 H4 u3 w0 O H0 x H2))))))))))))))).
-(* COMMENTS
-Initial nodes: 1501
-END *)
theorem pr0_confluence__pr0_delta_tau:
\forall (u2: T).(\forall (t3: T).(\forall (w: T).((subst0 O u2 t3 w) \to
(\lambda (t: T).(pr0 t2 t))) (\lambda (x: T).(\lambda (H1: (eq T t3 (lift (S
O) O x))).(\lambda (_: (pr0 t4 x)).(let H3 \def (eq_ind T t3 (\lambda (t:
T).(subst0 O u2 t w)) H (lift (S O) O x) H1) in (subst0_gen_lift_false x u2 w
-(S O) O O (le_n O) (eq_ind_r nat (plus (S O) O) (\lambda (n: nat).(lt O n))
+(S O) O O (le_O_n O) (eq_ind_r nat (plus (S O) O) (\lambda (n: nat).(lt O n))
(le_n (plus (S O) O)) (plus O (S O)) (plus_sym O (S O))) H3 (ex2 T (\lambda
(t: T).(pr0 (THead (Bind Abbr) u2 w) t)) (\lambda (t: T).(pr0 t2 t))))))))
(pr0_gen_lift t4 t3 (S O) O H0)))))))).
-(* COMMENTS
-Initial nodes: 257
-END *)
theorem pr0_confluence:
\forall (t0: T).(\forall (t1: T).((pr0 t0 t1) \to (\forall (t2: T).((pr0 t0
(v: T).((tlt v t) \to (\forall (t1: T).((pr0 v t1) \to (\forall (t2: T).((pr0
v t2) \to (ex2 T (\lambda (t3: T).(pr0 t1 t3)) (\lambda (t3: T).(pr0 t2
t3))))))))))).(\lambda (t1: T).(\lambda (H0: (pr0 t t1)).(\lambda (t2:
-T).(\lambda (H1: (pr0 t t2)).(let H2 \def (match H0 in pr0 return (\lambda
-(t3: T).(\lambda (t4: T).(\lambda (_: (pr0 t3 t4)).((eq T t3 t) \to ((eq T t4
-t1) \to (ex2 T (\lambda (t5: T).(pr0 t1 t5)) (\lambda (t5: T).(pr0 t2
-t5)))))))) with [(pr0_refl t3) \Rightarrow (\lambda (H2: (eq T t3
-t)).(\lambda (H3: (eq T t3 t1)).(eq_ind T t (\lambda (t4: T).((eq T t4 t1)
-\to (ex2 T (\lambda (t5: T).(pr0 t1 t5)) (\lambda (t5: T).(pr0 t2 t5)))))
-(\lambda (H4: (eq T t t1)).(eq_ind T t1 (\lambda (_: T).(ex2 T (\lambda (t5:
-T).(pr0 t1 t5)) (\lambda (t5: T).(pr0 t2 t5)))) (let H5 \def (match H1 in pr0
-return (\lambda (t4: T).(\lambda (t5: T).(\lambda (_: (pr0 t4 t5)).((eq T t4
-t) \to ((eq T t5 t2) \to (ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6:
-T).(pr0 t2 t6)))))))) with [(pr0_refl t4) \Rightarrow (\lambda (H5: (eq T t4
-t)).(\lambda (H6: (eq T t4 t2)).(eq_ind T t (\lambda (t5: T).((eq T t5 t2)
-\to (ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t2 t6)))))
-(\lambda (H7: (eq T t t2)).(eq_ind T t2 (\lambda (_: T).(ex2 T (\lambda (t6:
-T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t2 t6)))) (let H8 \def (eq_ind T t
-(\lambda (t5: T).(eq T t4 t5)) H5 t2 H7) in (let H9 \def (eq_ind T t (\lambda
-(t5: T).(eq T t5 t1)) H4 t2 H7) in (let H10 \def (eq_ind T t (\lambda (t5:
-T).(eq T t3 t5)) H2 t2 H7) in (let H11 \def (eq_ind T t (\lambda (t5:
-T).(\forall (v: T).((tlt v t5) \to (\forall (t6: T).((pr0 v t6) \to (\forall
-(t7: T).((pr0 v t7) \to (ex2 T (\lambda (t8: T).(pr0 t6 t8)) (\lambda (t8:
-T).(pr0 t7 t8)))))))))) H t2 H7) in (let H12 \def (eq_ind T t2 (\lambda (t5:
-T).(\forall (v: T).((tlt v t5) \to (\forall (t6: T).((pr0 v t6) \to (\forall
-(t7: T).((pr0 v t7) \to (ex2 T (\lambda (t8: T).(pr0 t6 t8)) (\lambda (t8:
-T).(pr0 t7 t8)))))))))) H11 t1 H9) in (eq_ind_r T t1 (\lambda (t5: T).(ex2 T
-(\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t5 t6)))) (let H13 \def
-(eq_ind T t2 (\lambda (t5: T).(eq T t3 t5)) H10 t1 H9) in (ex_intro2 T
-(\lambda (t5: T).(pr0 t1 t5)) (\lambda (t5: T).(pr0 t1 t5)) t1 (pr0_refl t1)
-(pr0_refl t1))) t2 H9)))))) t (sym_eq T t t2 H7))) t4 (sym_eq T t4 t H5)
-H6))) | (pr0_comp u1 u2 H5 t4 t5 H6 k) \Rightarrow (\lambda (H7: (eq T (THead
-k u1 t4) t)).(\lambda (H8: (eq T (THead k u2 t5) t2)).(eq_ind T (THead k u1
-t4) (\lambda (_: T).((eq T (THead k u2 t5) t2) \to ((pr0 u1 u2) \to ((pr0 t4
-t5) \to (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2
-t7))))))) (\lambda (H9: (eq T (THead k u2 t5) t2)).(eq_ind T (THead k u2 t5)
-(\lambda (t6: T).((pr0 u1 u2) \to ((pr0 t4 t5) \to (ex2 T (\lambda (t7:
-T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t6 t7)))))) (\lambda (H10: (pr0 u1
-u2)).(\lambda (H11: (pr0 t4 t5)).(let H12 \def (eq_ind_r T t (\lambda (t6:
-T).(eq T t6 t1)) H4 (THead k u1 t4) H7) in (eq_ind T (THead k u1 t4) (\lambda
-(t6: T).(ex2 T (\lambda (t7: T).(pr0 t6 t7)) (\lambda (t7: T).(pr0 (THead k
-u2 t5) t7)))) (let H13 \def (eq_ind_r T t (\lambda (t6: T).(eq T t3 t6)) H2
-(THead k u1 t4) H7) in (let H14 \def (eq_ind_r T t (\lambda (t6: T).(\forall
+T).(\lambda (H1: (pr0 t t2)).(let H2 \def (match H0 with [(pr0_refl t3)
+\Rightarrow (\lambda (H2: (eq T t3 t)).(\lambda (H3: (eq T t3 t1)).(eq_ind T
+t (\lambda (t4: T).((eq T t4 t1) \to (ex2 T (\lambda (t5: T).(pr0 t1 t5))
+(\lambda (t5: T).(pr0 t2 t5))))) (\lambda (H4: (eq T t t1)).(eq_ind T t1
+(\lambda (_: T).(ex2 T (\lambda (t5: T).(pr0 t1 t5)) (\lambda (t5: T).(pr0 t2
+t5)))) (let H5 \def (match H1 with [(pr0_refl t4) \Rightarrow (\lambda (H5:
+(eq T t4 t)).(\lambda (H6: (eq T t4 t2)).(eq_ind T t (\lambda (t5: T).((eq T
+t5 t2) \to (ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t2
+t6))))) (\lambda (H7: (eq T t t2)).(eq_ind T t2 (\lambda (_: T).(ex2 T
+(\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t2 t6)))) (let H8 \def
+(eq_ind T t (\lambda (t5: T).(eq T t4 t5)) H5 t2 H7) in (let H9 \def (eq_ind
+T t (\lambda (t5: T).(eq T t5 t1)) H4 t2 H7) in (let H10 \def (eq_ind T t
+(\lambda (t5: T).(eq T t3 t5)) H2 t2 H7) in (let H11 \def (eq_ind T t
+(\lambda (t5: T).(\forall (v: T).((tlt v t5) \to (\forall (t6: T).((pr0 v t6)
+\to (\forall (t7: T).((pr0 v t7) \to (ex2 T (\lambda (t8: T).(pr0 t6 t8))
+(\lambda (t8: T).(pr0 t7 t8)))))))))) H t2 H7) in (let H12 \def (eq_ind T t2
+(\lambda (t5: T).(\forall (v: T).((tlt v t5) \to (\forall (t6: T).((pr0 v t6)
+\to (\forall (t7: T).((pr0 v t7) \to (ex2 T (\lambda (t8: T).(pr0 t6 t8))
+(\lambda (t8: T).(pr0 t7 t8)))))))))) H11 t1 H9) in (eq_ind_r T t1 (\lambda
+(t5: T).(ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t5 t6))))
+(let H13 \def (eq_ind T t2 (\lambda (t5: T).(eq T t3 t5)) H10 t1 H9) in
+(ex_intro2 T (\lambda (t5: T).(pr0 t1 t5)) (\lambda (t5: T).(pr0 t1 t5)) t1
+(pr0_refl t1) (pr0_refl t1))) t2 H9)))))) t (sym_eq T t t2 H7))) t4 (sym_eq T
+t4 t H5) H6))) | (pr0_comp u1 u2 H5 t4 t5 H6 k) \Rightarrow (\lambda (H7: (eq
+T (THead k u1 t4) t)).(\lambda (H8: (eq T (THead k u2 t5) t2)).(eq_ind T
+(THead k u1 t4) (\lambda (_: T).((eq T (THead k u2 t5) t2) \to ((pr0 u1 u2)
+\to ((pr0 t4 t5) \to (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7:
+T).(pr0 t2 t7))))))) (\lambda (H9: (eq T (THead k u2 t5) t2)).(eq_ind T
+(THead k u2 t5) (\lambda (t6: T).((pr0 u1 u2) \to ((pr0 t4 t5) \to (ex2 T
+(\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t6 t7)))))) (\lambda
+(H10: (pr0 u1 u2)).(\lambda (H11: (pr0 t4 t5)).(let H12 \def (eq_ind_r T t
+(\lambda (t6: T).(eq T t6 t1)) H4 (THead k u1 t4) H7) in (eq_ind T (THead k
+u1 t4) (\lambda (t6: T).(ex2 T (\lambda (t7: T).(pr0 t6 t7)) (\lambda (t7:
+T).(pr0 (THead k u2 t5) t7)))) (let H13 \def (eq_ind_r T t (\lambda (t6:
+T).(eq T t3 t6)) H2 (THead k u1 t4) H7) in (let H14 \def (eq_ind_r T t
+(\lambda (t6: T).(\forall (v: T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7)
+\to (\forall (t8: T).((pr0 v t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9))
+(\lambda (t9: T).(pr0 t8 t9)))))))))) H (THead k u1 t4) H7) in (ex_intro2 T
+(\lambda (t6: T).(pr0 (THead k u1 t4) t6)) (\lambda (t6: T).(pr0 (THead k u2
+t5) t6)) (THead k u2 t5) (pr0_comp u1 u2 H10 t4 t5 H11 k) (pr0_refl (THead k
+u2 t5))))) t1 H12)))) t2 H9)) t H7 H8 H5 H6))) | (pr0_beta u v1 v2 H5 t4 t5
+H6) \Rightarrow (\lambda (H7: (eq T (THead (Flat Appl) v1 (THead (Bind Abst)
+u t4)) t)).(\lambda (H8: (eq T (THead (Bind Abbr) v2 t5) t2)).(eq_ind T
+(THead (Flat Appl) v1 (THead (Bind Abst) u t4)) (\lambda (_: T).((eq T (THead
+(Bind Abbr) v2 t5) t2) \to ((pr0 v1 v2) \to ((pr0 t4 t5) \to (ex2 T (\lambda
+(t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))))))) (\lambda (H9: (eq T
+(THead (Bind Abbr) v2 t5) t2)).(eq_ind T (THead (Bind Abbr) v2 t5) (\lambda
+(t6: T).((pr0 v1 v2) \to ((pr0 t4 t5) \to (ex2 T (\lambda (t7: T).(pr0 t1
+t7)) (\lambda (t7: T).(pr0 t6 t7)))))) (\lambda (H10: (pr0 v1 v2)).(\lambda
+(H11: (pr0 t4 t5)).(let H12 \def (eq_ind_r T t (\lambda (t6: T).(eq T t6 t1))
+H4 (THead (Flat Appl) v1 (THead (Bind Abst) u t4)) H7) in (eq_ind T (THead
+(Flat Appl) v1 (THead (Bind Abst) u t4)) (\lambda (t6: T).(ex2 T (\lambda
+(t7: T).(pr0 t6 t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t5) t7))))
+(let H13 \def (eq_ind_r T t (\lambda (t6: T).(eq T t3 t6)) H2 (THead (Flat
+Appl) v1 (THead (Bind Abst) u t4)) H7) in (let H14 \def (eq_ind_r T t
+(\lambda (t6: T).(\forall (v: T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7)
+\to (\forall (t8: T).((pr0 v t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9))
+(\lambda (t9: T).(pr0 t8 t9)))))))))) H (THead (Flat Appl) v1 (THead (Bind
+Abst) u t4)) H7) in (ex_intro2 T (\lambda (t6: T).(pr0 (THead (Flat Appl) v1
+(THead (Bind Abst) u t4)) t6)) (\lambda (t6: T).(pr0 (THead (Bind Abbr) v2
+t5) t6)) (THead (Bind Abbr) v2 t5) (pr0_beta u v1 v2 H10 t4 t5 H11) (pr0_refl
+(THead (Bind Abbr) v2 t5))))) t1 H12)))) t2 H9)) t H7 H8 H5 H6))) |
+(pr0_upsilon b H5 v1 v2 H6 u1 u2 H7 t4 t5 H8) \Rightarrow (\lambda (H9: (eq T
+(THead (Flat Appl) v1 (THead (Bind b) u1 t4)) t)).(\lambda (H10: (eq T (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t5)) t2)).(eq_ind T (THead
+(Flat Appl) v1 (THead (Bind b) u1 t4)) (\lambda (_: T).((eq T (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t5)) t2) \to ((not (eq B b Abst)) \to
+((pr0 v1 v2) \to ((pr0 u1 u2) \to ((pr0 t4 t5) \to (ex2 T (\lambda (t7:
+T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))))))))) (\lambda (H11: (eq T
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t5)) t2)).(eq_ind T
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t5)) (\lambda (t6:
+T).((not (eq B b Abst)) \to ((pr0 v1 v2) \to ((pr0 u1 u2) \to ((pr0 t4 t5)
+\to (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t6 t7))))))))
+(\lambda (H12: (not (eq B b Abst))).(\lambda (H13: (pr0 v1 v2)).(\lambda
+(H14: (pr0 u1 u2)).(\lambda (H15: (pr0 t4 t5)).(let H16 \def (eq_ind_r T t
+(\lambda (t6: T).(eq T t6 t1)) H4 (THead (Flat Appl) v1 (THead (Bind b) u1
+t4)) H9) in (eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u1 t4)) (\lambda
+(t6: T).(ex2 T (\lambda (t7: T).(pr0 t6 t7)) (\lambda (t7: T).(pr0 (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t5)) t7)))) (let H17 \def
+(eq_ind_r T t (\lambda (t6: T).(eq T t3 t6)) H2 (THead (Flat Appl) v1 (THead
+(Bind b) u1 t4)) H9) in (let H18 \def (eq_ind_r T t (\lambda (t6: T).(\forall
(v: T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7) \to (\forall (t8:
T).((pr0 v t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9)) (\lambda (t9: T).(pr0
-t8 t9)))))))))) H (THead k u1 t4) H7) in (ex_intro2 T (\lambda (t6: T).(pr0
-(THead k u1 t4) t6)) (\lambda (t6: T).(pr0 (THead k u2 t5) t6)) (THead k u2
-t5) (pr0_comp u1 u2 H10 t4 t5 H11 k) (pr0_refl (THead k u2 t5))))) t1 H12))))
-t2 H9)) t H7 H8 H5 H6))) | (pr0_beta u v1 v2 H5 t4 t5 H6) \Rightarrow
-(\lambda (H7: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t4))
-t)).(\lambda (H8: (eq T (THead (Bind Abbr) v2 t5) t2)).(eq_ind T (THead (Flat
-Appl) v1 (THead (Bind Abst) u t4)) (\lambda (_: T).((eq T (THead (Bind Abbr)
-v2 t5) t2) \to ((pr0 v1 v2) \to ((pr0 t4 t5) \to (ex2 T (\lambda (t7: T).(pr0
-t1 t7)) (\lambda (t7: T).(pr0 t2 t7))))))) (\lambda (H9: (eq T (THead (Bind
-Abbr) v2 t5) t2)).(eq_ind T (THead (Bind Abbr) v2 t5) (\lambda (t6: T).((pr0
-v1 v2) \to ((pr0 t4 t5) \to (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda
-(t7: T).(pr0 t6 t7)))))) (\lambda (H10: (pr0 v1 v2)).(\lambda (H11: (pr0 t4
-t5)).(let H12 \def (eq_ind_r T t (\lambda (t6: T).(eq T t6 t1)) H4 (THead
-(Flat Appl) v1 (THead (Bind Abst) u t4)) H7) in (eq_ind T (THead (Flat Appl)
-v1 (THead (Bind Abst) u t4)) (\lambda (t6: T).(ex2 T (\lambda (t7: T).(pr0 t6
-t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t5) t7)))) (let H13 \def
-(eq_ind_r T t (\lambda (t6: T).(eq T t3 t6)) H2 (THead (Flat Appl) v1 (THead
-(Bind Abst) u t4)) H7) in (let H14 \def (eq_ind_r T t (\lambda (t6:
-T).(\forall (v: T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7) \to (\forall
-(t8: T).((pr0 v t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9)) (\lambda (t9:
-T).(pr0 t8 t9)))))))))) H (THead (Flat Appl) v1 (THead (Bind Abst) u t4)) H7)
-in (ex_intro2 T (\lambda (t6: T).(pr0 (THead (Flat Appl) v1 (THead (Bind
-Abst) u t4)) t6)) (\lambda (t6: T).(pr0 (THead (Bind Abbr) v2 t5) t6)) (THead
-(Bind Abbr) v2 t5) (pr0_beta u v1 v2 H10 t4 t5 H11) (pr0_refl (THead (Bind
-Abbr) v2 t5))))) t1 H12)))) t2 H9)) t H7 H8 H5 H6))) | (pr0_upsilon b H5 v1
-v2 H6 u1 u2 H7 t4 t5 H8) \Rightarrow (\lambda (H9: (eq T (THead (Flat Appl)
-v1 (THead (Bind b) u1 t4)) t)).(\lambda (H10: (eq T (THead (Bind b) u2 (THead
-(Flat Appl) (lift (S O) O v2) t5)) t2)).(eq_ind T (THead (Flat Appl) v1
-(THead (Bind b) u1 t4)) (\lambda (_: T).((eq T (THead (Bind b) u2 (THead
-(Flat Appl) (lift (S O) O v2) t5)) t2) \to ((not (eq B b Abst)) \to ((pr0 v1
-v2) \to ((pr0 u1 u2) \to ((pr0 t4 t5) \to (ex2 T (\lambda (t7: T).(pr0 t1
-t7)) (\lambda (t7: T).(pr0 t2 t7))))))))) (\lambda (H11: (eq T (THead (Bind
-b) u2 (THead (Flat Appl) (lift (S O) O v2) t5)) t2)).(eq_ind T (THead (Bind
-b) u2 (THead (Flat Appl) (lift (S O) O v2) t5)) (\lambda (t6: T).((not (eq B
-b Abst)) \to ((pr0 v1 v2) \to ((pr0 u1 u2) \to ((pr0 t4 t5) \to (ex2 T
-(\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t6 t7)))))))) (\lambda
-(H12: (not (eq B b Abst))).(\lambda (H13: (pr0 v1 v2)).(\lambda (H14: (pr0 u1
-u2)).(\lambda (H15: (pr0 t4 t5)).(let H16 \def (eq_ind_r T t (\lambda (t6:
-T).(eq T t6 t1)) H4 (THead (Flat Appl) v1 (THead (Bind b) u1 t4)) H9) in
-(eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u1 t4)) (\lambda (t6: T).(ex2
-T (\lambda (t7: T).(pr0 t6 t7)) (\lambda (t7: T).(pr0 (THead (Bind b) u2
-(THead (Flat Appl) (lift (S O) O v2) t5)) t7)))) (let H17 \def (eq_ind_r T t
-(\lambda (t6: T).(eq T t3 t6)) H2 (THead (Flat Appl) v1 (THead (Bind b) u1
-t4)) H9) in (let H18 \def (eq_ind_r T t (\lambda (t6: T).(\forall (v:
-T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7) \to (\forall (t8: T).((pr0 v
-t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9)) (\lambda (t9: T).(pr0 t8
-t9)))))))))) H (THead (Flat Appl) v1 (THead (Bind b) u1 t4)) H9) in
+t8 t9)))))))))) H (THead (Flat Appl) v1 (THead (Bind b) u1 t4)) H9) in
(pr0_confluence__pr0_cong_upsilon_refl b H12 u1 u2 H14 t4 t5 H15 v1 v2 v2 H13
(pr0_refl v2)))) t1 H16)))))) t2 H11)) t H9 H10 H5 H6 H7 H8))) | (pr0_delta
u1 u2 H5 t4 t5 H6 w H7) \Rightarrow (\lambda (H8: (eq T (THead (Bind Abbr) u1
(\lambda (H6: (eq T (THead k u2 t4) t1)).(eq_ind T (THead k u2 t4) (\lambda
(t5: T).((pr0 u1 u2) \to ((pr0 t3 t4) \to (ex2 T (\lambda (t6: T).(pr0 t5
t6)) (\lambda (t6: T).(pr0 t2 t6)))))) (\lambda (H7: (pr0 u1 u2)).(\lambda
-(H8: (pr0 t3 t4)).(let H9 \def (match H1 in pr0 return (\lambda (t5:
-T).(\lambda (t6: T).(\lambda (_: (pr0 t5 t6)).((eq T t5 t) \to ((eq T t6 t2)
-\to (ex2 T (\lambda (t7: T).(pr0 (THead k u2 t4) t7)) (\lambda (t7: T).(pr0
-t2 t7)))))))) with [(pr0_refl t5) \Rightarrow (\lambda (H9: (eq T t5
-t)).(\lambda (H10: (eq T t5 t2)).(eq_ind T t (\lambda (t6: T).((eq T t6 t2)
-\to (ex2 T (\lambda (t7: T).(pr0 (THead k u2 t4) t7)) (\lambda (t7: T).(pr0
-t2 t7))))) (\lambda (H11: (eq T t t2)).(eq_ind T t2 (\lambda (_: T).(ex2 T
-(\lambda (t7: T).(pr0 (THead k u2 t4) t7)) (\lambda (t7: T).(pr0 t2 t7))))
-(let H12 \def (eq_ind_r T t (\lambda (t6: T).(eq T t6 t2)) H11 (THead k u1
-t3) H4) in (eq_ind T (THead k u1 t3) (\lambda (t6: T).(ex2 T (\lambda (t7:
-T).(pr0 (THead k u2 t4) t7)) (\lambda (t7: T).(pr0 t6 t7)))) (let H13 \def
-(eq_ind_r T t (\lambda (t6: T).(eq T t5 t6)) H9 (THead k u1 t3) H4) in (let
-H14 \def (eq_ind_r T t (\lambda (t6: T).(\forall (v: T).((tlt v t6) \to
-(\forall (t7: T).((pr0 v t7) \to (\forall (t8: T).((pr0 v t8) \to (ex2 T
-(\lambda (t9: T).(pr0 t7 t9)) (\lambda (t9: T).(pr0 t8 t9)))))))))) H (THead
-k u1 t3) H4) in (ex_intro2 T (\lambda (t6: T).(pr0 (THead k u2 t4) t6))
-(\lambda (t6: T).(pr0 (THead k u1 t3) t6)) (THead k u2 t4) (pr0_refl (THead k
-u2 t4)) (pr0_comp u1 u2 H7 t3 t4 H8 k)))) t2 H12)) t (sym_eq T t t2 H11))) t5
-(sym_eq T t5 t H9) H10))) | (pr0_comp u0 u3 H9 t5 t6 H10 k0) \Rightarrow
-(\lambda (H11: (eq T (THead k0 u0 t5) t)).(\lambda (H12: (eq T (THead k0 u3
-t6) t2)).(eq_ind T (THead k0 u0 t5) (\lambda (_: T).((eq T (THead k0 u3 t6)
-t2) \to ((pr0 u0 u3) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead
-k u2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H13: (eq T (THead
-k0 u3 t6) t2)).(eq_ind T (THead k0 u3 t6) (\lambda (t7: T).((pr0 u0 u3) \to
-((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda
-(t8: T).(pr0 t7 t8)))))) (\lambda (H14: (pr0 u0 u3)).(\lambda (H15: (pr0 t5
-t6)).(let H16 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead k u1 t3) t7))
-H4 (THead k0 u0 t5) H11) in (let H17 \def (f_equal T K (\lambda (e: T).(match
-e in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow k | (TLRef _)
-\Rightarrow k | (THead k1 _ _) \Rightarrow k1])) (THead k u1 t3) (THead k0 u0
-t5) H16) in ((let H18 \def (f_equal T T (\lambda (e: T).(match e in T return
-(\lambda (_: T).T) with [(TSort _) \Rightarrow u1 | (TLRef _) \Rightarrow u1
-| (THead _ t7 _) \Rightarrow t7])) (THead k u1 t3) (THead k0 u0 t5) H16) in
-((let H19 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_:
-T).T) with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _
-t7) \Rightarrow t7])) (THead k u1 t3) (THead k0 u0 t5) H16) in (\lambda (H20:
-(eq T u1 u0)).(\lambda (H21: (eq K k k0)).(let H22 \def (eq_ind_r T t
-(\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8)
-\to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10))
-(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead k0 u0 t5) H11) in (eq_ind_r
-K k0 (\lambda (k1: K).(ex2 T (\lambda (t7: T).(pr0 (THead k1 u2 t4) t7))
-(\lambda (t7: T).(pr0 (THead k0 u3 t6) t7)))) (let H23 \def (eq_ind T u1
-(\lambda (t7: T).(pr0 t7 u2)) H7 u0 H20) in (let H24 \def (eq_ind T t3
-(\lambda (t7: T).(pr0 t7 t4)) H8 t5 H19) in (ex2_ind T (\lambda (t7: T).(pr0
-t4 t7)) (\lambda (t7: T).(pr0 t6 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead k0
-u2 t4) t7)) (\lambda (t7: T).(pr0 (THead k0 u3 t6) t7))) (\lambda (x:
-T).(\lambda (H25: (pr0 t4 x)).(\lambda (H26: (pr0 t6 x)).(ex2_ind T (\lambda
-(t7: T).(pr0 u2 t7)) (\lambda (t7: T).(pr0 u3 t7)) (ex2 T (\lambda (t7:
-T).(pr0 (THead k0 u2 t4) t7)) (\lambda (t7: T).(pr0 (THead k0 u3 t6) t7)))
-(\lambda (x0: T).(\lambda (H27: (pr0 u2 x0)).(\lambda (H28: (pr0 u3
-x0)).(ex_intro2 T (\lambda (t7: T).(pr0 (THead k0 u2 t4) t7)) (\lambda (t7:
-T).(pr0 (THead k0 u3 t6) t7)) (THead k0 x0 x) (pr0_comp u2 x0 H27 t4 x H25
-k0) (pr0_comp u3 x0 H28 t6 x H26 k0))))) (H22 u0 (tlt_head_sx k0 u0 t5) u2
-H23 u3 H14))))) (H22 t5 (tlt_head_dx k0 u0 t5) t4 H24 t6 H15)))) k H21)))))
-H18)) H17))))) t2 H13)) t H11 H12 H9 H10))) | (pr0_beta u v1 v2 H9 t5 t6 H10)
-\Rightarrow (\lambda (H11: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u
-t5)) t)).(\lambda (H12: (eq T (THead (Bind Abbr) v2 t6) t2)).(eq_ind T (THead
-(Flat Appl) v1 (THead (Bind Abst) u t5)) (\lambda (_: T).((eq T (THead (Bind
-Abbr) v2 t6) t2) \to ((pr0 v1 v2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8:
-T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda
-(H13: (eq T (THead (Bind Abbr) v2 t6) t2)).(eq_ind T (THead (Bind Abbr) v2
-t6) (\lambda (t7: T).((pr0 v1 v2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8:
-T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0 t7 t8)))))) (\lambda (H14:
-(pr0 v1 v2)).(\lambda (H15: (pr0 t5 t6)).(let H16 \def (eq_ind_r T t (\lambda
-(t7: T).(eq T (THead k u1 t3) t7)) H4 (THead (Flat Appl) v1 (THead (Bind
-Abst) u t5)) H11) in (let H17 \def (f_equal T K (\lambda (e: T).(match e in T
-return (\lambda (_: T).K) with [(TSort _) \Rightarrow k | (TLRef _)
+(H8: (pr0 t3 t4)).(let H9 \def (match H1 with [(pr0_refl t5) \Rightarrow
+(\lambda (H9: (eq T t5 t)).(\lambda (H10: (eq T t5 t2)).(eq_ind T t (\lambda
+(t6: T).((eq T t6 t2) \to (ex2 T (\lambda (t7: T).(pr0 (THead k u2 t4) t7))
+(\lambda (t7: T).(pr0 t2 t7))))) (\lambda (H11: (eq T t t2)).(eq_ind T t2
+(\lambda (_: T).(ex2 T (\lambda (t7: T).(pr0 (THead k u2 t4) t7)) (\lambda
+(t7: T).(pr0 t2 t7)))) (let H12 \def (eq_ind_r T t (\lambda (t6: T).(eq T t6
+t2)) H11 (THead k u1 t3) H4) in (eq_ind T (THead k u1 t3) (\lambda (t6:
+T).(ex2 T (\lambda (t7: T).(pr0 (THead k u2 t4) t7)) (\lambda (t7: T).(pr0 t6
+t7)))) (let H13 \def (eq_ind_r T t (\lambda (t6: T).(eq T t5 t6)) H9 (THead k
+u1 t3) H4) in (let H14 \def (eq_ind_r T t (\lambda (t6: T).(\forall (v:
+T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7) \to (\forall (t8: T).((pr0 v
+t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9)) (\lambda (t9: T).(pr0 t8
+t9)))))))))) H (THead k u1 t3) H4) in (ex_intro2 T (\lambda (t6: T).(pr0
+(THead k u2 t4) t6)) (\lambda (t6: T).(pr0 (THead k u1 t3) t6)) (THead k u2
+t4) (pr0_refl (THead k u2 t4)) (pr0_comp u1 u2 H7 t3 t4 H8 k)))) t2 H12)) t
+(sym_eq T t t2 H11))) t5 (sym_eq T t5 t H9) H10))) | (pr0_comp u0 u3 H9 t5 t6
+H10 k0) \Rightarrow (\lambda (H11: (eq T (THead k0 u0 t5) t)).(\lambda (H12:
+(eq T (THead k0 u3 t6) t2)).(eq_ind T (THead k0 u0 t5) (\lambda (_: T).((eq T
+(THead k0 u3 t6) t2) \to ((pr0 u0 u3) \to ((pr0 t5 t6) \to (ex2 T (\lambda
+(t8: T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda
+(H13: (eq T (THead k0 u3 t6) t2)).(eq_ind T (THead k0 u3 t6) (\lambda (t7:
+T).((pr0 u0 u3) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead k u2
+t4) t8)) (\lambda (t8: T).(pr0 t7 t8)))))) (\lambda (H14: (pr0 u0
+u3)).(\lambda (H15: (pr0 t5 t6)).(let H16 \def (eq_ind_r T t (\lambda (t7:
+T).(eq T (THead k u1 t3) t7)) H4 (THead k0 u0 t5) H11) in (let H17 \def
+(f_equal T K (\lambda (e: T).(match e with [(TSort _) \Rightarrow k | (TLRef
+_) \Rightarrow k | (THead k1 _ _) \Rightarrow k1])) (THead k u1 t3) (THead k0
+u0 t5) H16) in ((let H18 \def (f_equal T T (\lambda (e: T).(match e with
+[(TSort _) \Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead _ t7 _)
+\Rightarrow t7])) (THead k u1 t3) (THead k0 u0 t5) H16) in ((let H19 \def
+(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow t3 | (TLRef
+_) \Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead k u1 t3) (THead
+k0 u0 t5) H16) in (\lambda (H20: (eq T u1 u0)).(\lambda (H21: (eq K k
+k0)).(let H22 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v t7)
+\to (\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to (ex2 T
+(\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 t10)))))))))) H
+(THead k0 u0 t5) H11) in (eq_ind_r K k0 (\lambda (k1: K).(ex2 T (\lambda (t7:
+T).(pr0 (THead k1 u2 t4) t7)) (\lambda (t7: T).(pr0 (THead k0 u3 t6) t7))))
+(let H23 \def (eq_ind T u1 (\lambda (t7: T).(pr0 t7 u2)) H7 u0 H20) in (let
+H24 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H8 t5 H19) in (ex2_ind T
+(\lambda (t7: T).(pr0 t4 t7)) (\lambda (t7: T).(pr0 t6 t7)) (ex2 T (\lambda
+(t7: T).(pr0 (THead k0 u2 t4) t7)) (\lambda (t7: T).(pr0 (THead k0 u3 t6)
+t7))) (\lambda (x: T).(\lambda (H25: (pr0 t4 x)).(\lambda (H26: (pr0 t6
+x)).(ex2_ind T (\lambda (t7: T).(pr0 u2 t7)) (\lambda (t7: T).(pr0 u3 t7))
+(ex2 T (\lambda (t7: T).(pr0 (THead k0 u2 t4) t7)) (\lambda (t7: T).(pr0
+(THead k0 u3 t6) t7))) (\lambda (x0: T).(\lambda (H27: (pr0 u2 x0)).(\lambda
+(H28: (pr0 u3 x0)).(ex_intro2 T (\lambda (t7: T).(pr0 (THead k0 u2 t4) t7))
+(\lambda (t7: T).(pr0 (THead k0 u3 t6) t7)) (THead k0 x0 x) (pr0_comp u2 x0
+H27 t4 x H25 k0) (pr0_comp u3 x0 H28 t6 x H26 k0))))) (H22 u0 (tlt_head_sx k0
+u0 t5) u2 H23 u3 H14))))) (H22 t5 (tlt_head_dx k0 u0 t5) t4 H24 t6 H15)))) k
+H21))))) H18)) H17))))) t2 H13)) t H11 H12 H9 H10))) | (pr0_beta u v1 v2 H9
+t5 t6 H10) \Rightarrow (\lambda (H11: (eq T (THead (Flat Appl) v1 (THead
+(Bind Abst) u t5)) t)).(\lambda (H12: (eq T (THead (Bind Abbr) v2 t6)
+t2)).(eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u t5)) (\lambda (_:
+T).((eq T (THead (Bind Abbr) v2 t6) t2) \to ((pr0 v1 v2) \to ((pr0 t5 t6) \to
+(ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0 t2
+t8))))))) (\lambda (H13: (eq T (THead (Bind Abbr) v2 t6) t2)).(eq_ind T
+(THead (Bind Abbr) v2 t6) (\lambda (t7: T).((pr0 v1 v2) \to ((pr0 t5 t6) \to
+(ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0 t7
+t8)))))) (\lambda (H14: (pr0 v1 v2)).(\lambda (H15: (pr0 t5 t6)).(let H16
+\def (eq_ind_r T t (\lambda (t7: T).(eq T (THead k u1 t3) t7)) H4 (THead
+(Flat Appl) v1 (THead (Bind Abst) u t5)) H11) in (let H17 \def (f_equal T K
+(\lambda (e: T).(match e with [(TSort _) \Rightarrow k | (TLRef _)
\Rightarrow k | (THead k0 _ _) \Rightarrow k0])) (THead k u1 t3) (THead (Flat
Appl) v1 (THead (Bind Abst) u t5)) H16) in ((let H18 \def (f_equal T T
-(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
-\Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead _ t7 _) \Rightarrow t7]))
-(THead k u1 t3) (THead (Flat Appl) v1 (THead (Bind Abst) u t5)) H16) in ((let
-H19 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T)
-with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t7)
-\Rightarrow t7])) (THead k u1 t3) (THead (Flat Appl) v1 (THead (Bind Abst) u
-t5)) H16) in (\lambda (H20: (eq T u1 v1)).(\lambda (H21: (eq K k (Flat
-Appl))).(let H22 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v
-t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to
-(ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9
-t10)))))))))) H (THead (Flat Appl) v1 (THead (Bind Abst) u t5)) H11) in
-(eq_ind_r K (Flat Appl) (\lambda (k0: K).(ex2 T (\lambda (t7: T).(pr0 (THead
-k0 u2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t6) t7)))) (let
-H23 \def (eq_ind T u1 (\lambda (t7: T).(pr0 t7 u2)) H7 v1 H20) in (let H24
-\def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H8 (THead (Bind Abst) u t5)
-H19) in (let H25 \def (match H24 in pr0 return (\lambda (t7: T).(\lambda (t8:
-T).(\lambda (_: (pr0 t7 t8)).((eq T t7 (THead (Bind Abst) u t5)) \to ((eq T
-t8 t4) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9))
-(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9)))))))) with [(pr0_refl
-t7) \Rightarrow (\lambda (H25: (eq T t7 (THead (Bind Abst) u t5))).(\lambda
-(H26: (eq T t7 t4)).(eq_ind T (THead (Bind Abst) u t5) (\lambda (t8: T).((eq
-T t8 t4) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9))
-(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9))))) (\lambda (H27: (eq T
-(THead (Bind Abst) u t5) t4)).(eq_ind T (THead (Bind Abst) u t5) (\lambda
-(t8: T).(ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t8) t9)) (\lambda
-(t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9)))) (ex2_ind T (\lambda (t8:
-T).(pr0 u2 t8)) (\lambda (t8: T).(pr0 v2 t8)) (ex2 T (\lambda (t8: T).(pr0
-(THead (Flat Appl) u2 (THead (Bind Abst) u t5)) t8)) (\lambda (t8: T).(pr0
-(THead (Bind Abbr) v2 t6) t8))) (\lambda (x: T).(\lambda (H28: (pr0 u2
-x)).(\lambda (H29: (pr0 v2 x)).(ex_intro2 T (\lambda (t8: T).(pr0 (THead
-(Flat Appl) u2 (THead (Bind Abst) u t5)) t8)) (\lambda (t8: T).(pr0 (THead
-(Bind Abbr) v2 t6) t8)) (THead (Bind Abbr) x t6) (pr0_beta u u2 x H28 t5 t6
-H15) (pr0_comp v2 x H29 t6 t6 (pr0_refl t6) (Bind Abbr)))))) (H22 v1
-(tlt_head_sx (Flat Appl) v1 (THead (Bind Abst) u t5)) u2 H23 v2 H14)) t4
-H27)) t7 (sym_eq T t7 (THead (Bind Abst) u t5) H25) H26))) | (pr0_comp u0 u3
-H25 t7 t8 H26 k0) \Rightarrow (\lambda (H27: (eq T (THead k0 u0 t7) (THead
-(Bind Abst) u t5))).(\lambda (H28: (eq T (THead k0 u3 t8) t4)).((let H29 \def
-(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
-[(TSort _) \Rightarrow t7 | (TLRef _) \Rightarrow t7 | (THead _ _ t9)
-\Rightarrow t9])) (THead k0 u0 t7) (THead (Bind Abst) u t5) H27) in ((let H30
-\def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T)
-with [(TSort _) \Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t9 _)
-\Rightarrow t9])) (THead k0 u0 t7) (THead (Bind Abst) u t5) H27) in ((let H31
-\def (f_equal T K (\lambda (e: T).(match e in T return (\lambda (_: T).K)
-with [(TSort _) \Rightarrow k0 | (TLRef _) \Rightarrow k0 | (THead k1 _ _)
-\Rightarrow k1])) (THead k0 u0 t7) (THead (Bind Abst) u t5) H27) in (eq_ind K
-(Bind Abst) (\lambda (k1: K).((eq T u0 u) \to ((eq T t7 t5) \to ((eq T (THead
-k1 u3 t8) t4) \to ((pr0 u0 u3) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9:
-T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind
-Abbr) v2 t6) t9))))))))) (\lambda (H32: (eq T u0 u)).(eq_ind T u (\lambda
-(t9: T).((eq T t7 t5) \to ((eq T (THead (Bind Abst) u3 t8) t4) \to ((pr0 t9
-u3) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2
-t4) t10)) (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t6) t10))))))))
-(\lambda (H33: (eq T t7 t5)).(eq_ind T t5 (\lambda (t9: T).((eq T (THead
-(Bind Abst) u3 t8) t4) \to ((pr0 u u3) \to ((pr0 t9 t8) \to (ex2 T (\lambda
+(\lambda (e: T).(match e with [(TSort _) \Rightarrow u1 | (TLRef _)
+\Rightarrow u1 | (THead _ t7 _) \Rightarrow t7])) (THead k u1 t3) (THead
+(Flat Appl) v1 (THead (Bind Abst) u t5)) H16) in ((let H19 \def (f_equal T T
+(\lambda (e: T).(match e with [(TSort _) \Rightarrow t3 | (TLRef _)
+\Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead k u1 t3) (THead
+(Flat Appl) v1 (THead (Bind Abst) u t5)) H16) in (\lambda (H20: (eq T u1
+v1)).(\lambda (H21: (eq K k (Flat Appl))).(let H22 \def (eq_ind_r T t
+(\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8)
+\to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10))
+(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Flat Appl) v1 (THead (Bind
+Abst) u t5)) H11) in (eq_ind_r K (Flat Appl) (\lambda (k0: K).(ex2 T (\lambda
+(t7: T).(pr0 (THead k0 u2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr)
+v2 t6) t7)))) (let H23 \def (eq_ind T u1 (\lambda (t7: T).(pr0 t7 u2)) H7 v1
+H20) in (let H24 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H8 (THead
+(Bind Abst) u t5) H19) in (let H25 \def (match H24 with [(pr0_refl t7)
+\Rightarrow (\lambda (H25: (eq T t7 (THead (Bind Abst) u t5))).(\lambda (H26:
+(eq T t7 t4)).(eq_ind T (THead (Bind Abst) u t5) (\lambda (t8: T).((eq T t8
+t4) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda
+(t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9))))) (\lambda (H27: (eq T (THead
+(Bind Abst) u t5) t4)).(eq_ind T (THead (Bind Abst) u t5) (\lambda (t8:
+T).(ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t8) t9)) (\lambda (t9:
+T).(pr0 (THead (Bind Abbr) v2 t6) t9)))) (ex2_ind T (\lambda (t8: T).(pr0 u2
+t8)) (\lambda (t8: T).(pr0 v2 t8)) (ex2 T (\lambda (t8: T).(pr0 (THead (Flat
+Appl) u2 (THead (Bind Abst) u t5)) t8)) (\lambda (t8: T).(pr0 (THead (Bind
+Abbr) v2 t6) t8))) (\lambda (x: T).(\lambda (H28: (pr0 u2 x)).(\lambda (H29:
+(pr0 v2 x)).(ex_intro2 T (\lambda (t8: T).(pr0 (THead (Flat Appl) u2 (THead
+(Bind Abst) u t5)) t8)) (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t6) t8))
+(THead (Bind Abbr) x t6) (pr0_beta u u2 x H28 t5 t6 H15) (pr0_comp v2 x H29
+t6 t6 (pr0_refl t6) (Bind Abbr)))))) (H22 v1 (tlt_head_sx (Flat Appl) v1
+(THead (Bind Abst) u t5)) u2 H23 v2 H14)) t4 H27)) t7 (sym_eq T t7 (THead
+(Bind Abst) u t5) H25) H26))) | (pr0_comp u0 u3 H25 t7 t8 H26 k0) \Rightarrow
+(\lambda (H27: (eq T (THead k0 u0 t7) (THead (Bind Abst) u t5))).(\lambda
+(H28: (eq T (THead k0 u3 t8) t4)).((let H29 \def (f_equal T T (\lambda (e:
+T).(match e with [(TSort _) \Rightarrow t7 | (TLRef _) \Rightarrow t7 |
+(THead _ _ t9) \Rightarrow t9])) (THead k0 u0 t7) (THead (Bind Abst) u t5)
+H27) in ((let H30 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _)
+\Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t9 _) \Rightarrow t9]))
+(THead k0 u0 t7) (THead (Bind Abst) u t5) H27) in ((let H31 \def (f_equal T K
+(\lambda (e: T).(match e with [(TSort _) \Rightarrow k0 | (TLRef _)
+\Rightarrow k0 | (THead k1 _ _) \Rightarrow k1])) (THead k0 u0 t7) (THead
+(Bind Abst) u t5) H27) in (eq_ind K (Bind Abst) (\lambda (k1: K).((eq T u0 u)
+\to ((eq T t7 t5) \to ((eq T (THead k1 u3 t8) t4) \to ((pr0 u0 u3) \to ((pr0
+t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9))
+(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9))))))))) (\lambda (H32:
+(eq T u0 u)).(eq_ind T u (\lambda (t9: T).((eq T t7 t5) \to ((eq T (THead
+(Bind Abst) u3 t8) t4) \to ((pr0 t9 u3) \to ((pr0 t7 t8) \to (ex2 T (\lambda
(t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda (t10: T).(pr0 (THead
-(Bind Abbr) v2 t6) t10))))))) (\lambda (H34: (eq T (THead (Bind Abst) u3 t8)
-t4)).(eq_ind T (THead (Bind Abst) u3 t8) (\lambda (t9: T).((pr0 u u3) \to
-((pr0 t5 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t9)
-t10)) (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t6) t10)))))) (\lambda (_:
-(pr0 u u3)).(\lambda (H36: (pr0 t5 t8)).(ex2_ind T (\lambda (t9: T).(pr0 t8
-t9)) (\lambda (t9: T).(pr0 t6 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Flat
-Appl) u2 (THead (Bind Abst) u3 t8)) t9)) (\lambda (t9: T).(pr0 (THead (Bind
-Abbr) v2 t6) t9))) (\lambda (x: T).(\lambda (H37: (pr0 t8 x)).(\lambda (H38:
-(pr0 t6 x)).(ex2_ind T (\lambda (t9: T).(pr0 u2 t9)) (\lambda (t9: T).(pr0 v2
-t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead (Bind Abst) u3
-t8)) t9)) (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9))) (\lambda (x0:
-T).(\lambda (H39: (pr0 u2 x0)).(\lambda (H40: (pr0 v2 x0)).(ex_intro2 T
-(\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead (Bind Abst) u3 t8)) t9))
-(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9)) (THead (Bind Abbr) x0 x)
-(pr0_beta u3 u2 x0 H39 t8 x H37) (pr0_comp v2 x0 H40 t6 x H38 (Bind
-Abbr)))))) (H22 v1 (tlt_head_sx (Flat Appl) v1 (THead (Bind Abst) u t5)) u2
-H23 v2 H14))))) (H22 t5 (tlt_trans (THead (Bind Abst) u t5) t5 (THead (Flat
-Appl) v1 (THead (Bind Abst) u t5)) (tlt_head_dx (Bind Abst) u t5)
-(tlt_head_dx (Flat Appl) v1 (THead (Bind Abst) u t5))) t8 H36 t6 H15)))) t4
-H34)) t7 (sym_eq T t7 t5 H33))) u0 (sym_eq T u0 u H32))) k0 (sym_eq K k0
-(Bind Abst) H31))) H30)) H29)) H28 H25 H26))) | (pr0_beta u0 v0 v3 H25 t7 t8
-H26) \Rightarrow (\lambda (H27: (eq T (THead (Flat Appl) v0 (THead (Bind
-Abst) u0 t7)) (THead (Bind Abst) u t5))).(\lambda (H28: (eq T (THead (Bind
-Abbr) v3 t8) t4)).((let H29 \def (eq_ind T (THead (Flat Appl) v0 (THead (Bind
-Abst) u0 t7)) (\lambda (e: T).(match e in T return (\lambda (_: T).Prop) with
-[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _ _)
-\Rightarrow (match k0 in K return (\lambda (_: K).Prop) with [(Bind _)
-\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind Abst) u t5)
-H27) in (False_ind ((eq T (THead (Bind Abbr) v3 t8) t4) \to ((pr0 v0 v3) \to
-((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9))
-(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9)))))) H29)) H28 H25 H26)))
-| (pr0_upsilon b H25 v0 v3 H26 u0 u3 H27 t7 t8 H28) \Rightarrow (\lambda
-(H29: (eq T (THead (Flat Appl) v0 (THead (Bind b) u0 t7)) (THead (Bind Abst)
-u t5))).(\lambda (H30: (eq T (THead (Bind b) u3 (THead (Flat Appl) (lift (S
-O) O v3) t8)) t4)).((let H31 \def (eq_ind T (THead (Flat Appl) v0 (THead
-(Bind b) u0 t7)) (\lambda (e: T).(match e in T return (\lambda (_: T).Prop)
-with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _
-_) \Rightarrow (match k0 in K return (\lambda (_: K).Prop) with [(Bind _)
-\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind Abst) u t5)
-H29) in (False_ind ((eq T (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O
-v3) t8)) t4) \to ((not (eq B b Abst)) \to ((pr0 v0 v3) \to ((pr0 u0 u3) \to
-((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9))
-(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9)))))))) H31)) H30 H25 H26
-H27 H28))) | (pr0_delta u0 u3 H25 t7 t8 H26 w H27) \Rightarrow (\lambda (H28:
-(eq T (THead (Bind Abbr) u0 t7) (THead (Bind Abst) u t5))).(\lambda (H29: (eq
-T (THead (Bind Abbr) u3 w) t4)).((let H30 \def (eq_ind T (THead (Bind Abbr)
-u0 t7) (\lambda (e: T).(match e in T return (\lambda (_: T).Prop) with
-[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _ _)
-\Rightarrow (match k0 in K return (\lambda (_: K).Prop) with [(Bind b)
-\Rightarrow (match b in B return (\lambda (_: B).Prop) with [Abbr \Rightarrow
-True | Abst \Rightarrow False | Void \Rightarrow False]) | (Flat _)
-\Rightarrow False])])) I (THead (Bind Abst) u t5) H28) in (False_ind ((eq T
-(THead (Bind Abbr) u3 w) t4) \to ((pr0 u0 u3) \to ((pr0 t7 t8) \to ((subst0 O
-u3 t8 w) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9))
-(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9))))))) H30)) H29 H25 H26
-H27))) | (pr0_zeta b H25 t7 t8 H26 u0) \Rightarrow (\lambda (H27: (eq T
-(THead (Bind b) u0 (lift (S O) O t7)) (THead (Bind Abst) u t5))).(\lambda
-(H28: (eq T t8 t4)).((let H29 \def (f_equal T T (\lambda (e: T).(match e in T
-return (\lambda (_: T).T) with [(TSort _) \Rightarrow ((let rec lref_map (f:
-((nat \to nat))) (d: nat) (t9: T) on t9: T \def (match t9 with [(TSort n)
-\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with
-[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k0 u3 t10)
-\Rightarrow (THead k0 (lref_map f d u3) (lref_map f (s k0 d) t10))]) in
-lref_map) (\lambda (x: nat).(plus x (S O))) O t7) | (TLRef _) \Rightarrow
-((let rec lref_map (f: ((nat \to nat))) (d: nat) (t9: T) on t9: T \def (match
-t9 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef
-(match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) |
-(THead k0 u3 t10) \Rightarrow (THead k0 (lref_map f d u3) (lref_map f (s k0
-d) t10))]) in lref_map) (\lambda (x: nat).(plus x (S O))) O t7) | (THead _ _
-t9) \Rightarrow t9])) (THead (Bind b) u0 (lift (S O) O t7)) (THead (Bind
-Abst) u t5) H27) in ((let H30 \def (f_equal T T (\lambda (e: T).(match e in T
-return (\lambda (_: T).T) with [(TSort _) \Rightarrow u0 | (TLRef _)
-\Rightarrow u0 | (THead _ t9 _) \Rightarrow t9])) (THead (Bind b) u0 (lift (S
-O) O t7)) (THead (Bind Abst) u t5) H27) in ((let H31 \def (f_equal T B
-(\lambda (e: T).(match e in T return (\lambda (_: T).B) with [(TSort _)
-\Rightarrow b | (TLRef _) \Rightarrow b | (THead k0 _ _) \Rightarrow (match
-k0 in K return (\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _)
-\Rightarrow b])])) (THead (Bind b) u0 (lift (S O) O t7)) (THead (Bind Abst) u
-t5) H27) in (eq_ind B Abst (\lambda (b0: B).((eq T u0 u) \to ((eq T (lift (S
-O) O t7) t5) \to ((eq T t8 t4) \to ((not (eq B b0 Abst)) \to ((pr0 t7 t8) \to
-(ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9:
-T).(pr0 (THead (Bind Abbr) v2 t6) t9))))))))) (\lambda (H32: (eq T u0
-u)).(eq_ind T u (\lambda (_: T).((eq T (lift (S O) O t7) t5) \to ((eq T t8
-t4) \to ((not (eq B Abst Abst)) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10:
-T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda (t10: T).(pr0 (THead (Bind
-Abbr) v2 t6) t10)))))))) (\lambda (H33: (eq T (lift (S O) O t7) t5)).(eq_ind
-T (lift (S O) O t7) (\lambda (_: T).((eq T t8 t4) \to ((not (eq B Abst Abst))
-\to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4)
+(Bind Abbr) v2 t6) t10)))))))) (\lambda (H33: (eq T t7 t5)).(eq_ind T t5
+(\lambda (t9: T).((eq T (THead (Bind Abst) u3 t8) t4) \to ((pr0 u u3) \to
+((pr0 t9 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4)
t10)) (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t6) t10))))))) (\lambda
-(H34: (eq T t8 t4)).(eq_ind T t4 (\lambda (t9: T).((not (eq B Abst Abst)) \to
-((pr0 t7 t9) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4)
-t10)) (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t6) t10)))))) (\lambda
-(H35: (not (eq B Abst Abst))).(\lambda (_: (pr0 t7 t4)).(let H37 \def (match
-(H35 (refl_equal B Abst)) in False return (\lambda (_: False).(ex2 T (\lambda
-(t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead
-(Bind Abbr) v2 t6) t9)))) with []) in H37))) t8 (sym_eq T t8 t4 H34))) t5
-H33)) u0 (sym_eq T u0 u H32))) b (sym_eq B b Abst H31))) H30)) H29)) H28 H25
-H26))) | (pr0_tau t7 t8 H25 u0) \Rightarrow (\lambda (H26: (eq T (THead (Flat
-Cast) u0 t7) (THead (Bind Abst) u t5))).(\lambda (H27: (eq T t8 t4)).((let
-H28 \def (eq_ind T (THead (Flat Cast) u0 t7) (\lambda (e: T).(match e in T
-return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
-\Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in K return (\lambda
-(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow
-True])])) I (THead (Bind Abst) u t5) H26) in (False_ind ((eq T t8 t4) \to
-((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9))
-(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9))))) H28)) H27 H25)))]) in
-(H25 (refl_equal T (THead (Bind Abst) u t5)) (refl_equal T t4))))) k H21)))))
-H18)) H17))))) t2 H13)) t H11 H12 H9 H10))) | (pr0_upsilon b H9 v1 v2 H10 u0
-u3 H11 t5 t6 H12) \Rightarrow (\lambda (H13: (eq T (THead (Flat Appl) v1
-(THead (Bind b) u0 t5)) t)).(\lambda (H14: (eq T (THead (Bind b) u3 (THead
-(Flat Appl) (lift (S O) O v2) t6)) t2)).(eq_ind T (THead (Flat Appl) v1
-(THead (Bind b) u0 t5)) (\lambda (_: T).((eq T (THead (Bind b) u3 (THead
-(Flat Appl) (lift (S O) O v2) t6)) t2) \to ((not (eq B b Abst)) \to ((pr0 v1
-v2) \to ((pr0 u0 u3) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead
-k u2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))))))) (\lambda (H15: (eq T
-(THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t2)).(eq_ind T
-(THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) (\lambda (t7:
-T).((not (eq B b Abst)) \to ((pr0 v1 v2) \to ((pr0 u0 u3) \to ((pr0 t5 t6)
-\to (ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0
-t7 t8)))))))) (\lambda (H16: (not (eq B b Abst))).(\lambda (H17: (pr0 v1
-v2)).(\lambda (H18: (pr0 u0 u3)).(\lambda (H19: (pr0 t5 t6)).(let H20 \def
-(eq_ind_r T t (\lambda (t7: T).(eq T (THead k u1 t3) t7)) H4 (THead (Flat
-Appl) v1 (THead (Bind b) u0 t5)) H13) in (let H21 \def (f_equal T K (\lambda
-(e: T).(match e in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow k
-| (TLRef _) \Rightarrow k | (THead k0 _ _) \Rightarrow k0])) (THead k u1 t3)
-(THead (Flat Appl) v1 (THead (Bind b) u0 t5)) H20) in ((let H22 \def (f_equal
-T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
-\Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead _ t7 _) \Rightarrow t7]))
-(THead k u1 t3) (THead (Flat Appl) v1 (THead (Bind b) u0 t5)) H20) in ((let
-H23 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T)
-with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t7)
-\Rightarrow t7])) (THead k u1 t3) (THead (Flat Appl) v1 (THead (Bind b) u0
-t5)) H20) in (\lambda (H24: (eq T u1 v1)).(\lambda (H25: (eq K k (Flat
-Appl))).(let H26 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v
-t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to
-(ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9
-t10)))))))))) H (THead (Flat Appl) v1 (THead (Bind b) u0 t5)) H13) in
-(eq_ind_r K (Flat Appl) (\lambda (k0: K).(ex2 T (\lambda (t7: T).(pr0 (THead
-k0 u2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl)
-(lift (S O) O v2) t6)) t7)))) (let H27 \def (eq_ind T u1 (\lambda (t7:
-T).(pr0 t7 u2)) H7 v1 H24) in (let H28 \def (eq_ind T t3 (\lambda (t7:
-T).(pr0 t7 t4)) H8 (THead (Bind b) u0 t5) H23) in (let H29 \def (match H28 in
-pr0 return (\lambda (t7: T).(\lambda (t8: T).(\lambda (_: (pr0 t7 t8)).((eq T
-t7 (THead (Bind b) u0 t5)) \to ((eq T t8 t4) \to (ex2 T (\lambda (t9: T).(pr0
-(THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind b) u3
-(THead (Flat Appl) (lift (S O) O v2) t6)) t9)))))))) with [(pr0_refl t7)
-\Rightarrow (\lambda (H29: (eq T t7 (THead (Bind b) u0 t5))).(\lambda (H30:
-(eq T t7 t4)).(eq_ind T (THead (Bind b) u0 t5) (\lambda (t8: T).((eq T t8 t4)
-\to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9:
-T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9)))))
-(\lambda (H31: (eq T (THead (Bind b) u0 t5) t4)).(eq_ind T (THead (Bind b) u0
-t5) (\lambda (t8: T).(ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t8)
-t9)) (\lambda (t9: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O)
-O v2) t6)) t9)))) (ex2_ind T (\lambda (t8: T).(pr0 u2 t8)) (\lambda (t8:
-T).(pr0 v2 t8)) (ex2 T (\lambda (t8: T).(pr0 (THead (Flat Appl) u2 (THead
-(Bind b) u0 t5)) t8)) (\lambda (t8: T).(pr0 (THead (Bind b) u3 (THead (Flat
-Appl) (lift (S O) O v2) t6)) t8))) (\lambda (x: T).(\lambda (H32: (pr0 u2
-x)).(\lambda (H33: (pr0 v2 x)).(pr0_confluence__pr0_cong_upsilon_refl b H16
-u0 u3 H18 t5 t6 H19 u2 v2 x H32 H33)))) (H26 v1 (tlt_head_sx (Flat Appl) v1
-(THead (Bind b) u0 t5)) u2 H27 v2 H17)) t4 H31)) t7 (sym_eq T t7 (THead (Bind
-b) u0 t5) H29) H30))) | (pr0_comp u4 u5 H29 t7 t8 H30 k0) \Rightarrow
-(\lambda (H31: (eq T (THead k0 u4 t7) (THead (Bind b) u0 t5))).(\lambda (H32:
-(eq T (THead k0 u5 t8) t4)).((let H33 \def (f_equal T T (\lambda (e:
-T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t7 |
-(TLRef _) \Rightarrow t7 | (THead _ _ t9) \Rightarrow t9])) (THead k0 u4 t7)
-(THead (Bind b) u0 t5) H31) in ((let H34 \def (f_equal T T (\lambda (e:
-T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u4 |
-(TLRef _) \Rightarrow u4 | (THead _ t9 _) \Rightarrow t9])) (THead k0 u4 t7)
-(THead (Bind b) u0 t5) H31) in ((let H35 \def (f_equal T K (\lambda (e:
-T).(match e in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow k0 |
-(TLRef _) \Rightarrow k0 | (THead k1 _ _) \Rightarrow k1])) (THead k0 u4 t7)
-(THead (Bind b) u0 t5) H31) in (eq_ind K (Bind b) (\lambda (k1: K).((eq T u4
-u0) \to ((eq T t7 t5) \to ((eq T (THead k1 u5 t8) t4) \to ((pr0 u4 u5) \to
-((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9))
-(\lambda (t9: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2)
-t6)) t9))))))))) (\lambda (H36: (eq T u4 u0)).(eq_ind T u0 (\lambda (t9:
-T).((eq T t7 t5) \to ((eq T (THead (Bind b) u5 t8) t4) \to ((pr0 t9 u5) \to
-((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4)
-t10)) (\lambda (t10: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S
-O) O v2) t6)) t10)))))))) (\lambda (H37: (eq T t7 t5)).(eq_ind T t5 (\lambda
-(t9: T).((eq T (THead (Bind b) u5 t8) t4) \to ((pr0 u0 u5) \to ((pr0 t9 t8)
-\to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda
-(t10: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6))
-t10))))))) (\lambda (H38: (eq T (THead (Bind b) u5 t8) t4)).(eq_ind T (THead
-(Bind b) u5 t8) (\lambda (t9: T).((pr0 u0 u5) \to ((pr0 t5 t8) \to (ex2 T
-(\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t9) t10)) (\lambda (t10: T).(pr0
-(THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t10))))))
-(\lambda (H39: (pr0 u0 u5)).(\lambda (H40: (pr0 t5 t8)).(ex2_ind T (\lambda
-(t9: T).(pr0 t8 t9)) (\lambda (t9: T).(pr0 t6 t9)) (ex2 T (\lambda (t9:
-T).(pr0 (THead (Flat Appl) u2 (THead (Bind b) u5 t8)) t9)) (\lambda (t9:
-T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9)))
-(\lambda (x: T).(\lambda (H41: (pr0 t8 x)).(\lambda (H42: (pr0 t6
-x)).(ex2_ind T (\lambda (t9: T).(pr0 u5 t9)) (\lambda (t9: T).(pr0 u3 t9))
-(ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead (Bind b) u5 t8))
-t9)) (\lambda (t9: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O)
-O v2) t6)) t9))) (\lambda (x0: T).(\lambda (H43: (pr0 u5 x0)).(\lambda (H44:
-(pr0 u3 x0)).(ex2_ind T (\lambda (t9: T).(pr0 u2 t9)) (\lambda (t9: T).(pr0
-v2 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead (Bind b) u5
-t8)) t9)) (\lambda (t9: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift
-(S O) O v2) t6)) t9))) (\lambda (x1: T).(\lambda (H45: (pr0 u2 x1)).(\lambda
-(H46: (pr0 v2 x1)).(pr0_confluence__pr0_cong_upsilon_cong b H16 u2 v2 x1 H45
-H46 t8 t6 x H41 H42 u5 u3 x0 H43 H44)))) (H26 v1 (tlt_head_sx (Flat Appl) v1
-(THead (Bind b) u0 t5)) u2 H27 v2 H17))))) (H26 u0 (tlt_trans (THead (Bind b)
-u0 t5) u0 (THead (Flat Appl) v1 (THead (Bind b) u0 t5)) (tlt_head_sx (Bind b)
-u0 t5) (tlt_head_dx (Flat Appl) v1 (THead (Bind b) u0 t5))) u5 H39 u3
-H18))))) (H26 t5 (tlt_trans (THead (Bind b) u0 t5) t5 (THead (Flat Appl) v1
-(THead (Bind b) u0 t5)) (tlt_head_dx (Bind b) u0 t5) (tlt_head_dx (Flat Appl)
-v1 (THead (Bind b) u0 t5))) t8 H40 t6 H19)))) t4 H38)) t7 (sym_eq T t7 t5
-H37))) u4 (sym_eq T u4 u0 H36))) k0 (sym_eq K k0 (Bind b) H35))) H34)) H33))
-H32 H29 H30))) | (pr0_beta u v0 v3 H29 t7 t8 H30) \Rightarrow (\lambda (H31:
-(eq T (THead (Flat Appl) v0 (THead (Bind Abst) u t7)) (THead (Bind b) u0
-t5))).(\lambda (H32: (eq T (THead (Bind Abbr) v3 t8) t4)).((let H33 \def
-(eq_ind T (THead (Flat Appl) v0 (THead (Bind Abst) u t7)) (\lambda (e:
-T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
-False | (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in
-K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _)
-\Rightarrow True])])) I (THead (Bind b) u0 t5) H31) in (False_ind ((eq T
-(THead (Bind Abbr) v3 t8) t4) \to ((pr0 v0 v3) \to ((pr0 t7 t8) \to (ex2 T
+(H34: (eq T (THead (Bind Abst) u3 t8) t4)).(eq_ind T (THead (Bind Abst) u3
+t8) (\lambda (t9: T).((pr0 u u3) \to ((pr0 t5 t8) \to (ex2 T (\lambda (t10:
+T).(pr0 (THead (Flat Appl) u2 t9) t10)) (\lambda (t10: T).(pr0 (THead (Bind
+Abbr) v2 t6) t10)))))) (\lambda (_: (pr0 u u3)).(\lambda (H36: (pr0 t5
+t8)).(ex2_ind T (\lambda (t9: T).(pr0 t8 t9)) (\lambda (t9: T).(pr0 t6 t9))
+(ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead (Bind Abst) u3 t8))
+t9)) (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9))) (\lambda (x:
+T).(\lambda (H37: (pr0 t8 x)).(\lambda (H38: (pr0 t6 x)).(ex2_ind T (\lambda
+(t9: T).(pr0 u2 t9)) (\lambda (t9: T).(pr0 v2 t9)) (ex2 T (\lambda (t9:
+T).(pr0 (THead (Flat Appl) u2 (THead (Bind Abst) u3 t8)) t9)) (\lambda (t9:
+T).(pr0 (THead (Bind Abbr) v2 t6) t9))) (\lambda (x0: T).(\lambda (H39: (pr0
+u2 x0)).(\lambda (H40: (pr0 v2 x0)).(ex_intro2 T (\lambda (t9: T).(pr0 (THead
+(Flat Appl) u2 (THead (Bind Abst) u3 t8)) t9)) (\lambda (t9: T).(pr0 (THead
+(Bind Abbr) v2 t6) t9)) (THead (Bind Abbr) x0 x) (pr0_beta u3 u2 x0 H39 t8 x
+H37) (pr0_comp v2 x0 H40 t6 x H38 (Bind Abbr)))))) (H22 v1 (tlt_head_sx (Flat
+Appl) v1 (THead (Bind Abst) u t5)) u2 H23 v2 H14))))) (H22 t5 (tlt_trans
+(THead (Bind Abst) u t5) t5 (THead (Flat Appl) v1 (THead (Bind Abst) u t5))
+(tlt_head_dx (Bind Abst) u t5) (tlt_head_dx (Flat Appl) v1 (THead (Bind Abst)
+u t5))) t8 H36 t6 H15)))) t4 H34)) t7 (sym_eq T t7 t5 H33))) u0 (sym_eq T u0
+u H32))) k0 (sym_eq K k0 (Bind Abst) H31))) H30)) H29)) H28 H25 H26))) |
+(pr0_beta u0 v0 v3 H25 t7 t8 H26) \Rightarrow (\lambda (H27: (eq T (THead
+(Flat Appl) v0 (THead (Bind Abst) u0 t7)) (THead (Bind Abst) u t5))).(\lambda
+(H28: (eq T (THead (Bind Abbr) v3 t8) t4)).((let H29 \def (eq_ind T (THead
+(Flat Appl) v0 (THead (Bind Abst) u0 t7)) (\lambda (e: T).(match e with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _ _)
+\Rightarrow (match k0 with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow
+True])])) I (THead (Bind Abst) u t5) H27) in (False_ind ((eq T (THead (Bind
+Abbr) v3 t8) t4) \to ((pr0 v0 v3) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9:
+T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind
+Abbr) v2 t6) t9)))))) H29)) H28 H25 H26))) | (pr0_upsilon b H25 v0 v3 H26 u0
+u3 H27 t7 t8 H28) \Rightarrow (\lambda (H29: (eq T (THead (Flat Appl) v0
+(THead (Bind b) u0 t7)) (THead (Bind Abst) u t5))).(\lambda (H30: (eq T
+(THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v3) t8)) t4)).((let H31
+\def (eq_ind T (THead (Flat Appl) v0 (THead (Bind b) u0 t7)) (\lambda (e:
+T).(match e with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False |
+(THead k0 _ _) \Rightarrow (match k0 with [(Bind _) \Rightarrow False | (Flat
+_) \Rightarrow True])])) I (THead (Bind Abst) u t5) H29) in (False_ind ((eq T
+(THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v3) t8)) t4) \to ((not
+(eq B b Abst)) \to ((pr0 v0 v3) \to ((pr0 u0 u3) \to ((pr0 t7 t8) \to (ex2 T
(\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0
-(THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9)))))) H33))
-H32 H29 H30))) | (pr0_upsilon b0 H29 v0 v3 H30 u4 u5 H31 t7 t8 H32)
-\Rightarrow (\lambda (H33: (eq T (THead (Flat Appl) v0 (THead (Bind b0) u4
-t7)) (THead (Bind b) u0 t5))).(\lambda (H34: (eq T (THead (Bind b0) u5 (THead
-(Flat Appl) (lift (S O) O v3) t8)) t4)).((let H35 \def (eq_ind T (THead (Flat
-Appl) v0 (THead (Bind b0) u4 t7)) (\lambda (e: T).(match e in T return
-(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
-\Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in K return (\lambda
-(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow
-True])])) I (THead (Bind b) u0 t5) H33) in (False_ind ((eq T (THead (Bind b0)
-u5 (THead (Flat Appl) (lift (S O) O v3) t8)) t4) \to ((not (eq B b0 Abst))
-\to ((pr0 v0 v3) \to ((pr0 u4 u5) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9:
-T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind b)
-u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9)))))))) H35)) H34 H29 H30 H31
-H32))) | (pr0_delta u4 u5 H29 t7 t8 H30 w H31) \Rightarrow (\lambda (H32: (eq
-T (THead (Bind Abbr) u4 t7) (THead (Bind b) u0 t5))).(\lambda (H33: (eq T
-(THead (Bind Abbr) u5 w) t4)).((let H34 \def (f_equal T T (\lambda (e:
-T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t7 |
-(TLRef _) \Rightarrow t7 | (THead _ _ t9) \Rightarrow t9])) (THead (Bind
-Abbr) u4 t7) (THead (Bind b) u0 t5) H32) in ((let H35 \def (f_equal T T
-(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
-\Rightarrow u4 | (TLRef _) \Rightarrow u4 | (THead _ t9 _) \Rightarrow t9]))
-(THead (Bind Abbr) u4 t7) (THead (Bind b) u0 t5) H32) in ((let H36 \def
-(f_equal T B (\lambda (e: T).(match e in T return (\lambda (_: T).B) with
-[(TSort _) \Rightarrow Abbr | (TLRef _) \Rightarrow Abbr | (THead k0 _ _)
-\Rightarrow (match k0 in K return (\lambda (_: K).B) with [(Bind b0)
-\Rightarrow b0 | (Flat _) \Rightarrow Abbr])])) (THead (Bind Abbr) u4 t7)
-(THead (Bind b) u0 t5) H32) in (eq_ind B Abbr (\lambda (b0: B).((eq T u4 u0)
-\to ((eq T t7 t5) \to ((eq T (THead (Bind Abbr) u5 w) t4) \to ((pr0 u4 u5)
-\to ((pr0 t7 t8) \to ((subst0 O u5 t8 w) \to (ex2 T (\lambda (t9: T).(pr0
-(THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind b0) u3
-(THead (Flat Appl) (lift (S O) O v2) t6)) t9)))))))))) (\lambda (H37: (eq T
-u4 u0)).(eq_ind T u0 (\lambda (t9: T).((eq T t7 t5) \to ((eq T (THead (Bind
-Abbr) u5 w) t4) \to ((pr0 t9 u5) \to ((pr0 t7 t8) \to ((subst0 O u5 t8 w) \to
+(THead (Bind Abbr) v2 t6) t9)))))))) H31)) H30 H25 H26 H27 H28))) |
+(pr0_delta u0 u3 H25 t7 t8 H26 w H27) \Rightarrow (\lambda (H28: (eq T (THead
+(Bind Abbr) u0 t7) (THead (Bind Abst) u t5))).(\lambda (H29: (eq T (THead
+(Bind Abbr) u3 w) t4)).((let H30 \def (eq_ind T (THead (Bind Abbr) u0 t7)
+(\lambda (e: T).(match e with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 with [(Bind b)
+\Rightarrow (match b with [Abbr \Rightarrow True | Abst \Rightarrow False |
+Void \Rightarrow False]) | (Flat _) \Rightarrow False])])) I (THead (Bind
+Abst) u t5) H28) in (False_ind ((eq T (THead (Bind Abbr) u3 w) t4) \to ((pr0
+u0 u3) \to ((pr0 t7 t8) \to ((subst0 O u3 t8 w) \to (ex2 T (\lambda (t9:
+T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind
+Abbr) v2 t6) t9))))))) H30)) H29 H25 H26 H27))) | (pr0_zeta b H25 t7 t8 H26
+u0) \Rightarrow (\lambda (H27: (eq T (THead (Bind b) u0 (lift (S O) O t7))
+(THead (Bind Abst) u t5))).(\lambda (H28: (eq T t8 t4)).((let H29 \def
+(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow (lref_map
+(\lambda (x: nat).(plus x (S O))) O t7) | (TLRef _) \Rightarrow (lref_map
+(\lambda (x: nat).(plus x (S O))) O t7) | (THead _ _ t9) \Rightarrow t9]))
+(THead (Bind b) u0 (lift (S O) O t7)) (THead (Bind Abst) u t5) H27) in ((let
+H30 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow u0
+| (TLRef _) \Rightarrow u0 | (THead _ t9 _) \Rightarrow t9])) (THead (Bind b)
+u0 (lift (S O) O t7)) (THead (Bind Abst) u t5) H27) in ((let H31 \def
+(f_equal T B (\lambda (e: T).(match e with [(TSort _) \Rightarrow b | (TLRef
+_) \Rightarrow b | (THead k0 _ _) \Rightarrow (match k0 with [(Bind b0)
+\Rightarrow b0 | (Flat _) \Rightarrow b])])) (THead (Bind b) u0 (lift (S O) O
+t7)) (THead (Bind Abst) u t5) H27) in (eq_ind B Abst (\lambda (b0: B).((eq T
+u0 u) \to ((eq T (lift (S O) O t7) t5) \to ((eq T t8 t4) \to ((not (eq B b0
+Abst)) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl)
+u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9)))))))))
+(\lambda (H32: (eq T u0 u)).(eq_ind T u (\lambda (_: T).((eq T (lift (S O) O
+t7) t5) \to ((eq T t8 t4) \to ((not (eq B Abst Abst)) \to ((pr0 t7 t8) \to
(ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda (t10:
-T).(pr0 (THead (Bind Abbr) u3 (THead (Flat Appl) (lift (S O) O v2) t6))
-t10))))))))) (\lambda (H38: (eq T t7 t5)).(eq_ind T t5 (\lambda (t9: T).((eq
-T (THead (Bind Abbr) u5 w) t4) \to ((pr0 u0 u5) \to ((pr0 t9 t8) \to ((subst0
-O u5 t8 w) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) t10))
-(\lambda (t10: T).(pr0 (THead (Bind Abbr) u3 (THead (Flat Appl) (lift (S O) O
-v2) t6)) t10)))))))) (\lambda (H39: (eq T (THead (Bind Abbr) u5 w)
-t4)).(eq_ind T (THead (Bind Abbr) u5 w) (\lambda (t9: T).((pr0 u0 u5) \to
-((pr0 t5 t8) \to ((subst0 O u5 t8 w) \to (ex2 T (\lambda (t10: T).(pr0 (THead
-(Flat Appl) u2 t9) t10)) (\lambda (t10: T).(pr0 (THead (Bind Abbr) u3 (THead
-(Flat Appl) (lift (S O) O v2) t6)) t10))))))) (\lambda (H40: (pr0 u0
-u5)).(\lambda (H41: (pr0 t5 t8)).(\lambda (H42: (subst0 O u5 t8 w)).(let H43
-\def (eq_ind_r B b (\lambda (b0: B).(\forall (v: T).((tlt v (THead (Flat
-Appl) v1 (THead (Bind b0) u0 t5))) \to (\forall (t9: T).((pr0 v t9) \to
-(\forall (t10: T).((pr0 v t10) \to (ex2 T (\lambda (t11: T).(pr0 t9 t11))
-(\lambda (t11: T).(pr0 t10 t11)))))))))) H26 Abbr H36) in (let H44 \def
-(eq_ind_r B b (\lambda (b0: B).(eq T t3 (THead (Bind b0) u0 t5))) H23 Abbr
-H36) in (let H45 \def (eq_ind_r B b (\lambda (b0: B).(not (eq B b0 Abst)))
-H16 Abbr H36) in (ex2_ind T (\lambda (t9: T).(pr0 t8 t9)) (\lambda (t9:
-T).(pr0 t6 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead
-(Bind Abbr) u5 w)) t9)) (\lambda (t9: T).(pr0 (THead (Bind Abbr) u3 (THead
-(Flat Appl) (lift (S O) O v2) t6)) t9))) (\lambda (x: T).(\lambda (H46: (pr0
-t8 x)).(\lambda (H47: (pr0 t6 x)).(ex2_ind T (\lambda (t9: T).(pr0 u5 t9))
-(\lambda (t9: T).(pr0 u3 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl)
-u2 (THead (Bind Abbr) u5 w)) t9)) (\lambda (t9: T).(pr0 (THead (Bind Abbr) u3
-(THead (Flat Appl) (lift (S O) O v2) t6)) t9))) (\lambda (x0: T).(\lambda
-(H48: (pr0 u5 x0)).(\lambda (H49: (pr0 u3 x0)).(ex2_ind T (\lambda (t9:
-T).(pr0 u2 t9)) (\lambda (t9: T).(pr0 v2 t9)) (ex2 T (\lambda (t9: T).(pr0
-(THead (Flat Appl) u2 (THead (Bind Abbr) u5 w)) t9)) (\lambda (t9: T).(pr0
-(THead (Bind Abbr) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9)))
-(\lambda (x1: T).(\lambda (H50: (pr0 u2 x1)).(\lambda (H51: (pr0 v2
-x1)).(pr0_confluence__pr0_cong_upsilon_delta H45 u5 t8 w H42 u2 v2 x1 H50 H51
-t6 x H46 H47 u3 x0 H48 H49)))) (H43 v1 (tlt_head_sx (Flat Appl) v1 (THead
-(Bind Abbr) u0 t5)) u2 H27 v2 H17))))) (H43 u0 (tlt_trans (THead (Bind Abbr)
-u0 t5) u0 (THead (Flat Appl) v1 (THead (Bind Abbr) u0 t5)) (tlt_head_sx (Bind
-Abbr) u0 t5) (tlt_head_dx (Flat Appl) v1 (THead (Bind Abbr) u0 t5))) u5 H40
-u3 H18))))) (H43 t5 (tlt_trans (THead (Bind Abbr) u0 t5) t5 (THead (Flat
-Appl) v1 (THead (Bind Abbr) u0 t5)) (tlt_head_dx (Bind Abbr) u0 t5)
-(tlt_head_dx (Flat Appl) v1 (THead (Bind Abbr) u0 t5))) t8 H41 t6 H19))))))))
-t4 H39)) t7 (sym_eq T t7 t5 H38))) u4 (sym_eq T u4 u0 H37))) b H36)) H35))
-H34)) H33 H29 H30 H31))) | (pr0_zeta b0 H29 t7 t8 H30 u) \Rightarrow (\lambda
-(H31: (eq T (THead (Bind b0) u (lift (S O) O t7)) (THead (Bind b) u0
-t5))).(\lambda (H32: (eq T t8 t4)).((let H33 \def (f_equal T T (\lambda (e:
-T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow ((let
-rec lref_map (f: ((nat \to nat))) (d: nat) (t9: T) on t9: T \def (match t9
-with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match
-(blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) | (THead k0
-u4 t10) \Rightarrow (THead k0 (lref_map f d u4) (lref_map f (s k0 d) t10))])
-in lref_map) (\lambda (x: nat).(plus x (S O))) O t7) | (TLRef _) \Rightarrow
-((let rec lref_map (f: ((nat \to nat))) (d: nat) (t9: T) on t9: T \def (match
-t9 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef
-(match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) |
-(THead k0 u4 t10) \Rightarrow (THead k0 (lref_map f d u4) (lref_map f (s k0
-d) t10))]) in lref_map) (\lambda (x: nat).(plus x (S O))) O t7) | (THead _ _
-t9) \Rightarrow t9])) (THead (Bind b0) u (lift (S O) O t7)) (THead (Bind b)
-u0 t5) H31) in ((let H34 \def (f_equal T T (\lambda (e: T).(match e in T
-return (\lambda (_: T).T) with [(TSort _) \Rightarrow u | (TLRef _)
-\Rightarrow u | (THead _ t9 _) \Rightarrow t9])) (THead (Bind b0) u (lift (S
-O) O t7)) (THead (Bind b) u0 t5) H31) in ((let H35 \def (f_equal T B (\lambda
-(e: T).(match e in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow b0
-| (TLRef _) \Rightarrow b0 | (THead k0 _ _) \Rightarrow (match k0 in K return
-(\lambda (_: K).B) with [(Bind b1) \Rightarrow b1 | (Flat _) \Rightarrow
-b0])])) (THead (Bind b0) u (lift (S O) O t7)) (THead (Bind b) u0 t5) H31) in
-(eq_ind B b (\lambda (b1: B).((eq T u u0) \to ((eq T (lift (S O) O t7) t5)
-\to ((eq T t8 t4) \to ((not (eq B b1 Abst)) \to ((pr0 t7 t8) \to (ex2 T
+T).(pr0 (THead (Bind Abbr) v2 t6) t10)))))))) (\lambda (H33: (eq T (lift (S
+O) O t7) t5)).(eq_ind T (lift (S O) O t7) (\lambda (_: T).((eq T t8 t4) \to
+((not (eq B Abst Abst)) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0
+(THead (Flat Appl) u2 t4) t10)) (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2
+t6) t10))))))) (\lambda (H34: (eq T t8 t4)).(eq_ind T t4 (\lambda (t9:
+T).((not (eq B Abst Abst)) \to ((pr0 t7 t9) \to (ex2 T (\lambda (t10: T).(pr0
+(THead (Flat Appl) u2 t4) t10)) (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2
+t6) t10)))))) (\lambda (H35: (not (eq B Abst Abst))).(\lambda (_: (pr0 t7
+t4)).(let H37 \def (match (H35 (refl_equal B Abst)) in False with []) in
+H37))) t8 (sym_eq T t8 t4 H34))) t5 H33)) u0 (sym_eq T u0 u H32))) b (sym_eq
+B b Abst H31))) H30)) H29)) H28 H25 H26))) | (pr0_tau t7 t8 H25 u0)
+\Rightarrow (\lambda (H26: (eq T (THead (Flat Cast) u0 t7) (THead (Bind Abst)
+u t5))).(\lambda (H27: (eq T t8 t4)).((let H28 \def (eq_ind T (THead (Flat
+Cast) u0 t7) (\lambda (e: T).(match e with [(TSort _) \Rightarrow False |
+(TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 with
+[(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind
+Abst) u t5) H26) in (False_ind ((eq T t8 t4) \to ((pr0 t7 t8) \to (ex2 T
(\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0
-(THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9)))))))))
-(\lambda (H36: (eq T u u0)).(eq_ind T u0 (\lambda (_: T).((eq T (lift (S O) O
-t7) t5) \to ((eq T t8 t4) \to ((not (eq B b Abst)) \to ((pr0 t7 t8) \to (ex2
-T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda (t10:
-T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6))
-t10)))))))) (\lambda (H37: (eq T (lift (S O) O t7) t5)).(eq_ind T (lift (S O)
-O t7) (\lambda (_: T).((eq T t8 t4) \to ((not (eq B b Abst)) \to ((pr0 t7 t8)
-\to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda
-(t10: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6))
-t10))))))) (\lambda (H38: (eq T t8 t4)).(eq_ind T t4 (\lambda (t9: T).((not
-(eq B b Abst)) \to ((pr0 t7 t9) \to (ex2 T (\lambda (t10: T).(pr0 (THead
+(THead (Bind Abbr) v2 t6) t9))))) H28)) H27 H25)))]) in (H25 (refl_equal T
+(THead (Bind Abst) u t5)) (refl_equal T t4))))) k H21))))) H18)) H17))))) t2
+H13)) t H11 H12 H9 H10))) | (pr0_upsilon b H9 v1 v2 H10 u0 u3 H11 t5 t6 H12)
+\Rightarrow (\lambda (H13: (eq T (THead (Flat Appl) v1 (THead (Bind b) u0
+t5)) t)).(\lambda (H14: (eq T (THead (Bind b) u3 (THead (Flat Appl) (lift (S
+O) O v2) t6)) t2)).(eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u0 t5))
+(\lambda (_: T).((eq T (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O
+v2) t6)) t2) \to ((not (eq B b Abst)) \to ((pr0 v1 v2) \to ((pr0 u0 u3) \to
+((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda
+(t8: T).(pr0 t2 t8))))))))) (\lambda (H15: (eq T (THead (Bind b) u3 (THead
+(Flat Appl) (lift (S O) O v2) t6)) t2)).(eq_ind T (THead (Bind b) u3 (THead
+(Flat Appl) (lift (S O) O v2) t6)) (\lambda (t7: T).((not (eq B b Abst)) \to
+((pr0 v1 v2) \to ((pr0 u0 u3) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8:
+T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0 t7 t8)))))))) (\lambda
+(H16: (not (eq B b Abst))).(\lambda (H17: (pr0 v1 v2)).(\lambda (H18: (pr0 u0
+u3)).(\lambda (H19: (pr0 t5 t6)).(let H20 \def (eq_ind_r T t (\lambda (t7:
+T).(eq T (THead k u1 t3) t7)) H4 (THead (Flat Appl) v1 (THead (Bind b) u0
+t5)) H13) in (let H21 \def (f_equal T K (\lambda (e: T).(match e with [(TSort
+_) \Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _) \Rightarrow k0]))
+(THead k u1 t3) (THead (Flat Appl) v1 (THead (Bind b) u0 t5)) H20) in ((let
+H22 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow u1
+| (TLRef _) \Rightarrow u1 | (THead _ t7 _) \Rightarrow t7])) (THead k u1 t3)
+(THead (Flat Appl) v1 (THead (Bind b) u0 t5)) H20) in ((let H23 \def (f_equal
+T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow t3 | (TLRef _)
+\Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead k u1 t3) (THead
+(Flat Appl) v1 (THead (Bind b) u0 t5)) H20) in (\lambda (H24: (eq T u1
+v1)).(\lambda (H25: (eq K k (Flat Appl))).(let H26 \def (eq_ind_r T t
+(\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8)
+\to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10))
+(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Flat Appl) v1 (THead (Bind
+b) u0 t5)) H13) in (eq_ind_r K (Flat Appl) (\lambda (k0: K).(ex2 T (\lambda
+(t7: T).(pr0 (THead k0 u2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind b) u3
+(THead (Flat Appl) (lift (S O) O v2) t6)) t7)))) (let H27 \def (eq_ind T u1
+(\lambda (t7: T).(pr0 t7 u2)) H7 v1 H24) in (let H28 \def (eq_ind T t3
+(\lambda (t7: T).(pr0 t7 t4)) H8 (THead (Bind b) u0 t5) H23) in (let H29 \def
+(match H28 with [(pr0_refl t7) \Rightarrow (\lambda (H29: (eq T t7 (THead
+(Bind b) u0 t5))).(\lambda (H30: (eq T t7 t4)).(eq_ind T (THead (Bind b) u0
+t5) (\lambda (t8: T).((eq T t8 t4) \to (ex2 T (\lambda (t9: T).(pr0 (THead
+(Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind b) u3 (THead (Flat
+Appl) (lift (S O) O v2) t6)) t9))))) (\lambda (H31: (eq T (THead (Bind b) u0
+t5) t4)).(eq_ind T (THead (Bind b) u0 t5) (\lambda (t8: T).(ex2 T (\lambda
+(t9: T).(pr0 (THead (Flat Appl) u2 t8) t9)) (\lambda (t9: T).(pr0 (THead
+(Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9)))) (ex2_ind T
+(\lambda (t8: T).(pr0 u2 t8)) (\lambda (t8: T).(pr0 v2 t8)) (ex2 T (\lambda
+(t8: T).(pr0 (THead (Flat Appl) u2 (THead (Bind b) u0 t5)) t8)) (\lambda (t8:
+T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t8)))
+(\lambda (x: T).(\lambda (H32: (pr0 u2 x)).(\lambda (H33: (pr0 v2
+x)).(pr0_confluence__pr0_cong_upsilon_refl b H16 u0 u3 H18 t5 t6 H19 u2 v2 x
+H32 H33)))) (H26 v1 (tlt_head_sx (Flat Appl) v1 (THead (Bind b) u0 t5)) u2
+H27 v2 H17)) t4 H31)) t7 (sym_eq T t7 (THead (Bind b) u0 t5) H29) H30))) |
+(pr0_comp u4 u5 H29 t7 t8 H30 k0) \Rightarrow (\lambda (H31: (eq T (THead k0
+u4 t7) (THead (Bind b) u0 t5))).(\lambda (H32: (eq T (THead k0 u5 t8)
+t4)).((let H33 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _)
+\Rightarrow t7 | (TLRef _) \Rightarrow t7 | (THead _ _ t9) \Rightarrow t9]))
+(THead k0 u4 t7) (THead (Bind b) u0 t5) H31) in ((let H34 \def (f_equal T T
+(\lambda (e: T).(match e with [(TSort _) \Rightarrow u4 | (TLRef _)
+\Rightarrow u4 | (THead _ t9 _) \Rightarrow t9])) (THead k0 u4 t7) (THead
+(Bind b) u0 t5) H31) in ((let H35 \def (f_equal T K (\lambda (e: T).(match e
+with [(TSort _) \Rightarrow k0 | (TLRef _) \Rightarrow k0 | (THead k1 _ _)
+\Rightarrow k1])) (THead k0 u4 t7) (THead (Bind b) u0 t5) H31) in (eq_ind K
+(Bind b) (\lambda (k1: K).((eq T u4 u0) \to ((eq T t7 t5) \to ((eq T (THead
+k1 u5 t8) t4) \to ((pr0 u4 u5) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9:
+T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind b)
+u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9))))))))) (\lambda (H36: (eq T
+u4 u0)).(eq_ind T u0 (\lambda (t9: T).((eq T t7 t5) \to ((eq T (THead (Bind
+b) u5 t8) t4) \to ((pr0 t9 u5) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10:
+T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda (t10: T).(pr0 (THead (Bind
+b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t10)))))))) (\lambda (H37:
+(eq T t7 t5)).(eq_ind T t5 (\lambda (t9: T).((eq T (THead (Bind b) u5 t8) t4)
+\to ((pr0 u0 u5) \to ((pr0 t9 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead
(Flat Appl) u2 t4) t10)) (\lambda (t10: T).(pr0 (THead (Bind b) u3 (THead
-(Flat Appl) (lift (S O) O v2) t6)) t10)))))) (\lambda (H39: (not (eq B b
-Abst))).(\lambda (H40: (pr0 t7 t4)).(let H41 \def (eq_ind_r T t5 (\lambda
-(t9: T).(\forall (v: T).((tlt v (THead (Flat Appl) v1 (THead (Bind b) u0
-t9))) \to (\forall (t10: T).((pr0 v t10) \to (\forall (t11: T).((pr0 v t11)
-\to (ex2 T (\lambda (t12: T).(pr0 t10 t12)) (\lambda (t12: T).(pr0 t11
-t12)))))))))) H26 (lift (S O) O t7) H37) in (let H42 \def (eq_ind_r T t5
-(\lambda (t9: T).(eq T t3 (THead (Bind b) u0 t9))) H23 (lift (S O) O t7) H37)
-in (let H43 \def (eq_ind_r T t5 (\lambda (t9: T).(pr0 t9 t6)) H19 (lift (S O)
-O t7) H37) in (ex2_ind T (\lambda (t9: T).(eq T t6 (lift (S O) O t9)))
-(\lambda (t9: T).(pr0 t7 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl)
+(Flat Appl) (lift (S O) O v2) t6)) t10))))))) (\lambda (H38: (eq T (THead
+(Bind b) u5 t8) t4)).(eq_ind T (THead (Bind b) u5 t8) (\lambda (t9: T).((pr0
+u0 u5) \to ((pr0 t5 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl)
+u2 t9) t10)) (\lambda (t10: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl)
+(lift (S O) O v2) t6)) t10)))))) (\lambda (H39: (pr0 u0 u5)).(\lambda (H40:
+(pr0 t5 t8)).(ex2_ind T (\lambda (t9: T).(pr0 t8 t9)) (\lambda (t9: T).(pr0
+t6 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead (Bind b) u5
+t8)) t9)) (\lambda (t9: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift
+(S O) O v2) t6)) t9))) (\lambda (x: T).(\lambda (H41: (pr0 t8 x)).(\lambda
+(H42: (pr0 t6 x)).(ex2_ind T (\lambda (t9: T).(pr0 u5 t9)) (\lambda (t9:
+T).(pr0 u3 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead
+(Bind b) u5 t8)) t9)) (\lambda (t9: T).(pr0 (THead (Bind b) u3 (THead (Flat
+Appl) (lift (S O) O v2) t6)) t9))) (\lambda (x0: T).(\lambda (H43: (pr0 u5
+x0)).(\lambda (H44: (pr0 u3 x0)).(ex2_ind T (\lambda (t9: T).(pr0 u2 t9))
+(\lambda (t9: T).(pr0 v2 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl)
+u2 (THead (Bind b) u5 t8)) t9)) (\lambda (t9: T).(pr0 (THead (Bind b) u3
+(THead (Flat Appl) (lift (S O) O v2) t6)) t9))) (\lambda (x1: T).(\lambda
+(H45: (pr0 u2 x1)).(\lambda (H46: (pr0 v2
+x1)).(pr0_confluence__pr0_cong_upsilon_cong b H16 u2 v2 x1 H45 H46 t8 t6 x
+H41 H42 u5 u3 x0 H43 H44)))) (H26 v1 (tlt_head_sx (Flat Appl) v1 (THead (Bind
+b) u0 t5)) u2 H27 v2 H17))))) (H26 u0 (tlt_trans (THead (Bind b) u0 t5) u0
+(THead (Flat Appl) v1 (THead (Bind b) u0 t5)) (tlt_head_sx (Bind b) u0 t5)
+(tlt_head_dx (Flat Appl) v1 (THead (Bind b) u0 t5))) u5 H39 u3 H18))))) (H26
+t5 (tlt_trans (THead (Bind b) u0 t5) t5 (THead (Flat Appl) v1 (THead (Bind b)
+u0 t5)) (tlt_head_dx (Bind b) u0 t5) (tlt_head_dx (Flat Appl) v1 (THead (Bind
+b) u0 t5))) t8 H40 t6 H19)))) t4 H38)) t7 (sym_eq T t7 t5 H37))) u4 (sym_eq T
+u4 u0 H36))) k0 (sym_eq K k0 (Bind b) H35))) H34)) H33)) H32 H29 H30))) |
+(pr0_beta u v0 v3 H29 t7 t8 H30) \Rightarrow (\lambda (H31: (eq T (THead
+(Flat Appl) v0 (THead (Bind Abst) u t7)) (THead (Bind b) u0 t5))).(\lambda
+(H32: (eq T (THead (Bind Abbr) v3 t8) t4)).((let H33 \def (eq_ind T (THead
+(Flat Appl) v0 (THead (Bind Abst) u t7)) (\lambda (e: T).(match e with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _ _)
+\Rightarrow (match k0 with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow
+True])])) I (THead (Bind b) u0 t5) H31) in (False_ind ((eq T (THead (Bind
+Abbr) v3 t8) t4) \to ((pr0 v0 v3) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9:
+T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind b)
+u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9)))))) H33)) H32 H29 H30))) |
+(pr0_upsilon b0 H29 v0 v3 H30 u4 u5 H31 t7 t8 H32) \Rightarrow (\lambda (H33:
+(eq T (THead (Flat Appl) v0 (THead (Bind b0) u4 t7)) (THead (Bind b) u0
+t5))).(\lambda (H34: (eq T (THead (Bind b0) u5 (THead (Flat Appl) (lift (S O)
+O v3) t8)) t4)).((let H35 \def (eq_ind T (THead (Flat Appl) v0 (THead (Bind
+b0) u4 t7)) (\lambda (e: T).(match e with [(TSort _) \Rightarrow False |
+(TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 with
+[(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind
+b) u0 t5) H33) in (False_ind ((eq T (THead (Bind b0) u5 (THead (Flat Appl)
+(lift (S O) O v3) t8)) t4) \to ((not (eq B b0 Abst)) \to ((pr0 v0 v3) \to
+((pr0 u4 u5) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat
+Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl)
+(lift (S O) O v2) t6)) t9)))))))) H35)) H34 H29 H30 H31 H32))) | (pr0_delta
+u4 u5 H29 t7 t8 H30 w H31) \Rightarrow (\lambda (H32: (eq T (THead (Bind
+Abbr) u4 t7) (THead (Bind b) u0 t5))).(\lambda (H33: (eq T (THead (Bind Abbr)
+u5 w) t4)).((let H34 \def (f_equal T T (\lambda (e: T).(match e with [(TSort
+_) \Rightarrow t7 | (TLRef _) \Rightarrow t7 | (THead _ _ t9) \Rightarrow
+t9])) (THead (Bind Abbr) u4 t7) (THead (Bind b) u0 t5) H32) in ((let H35 \def
+(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow u4 | (TLRef
+_) \Rightarrow u4 | (THead _ t9 _) \Rightarrow t9])) (THead (Bind Abbr) u4
+t7) (THead (Bind b) u0 t5) H32) in ((let H36 \def (f_equal T B (\lambda (e:
+T).(match e with [(TSort _) \Rightarrow Abbr | (TLRef _) \Rightarrow Abbr |
+(THead k0 _ _) \Rightarrow (match k0 with [(Bind b0) \Rightarrow b0 | (Flat
+_) \Rightarrow Abbr])])) (THead (Bind Abbr) u4 t7) (THead (Bind b) u0 t5)
+H32) in (eq_ind B Abbr (\lambda (b0: B).((eq T u4 u0) \to ((eq T t7 t5) \to
+((eq T (THead (Bind Abbr) u5 w) t4) \to ((pr0 u4 u5) \to ((pr0 t7 t8) \to
+((subst0 O u5 t8 w) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2
+t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind b0) u3 (THead (Flat Appl) (lift
+(S O) O v2) t6)) t9)))))))))) (\lambda (H37: (eq T u4 u0)).(eq_ind T u0
+(\lambda (t9: T).((eq T t7 t5) \to ((eq T (THead (Bind Abbr) u5 w) t4) \to
+((pr0 t9 u5) \to ((pr0 t7 t8) \to ((subst0 O u5 t8 w) \to (ex2 T (\lambda
+(t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda (t10: T).(pr0 (THead
+(Bind Abbr) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t10)))))))))
+(\lambda (H38: (eq T t7 t5)).(eq_ind T t5 (\lambda (t9: T).((eq T (THead
+(Bind Abbr) u5 w) t4) \to ((pr0 u0 u5) \to ((pr0 t9 t8) \to ((subst0 O u5 t8
+w) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda
+(t10: T).(pr0 (THead (Bind Abbr) u3 (THead (Flat Appl) (lift (S O) O v2) t6))
+t10)))))))) (\lambda (H39: (eq T (THead (Bind Abbr) u5 w) t4)).(eq_ind T
+(THead (Bind Abbr) u5 w) (\lambda (t9: T).((pr0 u0 u5) \to ((pr0 t5 t8) \to
+((subst0 O u5 t8 w) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2
+t9) t10)) (\lambda (t10: T).(pr0 (THead (Bind Abbr) u3 (THead (Flat Appl)
+(lift (S O) O v2) t6)) t10))))))) (\lambda (H40: (pr0 u0 u5)).(\lambda (H41:
+(pr0 t5 t8)).(\lambda (H42: (subst0 O u5 t8 w)).(let H43 \def (eq_ind_r B b
+(\lambda (b0: B).(\forall (v: T).((tlt v (THead (Flat Appl) v1 (THead (Bind
+b0) u0 t5))) \to (\forall (t9: T).((pr0 v t9) \to (\forall (t10: T).((pr0 v
+t10) \to (ex2 T (\lambda (t11: T).(pr0 t9 t11)) (\lambda (t11: T).(pr0 t10
+t11)))))))))) H26 Abbr H36) in (let H44 \def (eq_ind_r B b (\lambda (b0:
+B).(eq T t3 (THead (Bind b0) u0 t5))) H23 Abbr H36) in (let H45 \def
+(eq_ind_r B b (\lambda (b0: B).(not (eq B b0 Abst))) H16 Abbr H36) in
+(ex2_ind T (\lambda (t9: T).(pr0 t8 t9)) (\lambda (t9: T).(pr0 t6 t9)) (ex2 T
+(\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead (Bind Abbr) u5 w)) t9))
+(\lambda (t9: T).(pr0 (THead (Bind Abbr) u3 (THead (Flat Appl) (lift (S O) O
+v2) t6)) t9))) (\lambda (x: T).(\lambda (H46: (pr0 t8 x)).(\lambda (H47: (pr0
+t6 x)).(ex2_ind T (\lambda (t9: T).(pr0 u5 t9)) (\lambda (t9: T).(pr0 u3 t9))
+(ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead (Bind Abbr) u5 w))
+t9)) (\lambda (t9: T).(pr0 (THead (Bind Abbr) u3 (THead (Flat Appl) (lift (S
+O) O v2) t6)) t9))) (\lambda (x0: T).(\lambda (H48: (pr0 u5 x0)).(\lambda
+(H49: (pr0 u3 x0)).(ex2_ind T (\lambda (t9: T).(pr0 u2 t9)) (\lambda (t9:
+T).(pr0 v2 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead
+(Bind Abbr) u5 w)) t9)) (\lambda (t9: T).(pr0 (THead (Bind Abbr) u3 (THead
+(Flat Appl) (lift (S O) O v2) t6)) t9))) (\lambda (x1: T).(\lambda (H50: (pr0
+u2 x1)).(\lambda (H51: (pr0 v2 x1)).(pr0_confluence__pr0_cong_upsilon_delta
+H45 u5 t8 w H42 u2 v2 x1 H50 H51 t6 x H46 H47 u3 x0 H48 H49)))) (H43 v1
+(tlt_head_sx (Flat Appl) v1 (THead (Bind Abbr) u0 t5)) u2 H27 v2 H17)))))
+(H43 u0 (tlt_trans (THead (Bind Abbr) u0 t5) u0 (THead (Flat Appl) v1 (THead
+(Bind Abbr) u0 t5)) (tlt_head_sx (Bind Abbr) u0 t5) (tlt_head_dx (Flat Appl)
+v1 (THead (Bind Abbr) u0 t5))) u5 H40 u3 H18))))) (H43 t5 (tlt_trans (THead
+(Bind Abbr) u0 t5) t5 (THead (Flat Appl) v1 (THead (Bind Abbr) u0 t5))
+(tlt_head_dx (Bind Abbr) u0 t5) (tlt_head_dx (Flat Appl) v1 (THead (Bind
+Abbr) u0 t5))) t8 H41 t6 H19)))))))) t4 H39)) t7 (sym_eq T t7 t5 H38))) u4
+(sym_eq T u4 u0 H37))) b H36)) H35)) H34)) H33 H29 H30 H31))) | (pr0_zeta b0
+H29 t7 t8 H30 u) \Rightarrow (\lambda (H31: (eq T (THead (Bind b0) u (lift (S
+O) O t7)) (THead (Bind b) u0 t5))).(\lambda (H32: (eq T t8 t4)).((let H33
+\def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow
+(lref_map (\lambda (x: nat).(plus x (S O))) O t7) | (TLRef _) \Rightarrow
+(lref_map (\lambda (x: nat).(plus x (S O))) O t7) | (THead _ _ t9)
+\Rightarrow t9])) (THead (Bind b0) u (lift (S O) O t7)) (THead (Bind b) u0
+t5) H31) in ((let H34 \def (f_equal T T (\lambda (e: T).(match e with [(TSort
+_) \Rightarrow u | (TLRef _) \Rightarrow u | (THead _ t9 _) \Rightarrow t9]))
+(THead (Bind b0) u (lift (S O) O t7)) (THead (Bind b) u0 t5) H31) in ((let
+H35 \def (f_equal T B (\lambda (e: T).(match e with [(TSort _) \Rightarrow b0
+| (TLRef _) \Rightarrow b0 | (THead k0 _ _) \Rightarrow (match k0 with [(Bind
+b1) \Rightarrow b1 | (Flat _) \Rightarrow b0])])) (THead (Bind b0) u (lift (S
+O) O t7)) (THead (Bind b) u0 t5) H31) in (eq_ind B b (\lambda (b1: B).((eq T
+u u0) \to ((eq T (lift (S O) O t7) t5) \to ((eq T t8 t4) \to ((not (eq B b1
+Abst)) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl)
u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift
-(S O) O v2) t6)) t9))) (\lambda (x: T).(\lambda (H44: (eq T t6 (lift (S O) O
-x))).(\lambda (H45: (pr0 t7 x)).(eq_ind_r T (lift (S O) O x) (\lambda (t9:
-T).(ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda
-(t10: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t9))
-t10)))) (ex2_ind T (\lambda (t9: T).(pr0 x t9)) (\lambda (t9: T).(pr0 t4 t9))
-(ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9:
-T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) (lift (S O) O
-x))) t9))) (\lambda (x0: T).(\lambda (H46: (pr0 x x0)).(\lambda (H47: (pr0 t4
-x0)).(ex2_ind T (\lambda (t9: T).(pr0 u2 t9)) (\lambda (t9: T).(pr0 v2 t9))
-(ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9:
-T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) (lift (S O) O
-x))) t9))) (\lambda (x1: T).(\lambda (H48: (pr0 u2 x1)).(\lambda (H49: (pr0
-v2 x1)).(pr0_confluence__pr0_cong_upsilon_zeta b H39 u0 u3 H18 u2 v2 x1 H48
-H49 x t4 x0 H46 H47)))) (H41 v1 (tlt_head_sx (Flat Appl) v1 (THead (Bind b)
-u0 (lift (S O) O t7))) u2 H27 v2 H17))))) (H41 t7 (tlt_trans (THead (Bind b)
-u0 (lift (S O) O t7)) t7 (THead (Flat Appl) v1 (THead (Bind b) u0 (lift (S O)
-O t7))) (lift_tlt_dx (Bind b) u0 t7 (S O) O) (tlt_head_dx (Flat Appl) v1
-(THead (Bind b) u0 (lift (S O) O t7)))) x H45 t4 H40)) t6 H44))))
-(pr0_gen_lift t7 t6 (S O) O H43))))))) t8 (sym_eq T t8 t4 H38))) t5 H37)) u
-(sym_eq T u u0 H36))) b0 (sym_eq B b0 b H35))) H34)) H33)) H32 H29 H30))) |
-(pr0_tau t7 t8 H29 u) \Rightarrow (\lambda (H30: (eq T (THead (Flat Cast) u
-t7) (THead (Bind b) u0 t5))).(\lambda (H31: (eq T t8 t4)).((let H32 \def
-(eq_ind T (THead (Flat Cast) u t7) (\lambda (e: T).(match e in T return
-(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
-\Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in K return (\lambda
-(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow
-True])])) I (THead (Bind b) u0 t5) H30) in (False_ind ((eq T t8 t4) \to ((pr0
-t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9))
-(\lambda (t9: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2)
-t6)) t9))))) H32)) H31 H29)))]) in (H29 (refl_equal T (THead (Bind b) u0 t5))
-(refl_equal T t4))))) k H25))))) H22)) H21))))))) t2 H15)) t H13 H14 H9 H10
-H11 H12))) | (pr0_delta u0 u3 H9 t5 t6 H10 w H11) \Rightarrow (\lambda (H12:
-(eq T (THead (Bind Abbr) u0 t5) t)).(\lambda (H13: (eq T (THead (Bind Abbr)
-u3 w) t2)).(eq_ind T (THead (Bind Abbr) u0 t5) (\lambda (_: T).((eq T (THead
-(Bind Abbr) u3 w) t2) \to ((pr0 u0 u3) \to ((pr0 t5 t6) \to ((subst0 O u3 t6
-w) \to (ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda (t8:
-T).(pr0 t2 t8)))))))) (\lambda (H14: (eq T (THead (Bind Abbr) u3 w)
-t2)).(eq_ind T (THead (Bind Abbr) u3 w) (\lambda (t7: T).((pr0 u0 u3) \to
-((pr0 t5 t6) \to ((subst0 O u3 t6 w) \to (ex2 T (\lambda (t8: T).(pr0 (THead
-k u2 t4) t8)) (\lambda (t8: T).(pr0 t7 t8))))))) (\lambda (H15: (pr0 u0
-u3)).(\lambda (H16: (pr0 t5 t6)).(\lambda (H17: (subst0 O u3 t6 w)).(let H18
-\def (eq_ind_r T t (\lambda (t7: T).(eq T (THead k u1 t3) t7)) H4 (THead
-(Bind Abbr) u0 t5) H12) in (let H19 \def (f_equal T K (\lambda (e: T).(match
-e in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow k | (TLRef _)
-\Rightarrow k | (THead k0 _ _) \Rightarrow k0])) (THead k u1 t3) (THead (Bind
-Abbr) u0 t5) H18) in ((let H20 \def (f_equal T T (\lambda (e: T).(match e in
-T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u1 | (TLRef _)
+(S O) O v2) t6)) t9))))))))) (\lambda (H36: (eq T u u0)).(eq_ind T u0
+(\lambda (_: T).((eq T (lift (S O) O t7) t5) \to ((eq T t8 t4) \to ((not (eq
+B b Abst)) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat
+Appl) u2 t4) t10)) (\lambda (t10: T).(pr0 (THead (Bind b) u3 (THead (Flat
+Appl) (lift (S O) O v2) t6)) t10)))))))) (\lambda (H37: (eq T (lift (S O) O
+t7) t5)).(eq_ind T (lift (S O) O t7) (\lambda (_: T).((eq T t8 t4) \to ((not
+(eq B b Abst)) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead
+(Flat Appl) u2 t4) t10)) (\lambda (t10: T).(pr0 (THead (Bind b) u3 (THead
+(Flat Appl) (lift (S O) O v2) t6)) t10))))))) (\lambda (H38: (eq T t8
+t4)).(eq_ind T t4 (\lambda (t9: T).((not (eq B b Abst)) \to ((pr0 t7 t9) \to
+(ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda (t10:
+T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6))
+t10)))))) (\lambda (H39: (not (eq B b Abst))).(\lambda (H40: (pr0 t7
+t4)).(let H41 \def (eq_ind_r T t5 (\lambda (t9: T).(\forall (v: T).((tlt v
+(THead (Flat Appl) v1 (THead (Bind b) u0 t9))) \to (\forall (t10: T).((pr0 v
+t10) \to (\forall (t11: T).((pr0 v t11) \to (ex2 T (\lambda (t12: T).(pr0 t10
+t12)) (\lambda (t12: T).(pr0 t11 t12)))))))))) H26 (lift (S O) O t7) H37) in
+(let H42 \def (eq_ind_r T t5 (\lambda (t9: T).(eq T t3 (THead (Bind b) u0
+t9))) H23 (lift (S O) O t7) H37) in (let H43 \def (eq_ind_r T t5 (\lambda
+(t9: T).(pr0 t9 t6)) H19 (lift (S O) O t7) H37) in (ex2_ind T (\lambda (t9:
+T).(eq T t6 (lift (S O) O t9))) (\lambda (t9: T).(pr0 t7 t9)) (ex2 T (\lambda
+(t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead
+(Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9))) (\lambda (x:
+T).(\lambda (H44: (eq T t6 (lift (S O) O x))).(\lambda (H45: (pr0 t7
+x)).(eq_ind_r T (lift (S O) O x) (\lambda (t9: T).(ex2 T (\lambda (t10:
+T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda (t10: T).(pr0 (THead (Bind
+b) u3 (THead (Flat Appl) (lift (S O) O v2) t9)) t10)))) (ex2_ind T (\lambda
+(t9: T).(pr0 x t9)) (\lambda (t9: T).(pr0 t4 t9)) (ex2 T (\lambda (t9:
+T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind b)
+u3 (THead (Flat Appl) (lift (S O) O v2) (lift (S O) O x))) t9))) (\lambda
+(x0: T).(\lambda (H46: (pr0 x x0)).(\lambda (H47: (pr0 t4 x0)).(ex2_ind T
+(\lambda (t9: T).(pr0 u2 t9)) (\lambda (t9: T).(pr0 v2 t9)) (ex2 T (\lambda
+(t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead
+(Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) (lift (S O) O x))) t9)))
+(\lambda (x1: T).(\lambda (H48: (pr0 u2 x1)).(\lambda (H49: (pr0 v2
+x1)).(pr0_confluence__pr0_cong_upsilon_zeta b H39 u0 u3 H18 u2 v2 x1 H48 H49
+x t4 x0 H46 H47)))) (H41 v1 (tlt_head_sx (Flat Appl) v1 (THead (Bind b) u0
+(lift (S O) O t7))) u2 H27 v2 H17))))) (H41 t7 (tlt_trans (THead (Bind b) u0
+(lift (S O) O t7)) t7 (THead (Flat Appl) v1 (THead (Bind b) u0 (lift (S O) O
+t7))) (lift_tlt_dx (Bind b) u0 t7 (S O) O) (tlt_head_dx (Flat Appl) v1 (THead
+(Bind b) u0 (lift (S O) O t7)))) x H45 t4 H40)) t6 H44)))) (pr0_gen_lift t7
+t6 (S O) O H43))))))) t8 (sym_eq T t8 t4 H38))) t5 H37)) u (sym_eq T u u0
+H36))) b0 (sym_eq B b0 b H35))) H34)) H33)) H32 H29 H30))) | (pr0_tau t7 t8
+H29 u) \Rightarrow (\lambda (H30: (eq T (THead (Flat Cast) u t7) (THead (Bind
+b) u0 t5))).(\lambda (H31: (eq T t8 t4)).((let H32 \def (eq_ind T (THead
+(Flat Cast) u t7) (\lambda (e: T).(match e with [(TSort _) \Rightarrow False
+| (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 with
+[(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind
+b) u0 t5) H30) in (False_ind ((eq T t8 t4) \to ((pr0 t7 t8) \to (ex2 T
+(\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0
+(THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9))))) H32))
+H31 H29)))]) in (H29 (refl_equal T (THead (Bind b) u0 t5)) (refl_equal T
+t4))))) k H25))))) H22)) H21))))))) t2 H15)) t H13 H14 H9 H10 H11 H12))) |
+(pr0_delta u0 u3 H9 t5 t6 H10 w H11) \Rightarrow (\lambda (H12: (eq T (THead
+(Bind Abbr) u0 t5) t)).(\lambda (H13: (eq T (THead (Bind Abbr) u3 w)
+t2)).(eq_ind T (THead (Bind Abbr) u0 t5) (\lambda (_: T).((eq T (THead (Bind
+Abbr) u3 w) t2) \to ((pr0 u0 u3) \to ((pr0 t5 t6) \to ((subst0 O u3 t6 w) \to
+(ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0 t2
+t8)))))))) (\lambda (H14: (eq T (THead (Bind Abbr) u3 w) t2)).(eq_ind T
+(THead (Bind Abbr) u3 w) (\lambda (t7: T).((pr0 u0 u3) \to ((pr0 t5 t6) \to
+((subst0 O u3 t6 w) \to (ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8))
+(\lambda (t8: T).(pr0 t7 t8))))))) (\lambda (H15: (pr0 u0 u3)).(\lambda (H16:
+(pr0 t5 t6)).(\lambda (H17: (subst0 O u3 t6 w)).(let H18 \def (eq_ind_r T t
+(\lambda (t7: T).(eq T (THead k u1 t3) t7)) H4 (THead (Bind Abbr) u0 t5) H12)
+in (let H19 \def (f_equal T K (\lambda (e: T).(match e with [(TSort _)
+\Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _) \Rightarrow k0]))
+(THead k u1 t3) (THead (Bind Abbr) u0 t5) H18) in ((let H20 \def (f_equal T T
+(\lambda (e: T).(match e with [(TSort _) \Rightarrow u1 | (TLRef _)
\Rightarrow u1 | (THead _ t7 _) \Rightarrow t7])) (THead k u1 t3) (THead
(Bind Abbr) u0 t5) H18) in ((let H21 \def (f_equal T T (\lambda (e: T).(match
-e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _)
-\Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead k u1 t3) (THead
-(Bind Abbr) u0 t5) H18) in (\lambda (H22: (eq T u1 u0)).(\lambda (H23: (eq K
-k (Bind Abbr))).(let H24 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v:
-T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v
-t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9
-t10)))))))))) H (THead (Bind Abbr) u0 t5) H12) in (eq_ind_r K (Bind Abbr)
-(\lambda (k0: K).(ex2 T (\lambda (t7: T).(pr0 (THead k0 u2 t4) t7)) (\lambda
-(t7: T).(pr0 (THead (Bind Abbr) u3 w) t7)))) (let H25 \def (eq_ind T u1
-(\lambda (t7: T).(pr0 t7 u2)) H7 u0 H22) in (let H26 \def (eq_ind T t3
-(\lambda (t7: T).(pr0 t7 t4)) H8 t5 H21) in (ex2_ind T (\lambda (t7: T).(pr0
-t4 t7)) (\lambda (t7: T).(pr0 t6 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead
-(Bind Abbr) u2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) u3 w) t7)))
-(\lambda (x: T).(\lambda (H27: (pr0 t4 x)).(\lambda (H28: (pr0 t6
-x)).(ex2_ind T (\lambda (t7: T).(pr0 u2 t7)) (\lambda (t7: T).(pr0 u3 t7))
-(ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 t4) t7)) (\lambda (t7:
-T).(pr0 (THead (Bind Abbr) u3 w) t7))) (\lambda (x0: T).(\lambda (H29: (pr0
-u2 x0)).(\lambda (H30: (pr0 u3 x0)).(pr0_confluence__pr0_cong_delta u3 t6 w
-H17 u2 x0 H29 H30 t4 x H27 H28)))) (H24 u0 (tlt_head_sx (Bind Abbr) u0 t5) u2
-H25 u3 H15))))) (H24 t5 (tlt_head_dx (Bind Abbr) u0 t5) t4 H26 t6 H16)))) k
-H23))))) H20)) H19)))))) t2 H14)) t H12 H13 H9 H10 H11))) | (pr0_zeta b H9 t5
-t6 H10 u) \Rightarrow (\lambda (H11: (eq T (THead (Bind b) u (lift (S O) O
-t5)) t)).(\lambda (H12: (eq T t6 t2)).(eq_ind T (THead (Bind b) u (lift (S O)
-O t5)) (\lambda (_: T).((eq T t6 t2) \to ((not (eq B b Abst)) \to ((pr0 t5
-t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda (t8:
-T).(pr0 t2 t8))))))) (\lambda (H13: (eq T t6 t2)).(eq_ind T t2 (\lambda (t7:
-T).((not (eq B b Abst)) \to ((pr0 t5 t7) \to (ex2 T (\lambda (t8: T).(pr0
-(THead k u2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (H14: (not
-(eq B b Abst))).(\lambda (H15: (pr0 t5 t2)).(let H16 \def (eq_ind_r T t
-(\lambda (t7: T).(eq T (THead k u1 t3) t7)) H4 (THead (Bind b) u (lift (S O)
-O t5)) H11) in (let H17 \def (f_equal T K (\lambda (e: T).(match e in T
-return (\lambda (_: T).K) with [(TSort _) \Rightarrow k | (TLRef _)
-\Rightarrow k | (THead k0 _ _) \Rightarrow k0])) (THead k u1 t3) (THead (Bind
-b) u (lift (S O) O t5)) H16) in ((let H18 \def (f_equal T T (\lambda (e:
-T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u1 |
-(TLRef _) \Rightarrow u1 | (THead _ t7 _) \Rightarrow t7])) (THead k u1 t3)
-(THead (Bind b) u (lift (S O) O t5)) H16) in ((let H19 \def (f_equal T T
-(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
-\Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t7) \Rightarrow t7]))
-(THead k u1 t3) (THead (Bind b) u (lift (S O) O t5)) H16) in (\lambda (H20:
-(eq T u1 u)).(\lambda (H21: (eq K k (Bind b))).(let H22 \def (eq_ind_r T t
-(\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8)
-\to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10))
-(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Bind b) u (lift (S O) O
-t5)) H11) in (eq_ind_r K (Bind b) (\lambda (k0: K).(ex2 T (\lambda (t7:
-T).(pr0 (THead k0 u2 t4) t7)) (\lambda (t7: T).(pr0 t2 t7)))) (let H23 \def
-(eq_ind T u1 (\lambda (t7: T).(pr0 t7 u2)) H7 u H20) in (let H24 \def (eq_ind
-T t3 (\lambda (t7: T).(pr0 t7 t4)) H8 (lift (S O) O t5) H19) in (ex2_ind T
-(\lambda (t7: T).(eq T t4 (lift (S O) O t7))) (\lambda (t7: T).(pr0 t5 t7))
-(ex2 T (\lambda (t7: T).(pr0 (THead (Bind b) u2 t4) t7)) (\lambda (t7:
-T).(pr0 t2 t7))) (\lambda (x: T).(\lambda (H25: (eq T t4 (lift (S O) O
-x))).(\lambda (H26: (pr0 t5 x)).(eq_ind_r T (lift (S O) O x) (\lambda (t7:
-T).(ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 t7) t8)) (\lambda (t8:
-T).(pr0 t2 t8)))) (ex2_ind T (\lambda (t7: T).(pr0 x t7)) (\lambda (t7:
-T).(pr0 t2 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b) u2 (lift (S O) O
-x)) t7)) (\lambda (t7: T).(pr0 t2 t7))) (\lambda (x0: T).(\lambda (H27: (pr0
-x x0)).(\lambda (H28: (pr0 t2 x0)).(ex_intro2 T (\lambda (t7: T).(pr0 (THead
-(Bind b) u2 (lift (S O) O x)) t7)) (\lambda (t7: T).(pr0 t2 t7)) x0 (pr0_zeta
-b H14 x x0 H27 u2) H28)))) (H22 t5 (lift_tlt_dx (Bind b) u t5 (S O) O) x H26
-t2 H15)) t4 H25)))) (pr0_gen_lift t5 t4 (S O) O H24)))) k H21))))) H18))
-H17))))) t6 (sym_eq T t6 t2 H13))) t H11 H12 H9 H10))) | (pr0_tau t5 t6 H9 u)
-\Rightarrow (\lambda (H10: (eq T (THead (Flat Cast) u t5) t)).(\lambda (H11:
-(eq T t6 t2)).(eq_ind T (THead (Flat Cast) u t5) (\lambda (_: T).((eq T t6
-t2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8))
-(\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (H12: (eq T t6 t2)).(eq_ind T t2
-(\lambda (t7: T).((pr0 t5 t7) \to (ex2 T (\lambda (t8: T).(pr0 (THead k u2
-t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))) (\lambda (H13: (pr0 t5 t2)).(let
-H14 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead k u1 t3) t7)) H4 (THead
-(Flat Cast) u t5) H10) in (let H15 \def (f_equal T K (\lambda (e: T).(match e
-in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow k | (TLRef _)
+e with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t7)
+\Rightarrow t7])) (THead k u1 t3) (THead (Bind Abbr) u0 t5) H18) in (\lambda
+(H22: (eq T u1 u0)).(\lambda (H23: (eq K k (Bind Abbr))).(let H24 \def
+(eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8:
+T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10:
+T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Bind Abbr)
+u0 t5) H12) in (eq_ind_r K (Bind Abbr) (\lambda (k0: K).(ex2 T (\lambda (t7:
+T).(pr0 (THead k0 u2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) u3 w)
+t7)))) (let H25 \def (eq_ind T u1 (\lambda (t7: T).(pr0 t7 u2)) H7 u0 H22) in
+(let H26 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H8 t5 H21) in
+(ex2_ind T (\lambda (t7: T).(pr0 t4 t7)) (\lambda (t7: T).(pr0 t6 t7)) (ex2 T
+(\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 t4) t7)) (\lambda (t7: T).(pr0
+(THead (Bind Abbr) u3 w) t7))) (\lambda (x: T).(\lambda (H27: (pr0 t4
+x)).(\lambda (H28: (pr0 t6 x)).(ex2_ind T (\lambda (t7: T).(pr0 u2 t7))
+(\lambda (t7: T).(pr0 u3 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr)
+u2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) u3 w) t7))) (\lambda
+(x0: T).(\lambda (H29: (pr0 u2 x0)).(\lambda (H30: (pr0 u3
+x0)).(pr0_confluence__pr0_cong_delta u3 t6 w H17 u2 x0 H29 H30 t4 x H27
+H28)))) (H24 u0 (tlt_head_sx (Bind Abbr) u0 t5) u2 H25 u3 H15))))) (H24 t5
+(tlt_head_dx (Bind Abbr) u0 t5) t4 H26 t6 H16)))) k H23))))) H20)) H19))))))
+t2 H14)) t H12 H13 H9 H10 H11))) | (pr0_zeta b H9 t5 t6 H10 u) \Rightarrow
+(\lambda (H11: (eq T (THead (Bind b) u (lift (S O) O t5)) t)).(\lambda (H12:
+(eq T t6 t2)).(eq_ind T (THead (Bind b) u (lift (S O) O t5)) (\lambda (_:
+T).((eq T t6 t2) \to ((not (eq B b Abst)) \to ((pr0 t5 t6) \to (ex2 T
+(\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8)))))))
+(\lambda (H13: (eq T t6 t2)).(eq_ind T t2 (\lambda (t7: T).((not (eq B b
+Abst)) \to ((pr0 t5 t7) \to (ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8))
+(\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (H14: (not (eq B b
+Abst))).(\lambda (H15: (pr0 t5 t2)).(let H16 \def (eq_ind_r T t (\lambda (t7:
+T).(eq T (THead k u1 t3) t7)) H4 (THead (Bind b) u (lift (S O) O t5)) H11) in
+(let H17 \def (f_equal T K (\lambda (e: T).(match e with [(TSort _)
+\Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _) \Rightarrow k0]))
+(THead k u1 t3) (THead (Bind b) u (lift (S O) O t5)) H16) in ((let H18 \def
+(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow u1 | (TLRef
+_) \Rightarrow u1 | (THead _ t7 _) \Rightarrow t7])) (THead k u1 t3) (THead
+(Bind b) u (lift (S O) O t5)) H16) in ((let H19 \def (f_equal T T (\lambda
+(e: T).(match e with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 |
+(THead _ _ t7) \Rightarrow t7])) (THead k u1 t3) (THead (Bind b) u (lift (S
+O) O t5)) H16) in (\lambda (H20: (eq T u1 u)).(\lambda (H21: (eq K k (Bind
+b))).(let H22 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v t7)
+\to (\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to (ex2 T
+(\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 t10)))))))))) H
+(THead (Bind b) u (lift (S O) O t5)) H11) in (eq_ind_r K (Bind b) (\lambda
+(k0: K).(ex2 T (\lambda (t7: T).(pr0 (THead k0 u2 t4) t7)) (\lambda (t7:
+T).(pr0 t2 t7)))) (let H23 \def (eq_ind T u1 (\lambda (t7: T).(pr0 t7 u2)) H7
+u H20) in (let H24 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H8 (lift
+(S O) O t5) H19) in (ex2_ind T (\lambda (t7: T).(eq T t4 (lift (S O) O t7)))
+(\lambda (t7: T).(pr0 t5 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b) u2
+t4) t7)) (\lambda (t7: T).(pr0 t2 t7))) (\lambda (x: T).(\lambda (H25: (eq T
+t4 (lift (S O) O x))).(\lambda (H26: (pr0 t5 x)).(eq_ind_r T (lift (S O) O x)
+(\lambda (t7: T).(ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 t7) t8))
+(\lambda (t8: T).(pr0 t2 t8)))) (ex2_ind T (\lambda (t7: T).(pr0 x t7))
+(\lambda (t7: T).(pr0 t2 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b) u2
+(lift (S O) O x)) t7)) (\lambda (t7: T).(pr0 t2 t7))) (\lambda (x0:
+T).(\lambda (H27: (pr0 x x0)).(\lambda (H28: (pr0 t2 x0)).(ex_intro2 T
+(\lambda (t7: T).(pr0 (THead (Bind b) u2 (lift (S O) O x)) t7)) (\lambda (t7:
+T).(pr0 t2 t7)) x0 (pr0_zeta b H14 x x0 H27 u2) H28)))) (H22 t5 (lift_tlt_dx
+(Bind b) u t5 (S O) O) x H26 t2 H15)) t4 H25)))) (pr0_gen_lift t5 t4 (S O) O
+H24)))) k H21))))) H18)) H17))))) t6 (sym_eq T t6 t2 H13))) t H11 H12 H9
+H10))) | (pr0_tau t5 t6 H9 u) \Rightarrow (\lambda (H10: (eq T (THead (Flat
+Cast) u t5) t)).(\lambda (H11: (eq T t6 t2)).(eq_ind T (THead (Flat Cast) u
+t5) (\lambda (_: T).((eq T t6 t2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8:
+T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (H12:
+(eq T t6 t2)).(eq_ind T t2 (\lambda (t7: T).((pr0 t5 t7) \to (ex2 T (\lambda
+(t8: T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))) (\lambda
+(H13: (pr0 t5 t2)).(let H14 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead
+k u1 t3) t7)) H4 (THead (Flat Cast) u t5) H10) in (let H15 \def (f_equal T K
+(\lambda (e: T).(match e with [(TSort _) \Rightarrow k | (TLRef _)
\Rightarrow k | (THead k0 _ _) \Rightarrow k0])) (THead k u1 t3) (THead (Flat
-Cast) u t5) H14) in ((let H16 \def (f_equal T T (\lambda (e: T).(match e in T
-return (\lambda (_: T).T) with [(TSort _) \Rightarrow u1 | (TLRef _)
-\Rightarrow u1 | (THead _ t7 _) \Rightarrow t7])) (THead k u1 t3) (THead
-(Flat Cast) u t5) H14) in ((let H17 \def (f_equal T T (\lambda (e: T).(match
-e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _)
-\Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead k u1 t3) (THead
-(Flat Cast) u t5) H14) in (\lambda (H18: (eq T u1 u)).(\lambda (H19: (eq K k
-(Flat Cast))).(let H20 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v:
-T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v
-t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9
-t10)))))))))) H (THead (Flat Cast) u t5) H10) in (eq_ind_r K (Flat Cast)
-(\lambda (k0: K).(ex2 T (\lambda (t7: T).(pr0 (THead k0 u2 t4) t7)) (\lambda
-(t7: T).(pr0 t2 t7)))) (let H21 \def (eq_ind T u1 (\lambda (t7: T).(pr0 t7
-u2)) H7 u H18) in (let H22 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H8
-t5 H17) in (ex2_ind T (\lambda (t7: T).(pr0 t4 t7)) (\lambda (t7: T).(pr0 t2
-t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Flat Cast) u2 t4) t7)) (\lambda
-(t7: T).(pr0 t2 t7))) (\lambda (x: T).(\lambda (H23: (pr0 t4 x)).(\lambda
-(H24: (pr0 t2 x)).(ex_intro2 T (\lambda (t7: T).(pr0 (THead (Flat Cast) u2
-t4) t7)) (\lambda (t7: T).(pr0 t2 t7)) x (pr0_tau t4 x H23 u2) H24)))) (H20
-t5 (tlt_head_dx (Flat Cast) u t5) t4 H22 t2 H13)))) k H19))))) H16)) H15))))
-t6 (sym_eq T t6 t2 H12))) t H10 H11 H9)))]) in (H9 (refl_equal T t)
-(refl_equal T t2))))) t1 H6)) t H4 H5 H2 H3))) | (pr0_beta u v1 v2 H2 t3 t4
-H3) \Rightarrow (\lambda (H4: (eq T (THead (Flat Appl) v1 (THead (Bind Abst)
-u t3)) t)).(\lambda (H5: (eq T (THead (Bind Abbr) v2 t4) t1)).(eq_ind T
+Cast) u t5) H14) in ((let H16 \def (f_equal T T (\lambda (e: T).(match e with
+[(TSort _) \Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead _ t7 _)
+\Rightarrow t7])) (THead k u1 t3) (THead (Flat Cast) u t5) H14) in ((let H17
+\def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow t3 |
+(TLRef _) \Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead k u1 t3)
+(THead (Flat Cast) u t5) H14) in (\lambda (H18: (eq T u1 u)).(\lambda (H19:
+(eq K k (Flat Cast))).(let H20 \def (eq_ind_r T t (\lambda (t7: T).(\forall
+(v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall (t9:
+T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10:
+T).(pr0 t9 t10)))))))))) H (THead (Flat Cast) u t5) H10) in (eq_ind_r K (Flat
+Cast) (\lambda (k0: K).(ex2 T (\lambda (t7: T).(pr0 (THead k0 u2 t4) t7))
+(\lambda (t7: T).(pr0 t2 t7)))) (let H21 \def (eq_ind T u1 (\lambda (t7:
+T).(pr0 t7 u2)) H7 u H18) in (let H22 \def (eq_ind T t3 (\lambda (t7: T).(pr0
+t7 t4)) H8 t5 H17) in (ex2_ind T (\lambda (t7: T).(pr0 t4 t7)) (\lambda (t7:
+T).(pr0 t2 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Flat Cast) u2 t4) t7))
+(\lambda (t7: T).(pr0 t2 t7))) (\lambda (x: T).(\lambda (H23: (pr0 t4
+x)).(\lambda (H24: (pr0 t2 x)).(ex_intro2 T (\lambda (t7: T).(pr0 (THead
+(Flat Cast) u2 t4) t7)) (\lambda (t7: T).(pr0 t2 t7)) x (pr0_tau t4 x H23 u2)
+H24)))) (H20 t5 (tlt_head_dx (Flat Cast) u t5) t4 H22 t2 H13)))) k H19)))))
+H16)) H15)))) t6 (sym_eq T t6 t2 H12))) t H10 H11 H9)))]) in (H9 (refl_equal
+T t) (refl_equal T t2))))) t1 H6)) t H4 H5 H2 H3))) | (pr0_beta u v1 v2 H2 t3
+t4 H3) \Rightarrow (\lambda (H4: (eq T (THead (Flat Appl) v1 (THead (Bind
+Abst) u t3)) t)).(\lambda (H5: (eq T (THead (Bind Abbr) v2 t4) t1)).(eq_ind T
(THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (\lambda (_: T).((eq T (THead
(Bind Abbr) v2 t4) t1) \to ((pr0 v1 v2) \to ((pr0 t3 t4) \to (ex2 T (\lambda
(t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t2 t6))))))) (\lambda (H6: (eq T
(THead (Bind Abbr) v2 t4) t1)).(eq_ind T (THead (Bind Abbr) v2 t4) (\lambda
(t5: T).((pr0 v1 v2) \to ((pr0 t3 t4) \to (ex2 T (\lambda (t6: T).(pr0 t5
t6)) (\lambda (t6: T).(pr0 t2 t6)))))) (\lambda (H7: (pr0 v1 v2)).(\lambda
-(H8: (pr0 t3 t4)).(let H9 \def (match H1 in pr0 return (\lambda (t5:
-T).(\lambda (t6: T).(\lambda (_: (pr0 t5 t6)).((eq T t5 t) \to ((eq T t6 t2)
-\to (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda (t7:
-T).(pr0 t2 t7)))))))) with [(pr0_refl t5) \Rightarrow (\lambda (H9: (eq T t5
-t)).(\lambda (H10: (eq T t5 t2)).(eq_ind T t (\lambda (t6: T).((eq T t6 t2)
-\to (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda (t7:
-T).(pr0 t2 t7))))) (\lambda (H11: (eq T t t2)).(eq_ind T t2 (\lambda (_:
+(H8: (pr0 t3 t4)).(let H9 \def (match H1 with [(pr0_refl t5) \Rightarrow
+(\lambda (H9: (eq T t5 t)).(\lambda (H10: (eq T t5 t2)).(eq_ind T t (\lambda
+(t6: T).((eq T t6 t2) \to (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2
+t4) t7)) (\lambda (t7: T).(pr0 t2 t7))))) (\lambda (H11: (eq T t t2)).(eq_ind
+T t2 (\lambda (_: T).(ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4)
+t7)) (\lambda (t7: T).(pr0 t2 t7)))) (let H12 \def (eq_ind_r T t (\lambda
+(t6: T).(eq T t6 t2)) H11 (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) H4)
+in (eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (\lambda (t6:
T).(ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda (t7:
-T).(pr0 t2 t7)))) (let H12 \def (eq_ind_r T t (\lambda (t6: T).(eq T t6 t2))
-H11 (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) H4) in (eq_ind T (THead
-(Flat Appl) v1 (THead (Bind Abst) u t3)) (\lambda (t6: T).(ex2 T (\lambda
-(t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0 t6 t7))))
-(let H13 \def (eq_ind_r T t (\lambda (t6: T).(eq T t5 t6)) H9 (THead (Flat
-Appl) v1 (THead (Bind Abst) u t3)) H4) in (let H14 \def (eq_ind_r T t
-(\lambda (t6: T).(\forall (v: T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7)
-\to (\forall (t8: T).((pr0 v t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9))
-(\lambda (t9: T).(pr0 t8 t9)))))))))) H (THead (Flat Appl) v1 (THead (Bind
-Abst) u t3)) H4) in (ex_intro2 T (\lambda (t6: T).(pr0 (THead (Bind Abbr) v2
-t4) t6)) (\lambda (t6: T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u
-t3)) t6)) (THead (Bind Abbr) v2 t4) (pr0_refl (THead (Bind Abbr) v2 t4))
-(pr0_beta u v1 v2 H7 t3 t4 H8)))) t2 H12)) t (sym_eq T t t2 H11))) t5 (sym_eq
-T t5 t H9) H10))) | (pr0_comp u1 u2 H9 t5 t6 H10 k) \Rightarrow (\lambda
-(H11: (eq T (THead k u1 t5) t)).(\lambda (H12: (eq T (THead k u2 t6)
-t2)).(eq_ind T (THead k u1 t5) (\lambda (_: T).((eq T (THead k u2 t6) t2) \to
-((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind
-Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H13: (eq T
-(THead k u2 t6) t2)).(eq_ind T (THead k u2 t6) (\lambda (t7: T).((pr0 u1 u2)
-\to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4)
-t8)) (\lambda (t8: T).(pr0 t7 t8)))))) (\lambda (H14: (pr0 u1 u2)).(\lambda
-(H15: (pr0 t5 t6)).(let H16 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead
-(Flat Appl) v1 (THead (Bind Abst) u t3)) t7)) H4 (THead k u1 t5) H11) in (let
-H17 \def (f_equal T K (\lambda (e: T).(match e in T return (\lambda (_: T).K)
-with [(TSort _) \Rightarrow (Flat Appl) | (TLRef _) \Rightarrow (Flat Appl) |
-(THead k0 _ _) \Rightarrow k0])) (THead (Flat Appl) v1 (THead (Bind Abst) u
-t3)) (THead k u1 t5) H16) in ((let H18 \def (f_equal T T (\lambda (e:
-T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow v1 |
-(TLRef _) \Rightarrow v1 | (THead _ t7 _) \Rightarrow t7])) (THead (Flat
-Appl) v1 (THead (Bind Abst) u t3)) (THead k u1 t5) H16) in ((let H19 \def
-(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
-[(TSort _) \Rightarrow (THead (Bind Abst) u t3) | (TLRef _) \Rightarrow
-(THead (Bind Abst) u t3) | (THead _ _ t7) \Rightarrow t7])) (THead (Flat
-Appl) v1 (THead (Bind Abst) u t3)) (THead k u1 t5) H16) in (\lambda (H20: (eq
-T v1 u1)).(\lambda (H21: (eq K (Flat Appl) k)).(eq_ind K (Flat Appl) (\lambda
-(k0: K).(ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda
-(t7: T).(pr0 (THead k0 u2 t6) t7)))) (let H22 \def (eq_ind_r K k (\lambda
-(k0: K).(eq T (THead k0 u1 t5) t)) H11 (Flat Appl) H21) in (let H23 \def
-(eq_ind_r T t5 (\lambda (t7: T).(pr0 t7 t6)) H15 (THead (Bind Abst) u t3)
-H19) in (let H24 \def (match H23 in pr0 return (\lambda (t7: T).(\lambda (t8:
-T).(\lambda (_: (pr0 t7 t8)).((eq T t7 (THead (Bind Abst) u t3)) \to ((eq T
-t8 t6) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9))
-(\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t6) t9)))))))) with [(pr0_refl
-t7) \Rightarrow (\lambda (H24: (eq T t7 (THead (Bind Abst) u t3))).(\lambda
-(H25: (eq T t7 t6)).(eq_ind T (THead (Bind Abst) u t3) (\lambda (t8: T).((eq
-T t8 t6) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9))
-(\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t6) t9))))) (\lambda (H26: (eq T
-(THead (Bind Abst) u t3) t6)).(eq_ind T (THead (Bind Abst) u t3) (\lambda
-(t8: T).(ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda
-(t9: T).(pr0 (THead (Flat Appl) u2 t8) t9)))) (let H27 \def (eq_ind_r T t5
-(\lambda (t8: T).(eq T (THead (Flat Appl) u1 t8) t)) H22 (THead (Bind Abst) u
-t3) H19) in (let H28 \def (eq_ind_r T t (\lambda (t8: T).(\forall (v:
-T).((tlt v t8) \to (\forall (t9: T).((pr0 v t9) \to (\forall (t10: T).((pr0 v
-t10) \to (ex2 T (\lambda (t11: T).(pr0 t9 t11)) (\lambda (t11: T).(pr0 t10
-t11)))))))))) H (THead (Flat Appl) u1 (THead (Bind Abst) u t3)) H27) in (let
-H29 \def (eq_ind T v1 (\lambda (t8: T).(pr0 t8 v2)) H7 u1 H20) in (ex2_ind T
-(\lambda (t8: T).(pr0 v2 t8)) (\lambda (t8: T).(pr0 u2 t8)) (ex2 T (\lambda
-(t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 (THead
-(Flat Appl) u2 (THead (Bind Abst) u t3)) t8))) (\lambda (x: T).(\lambda (H30:
-(pr0 v2 x)).(\lambda (H31: (pr0 u2 x)).(ex_intro2 T (\lambda (t8: T).(pr0
-(THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 (THead (Flat Appl) u2
-(THead (Bind Abst) u t3)) t8)) (THead (Bind Abbr) x t4) (pr0_comp v2 x H30 t4
-t4 (pr0_refl t4) (Bind Abbr)) (pr0_beta u u2 x H31 t3 t4 H8))))) (H28 u1
-(tlt_head_sx (Flat Appl) u1 (THead (Bind Abst) u t3)) v2 H29 u2 H14))))) t6
-H26)) t7 (sym_eq T t7 (THead (Bind Abst) u t3) H24) H25))) | (pr0_comp u0 u3
-H24 t7 t8 H25 k0) \Rightarrow (\lambda (H26: (eq T (THead k0 u0 t7) (THead
-(Bind Abst) u t3))).(\lambda (H27: (eq T (THead k0 u3 t8) t6)).((let H28 \def
-(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
-[(TSort _) \Rightarrow t7 | (TLRef _) \Rightarrow t7 | (THead _ _ t9)
-\Rightarrow t9])) (THead k0 u0 t7) (THead (Bind Abst) u t3) H26) in ((let H29
-\def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T)
-with [(TSort _) \Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t9 _)
-\Rightarrow t9])) (THead k0 u0 t7) (THead (Bind Abst) u t3) H26) in ((let H30
-\def (f_equal T K (\lambda (e: T).(match e in T return (\lambda (_: T).K)
-with [(TSort _) \Rightarrow k0 | (TLRef _) \Rightarrow k0 | (THead k1 _ _)
-\Rightarrow k1])) (THead k0 u0 t7) (THead (Bind Abst) u t3) H26) in (eq_ind K
-(Bind Abst) (\lambda (k1: K).((eq T u0 u) \to ((eq T t7 t3) \to ((eq T (THead
-k1 u3 t8) t6) \to ((pr0 u0 u3) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9:
+T).(pr0 t6 t7)))) (let H13 \def (eq_ind_r T t (\lambda (t6: T).(eq T t5 t6))
+H9 (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) H4) in (let H14 \def
+(eq_ind_r T t (\lambda (t6: T).(\forall (v: T).((tlt v t6) \to (\forall (t7:
+T).((pr0 v t7) \to (\forall (t8: T).((pr0 v t8) \to (ex2 T (\lambda (t9:
+T).(pr0 t7 t9)) (\lambda (t9: T).(pr0 t8 t9)))))))))) H (THead (Flat Appl) v1
+(THead (Bind Abst) u t3)) H4) in (ex_intro2 T (\lambda (t6: T).(pr0 (THead
+(Bind Abbr) v2 t4) t6)) (\lambda (t6: T).(pr0 (THead (Flat Appl) v1 (THead
+(Bind Abst) u t3)) t6)) (THead (Bind Abbr) v2 t4) (pr0_refl (THead (Bind
+Abbr) v2 t4)) (pr0_beta u v1 v2 H7 t3 t4 H8)))) t2 H12)) t (sym_eq T t t2
+H11))) t5 (sym_eq T t5 t H9) H10))) | (pr0_comp u1 u2 H9 t5 t6 H10 k)
+\Rightarrow (\lambda (H11: (eq T (THead k u1 t5) t)).(\lambda (H12: (eq T
+(THead k u2 t6) t2)).(eq_ind T (THead k u1 t5) (\lambda (_: T).((eq T (THead
+k u2 t6) t2) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8:
+T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8)))))))
+(\lambda (H13: (eq T (THead k u2 t6) t2)).(eq_ind T (THead k u2 t6) (\lambda
+(t7: T).((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead
+(Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t7 t8)))))) (\lambda (H14: (pr0
+u1 u2)).(\lambda (H15: (pr0 t5 t6)).(let H16 \def (eq_ind_r T t (\lambda (t7:
+T).(eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) t7)) H4 (THead k u1
+t5) H11) in (let H17 \def (f_equal T K (\lambda (e: T).(match e with [(TSort
+_) \Rightarrow (Flat Appl) | (TLRef _) \Rightarrow (Flat Appl) | (THead k0 _
+_) \Rightarrow k0])) (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (THead k
+u1 t5) H16) in ((let H18 \def (f_equal T T (\lambda (e: T).(match e with
+[(TSort _) \Rightarrow v1 | (TLRef _) \Rightarrow v1 | (THead _ t7 _)
+\Rightarrow t7])) (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (THead k u1
+t5) H16) in ((let H19 \def (f_equal T T (\lambda (e: T).(match e with [(TSort
+_) \Rightarrow (THead (Bind Abst) u t3) | (TLRef _) \Rightarrow (THead (Bind
+Abst) u t3) | (THead _ _ t7) \Rightarrow t7])) (THead (Flat Appl) v1 (THead
+(Bind Abst) u t3)) (THead k u1 t5) H16) in (\lambda (H20: (eq T v1
+u1)).(\lambda (H21: (eq K (Flat Appl) k)).(eq_ind K (Flat Appl) (\lambda (k0:
+K).(ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda (t7:
+T).(pr0 (THead k0 u2 t6) t7)))) (let H22 \def (eq_ind_r K k (\lambda (k0:
+K).(eq T (THead k0 u1 t5) t)) H11 (Flat Appl) H21) in (let H23 \def (eq_ind_r
+T t5 (\lambda (t7: T).(pr0 t7 t6)) H15 (THead (Bind Abst) u t3) H19) in (let
+H24 \def (match H23 with [(pr0_refl t7) \Rightarrow (\lambda (H24: (eq T t7
+(THead (Bind Abst) u t3))).(\lambda (H25: (eq T t7 t6)).(eq_ind T (THead
+(Bind Abst) u t3) (\lambda (t8: T).((eq T t8 t6) \to (ex2 T (\lambda (t9:
T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Flat
-Appl) u2 t6) t9))))))))) (\lambda (H31: (eq T u0 u)).(eq_ind T u (\lambda
-(t9: T).((eq T t7 t3) \to ((eq T (THead (Bind Abst) u3 t8) t6) \to ((pr0 t9
-u3) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2
-t4) t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t6) t10))))))))
-(\lambda (H32: (eq T t7 t3)).(eq_ind T t3 (\lambda (t9: T).((eq T (THead
-(Bind Abst) u3 t8) t6) \to ((pr0 u u3) \to ((pr0 t9 t8) \to (ex2 T (\lambda
-(t10: T).(pr0 (THead (Bind Abbr) v2 t4) t10)) (\lambda (t10: T).(pr0 (THead
-(Flat Appl) u2 t6) t10))))))) (\lambda (H33: (eq T (THead (Bind Abst) u3 t8)
-t6)).(eq_ind T (THead (Bind Abst) u3 t8) (\lambda (t9: T).((pr0 u u3) \to
-((pr0 t3 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t4)
-t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t9) t10)))))) (\lambda (_:
-(pr0 u u3)).(\lambda (H35: (pr0 t3 t8)).(let H36 \def (eq_ind_r T t5 (\lambda
-(t9: T).(eq T (THead (Flat Appl) u1 t9) t)) H22 (THead (Bind Abst) u t3) H19)
-in (let H37 \def (eq_ind_r T t (\lambda (t9: T).(\forall (v: T).((tlt v t9)
-\to (\forall (t10: T).((pr0 v t10) \to (\forall (t11: T).((pr0 v t11) \to
-(ex2 T (\lambda (t12: T).(pr0 t10 t12)) (\lambda (t12: T).(pr0 t11
-t12)))))))))) H (THead (Flat Appl) u1 (THead (Bind Abst) u t3)) H36) in (let
-H38 \def (eq_ind T v1 (\lambda (t9: T).(pr0 t9 v2)) H7 u1 H20) in (ex2_ind T
-(\lambda (t9: T).(pr0 v2 t9)) (\lambda (t9: T).(pr0 u2 t9)) (ex2 T (\lambda
-(t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0 (THead
-(Flat Appl) u2 (THead (Bind Abst) u3 t8)) t9))) (\lambda (x: T).(\lambda
-(H39: (pr0 v2 x)).(\lambda (H40: (pr0 u2 x)).(ex2_ind T (\lambda (t9: T).(pr0
-t8 t9)) (\lambda (t9: T).(pr0 t4 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead
-(Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead
-(Bind Abst) u3 t8)) t9))) (\lambda (x0: T).(\lambda (H41: (pr0 t8
-x0)).(\lambda (H42: (pr0 t4 x0)).(ex_intro2 T (\lambda (t9: T).(pr0 (THead
-(Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead
-(Bind Abst) u3 t8)) t9)) (THead (Bind Abbr) x x0) (pr0_comp v2 x H39 t4 x0
-H42 (Bind Abbr)) (pr0_beta u3 u2 x H40 t8 x0 H41))))) (H37 t3 (tlt_trans
-(THead (Bind Abst) u t3) t3 (THead (Flat Appl) u1 (THead (Bind Abst) u t3))
-(tlt_head_dx (Bind Abst) u t3) (tlt_head_dx (Flat Appl) u1 (THead (Bind Abst)
-u t3))) t8 H35 t4 H8))))) (H37 u1 (tlt_head_sx (Flat Appl) u1 (THead (Bind
-Abst) u t3)) v2 H38 u2 H14))))))) t6 H33)) t7 (sym_eq T t7 t3 H32))) u0
-(sym_eq T u0 u H31))) k0 (sym_eq K k0 (Bind Abst) H30))) H29)) H28)) H27 H24
-H25))) | (pr0_beta u0 v0 v3 H24 t7 t8 H25) \Rightarrow (\lambda (H26: (eq T
-(THead (Flat Appl) v0 (THead (Bind Abst) u0 t7)) (THead (Bind Abst) u
-t3))).(\lambda (H27: (eq T (THead (Bind Abbr) v3 t8) t6)).((let H28 \def
-(eq_ind T (THead (Flat Appl) v0 (THead (Bind Abst) u0 t7)) (\lambda (e:
-T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
-False | (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in
-K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _)
-\Rightarrow True])])) I (THead (Bind Abst) u t3) H26) in (False_ind ((eq T
-(THead (Bind Abbr) v3 t8) t6) \to ((pr0 v0 v3) \to ((pr0 t7 t8) \to (ex2 T
-(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0
-(THead (Flat Appl) u2 t6) t9)))))) H28)) H27 H24 H25))) | (pr0_upsilon b H24
-v0 v3 H25 u0 u3 H26 t7 t8 H27) \Rightarrow (\lambda (H28: (eq T (THead (Flat
-Appl) v0 (THead (Bind b) u0 t7)) (THead (Bind Abst) u t3))).(\lambda (H29:
-(eq T (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v3) t8)) t6)).((let
-H30 \def (eq_ind T (THead (Flat Appl) v0 (THead (Bind b) u0 t7)) (\lambda (e:
-T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
-False | (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in
-K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _)
-\Rightarrow True])])) I (THead (Bind Abst) u t3) H28) in (False_ind ((eq T
-(THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v3) t8)) t6) \to ((not
-(eq B b Abst)) \to ((pr0 v0 v3) \to ((pr0 u0 u3) \to ((pr0 t7 t8) \to (ex2 T
+Appl) u2 t6) t9))))) (\lambda (H26: (eq T (THead (Bind Abst) u t3)
+t6)).(eq_ind T (THead (Bind Abst) u t3) (\lambda (t8: T).(ex2 T (\lambda (t9:
+T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Flat
+Appl) u2 t8) t9)))) (let H27 \def (eq_ind_r T t5 (\lambda (t8: T).(eq T
+(THead (Flat Appl) u1 t8) t)) H22 (THead (Bind Abst) u t3) H19) in (let H28
+\def (eq_ind_r T t (\lambda (t8: T).(\forall (v: T).((tlt v t8) \to (\forall
+(t9: T).((pr0 v t9) \to (\forall (t10: T).((pr0 v t10) \to (ex2 T (\lambda
+(t11: T).(pr0 t9 t11)) (\lambda (t11: T).(pr0 t10 t11)))))))))) H (THead
+(Flat Appl) u1 (THead (Bind Abst) u t3)) H27) in (let H29 \def (eq_ind T v1
+(\lambda (t8: T).(pr0 t8 v2)) H7 u1 H20) in (ex2_ind T (\lambda (t8: T).(pr0
+v2 t8)) (\lambda (t8: T).(pr0 u2 t8)) (ex2 T (\lambda (t8: T).(pr0 (THead
+(Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 (THead (Flat Appl) u2 (THead
+(Bind Abst) u t3)) t8))) (\lambda (x: T).(\lambda (H30: (pr0 v2 x)).(\lambda
+(H31: (pr0 u2 x)).(ex_intro2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2
+t4) t8)) (\lambda (t8: T).(pr0 (THead (Flat Appl) u2 (THead (Bind Abst) u
+t3)) t8)) (THead (Bind Abbr) x t4) (pr0_comp v2 x H30 t4 t4 (pr0_refl t4)
+(Bind Abbr)) (pr0_beta u u2 x H31 t3 t4 H8))))) (H28 u1 (tlt_head_sx (Flat
+Appl) u1 (THead (Bind Abst) u t3)) v2 H29 u2 H14))))) t6 H26)) t7 (sym_eq T
+t7 (THead (Bind Abst) u t3) H24) H25))) | (pr0_comp u0 u3 H24 t7 t8 H25 k0)
+\Rightarrow (\lambda (H26: (eq T (THead k0 u0 t7) (THead (Bind Abst) u
+t3))).(\lambda (H27: (eq T (THead k0 u3 t8) t6)).((let H28 \def (f_equal T T
+(\lambda (e: T).(match e with [(TSort _) \Rightarrow t7 | (TLRef _)
+\Rightarrow t7 | (THead _ _ t9) \Rightarrow t9])) (THead k0 u0 t7) (THead
+(Bind Abst) u t3) H26) in ((let H29 \def (f_equal T T (\lambda (e: T).(match
+e with [(TSort _) \Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t9 _)
+\Rightarrow t9])) (THead k0 u0 t7) (THead (Bind Abst) u t3) H26) in ((let H30
+\def (f_equal T K (\lambda (e: T).(match e with [(TSort _) \Rightarrow k0 |
+(TLRef _) \Rightarrow k0 | (THead k1 _ _) \Rightarrow k1])) (THead k0 u0 t7)
+(THead (Bind Abst) u t3) H26) in (eq_ind K (Bind Abst) (\lambda (k1: K).((eq
+T u0 u) \to ((eq T t7 t3) \to ((eq T (THead k1 u3 t8) t6) \to ((pr0 u0 u3)
+\to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4)
+t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t6) t9))))))))) (\lambda
+(H31: (eq T u0 u)).(eq_ind T u (\lambda (t9: T).((eq T t7 t3) \to ((eq T
+(THead (Bind Abst) u3 t8) t6) \to ((pr0 t9 u3) \to ((pr0 t7 t8) \to (ex2 T
+(\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t4) t10)) (\lambda (t10: T).(pr0
+(THead (Flat Appl) u2 t6) t10)))))))) (\lambda (H32: (eq T t7 t3)).(eq_ind T
+t3 (\lambda (t9: T).((eq T (THead (Bind Abst) u3 t8) t6) \to ((pr0 u u3) \to
+((pr0 t9 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t4)
+t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t6) t10))))))) (\lambda
+(H33: (eq T (THead (Bind Abst) u3 t8) t6)).(eq_ind T (THead (Bind Abst) u3
+t8) (\lambda (t9: T).((pr0 u u3) \to ((pr0 t3 t8) \to (ex2 T (\lambda (t10:
+T).(pr0 (THead (Bind Abbr) v2 t4) t10)) (\lambda (t10: T).(pr0 (THead (Flat
+Appl) u2 t9) t10)))))) (\lambda (_: (pr0 u u3)).(\lambda (H35: (pr0 t3
+t8)).(let H36 \def (eq_ind_r T t5 (\lambda (t9: T).(eq T (THead (Flat Appl)
+u1 t9) t)) H22 (THead (Bind Abst) u t3) H19) in (let H37 \def (eq_ind_r T t
+(\lambda (t9: T).(\forall (v: T).((tlt v t9) \to (\forall (t10: T).((pr0 v
+t10) \to (\forall (t11: T).((pr0 v t11) \to (ex2 T (\lambda (t12: T).(pr0 t10
+t12)) (\lambda (t12: T).(pr0 t11 t12)))))))))) H (THead (Flat Appl) u1 (THead
+(Bind Abst) u t3)) H36) in (let H38 \def (eq_ind T v1 (\lambda (t9: T).(pr0
+t9 v2)) H7 u1 H20) in (ex2_ind T (\lambda (t9: T).(pr0 v2 t9)) (\lambda (t9:
+T).(pr0 u2 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9))
+(\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead (Bind Abst) u3 t8)) t9)))
+(\lambda (x: T).(\lambda (H39: (pr0 v2 x)).(\lambda (H40: (pr0 u2
+x)).(ex2_ind T (\lambda (t9: T).(pr0 t8 t9)) (\lambda (t9: T).(pr0 t4 t9))
+(ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9:
+T).(pr0 (THead (Flat Appl) u2 (THead (Bind Abst) u3 t8)) t9))) (\lambda (x0:
+T).(\lambda (H41: (pr0 t8 x0)).(\lambda (H42: (pr0 t4 x0)).(ex_intro2 T
(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0
-(THead (Flat Appl) u2 t6) t9)))))))) H30)) H29 H24 H25 H26 H27))) |
-(pr0_delta u0 u3 H24 t7 t8 H25 w H26) \Rightarrow (\lambda (H27: (eq T (THead
-(Bind Abbr) u0 t7) (THead (Bind Abst) u t3))).(\lambda (H28: (eq T (THead
-(Bind Abbr) u3 w) t6)).((let H29 \def (eq_ind T (THead (Bind Abbr) u0 t7)
-(\lambda (e: T).(match e in T return (\lambda (_: T).Prop) with [(TSort _)
+(THead (Flat Appl) u2 (THead (Bind Abst) u3 t8)) t9)) (THead (Bind Abbr) x
+x0) (pr0_comp v2 x H39 t4 x0 H42 (Bind Abbr)) (pr0_beta u3 u2 x H40 t8 x0
+H41))))) (H37 t3 (tlt_trans (THead (Bind Abst) u t3) t3 (THead (Flat Appl) u1
+(THead (Bind Abst) u t3)) (tlt_head_dx (Bind Abst) u t3) (tlt_head_dx (Flat
+Appl) u1 (THead (Bind Abst) u t3))) t8 H35 t4 H8))))) (H37 u1 (tlt_head_sx
+(Flat Appl) u1 (THead (Bind Abst) u t3)) v2 H38 u2 H14))))))) t6 H33)) t7
+(sym_eq T t7 t3 H32))) u0 (sym_eq T u0 u H31))) k0 (sym_eq K k0 (Bind Abst)
+H30))) H29)) H28)) H27 H24 H25))) | (pr0_beta u0 v0 v3 H24 t7 t8 H25)
+\Rightarrow (\lambda (H26: (eq T (THead (Flat Appl) v0 (THead (Bind Abst) u0
+t7)) (THead (Bind Abst) u t3))).(\lambda (H27: (eq T (THead (Bind Abbr) v3
+t8) t6)).((let H28 \def (eq_ind T (THead (Flat Appl) v0 (THead (Bind Abst) u0
+t7)) (\lambda (e: T).(match e with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 with [(Bind _)
+\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind Abst) u t3)
+H26) in (False_ind ((eq T (THead (Bind Abbr) v3 t8) t6) \to ((pr0 v0 v3) \to
+((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9))
+(\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t6) t9)))))) H28)) H27 H24 H25)))
+| (pr0_upsilon b H24 v0 v3 H25 u0 u3 H26 t7 t8 H27) \Rightarrow (\lambda
+(H28: (eq T (THead (Flat Appl) v0 (THead (Bind b) u0 t7)) (THead (Bind Abst)
+u t3))).(\lambda (H29: (eq T (THead (Bind b) u3 (THead (Flat Appl) (lift (S
+O) O v3) t8)) t6)).((let H30 \def (eq_ind T (THead (Flat Appl) v0 (THead
+(Bind b) u0 t7)) (\lambda (e: T).(match e with [(TSort _) \Rightarrow False |
+(TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 with
+[(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind
+Abst) u t3) H28) in (False_ind ((eq T (THead (Bind b) u3 (THead (Flat Appl)
+(lift (S O) O v3) t8)) t6) \to ((not (eq B b Abst)) \to ((pr0 v0 v3) \to
+((pr0 u0 u3) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind
+Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t6) t9))))))))
+H30)) H29 H24 H25 H26 H27))) | (pr0_delta u0 u3 H24 t7 t8 H25 w H26)
+\Rightarrow (\lambda (H27: (eq T (THead (Bind Abbr) u0 t7) (THead (Bind Abst)
+u t3))).(\lambda (H28: (eq T (THead (Bind Abbr) u3 w) t6)).((let H29 \def
+(eq_ind T (THead (Bind Abbr) u0 t7) (\lambda (e: T).(match e with [(TSort _)
\Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow
-(match k0 in K return (\lambda (_: K).Prop) with [(Bind b) \Rightarrow (match
-b in B return (\lambda (_: B).Prop) with [Abbr \Rightarrow True | Abst
-\Rightarrow False | Void \Rightarrow False]) | (Flat _) \Rightarrow
+(match k0 with [(Bind b) \Rightarrow (match b with [Abbr \Rightarrow True |
+Abst \Rightarrow False | Void \Rightarrow False]) | (Flat _) \Rightarrow
False])])) I (THead (Bind Abst) u t3) H27) in (False_ind ((eq T (THead (Bind
Abbr) u3 w) t6) \to ((pr0 u0 u3) \to ((pr0 t7 t8) \to ((subst0 O u3 t8 w) \to
(ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9:
T).(pr0 (THead (Flat Appl) u2 t6) t9))))))) H29)) H28 H24 H25 H26))) |
(pr0_zeta b H24 t7 t8 H25 u0) \Rightarrow (\lambda (H26: (eq T (THead (Bind
b) u0 (lift (S O) O t7)) (THead (Bind Abst) u t3))).(\lambda (H27: (eq T t8
-t6)).((let H28 \def (f_equal T T (\lambda (e: T).(match e in T return
-(\lambda (_: T).T) with [(TSort _) \Rightarrow ((let rec lref_map (f: ((nat
-\to nat))) (d: nat) (t9: T) on t9: T \def (match t9 with [(TSort n)
-\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with
-[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k0 u3 t10)
-\Rightarrow (THead k0 (lref_map f d u3) (lref_map f (s k0 d) t10))]) in
-lref_map) (\lambda (x: nat).(plus x (S O))) O t7) | (TLRef _) \Rightarrow
-((let rec lref_map (f: ((nat \to nat))) (d: nat) (t9: T) on t9: T \def (match
-t9 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef
-(match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) |
-(THead k0 u3 t10) \Rightarrow (THead k0 (lref_map f d u3) (lref_map f (s k0
-d) t10))]) in lref_map) (\lambda (x: nat).(plus x (S O))) O t7) | (THead _ _
+t6)).((let H28 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _)
+\Rightarrow (lref_map (\lambda (x: nat).(plus x (S O))) O t7) | (TLRef _)
+\Rightarrow (lref_map (\lambda (x: nat).(plus x (S O))) O t7) | (THead _ _
t9) \Rightarrow t9])) (THead (Bind b) u0 (lift (S O) O t7)) (THead (Bind
-Abst) u t3) H26) in ((let H29 \def (f_equal T T (\lambda (e: T).(match e in T
-return (\lambda (_: T).T) with [(TSort _) \Rightarrow u0 | (TLRef _)
-\Rightarrow u0 | (THead _ t9 _) \Rightarrow t9])) (THead (Bind b) u0 (lift (S
-O) O t7)) (THead (Bind Abst) u t3) H26) in ((let H30 \def (f_equal T B
-(\lambda (e: T).(match e in T return (\lambda (_: T).B) with [(TSort _)
-\Rightarrow b | (TLRef _) \Rightarrow b | (THead k0 _ _) \Rightarrow (match
-k0 in K return (\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _)
-\Rightarrow b])])) (THead (Bind b) u0 (lift (S O) O t7)) (THead (Bind Abst) u
-t3) H26) in (eq_ind B Abst (\lambda (b0: B).((eq T u0 u) \to ((eq T (lift (S
-O) O t7) t3) \to ((eq T t8 t6) \to ((not (eq B b0 Abst)) \to ((pr0 t7 t8) \to
-(ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9:
-T).(pr0 (THead (Flat Appl) u2 t6) t9))))))))) (\lambda (H31: (eq T u0
-u)).(eq_ind T u (\lambda (_: T).((eq T (lift (S O) O t7) t3) \to ((eq T t8
-t6) \to ((not (eq B Abst Abst)) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10:
-T).(pr0 (THead (Bind Abbr) v2 t4) t10)) (\lambda (t10: T).(pr0 (THead (Flat
-Appl) u2 t6) t10)))))))) (\lambda (H32: (eq T (lift (S O) O t7) t3)).(eq_ind
-T (lift (S O) O t7) (\lambda (_: T).((eq T t8 t6) \to ((not (eq B Abst Abst))
+Abst) u t3) H26) in ((let H29 \def (f_equal T T (\lambda (e: T).(match e with
+[(TSort _) \Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t9 _)
+\Rightarrow t9])) (THead (Bind b) u0 (lift (S O) O t7)) (THead (Bind Abst) u
+t3) H26) in ((let H30 \def (f_equal T B (\lambda (e: T).(match e with [(TSort
+_) \Rightarrow b | (TLRef _) \Rightarrow b | (THead k0 _ _) \Rightarrow
+(match k0 with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow b])])) (THead
+(Bind b) u0 (lift (S O) O t7)) (THead (Bind Abst) u t3) H26) in (eq_ind B
+Abst (\lambda (b0: B).((eq T u0 u) \to ((eq T (lift (S O) O t7) t3) \to ((eq
+T t8 t6) \to ((not (eq B b0 Abst)) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9:
+T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Flat
+Appl) u2 t6) t9))))))))) (\lambda (H31: (eq T u0 u)).(eq_ind T u (\lambda (_:
+T).((eq T (lift (S O) O t7) t3) \to ((eq T t8 t6) \to ((not (eq B Abst Abst))
\to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t4)
-t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t6) t10))))))) (\lambda
-(H33: (eq T t8 t6)).(eq_ind T t6 (\lambda (t9: T).((not (eq B Abst Abst)) \to
-((pr0 t7 t9) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t4)
-t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t6) t10)))))) (\lambda
-(H34: (not (eq B Abst Abst))).(\lambda (_: (pr0 t7 t6)).(let H36 \def (match
-(H34 (refl_equal B Abst)) in False return (\lambda (_: False).(ex2 T (\lambda
-(t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0 (THead
-(Flat Appl) u2 t6) t9)))) with []) in H36))) t8 (sym_eq T t8 t6 H33))) t3
-H32)) u0 (sym_eq T u0 u H31))) b (sym_eq B b Abst H30))) H29)) H28)) H27 H24
-H25))) | (pr0_tau t7 t8 H24 u0) \Rightarrow (\lambda (H25: (eq T (THead (Flat
-Cast) u0 t7) (THead (Bind Abst) u t3))).(\lambda (H26: (eq T t8 t6)).((let
-H27 \def (eq_ind T (THead (Flat Cast) u0 t7) (\lambda (e: T).(match e in T
-return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
-\Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in K return (\lambda
-(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow
-True])])) I (THead (Bind Abst) u t3) H25) in (False_ind ((eq T t8 t6) \to
-((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9))
-(\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t6) t9))))) H27)) H26 H24)))]) in
-(H24 (refl_equal T (THead (Bind Abst) u t3)) (refl_equal T t6))))) k H21))))
-H18)) H17))))) t2 H13)) t H11 H12 H9 H10))) | (pr0_beta u0 v0 v3 H9 t5 t6
-H10) \Rightarrow (\lambda (H11: (eq T (THead (Flat Appl) v0 (THead (Bind
-Abst) u0 t5)) t)).(\lambda (H12: (eq T (THead (Bind Abbr) v3 t6) t2)).(eq_ind
-T (THead (Flat Appl) v0 (THead (Bind Abst) u0 t5)) (\lambda (_: T).((eq T
-(THead (Bind Abbr) v3 t6) t2) \to ((pr0 v0 v3) \to ((pr0 t5 t6) \to (ex2 T
-(\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t2
-t8))))))) (\lambda (H13: (eq T (THead (Bind Abbr) v3 t6) t2)).(eq_ind T
-(THead (Bind Abbr) v3 t6) (\lambda (t7: T).((pr0 v0 v3) \to ((pr0 t5 t6) \to
-(ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8:
-T).(pr0 t7 t8)))))) (\lambda (H14: (pr0 v0 v3)).(\lambda (H15: (pr0 t5
-t6)).(let H16 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) v1
-(THead (Bind Abst) u t3)) t7)) H4 (THead (Flat Appl) v0 (THead (Bind Abst) u0
-t5)) H11) in (let H17 \def (f_equal T T (\lambda (e: T).(match e in T return
-(\lambda (_: T).T) with [(TSort _) \Rightarrow v1 | (TLRef _) \Rightarrow v1
-| (THead _ t7 _) \Rightarrow t7])) (THead (Flat Appl) v1 (THead (Bind Abst) u
-t3)) (THead (Flat Appl) v0 (THead (Bind Abst) u0 t5)) H16) in ((let H18 \def
-(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
-[(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | (THead _ _ t7)
-\Rightarrow (match t7 in T return (\lambda (_: T).T) with [(TSort _)
-\Rightarrow u | (TLRef _) \Rightarrow u | (THead _ t8 _) \Rightarrow t8])]))
+t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t6) t10)))))))) (\lambda
+(H32: (eq T (lift (S O) O t7) t3)).(eq_ind T (lift (S O) O t7) (\lambda (_:
+T).((eq T t8 t6) \to ((not (eq B Abst Abst)) \to ((pr0 t7 t8) \to (ex2 T
+(\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t4) t10)) (\lambda (t10: T).(pr0
+(THead (Flat Appl) u2 t6) t10))))))) (\lambda (H33: (eq T t8 t6)).(eq_ind T
+t6 (\lambda (t9: T).((not (eq B Abst Abst)) \to ((pr0 t7 t9) \to (ex2 T
+(\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t4) t10)) (\lambda (t10: T).(pr0
+(THead (Flat Appl) u2 t6) t10)))))) (\lambda (H34: (not (eq B Abst
+Abst))).(\lambda (_: (pr0 t7 t6)).(let H36 \def (match (H34 (refl_equal B
+Abst)) in False with []) in H36))) t8 (sym_eq T t8 t6 H33))) t3 H32)) u0
+(sym_eq T u0 u H31))) b (sym_eq B b Abst H30))) H29)) H28)) H27 H24 H25))) |
+(pr0_tau t7 t8 H24 u0) \Rightarrow (\lambda (H25: (eq T (THead (Flat Cast) u0
+t7) (THead (Bind Abst) u t3))).(\lambda (H26: (eq T t8 t6)).((let H27 \def
+(eq_ind T (THead (Flat Cast) u0 t7) (\lambda (e: T).(match e with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow
+(match k0 with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I
+(THead (Bind Abst) u t3) H25) in (False_ind ((eq T t8 t6) \to ((pr0 t7 t8)
+\to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9:
+T).(pr0 (THead (Flat Appl) u2 t6) t9))))) H27)) H26 H24)))]) in (H24
+(refl_equal T (THead (Bind Abst) u t3)) (refl_equal T t6))))) k H21)))) H18))
+H17))))) t2 H13)) t H11 H12 H9 H10))) | (pr0_beta u0 v0 v3 H9 t5 t6 H10)
+\Rightarrow (\lambda (H11: (eq T (THead (Flat Appl) v0 (THead (Bind Abst) u0
+t5)) t)).(\lambda (H12: (eq T (THead (Bind Abbr) v3 t6) t2)).(eq_ind T (THead
+(Flat Appl) v0 (THead (Bind Abst) u0 t5)) (\lambda (_: T).((eq T (THead (Bind
+Abbr) v3 t6) t2) \to ((pr0 v0 v3) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8:
+T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8)))))))
+(\lambda (H13: (eq T (THead (Bind Abbr) v3 t6) t2)).(eq_ind T (THead (Bind
+Abbr) v3 t6) (\lambda (t7: T).((pr0 v0 v3) \to ((pr0 t5 t6) \to (ex2 T
+(\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t7
+t8)))))) (\lambda (H14: (pr0 v0 v3)).(\lambda (H15: (pr0 t5 t6)).(let H16
+\def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind
+Abst) u t3)) t7)) H4 (THead (Flat Appl) v0 (THead (Bind Abst) u0 t5)) H11) in
+(let H17 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _)
+\Rightarrow v1 | (TLRef _) \Rightarrow v1 | (THead _ t7 _) \Rightarrow t7]))
(THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (THead (Flat Appl) v0 (THead
-(Bind Abst) u0 t5)) H16) in ((let H19 \def (f_equal T T (\lambda (e:
-T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t3 |
-(TLRef _) \Rightarrow t3 | (THead _ _ t7) \Rightarrow (match t7 in T return
-(\lambda (_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3
-| (THead _ _ t8) \Rightarrow t8])])) (THead (Flat Appl) v1 (THead (Bind Abst)
-u t3)) (THead (Flat Appl) v0 (THead (Bind Abst) u0 t5)) H16) in (\lambda (_:
-(eq T u u0)).(\lambda (H21: (eq T v1 v0)).(let H22 \def (eq_ind_r T t
-(\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8)
-\to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10))
-(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Flat Appl) v0 (THead (Bind
-Abst) u0 t5)) H11) in (let H23 \def (eq_ind T v1 (\lambda (t7: T).(pr0 t7
-v2)) H7 v0 H21) in (let H24 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4))
-H8 t5 H19) in (ex2_ind T (\lambda (t7: T).(pr0 t4 t7)) (\lambda (t7: T).(pr0
-t6 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda
-(t7: T).(pr0 (THead (Bind Abbr) v3 t6) t7))) (\lambda (x: T).(\lambda (H25:
-(pr0 t4 x)).(\lambda (H26: (pr0 t6 x)).(ex2_ind T (\lambda (t7: T).(pr0 v2
-t7)) (\lambda (t7: T).(pr0 v3 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind
-Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) v3 t6) t7)))
-(\lambda (x0: T).(\lambda (H27: (pr0 v2 x0)).(\lambda (H28: (pr0 v3
-x0)).(ex_intro2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7))
-(\lambda (t7: T).(pr0 (THead (Bind Abbr) v3 t6) t7)) (THead (Bind Abbr) x0 x)
-(pr0_comp v2 x0 H27 t4 x H25 (Bind Abbr)) (pr0_comp v3 x0 H28 t6 x H26 (Bind
-Abbr)))))) (H22 v0 (tlt_head_sx (Flat Appl) v0 (THead (Bind Abst) u0 t5)) v2
-H23 v3 H14))))) (H22 t5 (tlt_trans (THead (Bind Abst) u0 t5) t5 (THead (Flat
-Appl) v0 (THead (Bind Abst) u0 t5)) (tlt_head_dx (Bind Abst) u0 t5)
-(tlt_head_dx (Flat Appl) v0 (THead (Bind Abst) u0 t5))) t4 H24 t6 H15))))))))
-H18)) H17))))) t2 H13)) t H11 H12 H9 H10))) | (pr0_upsilon b H9 v0 v3 H10 u1
-u2 H11 t5 t6 H12) \Rightarrow (\lambda (H13: (eq T (THead (Flat Appl) v0
-(THead (Bind b) u1 t5)) t)).(\lambda (H14: (eq T (THead (Bind b) u2 (THead
-(Flat Appl) (lift (S O) O v3) t6)) t2)).(eq_ind T (THead (Flat Appl) v0
-(THead (Bind b) u1 t5)) (\lambda (_: T).((eq T (THead (Bind b) u2 (THead
-(Flat Appl) (lift (S O) O v3) t6)) t2) \to ((not (eq B b Abst)) \to ((pr0 v0
-v3) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead
-(Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))))))) (\lambda (H15:
-(eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v3) t6))
-t2)).(eq_ind T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v3) t6))
-(\lambda (t7: T).((not (eq B b Abst)) \to ((pr0 v0 v3) \to ((pr0 u1 u2) \to
+(Bind Abst) u0 t5)) H16) in ((let H18 \def (f_equal T T (\lambda (e:
+T).(match e with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | (THead
+_ _ t7) \Rightarrow (match t7 with [(TSort _) \Rightarrow u | (TLRef _)
+\Rightarrow u | (THead _ t8 _) \Rightarrow t8])])) (THead (Flat Appl) v1
+(THead (Bind Abst) u t3)) (THead (Flat Appl) v0 (THead (Bind Abst) u0 t5))
+H16) in ((let H19 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _)
+\Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t7) \Rightarrow (match
+t7 with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t8)
+\Rightarrow t8])])) (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (THead
+(Flat Appl) v0 (THead (Bind Abst) u0 t5)) H16) in (\lambda (_: (eq T u
+u0)).(\lambda (H21: (eq T v1 v0)).(let H22 \def (eq_ind_r T t (\lambda (t7:
+T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall
+(t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10:
+T).(pr0 t9 t10)))))))))) H (THead (Flat Appl) v0 (THead (Bind Abst) u0 t5))
+H11) in (let H23 \def (eq_ind T v1 (\lambda (t7: T).(pr0 t7 v2)) H7 v0 H21)
+in (let H24 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H8 t5 H19) in
+(ex2_ind T (\lambda (t7: T).(pr0 t4 t7)) (\lambda (t7: T).(pr0 t6 t7)) (ex2 T
+(\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0
+(THead (Bind Abbr) v3 t6) t7))) (\lambda (x: T).(\lambda (H25: (pr0 t4
+x)).(\lambda (H26: (pr0 t6 x)).(ex2_ind T (\lambda (t7: T).(pr0 v2 t7))
+(\lambda (t7: T).(pr0 v3 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr)
+v2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) v3 t6) t7))) (\lambda
+(x0: T).(\lambda (H27: (pr0 v2 x0)).(\lambda (H28: (pr0 v3 x0)).(ex_intro2 T
+(\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0
+(THead (Bind Abbr) v3 t6) t7)) (THead (Bind Abbr) x0 x) (pr0_comp v2 x0 H27
+t4 x H25 (Bind Abbr)) (pr0_comp v3 x0 H28 t6 x H26 (Bind Abbr)))))) (H22 v0
+(tlt_head_sx (Flat Appl) v0 (THead (Bind Abst) u0 t5)) v2 H23 v3 H14)))))
+(H22 t5 (tlt_trans (THead (Bind Abst) u0 t5) t5 (THead (Flat Appl) v0 (THead
+(Bind Abst) u0 t5)) (tlt_head_dx (Bind Abst) u0 t5) (tlt_head_dx (Flat Appl)
+v0 (THead (Bind Abst) u0 t5))) t4 H24 t6 H15)))))))) H18)) H17))))) t2 H13))
+t H11 H12 H9 H10))) | (pr0_upsilon b H9 v0 v3 H10 u1 u2 H11 t5 t6 H12)
+\Rightarrow (\lambda (H13: (eq T (THead (Flat Appl) v0 (THead (Bind b) u1
+t5)) t)).(\lambda (H14: (eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v3) t6)) t2)).(eq_ind T (THead (Flat Appl) v0 (THead (Bind b) u1 t5))
+(\lambda (_: T).((eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
+v3) t6)) t2) \to ((not (eq B b Abst)) \to ((pr0 v0 v3) \to ((pr0 u1 u2) \to
((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8))
-(\lambda (t8: T).(pr0 t7 t8)))))))) (\lambda (H16: (not (eq B b
-Abst))).(\lambda (_: (pr0 v0 v3)).(\lambda (_: (pr0 u1 u2)).(\lambda (_: (pr0
-t5 t6)).(let H20 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl)
-v1 (THead (Bind Abst) u t3)) t7)) H4 (THead (Flat Appl) v0 (THead (Bind b) u1
-t5)) H13) in (let H21 \def (f_equal T T (\lambda (e: T).(match e in T return
-(\lambda (_: T).T) with [(TSort _) \Rightarrow v1 | (TLRef _) \Rightarrow v1
-| (THead _ t7 _) \Rightarrow t7])) (THead (Flat Appl) v1 (THead (Bind Abst) u
-t3)) (THead (Flat Appl) v0 (THead (Bind b) u1 t5)) H20) in ((let H22 \def
-(f_equal T B (\lambda (e: T).(match e in T return (\lambda (_: T).B) with
+(\lambda (t8: T).(pr0 t2 t8))))))))) (\lambda (H15: (eq T (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v3) t6)) t2)).(eq_ind T (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v3) t6)) (\lambda (t7: T).((not (eq B b
+Abst)) \to ((pr0 v0 v3) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda
+(t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t7
+t8)))))))) (\lambda (H16: (not (eq B b Abst))).(\lambda (_: (pr0 v0
+v3)).(\lambda (_: (pr0 u1 u2)).(\lambda (_: (pr0 t5 t6)).(let H20 \def
+(eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind Abst)
+u t3)) t7)) H4 (THead (Flat Appl) v0 (THead (Bind b) u1 t5)) H13) in (let H21
+\def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow v1 |
+(TLRef _) \Rightarrow v1 | (THead _ t7 _) \Rightarrow t7])) (THead (Flat
+Appl) v1 (THead (Bind Abst) u t3)) (THead (Flat Appl) v0 (THead (Bind b) u1
+t5)) H20) in ((let H22 \def (f_equal T B (\lambda (e: T).(match e with
[(TSort _) \Rightarrow Abst | (TLRef _) \Rightarrow Abst | (THead _ _ t7)
-\Rightarrow (match t7 in T return (\lambda (_: T).B) with [(TSort _)
-\Rightarrow Abst | (TLRef _) \Rightarrow Abst | (THead k _ _) \Rightarrow
-(match k in K return (\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 |
-(Flat _) \Rightarrow Abst])])])) (THead (Flat Appl) v1 (THead (Bind Abst) u
-t3)) (THead (Flat Appl) v0 (THead (Bind b) u1 t5)) H20) in ((let H23 \def
-(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
-[(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | (THead _ _ t7)
-\Rightarrow (match t7 in T return (\lambda (_: T).T) with [(TSort _)
-\Rightarrow u | (TLRef _) \Rightarrow u | (THead _ t8 _) \Rightarrow t8])]))
-(THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (THead (Flat Appl) v0 (THead
-(Bind b) u1 t5)) H20) in ((let H24 \def (f_equal T T (\lambda (e: T).(match e
-in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _)
-\Rightarrow t3 | (THead _ _ t7) \Rightarrow (match t7 in T return (\lambda
-(_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead
-_ _ t8) \Rightarrow t8])])) (THead (Flat Appl) v1 (THead (Bind Abst) u t3))
-(THead (Flat Appl) v0 (THead (Bind b) u1 t5)) H20) in (\lambda (_: (eq T u
-u1)).(\lambda (H26: (eq B Abst b)).(\lambda (_: (eq T v1 v0)).(eq_ind B Abst
-(\lambda (b0: B).(ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7))
-(\lambda (t7: T).(pr0 (THead (Bind b0) u2 (THead (Flat Appl) (lift (S O) O
-v3) t6)) t7)))) (let H28 \def (eq_ind_r B b (\lambda (b0: B).(not (eq B b0
-Abst))) H16 Abst H26) in (let H29 \def (match (H28 (refl_equal B Abst)) in
-False return (\lambda (_: False).(ex2 T (\lambda (t7: T).(pr0 (THead (Bind
-Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abst) u2 (THead (Flat
-Appl) (lift (S O) O v3) t6)) t7)))) with []) in H29)) b H26))))) H23)) H22))
-H21))))))) t2 H15)) t H13 H14 H9 H10 H11 H12))) | (pr0_delta u1 u2 H9 t5 t6
-H10 w H11) \Rightarrow (\lambda (H12: (eq T (THead (Bind Abbr) u1 t5)
-t)).(\lambda (H13: (eq T (THead (Bind Abbr) u2 w) t2)).(eq_ind T (THead (Bind
-Abbr) u1 t5) (\lambda (_: T).((eq T (THead (Bind Abbr) u2 w) t2) \to ((pr0 u1
-u2) \to ((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to (ex2 T (\lambda (t8: T).(pr0
-(THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8)))))))) (\lambda
-(H14: (eq T (THead (Bind Abbr) u2 w) t2)).(eq_ind T (THead (Bind Abbr) u2 w)
-(\lambda (t7: T).((pr0 u1 u2) \to ((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to
+\Rightarrow (match t7 with [(TSort _) \Rightarrow Abst | (TLRef _)
+\Rightarrow Abst | (THead k _ _) \Rightarrow (match k with [(Bind b0)
+\Rightarrow b0 | (Flat _) \Rightarrow Abst])])])) (THead (Flat Appl) v1
+(THead (Bind Abst) u t3)) (THead (Flat Appl) v0 (THead (Bind b) u1 t5)) H20)
+in ((let H23 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _)
+\Rightarrow u | (TLRef _) \Rightarrow u | (THead _ _ t7) \Rightarrow (match
+t7 with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | (THead _ t8 _)
+\Rightarrow t8])])) (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (THead
+(Flat Appl) v0 (THead (Bind b) u1 t5)) H20) in ((let H24 \def (f_equal T T
+(\lambda (e: T).(match e with [(TSort _) \Rightarrow t3 | (TLRef _)
+\Rightarrow t3 | (THead _ _ t7) \Rightarrow (match t7 with [(TSort _)
+\Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t8) \Rightarrow
+t8])])) (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (THead (Flat Appl) v0
+(THead (Bind b) u1 t5)) H20) in (\lambda (_: (eq T u u1)).(\lambda (H26: (eq
+B Abst b)).(\lambda (_: (eq T v1 v0)).(eq_ind B Abst (\lambda (b0: B).(ex2 T
+(\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0
+(THead (Bind b0) u2 (THead (Flat Appl) (lift (S O) O v3) t6)) t7)))) (let H28
+\def (eq_ind_r B b (\lambda (b0: B).(not (eq B b0 Abst))) H16 Abst H26) in
+(let H29 \def (match (H28 (refl_equal B Abst)) in False with []) in H29)) b
+H26))))) H23)) H22)) H21))))))) t2 H15)) t H13 H14 H9 H10 H11 H12))) |
+(pr0_delta u1 u2 H9 t5 t6 H10 w H11) \Rightarrow (\lambda (H12: (eq T (THead
+(Bind Abbr) u1 t5) t)).(\lambda (H13: (eq T (THead (Bind Abbr) u2 w)
+t2)).(eq_ind T (THead (Bind Abbr) u1 t5) (\lambda (_: T).((eq T (THead (Bind
+Abbr) u2 w) t2) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to
(ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8:
-T).(pr0 t7 t8))))))) (\lambda (_: (pr0 u1 u2)).(\lambda (_: (pr0 t5
-t6)).(\lambda (_: (subst0 O u2 t6 w)).(let H18 \def (eq_ind_r T t (\lambda
-(t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) t7)) H4 (THead
-(Bind Abbr) u1 t5) H12) in (let H19 \def (eq_ind T (THead (Flat Appl) v1
-(THead (Bind Abst) u t3)) (\lambda (ee: T).(match ee in T return (\lambda (_:
-T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False |
-(THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).Prop) with
-[(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind
-Abbr) u1 t5) H18) in (False_ind (ex2 T (\lambda (t7: T).(pr0 (THead (Bind
-Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7)))
-H19)))))) t2 H14)) t H12 H13 H9 H10 H11))) | (pr0_zeta b H9 t5 t6 H10 u0)
-\Rightarrow (\lambda (H11: (eq T (THead (Bind b) u0 (lift (S O) O t5))
-t)).(\lambda (H12: (eq T t6 t2)).(eq_ind T (THead (Bind b) u0 (lift (S O) O
-t5)) (\lambda (_: T).((eq T t6 t2) \to ((not (eq B b Abst)) \to ((pr0 t5 t6)
-\to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8:
-T).(pr0 t2 t8))))))) (\lambda (H13: (eq T t6 t2)).(eq_ind T t2 (\lambda (t7:
-T).((not (eq B b Abst)) \to ((pr0 t5 t7) \to (ex2 T (\lambda (t8: T).(pr0
-(THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (_:
-(not (eq B b Abst))).(\lambda (_: (pr0 t5 t2)).(let H16 \def (eq_ind_r T t
-(\lambda (t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) t7))
-H4 (THead (Bind b) u0 (lift (S O) O t5)) H11) in (let H17 \def (eq_ind T
-(THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (\lambda (ee: T).(match ee in
-T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
-\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda
-(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow
-True])])) I (THead (Bind b) u0 (lift (S O) O t5)) H16) in (False_ind (ex2 T
-(\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0 t2
-t7))) H17))))) t6 (sym_eq T t6 t2 H13))) t H11 H12 H9 H10))) | (pr0_tau t5 t6
-H9 u0) \Rightarrow (\lambda (H10: (eq T (THead (Flat Cast) u0 t5)
-t)).(\lambda (H11: (eq T t6 t2)).(eq_ind T (THead (Flat Cast) u0 t5) (\lambda
-(_: T).((eq T t6 t2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead
-(Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (H12: (eq
-T t6 t2)).(eq_ind T t2 (\lambda (t7: T).((pr0 t5 t7) \to (ex2 T (\lambda (t8:
-T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8)))))
-(\lambda (_: (pr0 t5 t2)).(let H14 \def (eq_ind_r T t (\lambda (t7: T).(eq T
-(THead (Flat Appl) v1 (THead (Bind Abst) u t3)) t7)) H4 (THead (Flat Cast) u0
-t5) H10) in (let H15 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst)
-u t3)) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with
-[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _)
-\Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
-\Rightarrow False | (Flat f) \Rightarrow (match f in F return (\lambda (_:
-F).Prop) with [Appl \Rightarrow True | Cast \Rightarrow False])])])) I (THead
-(Flat Cast) u0 t5) H14) in (False_ind (ex2 T (\lambda (t7: T).(pr0 (THead
-(Bind Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0 t2 t7))) H15)))) t6 (sym_eq T
-t6 t2 H12))) t H10 H11 H9)))]) in (H9 (refl_equal T t) (refl_equal T t2)))))
-t1 H6)) t H4 H5 H2 H3))) | (pr0_upsilon b H2 v1 v2 H3 u1 u2 H4 t3 t4 H5)
-\Rightarrow (\lambda (H6: (eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t3))
-t)).(\lambda (H7: (eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
-v2) t4)) t1)).(eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u1 t3))
-(\lambda (_: T).((eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
-v2) t4)) t1) \to ((not (eq B b Abst)) \to ((pr0 v1 v2) \to ((pr0 u1 u2) \to
-((pr0 t3 t4) \to (ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0
-t2 t6))))))))) (\lambda (H8: (eq T (THead (Bind b) u2 (THead (Flat Appl)
-(lift (S O) O v2) t4)) t1)).(eq_ind T (THead (Bind b) u2 (THead (Flat Appl)
-(lift (S O) O v2) t4)) (\lambda (t5: T).((not (eq B b Abst)) \to ((pr0 v1 v2)
-\to ((pr0 u1 u2) \to ((pr0 t3 t4) \to (ex2 T (\lambda (t6: T).(pr0 t5 t6))
-(\lambda (t6: T).(pr0 t2 t6)))))))) (\lambda (H9: (not (eq B b
-Abst))).(\lambda (H10: (pr0 v1 v2)).(\lambda (H11: (pr0 u1 u2)).(\lambda
-(H12: (pr0 t3 t4)).(let H13 \def (match H1 in pr0 return (\lambda (t5:
-T).(\lambda (t6: T).(\lambda (_: (pr0 t5 t6)).((eq T t5 t) \to ((eq T t6 t2)
-\to (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift
-(S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0 t2 t7)))))))) with [(pr0_refl t5)
+T).(pr0 t2 t8)))))))) (\lambda (H14: (eq T (THead (Bind Abbr) u2 w)
+t2)).(eq_ind T (THead (Bind Abbr) u2 w) (\lambda (t7: T).((pr0 u1 u2) \to
+((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to (ex2 T (\lambda (t8: T).(pr0 (THead
+(Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t7 t8))))))) (\lambda (_: (pr0
+u1 u2)).(\lambda (_: (pr0 t5 t6)).(\lambda (_: (subst0 O u2 t6 w)).(let H18
+\def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind
+Abst) u t3)) t7)) H4 (THead (Bind Abbr) u1 t5) H12) in (let H19 \def (eq_ind
+T (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (\lambda (ee: T).(match ee
+with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _
+_) \Rightarrow (match k with [(Bind _) \Rightarrow False | (Flat _)
+\Rightarrow True])])) I (THead (Bind Abbr) u1 t5) H18) in (False_ind (ex2 T
+(\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0
+(THead (Bind Abbr) u2 w) t7))) H19)))))) t2 H14)) t H12 H13 H9 H10 H11))) |
+(pr0_zeta b H9 t5 t6 H10 u0) \Rightarrow (\lambda (H11: (eq T (THead (Bind b)
+u0 (lift (S O) O t5)) t)).(\lambda (H12: (eq T t6 t2)).(eq_ind T (THead (Bind
+b) u0 (lift (S O) O t5)) (\lambda (_: T).((eq T t6 t2) \to ((not (eq B b
+Abst)) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr)
+v2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H13: (eq T t6
+t2)).(eq_ind T t2 (\lambda (t7: T).((not (eq B b Abst)) \to ((pr0 t5 t7) \to
+(ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8:
+T).(pr0 t2 t8)))))) (\lambda (_: (not (eq B b Abst))).(\lambda (_: (pr0 t5
+t2)).(let H16 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) v1
+(THead (Bind Abst) u t3)) t7)) H4 (THead (Bind b) u0 (lift (S O) O t5)) H11)
+in (let H17 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u t3))
+(\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead k _ _) \Rightarrow (match k with [(Bind _)
+\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind b) u0 (lift
+(S O) O t5)) H16) in (False_ind (ex2 T (\lambda (t7: T).(pr0 (THead (Bind
+Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0 t2 t7))) H17))))) t6 (sym_eq T t6 t2
+H13))) t H11 H12 H9 H10))) | (pr0_tau t5 t6 H9 u0) \Rightarrow (\lambda (H10:
+(eq T (THead (Flat Cast) u0 t5) t)).(\lambda (H11: (eq T t6 t2)).(eq_ind T
+(THead (Flat Cast) u0 t5) (\lambda (_: T).((eq T t6 t2) \to ((pr0 t5 t6) \to
+(ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8:
+T).(pr0 t2 t8)))))) (\lambda (H12: (eq T t6 t2)).(eq_ind T t2 (\lambda (t7:
+T).((pr0 t5 t7) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4)
+t8)) (\lambda (t8: T).(pr0 t2 t8))))) (\lambda (_: (pr0 t5 t2)).(let H14 \def
+(eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind Abst)
+u t3)) t7)) H4 (THead (Flat Cast) u0 t5) H10) in (let H15 \def (eq_ind T
+(THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (\lambda (ee: T).(match ee
+with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _
+_) \Rightarrow (match k with [(Bind _) \Rightarrow False | (Flat f)
+\Rightarrow (match f with [Appl \Rightarrow True | Cast \Rightarrow
+False])])])) I (THead (Flat Cast) u0 t5) H14) in (False_ind (ex2 T (\lambda
+(t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0 t2 t7)))
+H15)))) t6 (sym_eq T t6 t2 H12))) t H10 H11 H9)))]) in (H9 (refl_equal T t)
+(refl_equal T t2))))) t1 H6)) t H4 H5 H2 H3))) | (pr0_upsilon b H2 v1 v2 H3
+u1 u2 H4 t3 t4 H5) \Rightarrow (\lambda (H6: (eq T (THead (Flat Appl) v1
+(THead (Bind b) u1 t3)) t)).(\lambda (H7: (eq T (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4)) t1)).(eq_ind T (THead (Flat Appl) v1
+(THead (Bind b) u1 t3)) (\lambda (_: T).((eq T (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4)) t1) \to ((not (eq B b Abst)) \to ((pr0 v1
+v2) \to ((pr0 u1 u2) \to ((pr0 t3 t4) \to (ex2 T (\lambda (t6: T).(pr0 t1
+t6)) (\lambda (t6: T).(pr0 t2 t6))))))))) (\lambda (H8: (eq T (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t1)).(eq_ind T (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4)) (\lambda (t5: T).((not (eq B b
+Abst)) \to ((pr0 v1 v2) \to ((pr0 u1 u2) \to ((pr0 t3 t4) \to (ex2 T (\lambda
+(t6: T).(pr0 t5 t6)) (\lambda (t6: T).(pr0 t2 t6)))))))) (\lambda (H9: (not
+(eq B b Abst))).(\lambda (H10: (pr0 v1 v2)).(\lambda (H11: (pr0 u1
+u2)).(\lambda (H12: (pr0 t3 t4)).(let H13 \def (match H1 with [(pr0_refl t5)
\Rightarrow (\lambda (H13: (eq T t5 t)).(\lambda (H14: (eq T t5 t2)).(eq_ind
T t (\lambda (t6: T).((eq T t6 t2) \to (ex2 T (\lambda (t7: T).(pr0 (THead
(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t7)) (\lambda (t7:
T).(pr0 t7 t8)))))) (\lambda (H18: (pr0 u0 u3)).(\lambda (H19: (pr0 t5
t6)).(let H20 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) v1
(THead (Bind b) u1 t3)) t7)) H6 (THead k u0 t5) H15) in (let H21 \def
-(f_equal T K (\lambda (e: T).(match e in T return (\lambda (_: T).K) with
-[(TSort _) \Rightarrow (Flat Appl) | (TLRef _) \Rightarrow (Flat Appl) |
-(THead k0 _ _) \Rightarrow k0])) (THead (Flat Appl) v1 (THead (Bind b) u1
-t3)) (THead k u0 t5) H20) in ((let H22 \def (f_equal T T (\lambda (e:
-T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow v1 |
-(TLRef _) \Rightarrow v1 | (THead _ t7 _) \Rightarrow t7])) (THead (Flat
-Appl) v1 (THead (Bind b) u1 t3)) (THead k u0 t5) H20) in ((let H23 \def
-(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
-[(TSort _) \Rightarrow (THead (Bind b) u1 t3) | (TLRef _) \Rightarrow (THead
-(Bind b) u1 t3) | (THead _ _ t7) \Rightarrow t7])) (THead (Flat Appl) v1
-(THead (Bind b) u1 t3)) (THead k u0 t5) H20) in (\lambda (H24: (eq T v1
-u0)).(\lambda (H25: (eq K (Flat Appl) k)).(eq_ind K (Flat Appl) (\lambda (k0:
-K).(ex2 T (\lambda (t7: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift
-(S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0 (THead k0 u3 t6) t7)))) (let H26
-\def (eq_ind_r K k (\lambda (k0: K).(eq T (THead k0 u0 t5) t)) H15 (Flat
-Appl) H25) in (let H27 \def (eq_ind_r T t5 (\lambda (t7: T).(pr0 t7 t6)) H19
-(THead (Bind b) u1 t3) H23) in (let H28 \def (match H27 in pr0 return
-(\lambda (t7: T).(\lambda (t8: T).(\lambda (_: (pr0 t7 t8)).((eq T t7 (THead
-(Bind b) u1 t3)) \to ((eq T t8 t6) \to (ex2 T (\lambda (t9: T).(pr0 (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t9)) (\lambda (t9:
-T).(pr0 (THead (Flat Appl) u3 t6) t9)))))))) with [(pr0_refl t7) \Rightarrow
-(\lambda (H28: (eq T t7 (THead (Bind b) u1 t3))).(\lambda (H29: (eq T t7
-t6)).(eq_ind T (THead (Bind b) u1 t3) (\lambda (t8: T).((eq T t8 t6) \to (ex2
-T (\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
-v2) t4)) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9)))))
-(\lambda (H30: (eq T (THead (Bind b) u1 t3) t6)).(eq_ind T (THead (Bind b) u1
-t3) (\lambda (t8: T).(ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead
-(Flat Appl) (lift (S O) O v2) t4)) t9)) (\lambda (t9: T).(pr0 (THead (Flat
-Appl) u3 t8) t9)))) (let H31 \def (eq_ind_r T t5 (\lambda (t8: T).(eq T
-(THead (Flat Appl) u0 t8) t)) H26 (THead (Bind b) u1 t3) H23) in (let H32
-\def (eq_ind_r T t (\lambda (t8: T).(\forall (v: T).((tlt v t8) \to (\forall
-(t9: T).((pr0 v t9) \to (\forall (t10: T).((pr0 v t10) \to (ex2 T (\lambda
-(t11: T).(pr0 t9 t11)) (\lambda (t11: T).(pr0 t10 t11)))))))))) H (THead
-(Flat Appl) u0 (THead (Bind b) u1 t3)) H31) in (let H33 \def (eq_ind T v1
-(\lambda (t8: T).(pr0 t8 v2)) H10 u0 H24) in (ex2_ind T (\lambda (t8: T).(pr0
-v2 t8)) (\lambda (t8: T).(pr0 u3 t8)) (ex2 T (\lambda (t8: T).(pr0 (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8:
-T).(pr0 (THead (Flat Appl) u3 (THead (Bind b) u1 t3)) t8))) (\lambda (x:
-T).(\lambda (H34: (pr0 v2 x)).(\lambda (H35: (pr0 u3 x)).(ex2_sym T (pr0
-(THead (Flat Appl) u3 (THead (Bind b) u1 t3))) (pr0 (THead (Bind b) u2 (THead
-(Flat Appl) (lift (S O) O v2) t4))) (pr0_confluence__pr0_cong_upsilon_refl b
-H9 u1 u2 H11 t3 t4 H12 u3 v2 x H35 H34))))) (H32 u0 (tlt_head_sx (Flat Appl)
-u0 (THead (Bind b) u1 t3)) v2 H33 u3 H18))))) t6 H30)) t7 (sym_eq T t7 (THead
-(Bind b) u1 t3) H28) H29))) | (pr0_comp u4 u5 H28 t7 t8 H29 k0) \Rightarrow
-(\lambda (H30: (eq T (THead k0 u4 t7) (THead (Bind b) u1 t3))).(\lambda (H31:
-(eq T (THead k0 u5 t8) t6)).((let H32 \def (f_equal T T (\lambda (e:
-T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t7 |
-(TLRef _) \Rightarrow t7 | (THead _ _ t9) \Rightarrow t9])) (THead k0 u4 t7)
-(THead (Bind b) u1 t3) H30) in ((let H33 \def (f_equal T T (\lambda (e:
-T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u4 |
-(TLRef _) \Rightarrow u4 | (THead _ t9 _) \Rightarrow t9])) (THead k0 u4 t7)
-(THead (Bind b) u1 t3) H30) in ((let H34 \def (f_equal T K (\lambda (e:
-T).(match e in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow k0 |
-(TLRef _) \Rightarrow k0 | (THead k1 _ _) \Rightarrow k1])) (THead k0 u4 t7)
-(THead (Bind b) u1 t3) H30) in (eq_ind K (Bind b) (\lambda (k1: K).((eq T u4
-u1) \to ((eq T t7 t3) \to ((eq T (THead k1 u5 t8) t6) \to ((pr0 u4 u5) \to
-((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat
-Appl) (lift (S O) O v2) t4)) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3
-t6) t9))))))))) (\lambda (H35: (eq T u4 u1)).(eq_ind T u1 (\lambda (t9:
-T).((eq T t7 t3) \to ((eq T (THead (Bind b) u5 t8) t6) \to ((pr0 t9 u5) \to
-((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Bind b) u2 (THead
-(Flat Appl) (lift (S O) O v2) t4)) t10)) (\lambda (t10: T).(pr0 (THead (Flat
-Appl) u3 t6) t10)))))))) (\lambda (H36: (eq T t7 t3)).(eq_ind T t3 (\lambda
-(t9: T).((eq T (THead (Bind b) u5 t8) t6) \to ((pr0 u1 u5) \to ((pr0 t9 t8)
-\to (ex2 T (\lambda (t10: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift
-(S O) O v2) t4)) t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u3 t6)
-t10))))))) (\lambda (H37: (eq T (THead (Bind b) u5 t8) t6)).(eq_ind T (THead
-(Bind b) u5 t8) (\lambda (t9: T).((pr0 u1 u5) \to ((pr0 t3 t8) \to (ex2 T
-(\lambda (t10: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
-v2) t4)) t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u3 t9) t10))))))
-(\lambda (H38: (pr0 u1 u5)).(\lambda (H39: (pr0 t3 t8)).(let H40 \def
-(eq_ind_r T t5 (\lambda (t9: T).(eq T (THead (Flat Appl) u0 t9) t)) H26
-(THead (Bind b) u1 t3) H23) in (let H41 \def (eq_ind_r T t (\lambda (t9:
-T).(\forall (v: T).((tlt v t9) \to (\forall (t10: T).((pr0 v t10) \to
-(\forall (t11: T).((pr0 v t11) \to (ex2 T (\lambda (t12: T).(pr0 t10 t12))
-(\lambda (t12: T).(pr0 t11 t12)))))))))) H (THead (Flat Appl) u0 (THead (Bind
-b) u1 t3)) H40) in (let H42 \def (eq_ind T v1 (\lambda (t9: T).(pr0 t9 v2))
-H10 u0 H24) in (ex2_ind T (\lambda (t9: T).(pr0 v2 t9)) (\lambda (t9: T).(pr0
-u3 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl)
-(lift (S O) O v2) t4)) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3
-(THead (Bind b) u5 t8)) t9))) (\lambda (x: T).(\lambda (H43: (pr0 v2
-x)).(\lambda (H44: (pr0 u3 x)).(ex2_ind T (\lambda (t9: T).(pr0 t8 t9))
-(\lambda (t9: T).(pr0 t4 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2
+(f_equal T K (\lambda (e: T).(match e with [(TSort _) \Rightarrow (Flat Appl)
+| (TLRef _) \Rightarrow (Flat Appl) | (THead k0 _ _) \Rightarrow k0])) (THead
+(Flat Appl) v1 (THead (Bind b) u1 t3)) (THead k u0 t5) H20) in ((let H22 \def
+(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow v1 | (TLRef
+_) \Rightarrow v1 | (THead _ t7 _) \Rightarrow t7])) (THead (Flat Appl) v1
+(THead (Bind b) u1 t3)) (THead k u0 t5) H20) in ((let H23 \def (f_equal T T
+(\lambda (e: T).(match e with [(TSort _) \Rightarrow (THead (Bind b) u1 t3) |
+(TLRef _) \Rightarrow (THead (Bind b) u1 t3) | (THead _ _ t7) \Rightarrow
+t7])) (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (THead k u0 t5) H20) in
+(\lambda (H24: (eq T v1 u0)).(\lambda (H25: (eq K (Flat Appl) k)).(eq_ind K
+(Flat Appl) (\lambda (k0: K).(ex2 T (\lambda (t7: T).(pr0 (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0 (THead
+k0 u3 t6) t7)))) (let H26 \def (eq_ind_r K k (\lambda (k0: K).(eq T (THead k0
+u0 t5) t)) H15 (Flat Appl) H25) in (let H27 \def (eq_ind_r T t5 (\lambda (t7:
+T).(pr0 t7 t6)) H19 (THead (Bind b) u1 t3) H23) in (let H28 \def (match H27
+with [(pr0_refl t7) \Rightarrow (\lambda (H28: (eq T t7 (THead (Bind b) u1
+t3))).(\lambda (H29: (eq T t7 t6)).(eq_ind T (THead (Bind b) u1 t3) (\lambda
+(t8: T).((eq T t8 t6) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2
(THead (Flat Appl) (lift (S O) O v2) t4)) t9)) (\lambda (t9: T).(pr0 (THead
-(Flat Appl) u3 (THead (Bind b) u5 t8)) t9))) (\lambda (x0: T).(\lambda (H45:
-(pr0 t8 x0)).(\lambda (H46: (pr0 t4 x0)).(ex2_ind T (\lambda (t9: T).(pr0 u5
-t9)) (\lambda (t9: T).(pr0 u2 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Bind
-b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t9)) (\lambda (t9: T).(pr0
-(THead (Flat Appl) u3 (THead (Bind b) u5 t8)) t9))) (\lambda (x1: T).(\lambda
-(H47: (pr0 u5 x1)).(\lambda (H48: (pr0 u2 x1)).(ex2_sym T (pr0 (THead (Flat
-Appl) u3 (THead (Bind b) u5 t8))) (pr0 (THead (Bind b) u2 (THead (Flat Appl)
-(lift (S O) O v2) t4))) (pr0_confluence__pr0_cong_upsilon_cong b H9 u3 v2 x
-H44 H43 t8 t4 x0 H45 H46 u5 u2 x1 H47 H48))))) (H41 u1 (tlt_trans (THead
-(Bind b) u1 t3) u1 (THead (Flat Appl) u0 (THead (Bind b) u1 t3)) (tlt_head_sx
-(Bind b) u1 t3) (tlt_head_dx (Flat Appl) u0 (THead (Bind b) u1 t3))) u5 H38
-u2 H11))))) (H41 t3 (tlt_trans (THead (Bind b) u1 t3) t3 (THead (Flat Appl)
-u0 (THead (Bind b) u1 t3)) (tlt_head_dx (Bind b) u1 t3) (tlt_head_dx (Flat
-Appl) u0 (THead (Bind b) u1 t3))) t8 H39 t4 H12))))) (H41 u0 (tlt_head_sx
-(Flat Appl) u0 (THead (Bind b) u1 t3)) v2 H42 u3 H18))))))) t6 H37)) t7
-(sym_eq T t7 t3 H36))) u4 (sym_eq T u4 u1 H35))) k0 (sym_eq K k0 (Bind b)
-H34))) H33)) H32)) H31 H28 H29))) | (pr0_beta u v0 v3 H28 t7 t8 H29)
-\Rightarrow (\lambda (H30: (eq T (THead (Flat Appl) v0 (THead (Bind Abst) u
-t7)) (THead (Bind b) u1 t3))).(\lambda (H31: (eq T (THead (Bind Abbr) v3 t8)
-t6)).((let H32 \def (eq_ind T (THead (Flat Appl) v0 (THead (Bind Abst) u t7))
-(\lambda (e: T).(match e in T return (\lambda (_: T).Prop) with [(TSort _)
-\Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow
-(match k0 in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False
-| (Flat _) \Rightarrow True])])) I (THead (Bind b) u1 t3) H30) in (False_ind
-((eq T (THead (Bind Abbr) v3 t8) t6) \to ((pr0 v0 v3) \to ((pr0 t7 t8) \to
-(ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
-O) O v2) t4)) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9))))))
-H32)) H31 H28 H29))) | (pr0_upsilon b0 H28 v0 v3 H29 u4 u5 H30 t7 t8 H31)
-\Rightarrow (\lambda (H32: (eq T (THead (Flat Appl) v0 (THead (Bind b0) u4
-t7)) (THead (Bind b) u1 t3))).(\lambda (H33: (eq T (THead (Bind b0) u5 (THead
-(Flat Appl) (lift (S O) O v3) t8)) t6)).((let H34 \def (eq_ind T (THead (Flat
-Appl) v0 (THead (Bind b0) u4 t7)) (\lambda (e: T).(match e in T return
-(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
-\Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in K return (\lambda
-(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow
-True])])) I (THead (Bind b) u1 t3) H32) in (False_ind ((eq T (THead (Bind b0)
-u5 (THead (Flat Appl) (lift (S O) O v3) t8)) t6) \to ((not (eq B b0 Abst))
-\to ((pr0 v0 v3) \to ((pr0 u4 u5) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9:
+(Flat Appl) u3 t6) t9))))) (\lambda (H30: (eq T (THead (Bind b) u1 t3)
+t6)).(eq_ind T (THead (Bind b) u1 t3) (\lambda (t8: T).(ex2 T (\lambda (t9:
T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t9))
-(\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9)))))))) H34)) H33 H28 H29
-H30 H31))) | (pr0_delta u4 u5 H28 t7 t8 H29 w H30) \Rightarrow (\lambda (H31:
-(eq T (THead (Bind Abbr) u4 t7) (THead (Bind b) u1 t3))).(\lambda (H32: (eq T
-(THead (Bind Abbr) u5 w) t6)).((let H33 \def (f_equal T T (\lambda (e:
-T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t7 |
-(TLRef _) \Rightarrow t7 | (THead _ _ t9) \Rightarrow t9])) (THead (Bind
-Abbr) u4 t7) (THead (Bind b) u1 t3) H31) in ((let H34 \def (f_equal T T
-(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+(\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t8) t9)))) (let H31 \def
+(eq_ind_r T t5 (\lambda (t8: T).(eq T (THead (Flat Appl) u0 t8) t)) H26
+(THead (Bind b) u1 t3) H23) in (let H32 \def (eq_ind_r T t (\lambda (t8:
+T).(\forall (v: T).((tlt v t8) \to (\forall (t9: T).((pr0 v t9) \to (\forall
+(t10: T).((pr0 v t10) \to (ex2 T (\lambda (t11: T).(pr0 t9 t11)) (\lambda
+(t11: T).(pr0 t10 t11)))))))))) H (THead (Flat Appl) u0 (THead (Bind b) u1
+t3)) H31) in (let H33 \def (eq_ind T v1 (\lambda (t8: T).(pr0 t8 v2)) H10 u0
+H24) in (ex2_ind T (\lambda (t8: T).(pr0 v2 t8)) (\lambda (t8: T).(pr0 u3
+t8)) (ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 (THead (Flat Appl) u3 (THead
+(Bind b) u1 t3)) t8))) (\lambda (x: T).(\lambda (H34: (pr0 v2 x)).(\lambda
+(H35: (pr0 u3 x)).(ex2_sym T (pr0 (THead (Flat Appl) u3 (THead (Bind b) u1
+t3))) (pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)))
+(pr0_confluence__pr0_cong_upsilon_refl b H9 u1 u2 H11 t3 t4 H12 u3 v2 x H35
+H34))))) (H32 u0 (tlt_head_sx (Flat Appl) u0 (THead (Bind b) u1 t3)) v2 H33
+u3 H18))))) t6 H30)) t7 (sym_eq T t7 (THead (Bind b) u1 t3) H28) H29))) |
+(pr0_comp u4 u5 H28 t7 t8 H29 k0) \Rightarrow (\lambda (H30: (eq T (THead k0
+u4 t7) (THead (Bind b) u1 t3))).(\lambda (H31: (eq T (THead k0 u5 t8)
+t6)).((let H32 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _)
+\Rightarrow t7 | (TLRef _) \Rightarrow t7 | (THead _ _ t9) \Rightarrow t9]))
+(THead k0 u4 t7) (THead (Bind b) u1 t3) H30) in ((let H33 \def (f_equal T T
+(\lambda (e: T).(match e with [(TSort _) \Rightarrow u4 | (TLRef _)
+\Rightarrow u4 | (THead _ t9 _) \Rightarrow t9])) (THead k0 u4 t7) (THead
+(Bind b) u1 t3) H30) in ((let H34 \def (f_equal T K (\lambda (e: T).(match e
+with [(TSort _) \Rightarrow k0 | (TLRef _) \Rightarrow k0 | (THead k1 _ _)
+\Rightarrow k1])) (THead k0 u4 t7) (THead (Bind b) u1 t3) H30) in (eq_ind K
+(Bind b) (\lambda (k1: K).((eq T u4 u1) \to ((eq T t7 t3) \to ((eq T (THead
+k1 u5 t8) t6) \to ((pr0 u4 u5) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9:
+T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t9))
+(\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9))))))))) (\lambda (H35:
+(eq T u4 u1)).(eq_ind T u1 (\lambda (t9: T).((eq T t7 t3) \to ((eq T (THead
+(Bind b) u5 t8) t6) \to ((pr0 t9 u5) \to ((pr0 t7 t8) \to (ex2 T (\lambda
+(t10: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u3 t6) t10)))))))) (\lambda
+(H36: (eq T t7 t3)).(eq_ind T t3 (\lambda (t9: T).((eq T (THead (Bind b) u5
+t8) t6) \to ((pr0 u1 u5) \to ((pr0 t9 t8) \to (ex2 T (\lambda (t10: T).(pr0
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t10)) (\lambda
+(t10: T).(pr0 (THead (Flat Appl) u3 t6) t10))))))) (\lambda (H37: (eq T
+(THead (Bind b) u5 t8) t6)).(eq_ind T (THead (Bind b) u5 t8) (\lambda (t9:
+T).((pr0 u1 u5) \to ((pr0 t3 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t10)) (\lambda (t10:
+T).(pr0 (THead (Flat Appl) u3 t9) t10)))))) (\lambda (H38: (pr0 u1
+u5)).(\lambda (H39: (pr0 t3 t8)).(let H40 \def (eq_ind_r T t5 (\lambda (t9:
+T).(eq T (THead (Flat Appl) u0 t9) t)) H26 (THead (Bind b) u1 t3) H23) in
+(let H41 \def (eq_ind_r T t (\lambda (t9: T).(\forall (v: T).((tlt v t9) \to
+(\forall (t10: T).((pr0 v t10) \to (\forall (t11: T).((pr0 v t11) \to (ex2 T
+(\lambda (t12: T).(pr0 t10 t12)) (\lambda (t12: T).(pr0 t11 t12)))))))))) H
+(THead (Flat Appl) u0 (THead (Bind b) u1 t3)) H40) in (let H42 \def (eq_ind T
+v1 (\lambda (t9: T).(pr0 t9 v2)) H10 u0 H24) in (ex2_ind T (\lambda (t9:
+T).(pr0 v2 t9)) (\lambda (t9: T).(pr0 u3 t9)) (ex2 T (\lambda (t9: T).(pr0
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t9)) (\lambda
+(t9: T).(pr0 (THead (Flat Appl) u3 (THead (Bind b) u5 t8)) t9))) (\lambda (x:
+T).(\lambda (H43: (pr0 v2 x)).(\lambda (H44: (pr0 u3 x)).(ex2_ind T (\lambda
+(t9: T).(pr0 t8 t9)) (\lambda (t9: T).(pr0 t4 t9)) (ex2 T (\lambda (t9:
+T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t9))
+(\lambda (t9: T).(pr0 (THead (Flat Appl) u3 (THead (Bind b) u5 t8)) t9)))
+(\lambda (x0: T).(\lambda (H45: (pr0 t8 x0)).(\lambda (H46: (pr0 t4
+x0)).(ex2_ind T (\lambda (t9: T).(pr0 u5 t9)) (\lambda (t9: T).(pr0 u2 t9))
+(ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 (THead (Bind
+b) u5 t8)) t9))) (\lambda (x1: T).(\lambda (H47: (pr0 u5 x1)).(\lambda (H48:
+(pr0 u2 x1)).(ex2_sym T (pr0 (THead (Flat Appl) u3 (THead (Bind b) u5 t8)))
+(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)))
+(pr0_confluence__pr0_cong_upsilon_cong b H9 u3 v2 x H44 H43 t8 t4 x0 H45 H46
+u5 u2 x1 H47 H48))))) (H41 u1 (tlt_trans (THead (Bind b) u1 t3) u1 (THead
+(Flat Appl) u0 (THead (Bind b) u1 t3)) (tlt_head_sx (Bind b) u1 t3)
+(tlt_head_dx (Flat Appl) u0 (THead (Bind b) u1 t3))) u5 H38 u2 H11))))) (H41
+t3 (tlt_trans (THead (Bind b) u1 t3) t3 (THead (Flat Appl) u0 (THead (Bind b)
+u1 t3)) (tlt_head_dx (Bind b) u1 t3) (tlt_head_dx (Flat Appl) u0 (THead (Bind
+b) u1 t3))) t8 H39 t4 H12))))) (H41 u0 (tlt_head_sx (Flat Appl) u0 (THead
+(Bind b) u1 t3)) v2 H42 u3 H18))))))) t6 H37)) t7 (sym_eq T t7 t3 H36))) u4
+(sym_eq T u4 u1 H35))) k0 (sym_eq K k0 (Bind b) H34))) H33)) H32)) H31 H28
+H29))) | (pr0_beta u v0 v3 H28 t7 t8 H29) \Rightarrow (\lambda (H30: (eq T
+(THead (Flat Appl) v0 (THead (Bind Abst) u t7)) (THead (Bind b) u1
+t3))).(\lambda (H31: (eq T (THead (Bind Abbr) v3 t8) t6)).((let H32 \def
+(eq_ind T (THead (Flat Appl) v0 (THead (Bind Abst) u t7)) (\lambda (e:
+T).(match e with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False |
+(THead k0 _ _) \Rightarrow (match k0 with [(Bind _) \Rightarrow False | (Flat
+_) \Rightarrow True])])) I (THead (Bind b) u1 t3) H30) in (False_ind ((eq T
+(THead (Bind Abbr) v3 t8) t6) \to ((pr0 v0 v3) \to ((pr0 t7 t8) \to (ex2 T
+(\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4)) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9)))))) H32)) H31
+H28 H29))) | (pr0_upsilon b0 H28 v0 v3 H29 u4 u5 H30 t7 t8 H31) \Rightarrow
+(\lambda (H32: (eq T (THead (Flat Appl) v0 (THead (Bind b0) u4 t7)) (THead
+(Bind b) u1 t3))).(\lambda (H33: (eq T (THead (Bind b0) u5 (THead (Flat Appl)
+(lift (S O) O v3) t8)) t6)).((let H34 \def (eq_ind T (THead (Flat Appl) v0
+(THead (Bind b0) u4 t7)) (\lambda (e: T).(match e with [(TSort _) \Rightarrow
+False | (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0
+with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I (THead
+(Bind b) u1 t3) H32) in (False_ind ((eq T (THead (Bind b0) u5 (THead (Flat
+Appl) (lift (S O) O v3) t8)) t6) \to ((not (eq B b0 Abst)) \to ((pr0 v0 v3)
+\to ((pr0 u4 u5) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t9)) (\lambda (t9:
+T).(pr0 (THead (Flat Appl) u3 t6) t9)))))))) H34)) H33 H28 H29 H30 H31))) |
+(pr0_delta u4 u5 H28 t7 t8 H29 w H30) \Rightarrow (\lambda (H31: (eq T (THead
+(Bind Abbr) u4 t7) (THead (Bind b) u1 t3))).(\lambda (H32: (eq T (THead (Bind
+Abbr) u5 w) t6)).((let H33 \def (f_equal T T (\lambda (e: T).(match e with
+[(TSort _) \Rightarrow t7 | (TLRef _) \Rightarrow t7 | (THead _ _ t9)
+\Rightarrow t9])) (THead (Bind Abbr) u4 t7) (THead (Bind b) u1 t3) H31) in
+((let H34 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _)
\Rightarrow u4 | (TLRef _) \Rightarrow u4 | (THead _ t9 _) \Rightarrow t9]))
(THead (Bind Abbr) u4 t7) (THead (Bind b) u1 t3) H31) in ((let H35 \def
-(f_equal T B (\lambda (e: T).(match e in T return (\lambda (_: T).B) with
-[(TSort _) \Rightarrow Abbr | (TLRef _) \Rightarrow Abbr | (THead k0 _ _)
-\Rightarrow (match k0 in K return (\lambda (_: K).B) with [(Bind b0)
-\Rightarrow b0 | (Flat _) \Rightarrow Abbr])])) (THead (Bind Abbr) u4 t7)
+(f_equal T B (\lambda (e: T).(match e with [(TSort _) \Rightarrow Abbr |
+(TLRef _) \Rightarrow Abbr | (THead k0 _ _) \Rightarrow (match k0 with [(Bind
+b0) \Rightarrow b0 | (Flat _) \Rightarrow Abbr])])) (THead (Bind Abbr) u4 t7)
(THead (Bind b) u1 t3) H31) in (eq_ind B Abbr (\lambda (b0: B).((eq T u4 u1)
\to ((eq T t7 t3) \to ((eq T (THead (Bind Abbr) u5 w) t6) \to ((pr0 u4 u5)
\to ((pr0 t7 t8) \to ((subst0 O u5 t8 w) \to (ex2 T (\lambda (t9: T).(pr0
H35)) H34)) H33)) H32 H28 H29 H30))) | (pr0_zeta b0 H28 t7 t8 H29 u)
\Rightarrow (\lambda (H30: (eq T (THead (Bind b0) u (lift (S O) O t7)) (THead
(Bind b) u1 t3))).(\lambda (H31: (eq T t8 t6)).((let H32 \def (f_equal T T
-(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
-\Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat) (t9: T) on t9: T
-\def (match t9 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow
-(TLRef (match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)]))
-| (THead k0 u4 t10) \Rightarrow (THead k0 (lref_map f d u4) (lref_map f (s k0
-d) t10))]) in lref_map) (\lambda (x: nat).(plus x (S O))) O t7) | (TLRef _)
-\Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat) (t9: T) on t9: T
-\def (match t9 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow
-(TLRef (match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)]))
-| (THead k0 u4 t10) \Rightarrow (THead k0 (lref_map f d u4) (lref_map f (s k0
-d) t10))]) in lref_map) (\lambda (x: nat).(plus x (S O))) O t7) | (THead _ _
-t9) \Rightarrow t9])) (THead (Bind b0) u (lift (S O) O t7)) (THead (Bind b)
-u1 t3) H30) in ((let H33 \def (f_equal T T (\lambda (e: T).(match e in T
-return (\lambda (_: T).T) with [(TSort _) \Rightarrow u | (TLRef _)
-\Rightarrow u | (THead _ t9 _) \Rightarrow t9])) (THead (Bind b0) u (lift (S
-O) O t7)) (THead (Bind b) u1 t3) H30) in ((let H34 \def (f_equal T B (\lambda
-(e: T).(match e in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow b0
-| (TLRef _) \Rightarrow b0 | (THead k0 _ _) \Rightarrow (match k0 in K return
-(\lambda (_: K).B) with [(Bind b1) \Rightarrow b1 | (Flat _) \Rightarrow
-b0])])) (THead (Bind b0) u (lift (S O) O t7)) (THead (Bind b) u1 t3) H30) in
-(eq_ind B b (\lambda (b1: B).((eq T u u1) \to ((eq T (lift (S O) O t7) t3)
-\to ((eq T t8 t6) \to ((not (eq B b1 Abst)) \to ((pr0 t7 t8) \to (ex2 T
-(\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
-t4)) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9)))))))))
-(\lambda (H35: (eq T u u1)).(eq_ind T u1 (\lambda (_: T).((eq T (lift (S O) O
-t7) t3) \to ((eq T t8 t6) \to ((not (eq B b Abst)) \to ((pr0 t7 t8) \to (ex2
-T (\lambda (t10: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
-v2) t4)) t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u3 t6) t10))))))))
-(\lambda (H36: (eq T (lift (S O) O t7) t3)).(eq_ind T (lift (S O) O t7)
-(\lambda (_: T).((eq T t8 t6) \to ((not (eq B b Abst)) \to ((pr0 t7 t8) \to
-(ex2 T (\lambda (t10: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
-O) O v2) t4)) t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u3 t6)
-t10))))))) (\lambda (H37: (eq T t8 t6)).(eq_ind T t6 (\lambda (t9: T).((not
-(eq B b Abst)) \to ((pr0 t7 t9) \to (ex2 T (\lambda (t10: T).(pr0 (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t10)) (\lambda (t10:
-T).(pr0 (THead (Flat Appl) u3 t6) t10)))))) (\lambda (H38: (not (eq B b
-Abst))).(\lambda (H39: (pr0 t7 t6)).(let H40 \def (eq_ind_r T t3 (\lambda
-(t9: T).(eq T (THead (Bind b) u1 t9) t5)) H23 (lift (S O) O t7) H36) in (let
-H41 \def (eq_ind_r T t5 (\lambda (t9: T).(eq T (THead (Flat Appl) u0 t9) t))
-H26 (THead (Bind b) u1 (lift (S O) O t7)) H40) in (let H42 \def (eq_ind_r T t
-(\lambda (t9: T).(\forall (v: T).((tlt v t9) \to (\forall (t10: T).((pr0 v
-t10) \to (\forall (t11: T).((pr0 v t11) \to (ex2 T (\lambda (t12: T).(pr0 t10
-t12)) (\lambda (t12: T).(pr0 t11 t12)))))))))) H (THead (Flat Appl) u0 (THead
-(Bind b) u1 (lift (S O) O t7))) H41) in (let H43 \def (eq_ind_r T t3 (\lambda
-(t9: T).(pr0 t9 t4)) H12 (lift (S O) O t7) H36) in (ex2_ind T (\lambda (t9:
-T).(eq T t4 (lift (S O) O t9))) (\lambda (t9: T).(pr0 t7 t9)) (ex2 T (\lambda
-(t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
-t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9))) (\lambda (x:
-T).(\lambda (H44: (eq T t4 (lift (S O) O x))).(\lambda (H45: (pr0 t7
-x)).(eq_ind_r T (lift (S O) O x) (\lambda (t9: T).(ex2 T (\lambda (t10:
-T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t9)) t10))
-(\lambda (t10: T).(pr0 (THead (Flat Appl) u3 t6) t10)))) (let H46 \def
-(eq_ind T v1 (\lambda (t9: T).(pr0 t9 v2)) H10 u0 H24) in (ex2_ind T (\lambda
-(t9: T).(pr0 v2 t9)) (\lambda (t9: T).(pr0 u3 t9)) (ex2 T (\lambda (t9:
-T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) (lift (S O) O
-x))) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9))) (\lambda (x0:
-T).(\lambda (H47: (pr0 v2 x0)).(\lambda (H48: (pr0 u3 x0)).(ex2_ind T
-(\lambda (t9: T).(pr0 x t9)) (\lambda (t9: T).(pr0 t6 t9)) (ex2 T (\lambda
-(t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) (lift (S
-O) O x))) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9))) (\lambda
-(x1: T).(\lambda (H49: (pr0 x x1)).(\lambda (H50: (pr0 t6 x1)).(ex2_sym T
-(pr0 (THead (Flat Appl) u3 t6)) (pr0 (THead (Bind b) u2 (THead (Flat Appl)
-(lift (S O) O v2) (lift (S O) O x)))) (pr0_confluence__pr0_cong_upsilon_zeta
-b H38 u1 u2 H11 u3 v2 x0 H48 H47 x t6 x1 H49 H50))))) (H42 t7 (tlt_trans
-(THead (Bind b) u1 (lift (S O) O t7)) t7 (THead (Flat Appl) u0 (THead (Bind
-b) u1 (lift (S O) O t7))) (lift_tlt_dx (Bind b) u1 t7 (S O) O) (tlt_head_dx
-(Flat Appl) u0 (THead (Bind b) u1 (lift (S O) O t7)))) x H45 t6 H39))))) (H42
-u0 (tlt_head_sx (Flat Appl) u0 (THead (Bind b) u1 (lift (S O) O t7))) v2 H46
-u3 H18))) t4 H44)))) (pr0_gen_lift t7 t4 (S O) O H43)))))))) t8 (sym_eq T t8
-t6 H37))) t3 H36)) u (sym_eq T u u1 H35))) b0 (sym_eq B b0 b H34))) H33))
-H32)) H31 H28 H29))) | (pr0_tau t7 t8 H28 u) \Rightarrow (\lambda (H29: (eq T
-(THead (Flat Cast) u t7) (THead (Bind b) u1 t3))).(\lambda (H30: (eq T t8
-t6)).((let H31 \def (eq_ind T (THead (Flat Cast) u t7) (\lambda (e: T).(match
-e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False |
-(TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in K
-return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _)
-\Rightarrow True])])) I (THead (Bind b) u1 t3) H29) in (False_ind ((eq T t8
-t6) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2
+(\lambda (e: T).(match e with [(TSort _) \Rightarrow (lref_map (\lambda (x:
+nat).(plus x (S O))) O t7) | (TLRef _) \Rightarrow (lref_map (\lambda (x:
+nat).(plus x (S O))) O t7) | (THead _ _ t9) \Rightarrow t9])) (THead (Bind
+b0) u (lift (S O) O t7)) (THead (Bind b) u1 t3) H30) in ((let H33 \def
+(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow u | (TLRef
+_) \Rightarrow u | (THead _ t9 _) \Rightarrow t9])) (THead (Bind b0) u (lift
+(S O) O t7)) (THead (Bind b) u1 t3) H30) in ((let H34 \def (f_equal T B
+(\lambda (e: T).(match e with [(TSort _) \Rightarrow b0 | (TLRef _)
+\Rightarrow b0 | (THead k0 _ _) \Rightarrow (match k0 with [(Bind b1)
+\Rightarrow b1 | (Flat _) \Rightarrow b0])])) (THead (Bind b0) u (lift (S O)
+O t7)) (THead (Bind b) u1 t3) H30) in (eq_ind B b (\lambda (b1: B).((eq T u
+u1) \to ((eq T (lift (S O) O t7) t3) \to ((eq T t8 t6) \to ((not (eq B b1
+Abst)) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4)) t9)) (\lambda (t9: T).(pr0 (THead
+(Flat Appl) u3 t6) t9))))))))) (\lambda (H35: (eq T u u1)).(eq_ind T u1
+(\lambda (_: T).((eq T (lift (S O) O t7) t3) \to ((eq T t8 t6) \to ((not (eq
+B b Abst)) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t10)) (\lambda (t10: T).(pr0
+(THead (Flat Appl) u3 t6) t10)))))))) (\lambda (H36: (eq T (lift (S O) O t7)
+t3)).(eq_ind T (lift (S O) O t7) (\lambda (_: T).((eq T t8 t6) \to ((not (eq
+B b Abst)) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t10)) (\lambda (t10: T).(pr0
+(THead (Flat Appl) u3 t6) t10))))))) (\lambda (H37: (eq T t8 t6)).(eq_ind T
+t6 (\lambda (t9: T).((not (eq B b Abst)) \to ((pr0 t7 t9) \to (ex2 T (\lambda
+(t10: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u3 t6) t10)))))) (\lambda
+(H38: (not (eq B b Abst))).(\lambda (H39: (pr0 t7 t6)).(let H40 \def
+(eq_ind_r T t3 (\lambda (t9: T).(eq T (THead (Bind b) u1 t9) t5)) H23 (lift
+(S O) O t7) H36) in (let H41 \def (eq_ind_r T t5 (\lambda (t9: T).(eq T
+(THead (Flat Appl) u0 t9) t)) H26 (THead (Bind b) u1 (lift (S O) O t7)) H40)
+in (let H42 \def (eq_ind_r T t (\lambda (t9: T).(\forall (v: T).((tlt v t9)
+\to (\forall (t10: T).((pr0 v t10) \to (\forall (t11: T).((pr0 v t11) \to
+(ex2 T (\lambda (t12: T).(pr0 t10 t12)) (\lambda (t12: T).(pr0 t11
+t12)))))))))) H (THead (Flat Appl) u0 (THead (Bind b) u1 (lift (S O) O t7)))
+H41) in (let H43 \def (eq_ind_r T t3 (\lambda (t9: T).(pr0 t9 t4)) H12 (lift
+(S O) O t7) H36) in (ex2_ind T (\lambda (t9: T).(eq T t4 (lift (S O) O t9)))
+(\lambda (t9: T).(pr0 t7 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2
(THead (Flat Appl) (lift (S O) O v2) t4)) t9)) (\lambda (t9: T).(pr0 (THead
-(Flat Appl) u3 t6) t9))))) H31)) H30 H28)))]) in (H28 (refl_equal T (THead
-(Bind b) u1 t3)) (refl_equal T t6))))) k H25)))) H22)) H21))))) t2 H17)) t
-H15 H16 H13 H14))) | (pr0_beta u v0 v3 H13 t5 t6 H14) \Rightarrow (\lambda
-(H15: (eq T (THead (Flat Appl) v0 (THead (Bind Abst) u t5)) t)).(\lambda
-(H16: (eq T (THead (Bind Abbr) v3 t6) t2)).(eq_ind T (THead (Flat Appl) v0
-(THead (Bind Abst) u t5)) (\lambda (_: T).((eq T (THead (Bind Abbr) v3 t6)
-t2) \to ((pr0 v0 v3) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead
+(Flat Appl) u3 t6) t9))) (\lambda (x: T).(\lambda (H44: (eq T t4 (lift (S O)
+O x))).(\lambda (H45: (pr0 t7 x)).(eq_ind_r T (lift (S O) O x) (\lambda (t9:
+T).(ex2 T (\lambda (t10: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O v2) t9)) t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u3 t6)
+t10)))) (let H46 \def (eq_ind T v1 (\lambda (t9: T).(pr0 t9 v2)) H10 u0 H24)
+in (ex2_ind T (\lambda (t9: T).(pr0 v2 t9)) (\lambda (t9: T).(pr0 u3 t9))
+(ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) (lift (S O) O x))) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3
+t6) t9))) (\lambda (x0: T).(\lambda (H47: (pr0 v2 x0)).(\lambda (H48: (pr0 u3
+x0)).(ex2_ind T (\lambda (t9: T).(pr0 x t9)) (\lambda (t9: T).(pr0 t6 t9))
+(ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) (lift (S O) O x))) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3
+t6) t9))) (\lambda (x1: T).(\lambda (H49: (pr0 x x1)).(\lambda (H50: (pr0 t6
+x1)).(ex2_sym T (pr0 (THead (Flat Appl) u3 t6)) (pr0 (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) (lift (S O) O x))))
+(pr0_confluence__pr0_cong_upsilon_zeta b H38 u1 u2 H11 u3 v2 x0 H48 H47 x t6
+x1 H49 H50))))) (H42 t7 (tlt_trans (THead (Bind b) u1 (lift (S O) O t7)) t7
+(THead (Flat Appl) u0 (THead (Bind b) u1 (lift (S O) O t7))) (lift_tlt_dx
+(Bind b) u1 t7 (S O) O) (tlt_head_dx (Flat Appl) u0 (THead (Bind b) u1 (lift
+(S O) O t7)))) x H45 t6 H39))))) (H42 u0 (tlt_head_sx (Flat Appl) u0 (THead
+(Bind b) u1 (lift (S O) O t7))) v2 H46 u3 H18))) t4 H44)))) (pr0_gen_lift t7
+t4 (S O) O H43)))))))) t8 (sym_eq T t8 t6 H37))) t3 H36)) u (sym_eq T u u1
+H35))) b0 (sym_eq B b0 b H34))) H33)) H32)) H31 H28 H29))) | (pr0_tau t7 t8
+H28 u) \Rightarrow (\lambda (H29: (eq T (THead (Flat Cast) u t7) (THead (Bind
+b) u1 t3))).(\lambda (H30: (eq T t8 t6)).((let H31 \def (eq_ind T (THead
+(Flat Cast) u t7) (\lambda (e: T).(match e with [(TSort _) \Rightarrow False
+| (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 with
+[(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind
+b) u1 t3) H29) in (False_ind ((eq T t8 t6) \to ((pr0 t7 t8) \to (ex2 T
+(\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4)) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9))))) H31)) H30
+H28)))]) in (H28 (refl_equal T (THead (Bind b) u1 t3)) (refl_equal T t6)))))
+k H25)))) H22)) H21))))) t2 H17)) t H15 H16 H13 H14))) | (pr0_beta u v0 v3
+H13 t5 t6 H14) \Rightarrow (\lambda (H15: (eq T (THead (Flat Appl) v0 (THead
+(Bind Abst) u t5)) t)).(\lambda (H16: (eq T (THead (Bind Abbr) v3 t6)
+t2)).(eq_ind T (THead (Flat Appl) v0 (THead (Bind Abst) u t5)) (\lambda (_:
+T).((eq T (THead (Bind Abbr) v3 t6) t2) \to ((pr0 v0 v3) \to ((pr0 t5 t6) \to
+(ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H17: (eq T
+(THead (Bind Abbr) v3 t6) t2)).(eq_ind T (THead (Bind Abbr) v3 t6) (\lambda
+(t7: T).((pr0 v0 v3) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead
(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8:
-T).(pr0 t2 t8))))))) (\lambda (H17: (eq T (THead (Bind Abbr) v3 t6)
-t2)).(eq_ind T (THead (Bind Abbr) v3 t6) (\lambda (t7: T).((pr0 v0 v3) \to
-((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat
-Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 t7 t8)))))) (\lambda
-(_: (pr0 v0 v3)).(\lambda (_: (pr0 t5 t6)).(let H20 \def (eq_ind_r T t
-(\lambda (t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) t7)) H6
-(THead (Flat Appl) v0 (THead (Bind Abst) u t5)) H15) in (let H21 \def
-(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
-[(TSort _) \Rightarrow v1 | (TLRef _) \Rightarrow v1 | (THead _ t7 _)
-\Rightarrow t7])) (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (THead (Flat
-Appl) v0 (THead (Bind Abst) u t5)) H20) in ((let H22 \def (f_equal T B
-(\lambda (e: T).(match e in T return (\lambda (_: T).B) with [(TSort _)
-\Rightarrow b | (TLRef _) \Rightarrow b | (THead _ _ t7) \Rightarrow (match
-t7 in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow b | (TLRef _)
-\Rightarrow b | (THead k _ _) \Rightarrow (match k in K return (\lambda (_:
-K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow b])])])) (THead
-(Flat Appl) v1 (THead (Bind b) u1 t3)) (THead (Flat Appl) v0 (THead (Bind
-Abst) u t5)) H20) in ((let H23 \def (f_equal T T (\lambda (e: T).(match e in
-T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u1 | (TLRef _)
-\Rightarrow u1 | (THead _ _ t7) \Rightarrow (match t7 in T return (\lambda
-(_: T).T) with [(TSort _) \Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead
-_ t8 _) \Rightarrow t8])])) (THead (Flat Appl) v1 (THead (Bind b) u1 t3))
-(THead (Flat Appl) v0 (THead (Bind Abst) u t5)) H20) in ((let H24 \def
-(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
-[(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t7)
-\Rightarrow (match t7 in T return (\lambda (_: T).T) with [(TSort _)
-\Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t8) \Rightarrow
+T).(pr0 t7 t8)))))) (\lambda (_: (pr0 v0 v3)).(\lambda (_: (pr0 t5 t6)).(let
+H20 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) v1 (THead
+(Bind b) u1 t3)) t7)) H6 (THead (Flat Appl) v0 (THead (Bind Abst) u t5)) H15)
+in (let H21 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _)
+\Rightarrow v1 | (TLRef _) \Rightarrow v1 | (THead _ t7 _) \Rightarrow t7]))
+(THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (THead (Flat Appl) v0 (THead
+(Bind Abst) u t5)) H20) in ((let H22 \def (f_equal T B (\lambda (e: T).(match
+e with [(TSort _) \Rightarrow b | (TLRef _) \Rightarrow b | (THead _ _ t7)
+\Rightarrow (match t7 with [(TSort _) \Rightarrow b | (TLRef _) \Rightarrow b
+| (THead k _ _) \Rightarrow (match k with [(Bind b0) \Rightarrow b0 | (Flat
+_) \Rightarrow b])])])) (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (THead
+(Flat Appl) v0 (THead (Bind Abst) u t5)) H20) in ((let H23 \def (f_equal T T
+(\lambda (e: T).(match e with [(TSort _) \Rightarrow u1 | (TLRef _)
+\Rightarrow u1 | (THead _ _ t7) \Rightarrow (match t7 with [(TSort _)
+\Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead _ t8 _) \Rightarrow
t8])])) (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (THead (Flat Appl) v0
-(THead (Bind Abst) u t5)) H20) in (\lambda (_: (eq T u1 u)).(\lambda (H26:
-(eq B b Abst)).(\lambda (H27: (eq T v1 v0)).(let H28 \def (eq_ind_r T t
-(\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8)
-\to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10))
-(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Flat Appl) v0 (THead (Bind
-Abst) u t5)) H15) in (let H29 \def (eq_ind T v1 (\lambda (t7: T).(pr0 t7 v2))
-H10 v0 H27) in (eq_ind_r B Abst (\lambda (b0: B).(ex2 T (\lambda (t7: T).(pr0
-(THead (Bind b0) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t7)) (\lambda
-(t7: T).(pr0 (THead (Bind Abbr) v3 t6) t7)))) (let H30 \def (eq_ind B b
-(\lambda (b0: B).(not (eq B b0 Abst))) H9 Abst H26) in (let H31 \def (match
-(H30 (refl_equal B Abst)) in False return (\lambda (_: False).(ex2 T (\lambda
-(t7: T).(pr0 (THead (Bind Abst) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
-t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) v3 t6) t7)))) with []) in H31))
-b H26))))))) H23)) H22)) H21))))) t2 H17)) t H15 H16 H13 H14))) |
-(pr0_upsilon b0 H13 v0 v3 H14 u0 u3 H15 t5 t6 H16) \Rightarrow (\lambda (H17:
-(eq T (THead (Flat Appl) v0 (THead (Bind b0) u0 t5)) t)).(\lambda (H18: (eq T
-(THead (Bind b0) u3 (THead (Flat Appl) (lift (S O) O v3) t6)) t2)).(eq_ind T
-(THead (Flat Appl) v0 (THead (Bind b0) u0 t5)) (\lambda (_: T).((eq T (THead
-(Bind b0) u3 (THead (Flat Appl) (lift (S O) O v3) t6)) t2) \to ((not (eq B b0
-Abst)) \to ((pr0 v0 v3) \to ((pr0 u0 u3) \to ((pr0 t5 t6) \to (ex2 T (\lambda
-(t8: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
-t8)) (\lambda (t8: T).(pr0 t2 t8))))))))) (\lambda (H19: (eq T (THead (Bind
-b0) u3 (THead (Flat Appl) (lift (S O) O v3) t6)) t2)).(eq_ind T (THead (Bind
-b0) u3 (THead (Flat Appl) (lift (S O) O v3) t6)) (\lambda (t7: T).((not (eq B
-b0 Abst)) \to ((pr0 v0 v3) \to ((pr0 u0 u3) \to ((pr0 t5 t6) \to (ex2 T
-(\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
-t4)) t8)) (\lambda (t8: T).(pr0 t7 t8)))))))) (\lambda (_: (not (eq B b0
-Abst))).(\lambda (H21: (pr0 v0 v3)).(\lambda (H22: (pr0 u0 u3)).(\lambda
-(H23: (pr0 t5 t6)).(let H24 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead
-(Flat Appl) v1 (THead (Bind b) u1 t3)) t7)) H6 (THead (Flat Appl) v0 (THead
-(Bind b0) u0 t5)) H17) in (let H25 \def (f_equal T T (\lambda (e: T).(match e
-in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow v1 | (TLRef _)
+(THead (Bind Abst) u t5)) H20) in ((let H24 \def (f_equal T T (\lambda (e:
+T).(match e with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 |
+(THead _ _ t7) \Rightarrow (match t7 with [(TSort _) \Rightarrow t3 | (TLRef
+_) \Rightarrow t3 | (THead _ _ t8) \Rightarrow t8])])) (THead (Flat Appl) v1
+(THead (Bind b) u1 t3)) (THead (Flat Appl) v0 (THead (Bind Abst) u t5)) H20)
+in (\lambda (_: (eq T u1 u)).(\lambda (H26: (eq B b Abst)).(\lambda (H27: (eq
+T v1 v0)).(let H28 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt
+v t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to
+(ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9
+t10)))))))))) H (THead (Flat Appl) v0 (THead (Bind Abst) u t5)) H15) in (let
+H29 \def (eq_ind T v1 (\lambda (t7: T).(pr0 t7 v2)) H10 v0 H27) in (eq_ind_r
+B Abst (\lambda (b0: B).(ex2 T (\lambda (t7: T).(pr0 (THead (Bind b0) u2
+(THead (Flat Appl) (lift (S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0 (THead
+(Bind Abbr) v3 t6) t7)))) (let H30 \def (eq_ind B b (\lambda (b0: B).(not (eq
+B b0 Abst))) H9 Abst H26) in (let H31 \def (match (H30 (refl_equal B Abst))
+in False with []) in H31)) b H26))))))) H23)) H22)) H21))))) t2 H17)) t H15
+H16 H13 H14))) | (pr0_upsilon b0 H13 v0 v3 H14 u0 u3 H15 t5 t6 H16)
+\Rightarrow (\lambda (H17: (eq T (THead (Flat Appl) v0 (THead (Bind b0) u0
+t5)) t)).(\lambda (H18: (eq T (THead (Bind b0) u3 (THead (Flat Appl) (lift (S
+O) O v3) t6)) t2)).(eq_ind T (THead (Flat Appl) v0 (THead (Bind b0) u0 t5))
+(\lambda (_: T).((eq T (THead (Bind b0) u3 (THead (Flat Appl) (lift (S O) O
+v3) t6)) t2) \to ((not (eq B b0 Abst)) \to ((pr0 v0 v3) \to ((pr0 u0 u3) \to
+((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 t2 t8)))))))))
+(\lambda (H19: (eq T (THead (Bind b0) u3 (THead (Flat Appl) (lift (S O) O v3)
+t6)) t2)).(eq_ind T (THead (Bind b0) u3 (THead (Flat Appl) (lift (S O) O v3)
+t6)) (\lambda (t7: T).((not (eq B b0 Abst)) \to ((pr0 v0 v3) \to ((pr0 u0 u3)
+\to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 t7 t8))))))))
+(\lambda (_: (not (eq B b0 Abst))).(\lambda (H21: (pr0 v0 v3)).(\lambda (H22:
+(pr0 u0 u3)).(\lambda (H23: (pr0 t5 t6)).(let H24 \def (eq_ind_r T t (\lambda
+(t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) t7)) H6 (THead
+(Flat Appl) v0 (THead (Bind b0) u0 t5)) H17) in (let H25 \def (f_equal T T
+(\lambda (e: T).(match e with [(TSort _) \Rightarrow v1 | (TLRef _)
\Rightarrow v1 | (THead _ t7 _) \Rightarrow t7])) (THead (Flat Appl) v1
(THead (Bind b) u1 t3)) (THead (Flat Appl) v0 (THead (Bind b0) u0 t5)) H24)
-in ((let H26 \def (f_equal T B (\lambda (e: T).(match e in T return (\lambda
-(_: T).B) with [(TSort _) \Rightarrow b | (TLRef _) \Rightarrow b | (THead _
-_ t7) \Rightarrow (match t7 in T return (\lambda (_: T).B) with [(TSort _)
-\Rightarrow b | (TLRef _) \Rightarrow b | (THead k _ _) \Rightarrow (match k
-in K return (\lambda (_: K).B) with [(Bind b1) \Rightarrow b1 | (Flat _)
-\Rightarrow b])])])) (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (THead
-(Flat Appl) v0 (THead (Bind b0) u0 t5)) H24) in ((let H27 \def (f_equal T T
-(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
-\Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead _ _ t7) \Rightarrow (match
-t7 in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u1 | (TLRef _)
-\Rightarrow u1 | (THead _ t8 _) \Rightarrow t8])])) (THead (Flat Appl) v1
+in ((let H26 \def (f_equal T B (\lambda (e: T).(match e with [(TSort _)
+\Rightarrow b | (TLRef _) \Rightarrow b | (THead _ _ t7) \Rightarrow (match
+t7 with [(TSort _) \Rightarrow b | (TLRef _) \Rightarrow b | (THead k _ _)
+\Rightarrow (match k with [(Bind b1) \Rightarrow b1 | (Flat _) \Rightarrow
+b])])])) (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (THead (Flat Appl) v0
+(THead (Bind b0) u0 t5)) H24) in ((let H27 \def (f_equal T T (\lambda (e:
+T).(match e with [(TSort _) \Rightarrow u1 | (TLRef _) \Rightarrow u1 |
+(THead _ _ t7) \Rightarrow (match t7 with [(TSort _) \Rightarrow u1 | (TLRef
+_) \Rightarrow u1 | (THead _ t8 _) \Rightarrow t8])])) (THead (Flat Appl) v1
(THead (Bind b) u1 t3)) (THead (Flat Appl) v0 (THead (Bind b0) u0 t5)) H24)
-in ((let H28 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda
-(_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead
-_ _ t7) \Rightarrow (match t7 in T return (\lambda (_: T).T) with [(TSort _)
-\Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t8) \Rightarrow
-t8])])) (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (THead (Flat Appl) v0
-(THead (Bind b0) u0 t5)) H24) in (\lambda (H29: (eq T u1 u0)).(\lambda (H30:
-(eq B b b0)).(\lambda (H31: (eq T v1 v0)).(let H32 \def (eq_ind_r T t
-(\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8)
-\to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10))
-(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Flat Appl) v0 (THead (Bind
-b0) u0 t5)) H17) in (let H33 \def (eq_ind T v1 (\lambda (t7: T).(pr0 t7 v2))
-H10 v0 H31) in (eq_ind_r B b0 (\lambda (b1: B).(ex2 T (\lambda (t7: T).(pr0
-(THead (Bind b1) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t7)) (\lambda
-(t7: T).(pr0 (THead (Bind b0) u3 (THead (Flat Appl) (lift (S O) O v3) t6))
-t7)))) (let H34 \def (eq_ind B b (\lambda (b1: B).(not (eq B b1 Abst))) H9 b0
-H30) in (let H35 \def (eq_ind T u1 (\lambda (t7: T).(pr0 t7 u2)) H11 u0 H29)
-in (let H36 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H12 t5 H28) in
-(ex2_ind T (\lambda (t7: T).(pr0 t4 t7)) (\lambda (t7: T).(pr0 t6 t7)) (ex2 T
-(\lambda (t7: T).(pr0 (THead (Bind b0) u2 (THead (Flat Appl) (lift (S O) O
+in ((let H28 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _)
+\Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t7) \Rightarrow (match
+t7 with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t8)
+\Rightarrow t8])])) (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (THead
+(Flat Appl) v0 (THead (Bind b0) u0 t5)) H24) in (\lambda (H29: (eq T u1
+u0)).(\lambda (H30: (eq B b b0)).(\lambda (H31: (eq T v1 v0)).(let H32 \def
+(eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8:
+T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10:
+T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Flat Appl)
+v0 (THead (Bind b0) u0 t5)) H17) in (let H33 \def (eq_ind T v1 (\lambda (t7:
+T).(pr0 t7 v2)) H10 v0 H31) in (eq_ind_r B b0 (\lambda (b1: B).(ex2 T
+(\lambda (t7: T).(pr0 (THead (Bind b1) u2 (THead (Flat Appl) (lift (S O) O
v2) t4)) t7)) (\lambda (t7: T).(pr0 (THead (Bind b0) u3 (THead (Flat Appl)
-(lift (S O) O v3) t6)) t7))) (\lambda (x: T).(\lambda (H37: (pr0 t4
-x)).(\lambda (H38: (pr0 t6 x)).(ex2_ind T (\lambda (t7: T).(pr0 u2 t7))
-(\lambda (t7: T).(pr0 u3 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b0)
+(lift (S O) O v3) t6)) t7)))) (let H34 \def (eq_ind B b (\lambda (b1: B).(not
+(eq B b1 Abst))) H9 b0 H30) in (let H35 \def (eq_ind T u1 (\lambda (t7:
+T).(pr0 t7 u2)) H11 u0 H29) in (let H36 \def (eq_ind T t3 (\lambda (t7:
+T).(pr0 t7 t4)) H12 t5 H28) in (ex2_ind T (\lambda (t7: T).(pr0 t4 t7))
+(\lambda (t7: T).(pr0 t6 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b0)
u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0
(THead (Bind b0) u3 (THead (Flat Appl) (lift (S O) O v3) t6)) t7))) (\lambda
-(x0: T).(\lambda (H39: (pr0 u2 x0)).(\lambda (H40: (pr0 u3 x0)).(ex2_ind T
-(\lambda (t7: T).(pr0 v2 t7)) (\lambda (t7: T).(pr0 v3 t7)) (ex2 T (\lambda
+(x: T).(\lambda (H37: (pr0 t4 x)).(\lambda (H38: (pr0 t6 x)).(ex2_ind T
+(\lambda (t7: T).(pr0 u2 t7)) (\lambda (t7: T).(pr0 u3 t7)) (ex2 T (\lambda
(t7: T).(pr0 (THead (Bind b0) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
t7)) (\lambda (t7: T).(pr0 (THead (Bind b0) u3 (THead (Flat Appl) (lift (S O)
-O v3) t6)) t7))) (\lambda (x1: T).(\lambda (H41: (pr0 v2 x1)).(\lambda (H42:
-(pr0 v3 x1)).(pr0_confluence__pr0_upsilon_upsilon b0 H34 v2 v3 x1 H41 H42 u2
-u3 x0 H39 H40 t4 t6 x H37 H38)))) (H32 v0 (tlt_head_sx (Flat Appl) v0 (THead
-(Bind b0) u0 t5)) v2 H33 v3 H21))))) (H32 u0 (tlt_trans (THead (Bind b0) u0
-t5) u0 (THead (Flat Appl) v0 (THead (Bind b0) u0 t5)) (tlt_head_sx (Bind b0)
-u0 t5) (tlt_head_dx (Flat Appl) v0 (THead (Bind b0) u0 t5))) u2 H35 u3
-H22))))) (H32 t5 (tlt_trans (THead (Bind b0) u0 t5) t5 (THead (Flat Appl) v0
-(THead (Bind b0) u0 t5)) (tlt_head_dx (Bind b0) u0 t5) (tlt_head_dx (Flat
-Appl) v0 (THead (Bind b0) u0 t5))) t4 H36 t6 H23))))) b H30))))))) H27))
-H26)) H25))))))) t2 H19)) t H17 H18 H13 H14 H15 H16))) | (pr0_delta u0 u3 H13
-t5 t6 H14 w H15) \Rightarrow (\lambda (H16: (eq T (THead (Bind Abbr) u0 t5)
-t)).(\lambda (H17: (eq T (THead (Bind Abbr) u3 w) t2)).(eq_ind T (THead (Bind
-Abbr) u0 t5) (\lambda (_: T).((eq T (THead (Bind Abbr) u3 w) t2) \to ((pr0 u0
-u3) \to ((pr0 t5 t6) \to ((subst0 O u3 t6 w) \to (ex2 T (\lambda (t8: T).(pr0
-(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8)) (\lambda
-(t8: T).(pr0 t2 t8)))))))) (\lambda (H18: (eq T (THead (Bind Abbr) u3 w)
-t2)).(eq_ind T (THead (Bind Abbr) u3 w) (\lambda (t7: T).((pr0 u0 u3) \to
-((pr0 t5 t6) \to ((subst0 O u3 t6 w) \to (ex2 T (\lambda (t8: T).(pr0 (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8:
-T).(pr0 t7 t8))))))) (\lambda (_: (pr0 u0 u3)).(\lambda (_: (pr0 t5
-t6)).(\lambda (_: (subst0 O u3 t6 w)).(let H22 \def (eq_ind_r T t (\lambda
-(t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) t7)) H6 (THead
-(Bind Abbr) u0 t5) H16) in (let H23 \def (eq_ind T (THead (Flat Appl) v1
-(THead (Bind b) u1 t3)) (\lambda (ee: T).(match ee in T return (\lambda (_:
-T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False |
-(THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).Prop) with
-[(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind
-Abbr) u0 t5) H22) in (False_ind (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b)
-u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0
-(THead (Bind Abbr) u3 w) t7))) H23)))))) t2 H18)) t H16 H17 H13 H14 H15))) |
-(pr0_zeta b0 H13 t5 t6 H14 u) \Rightarrow (\lambda (H15: (eq T (THead (Bind
-b0) u (lift (S O) O t5)) t)).(\lambda (H16: (eq T t6 t2)).(eq_ind T (THead
-(Bind b0) u (lift (S O) O t5)) (\lambda (_: T).((eq T t6 t2) \to ((not (eq B
-b0 Abst)) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind b)
-u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 t2
-t8))))))) (\lambda (H17: (eq T t6 t2)).(eq_ind T t2 (\lambda (t7: T).((not
-(eq B b0 Abst)) \to ((pr0 t5 t7) \to (ex2 T (\lambda (t8: T).(pr0 (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8:
-T).(pr0 t2 t8)))))) (\lambda (_: (not (eq B b0 Abst))).(\lambda (_: (pr0 t5
-t2)).(let H20 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) v1
-(THead (Bind b) u1 t3)) t7)) H6 (THead (Bind b0) u (lift (S O) O t5)) H15) in
-(let H21 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u1 t3))
-(\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _)
-\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow
-(match k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False |
-(Flat _) \Rightarrow True])])) I (THead (Bind b0) u (lift (S O) O t5)) H20)
-in (False_ind (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b) u2 (THead (Flat
-Appl) (lift (S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0 t2 t7))) H21))))) t6
-(sym_eq T t6 t2 H17))) t H15 H16 H13 H14))) | (pr0_tau t5 t6 H13 u)
-\Rightarrow (\lambda (H14: (eq T (THead (Flat Cast) u t5) t)).(\lambda (H15:
-(eq T t6 t2)).(eq_ind T (THead (Flat Cast) u t5) (\lambda (_: T).((eq T t6
-t2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2
-(THead (Flat Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 t2
-t8)))))) (\lambda (H16: (eq T t6 t2)).(eq_ind T t2 (\lambda (t7: T).((pr0 t5
-t7) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl)
-(lift (S O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 t2 t8))))) (\lambda (_:
-(pr0 t5 t2)).(let H18 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat
-Appl) v1 (THead (Bind b) u1 t3)) t7)) H6 (THead (Flat Cast) u t5) H14) in
-(let H19 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u1 t3))
-(\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _)
+O v3) t6)) t7))) (\lambda (x0: T).(\lambda (H39: (pr0 u2 x0)).(\lambda (H40:
+(pr0 u3 x0)).(ex2_ind T (\lambda (t7: T).(pr0 v2 t7)) (\lambda (t7: T).(pr0
+v3 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b0) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0 (THead (Bind b0) u3 (THead
+(Flat Appl) (lift (S O) O v3) t6)) t7))) (\lambda (x1: T).(\lambda (H41: (pr0
+v2 x1)).(\lambda (H42: (pr0 v3 x1)).(pr0_confluence__pr0_upsilon_upsilon b0
+H34 v2 v3 x1 H41 H42 u2 u3 x0 H39 H40 t4 t6 x H37 H38)))) (H32 v0
+(tlt_head_sx (Flat Appl) v0 (THead (Bind b0) u0 t5)) v2 H33 v3 H21))))) (H32
+u0 (tlt_trans (THead (Bind b0) u0 t5) u0 (THead (Flat Appl) v0 (THead (Bind
+b0) u0 t5)) (tlt_head_sx (Bind b0) u0 t5) (tlt_head_dx (Flat Appl) v0 (THead
+(Bind b0) u0 t5))) u2 H35 u3 H22))))) (H32 t5 (tlt_trans (THead (Bind b0) u0
+t5) t5 (THead (Flat Appl) v0 (THead (Bind b0) u0 t5)) (tlt_head_dx (Bind b0)
+u0 t5) (tlt_head_dx (Flat Appl) v0 (THead (Bind b0) u0 t5))) t4 H36 t6
+H23))))) b H30))))))) H27)) H26)) H25))))))) t2 H19)) t H17 H18 H13 H14 H15
+H16))) | (pr0_delta u0 u3 H13 t5 t6 H14 w H15) \Rightarrow (\lambda (H16: (eq
+T (THead (Bind Abbr) u0 t5) t)).(\lambda (H17: (eq T (THead (Bind Abbr) u3 w)
+t2)).(eq_ind T (THead (Bind Abbr) u0 t5) (\lambda (_: T).((eq T (THead (Bind
+Abbr) u3 w) t2) \to ((pr0 u0 u3) \to ((pr0 t5 t6) \to ((subst0 O u3 t6 w) \to
+(ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 t2 t8)))))))) (\lambda (H18: (eq T
+(THead (Bind Abbr) u3 w) t2)).(eq_ind T (THead (Bind Abbr) u3 w) (\lambda
+(t7: T).((pr0 u0 u3) \to ((pr0 t5 t6) \to ((subst0 O u3 t6 w) \to (ex2 T
+(\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4)) t8)) (\lambda (t8: T).(pr0 t7 t8))))))) (\lambda (_: (pr0 u0
+u3)).(\lambda (_: (pr0 t5 t6)).(\lambda (_: (subst0 O u3 t6 w)).(let H22 \def
+(eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind b) u1
+t3)) t7)) H6 (THead (Bind Abbr) u0 t5) H16) in (let H23 \def (eq_ind T (THead
+(Flat Appl) v1 (THead (Bind b) u1 t3)) (\lambda (ee: T).(match ee with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _)
+\Rightarrow (match k with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow
+True])])) I (THead (Bind Abbr) u0 t5) H22) in (False_ind (ex2 T (\lambda (t7:
+T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t7))
+(\lambda (t7: T).(pr0 (THead (Bind Abbr) u3 w) t7))) H23)))))) t2 H18)) t H16
+H17 H13 H14 H15))) | (pr0_zeta b0 H13 t5 t6 H14 u) \Rightarrow (\lambda (H15:
+(eq T (THead (Bind b0) u (lift (S O) O t5)) t)).(\lambda (H16: (eq T t6
+t2)).(eq_ind T (THead (Bind b0) u (lift (S O) O t5)) (\lambda (_: T).((eq T
+t6 t2) \to ((not (eq B b0 Abst)) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8:
+T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8))
+(\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H17: (eq T t6 t2)).(eq_ind T t2
+(\lambda (t7: T).((not (eq B b0 Abst)) \to ((pr0 t5 t7) \to (ex2 T (\lambda
+(t8: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+t8)) (\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (_: (not (eq B b0
+Abst))).(\lambda (_: (pr0 t5 t2)).(let H20 \def (eq_ind_r T t (\lambda (t7:
+T).(eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) t7)) H6 (THead (Bind
+b0) u (lift (S O) O t5)) H15) in (let H21 \def (eq_ind T (THead (Flat Appl)
+v1 (THead (Bind b) u1 t3)) (\lambda (ee: T).(match ee with [(TSort _)
\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow
-(match k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False |
-(Flat f) \Rightarrow (match f in F return (\lambda (_: F).Prop) with [Appl
-\Rightarrow True | Cast \Rightarrow False])])])) I (THead (Flat Cast) u t5)
-H18) in (False_ind (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b) u2 (THead
-(Flat Appl) (lift (S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0 t2 t7)))
-H19)))) t6 (sym_eq T t6 t2 H16))) t H14 H15 H13)))]) in (H13 (refl_equal T t)
-(refl_equal T t2))))))) t1 H8)) t H6 H7 H2 H3 H4 H5))) | (pr0_delta u1 u2 H2
-t3 t4 H3 w H4) \Rightarrow (\lambda (H5: (eq T (THead (Bind Abbr) u1 t3)
-t)).(\lambda (H6: (eq T (THead (Bind Abbr) u2 w) t1)).(eq_ind T (THead (Bind
-Abbr) u1 t3) (\lambda (_: T).((eq T (THead (Bind Abbr) u2 w) t1) \to ((pr0 u1
-u2) \to ((pr0 t3 t4) \to ((subst0 O u2 t4 w) \to (ex2 T (\lambda (t6: T).(pr0
-t1 t6)) (\lambda (t6: T).(pr0 t2 t6)))))))) (\lambda (H7: (eq T (THead (Bind
-Abbr) u2 w) t1)).(eq_ind T (THead (Bind Abbr) u2 w) (\lambda (t5: T).((pr0 u1
-u2) \to ((pr0 t3 t4) \to ((subst0 O u2 t4 w) \to (ex2 T (\lambda (t6: T).(pr0
-t5 t6)) (\lambda (t6: T).(pr0 t2 t6))))))) (\lambda (H8: (pr0 u1
-u2)).(\lambda (H9: (pr0 t3 t4)).(\lambda (H10: (subst0 O u2 t4 w)).(let H11
-\def (match H1 in pr0 return (\lambda (t5: T).(\lambda (t6: T).(\lambda (_:
-(pr0 t5 t6)).((eq T t5 t) \to ((eq T t6 t2) \to (ex2 T (\lambda (t7: T).(pr0
-(THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 t2 t7)))))))) with
-[(pr0_refl t5) \Rightarrow (\lambda (H11: (eq T t5 t)).(\lambda (H12: (eq T
-t5 t2)).(eq_ind T t (\lambda (t6: T).((eq T t6 t2) \to (ex2 T (\lambda (t7:
-T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 t2 t7)))))
-(\lambda (H13: (eq T t t2)).(eq_ind T t2 (\lambda (_: T).(ex2 T (\lambda (t7:
-T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 t2 t7)))) (let
-H14 \def (eq_ind_r T t (\lambda (t6: T).(eq T t6 t2)) H13 (THead (Bind Abbr)
-u1 t3) H5) in (eq_ind T (THead (Bind Abbr) u1 t3) (\lambda (t6: T).(ex2 T
-(\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 t6
-t7)))) (let H15 \def (eq_ind_r T t (\lambda (t6: T).(eq T t5 t6)) H11 (THead
-(Bind Abbr) u1 t3) H5) in (let H16 \def (eq_ind_r T t (\lambda (t6:
-T).(\forall (v: T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7) \to (\forall
-(t8: T).((pr0 v t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9)) (\lambda (t9:
-T).(pr0 t8 t9)))))))))) H (THead (Bind Abbr) u1 t3) H5) in (ex_intro2 T
-(\lambda (t6: T).(pr0 (THead (Bind Abbr) u2 w) t6)) (\lambda (t6: T).(pr0
-(THead (Bind Abbr) u1 t3) t6)) (THead (Bind Abbr) u2 w) (pr0_refl (THead
-(Bind Abbr) u2 w)) (pr0_delta u1 u2 H8 t3 t4 H9 w H10)))) t2 H14)) t (sym_eq
-T t t2 H13))) t5 (sym_eq T t5 t H11) H12))) | (pr0_comp u0 u3 H11 t5 t6 H12
-k) \Rightarrow (\lambda (H13: (eq T (THead k u0 t5) t)).(\lambda (H14: (eq T
-(THead k u3 t6) t2)).(eq_ind T (THead k u0 t5) (\lambda (_: T).((eq T (THead
-k u3 t6) t2) \to ((pr0 u0 u3) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8:
-T).(pr0 (THead (Bind Abbr) u2 w) t8)) (\lambda (t8: T).(pr0 t2 t8)))))))
-(\lambda (H15: (eq T (THead k u3 t6) t2)).(eq_ind T (THead k u3 t6) (\lambda
-(t7: T).((pr0 u0 u3) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead
-(Bind Abbr) u2 w) t8)) (\lambda (t8: T).(pr0 t7 t8)))))) (\lambda (H16: (pr0
-u0 u3)).(\lambda (H17: (pr0 t5 t6)).(let H18 \def (eq_ind_r T t (\lambda (t7:
-T).(eq T (THead (Bind Abbr) u1 t3) t7)) H5 (THead k u0 t5) H13) in (let H19
-\def (f_equal T K (\lambda (e: T).(match e in T return (\lambda (_: T).K)
-with [(TSort _) \Rightarrow (Bind Abbr) | (TLRef _) \Rightarrow (Bind Abbr) |
-(THead k0 _ _) \Rightarrow k0])) (THead (Bind Abbr) u1 t3) (THead k u0 t5)
-H18) in ((let H20 \def (f_equal T T (\lambda (e: T).(match e in T return
-(\lambda (_: T).T) with [(TSort _) \Rightarrow u1 | (TLRef _) \Rightarrow u1
-| (THead _ t7 _) \Rightarrow t7])) (THead (Bind Abbr) u1 t3) (THead k u0 t5)
-H18) in ((let H21 \def (f_equal T T (\lambda (e: T).(match e in T return
-(\lambda (_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3
-| (THead _ _ t7) \Rightarrow t7])) (THead (Bind Abbr) u1 t3) (THead k u0 t5)
-H18) in (\lambda (H22: (eq T u1 u0)).(\lambda (H23: (eq K (Bind Abbr)
-k)).(eq_ind K (Bind Abbr) (\lambda (k0: K).(ex2 T (\lambda (t7: T).(pr0
-(THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 (THead k0 u3 t6) t7))))
-(let H24 \def (eq_ind_r K k (\lambda (k0: K).(eq T (THead k0 u0 t5) t)) H13
-(Bind Abbr) H23) in (let H25 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v:
-T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v
-t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9
-t10)))))))))) H (THead (Bind Abbr) u0 t5) H24) in (let H26 \def (eq_ind T u1
-(\lambda (t7: T).(pr0 t7 u2)) H8 u0 H22) in (let H27 \def (eq_ind T t3
-(\lambda (t7: T).(pr0 t7 t4)) H9 t5 H21) in (ex2_ind T (\lambda (t7: T).(pr0
-t4 t7)) (\lambda (t7: T).(pr0 t6 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead
-(Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) u3 t6) t7)))
-(\lambda (x: T).(\lambda (H28: (pr0 t4 x)).(\lambda (H29: (pr0 t6
-x)).(ex2_ind T (\lambda (t7: T).(pr0 u2 t7)) (\lambda (t7: T).(pr0 u3 t7))
-(ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7:
+(match k with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I
+(THead (Bind b0) u (lift (S O) O t5)) H20) in (False_ind (ex2 T (\lambda (t7:
+T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t7))
+(\lambda (t7: T).(pr0 t2 t7))) H21))))) t6 (sym_eq T t6 t2 H17))) t H15 H16
+H13 H14))) | (pr0_tau t5 t6 H13 u) \Rightarrow (\lambda (H14: (eq T (THead
+(Flat Cast) u t5) t)).(\lambda (H15: (eq T t6 t2)).(eq_ind T (THead (Flat
+Cast) u t5) (\lambda (_: T).((eq T t6 t2) \to ((pr0 t5 t6) \to (ex2 T
+(\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4)) t8)) (\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (H16: (eq T t6
+t2)).(eq_ind T t2 (\lambda (t7: T).((pr0 t5 t7) \to (ex2 T (\lambda (t8:
+T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8))
+(\lambda (t8: T).(pr0 t2 t8))))) (\lambda (_: (pr0 t5 t2)).(let H18 \def
+(eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind b) u1
+t3)) t7)) H6 (THead (Flat Cast) u t5) H14) in (let H19 \def (eq_ind T (THead
+(Flat Appl) v1 (THead (Bind b) u1 t3)) (\lambda (ee: T).(match ee with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _)
+\Rightarrow (match k with [(Bind _) \Rightarrow False | (Flat f) \Rightarrow
+(match f with [Appl \Rightarrow True | Cast \Rightarrow False])])])) I (THead
+(Flat Cast) u t5) H18) in (False_ind (ex2 T (\lambda (t7: T).(pr0 (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t7)) (\lambda (t7:
+T).(pr0 t2 t7))) H19)))) t6 (sym_eq T t6 t2 H16))) t H14 H15 H13)))]) in (H13
+(refl_equal T t) (refl_equal T t2))))))) t1 H8)) t H6 H7 H2 H3 H4 H5))) |
+(pr0_delta u1 u2 H2 t3 t4 H3 w H4) \Rightarrow (\lambda (H5: (eq T (THead
+(Bind Abbr) u1 t3) t)).(\lambda (H6: (eq T (THead (Bind Abbr) u2 w)
+t1)).(eq_ind T (THead (Bind Abbr) u1 t3) (\lambda (_: T).((eq T (THead (Bind
+Abbr) u2 w) t1) \to ((pr0 u1 u2) \to ((pr0 t3 t4) \to ((subst0 O u2 t4 w) \to
+(ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t2 t6))))))))
+(\lambda (H7: (eq T (THead (Bind Abbr) u2 w) t1)).(eq_ind T (THead (Bind
+Abbr) u2 w) (\lambda (t5: T).((pr0 u1 u2) \to ((pr0 t3 t4) \to ((subst0 O u2
+t4 w) \to (ex2 T (\lambda (t6: T).(pr0 t5 t6)) (\lambda (t6: T).(pr0 t2
+t6))))))) (\lambda (H8: (pr0 u1 u2)).(\lambda (H9: (pr0 t3 t4)).(\lambda
+(H10: (subst0 O u2 t4 w)).(let H11 \def (match H1 with [(pr0_refl t5)
+\Rightarrow (\lambda (H11: (eq T t5 t)).(\lambda (H12: (eq T t5 t2)).(eq_ind
+T t (\lambda (t6: T).((eq T t6 t2) \to (ex2 T (\lambda (t7: T).(pr0 (THead
+(Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 t2 t7))))) (\lambda (H13: (eq T
+t t2)).(eq_ind T t2 (\lambda (_: T).(ex2 T (\lambda (t7: T).(pr0 (THead (Bind
+Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 t2 t7)))) (let H14 \def (eq_ind_r T t
+(\lambda (t6: T).(eq T t6 t2)) H13 (THead (Bind Abbr) u1 t3) H5) in (eq_ind T
+(THead (Bind Abbr) u1 t3) (\lambda (t6: T).(ex2 T (\lambda (t7: T).(pr0
+(THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 t6 t7)))) (let H15 \def
+(eq_ind_r T t (\lambda (t6: T).(eq T t5 t6)) H11 (THead (Bind Abbr) u1 t3)
+H5) in (let H16 \def (eq_ind_r T t (\lambda (t6: T).(\forall (v: T).((tlt v
+t6) \to (\forall (t7: T).((pr0 v t7) \to (\forall (t8: T).((pr0 v t8) \to
+(ex2 T (\lambda (t9: T).(pr0 t7 t9)) (\lambda (t9: T).(pr0 t8 t9)))))))))) H
+(THead (Bind Abbr) u1 t3) H5) in (ex_intro2 T (\lambda (t6: T).(pr0 (THead
+(Bind Abbr) u2 w) t6)) (\lambda (t6: T).(pr0 (THead (Bind Abbr) u1 t3) t6))
+(THead (Bind Abbr) u2 w) (pr0_refl (THead (Bind Abbr) u2 w)) (pr0_delta u1 u2
+H8 t3 t4 H9 w H10)))) t2 H14)) t (sym_eq T t t2 H13))) t5 (sym_eq T t5 t H11)
+H12))) | (pr0_comp u0 u3 H11 t5 t6 H12 k) \Rightarrow (\lambda (H13: (eq T
+(THead k u0 t5) t)).(\lambda (H14: (eq T (THead k u3 t6) t2)).(eq_ind T
+(THead k u0 t5) (\lambda (_: T).((eq T (THead k u3 t6) t2) \to ((pr0 u0 u3)
+\to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) u2 w)
+t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H15: (eq T (THead k u3 t6)
+t2)).(eq_ind T (THead k u3 t6) (\lambda (t7: T).((pr0 u0 u3) \to ((pr0 t5 t6)
+\to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) u2 w) t8)) (\lambda (t8:
+T).(pr0 t7 t8)))))) (\lambda (H16: (pr0 u0 u3)).(\lambda (H17: (pr0 t5
+t6)).(let H18 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Bind Abbr) u1
+t3) t7)) H5 (THead k u0 t5) H13) in (let H19 \def (f_equal T K (\lambda (e:
+T).(match e with [(TSort _) \Rightarrow (Bind Abbr) | (TLRef _) \Rightarrow
+(Bind Abbr) | (THead k0 _ _) \Rightarrow k0])) (THead (Bind Abbr) u1 t3)
+(THead k u0 t5) H18) in ((let H20 \def (f_equal T T (\lambda (e: T).(match e
+with [(TSort _) \Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead _ t7 _)
+\Rightarrow t7])) (THead (Bind Abbr) u1 t3) (THead k u0 t5) H18) in ((let H21
+\def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow t3 |
+(TLRef _) \Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead (Bind
+Abbr) u1 t3) (THead k u0 t5) H18) in (\lambda (H22: (eq T u1 u0)).(\lambda
+(H23: (eq K (Bind Abbr) k)).(eq_ind K (Bind Abbr) (\lambda (k0: K).(ex2 T
+(\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0
+(THead k0 u3 t6) t7)))) (let H24 \def (eq_ind_r K k (\lambda (k0: K).(eq T
+(THead k0 u0 t5) t)) H13 (Bind Abbr) H23) in (let H25 \def (eq_ind_r T t
+(\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8)
+\to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10))
+(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Bind Abbr) u0 t5) H24) in
+(let H26 \def (eq_ind T u1 (\lambda (t7: T).(pr0 t7 u2)) H8 u0 H22) in (let
+H27 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H9 t5 H21) in (ex2_ind T
+(\lambda (t7: T).(pr0 t4 t7)) (\lambda (t7: T).(pr0 t6 t7)) (ex2 T (\lambda
+(t7: T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 (THead (Bind
+Abbr) u3 t6) t7))) (\lambda (x: T).(\lambda (H28: (pr0 t4 x)).(\lambda (H29:
+(pr0 t6 x)).(ex2_ind T (\lambda (t7: T).(pr0 u2 t7)) (\lambda (t7: T).(pr0 u3
+t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7:
T).(pr0 (THead (Bind Abbr) u3 t6) t7))) (\lambda (x0: T).(\lambda (H30: (pr0
u2 x0)).(\lambda (H31: (pr0 u3 x0)).(ex2_sym T (pr0 (THead (Bind Abbr) u3
t6)) (pr0 (THead (Bind Abbr) u2 w)) (pr0_confluence__pr0_cong_delta u2 t4 w
(\lambda (t8: T).(pr0 t7 t8)))))) (\lambda (_: (pr0 v1 v2)).(\lambda (_: (pr0
t5 t6)).(let H18 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Bind Abbr)
u1 t3) t7)) H5 (THead (Flat Appl) v1 (THead (Bind Abst) u t5)) H13) in (let
-H19 \def (eq_ind T (THead (Bind Abbr) u1 t3) (\lambda (ee: T).(match ee in T
-return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
-\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda
-(_: K).Prop) with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow
+H19 \def (eq_ind T (THead (Bind Abbr) u1 t3) (\lambda (ee: T).(match ee with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _)
+\Rightarrow (match k with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow
False])])) I (THead (Flat Appl) v1 (THead (Bind Abst) u t5)) H18) in
(False_ind (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7))
(\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t6) t7))) H19))))) t2 H15)) t H13
v2)).(\lambda (_: (pr0 u0 u3)).(\lambda (_: (pr0 t5 t6)).(let H22 \def
(eq_ind_r T t (\lambda (t7: T).(eq T (THead (Bind Abbr) u1 t3) t7)) H5 (THead
(Flat Appl) v1 (THead (Bind b) u0 t5)) H15) in (let H23 \def (eq_ind T (THead
-(Bind Abbr) u1 t3) (\lambda (ee: T).(match ee in T return (\lambda (_:
-T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False |
-(THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).Prop) with
+(Bind Abbr) u1 t3) (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow
+False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k with
[(Bind _) \Rightarrow True | (Flat _) \Rightarrow False])])) I (THead (Flat
Appl) v1 (THead (Bind b) u0 t5)) H22) in (False_ind (ex2 T (\lambda (t7:
T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 (THead (Bind b)
(\lambda (H17: (pr0 u0 u3)).(\lambda (H18: (pr0 t5 t6)).(\lambda (H19:
(subst0 O u3 t6 w0)).(let H20 \def (eq_ind_r T t (\lambda (t7: T).(eq T
(THead (Bind Abbr) u1 t3) t7)) H5 (THead (Bind Abbr) u0 t5) H14) in (let H21
-\def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T)
-with [(TSort _) \Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead _ t7 _)
-\Rightarrow t7])) (THead (Bind Abbr) u1 t3) (THead (Bind Abbr) u0 t5) H20) in
-((let H22 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_:
-T).T) with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _
-t7) \Rightarrow t7])) (THead (Bind Abbr) u1 t3) (THead (Bind Abbr) u0 t5)
-H20) in (\lambda (H23: (eq T u1 u0)).(let H24 \def (eq_ind_r T t (\lambda
-(t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) \to
-(\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10))
-(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Bind Abbr) u0 t5) H14) in
-(let H25 \def (eq_ind T u1 (\lambda (t7: T).(pr0 t7 u2)) H8 u0 H23) in (let
-H26 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H9 t5 H22) in (ex2_ind T
-(\lambda (t7: T).(pr0 t4 t7)) (\lambda (t7: T).(pr0 t6 t7)) (ex2 T (\lambda
-(t7: T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 (THead (Bind
-Abbr) u3 w0) t7))) (\lambda (x: T).(\lambda (H27: (pr0 t4 x)).(\lambda (H28:
-(pr0 t6 x)).(ex2_ind T (\lambda (t7: T).(pr0 u2 t7)) (\lambda (t7: T).(pr0 u3
-t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7:
-T).(pr0 (THead (Bind Abbr) u3 w0) t7))) (\lambda (x0: T).(\lambda (H29: (pr0
-u2 x0)).(\lambda (H30: (pr0 u3 x0)).(pr0_confluence__pr0_delta_delta u2 t4 w
-H10 u3 t6 w0 H19 x0 H29 H30 x H27 H28)))) (H24 u0 (tlt_head_sx (Bind Abbr) u0
-t5) u2 H25 u3 H17))))) (H24 t5 (tlt_head_dx (Bind Abbr) u0 t5) t4 H26 t6
-H18))))))) H21)))))) t2 H16)) t H14 H15 H11 H12 H13))) | (pr0_zeta b H11 t5
-t6 H12 u) \Rightarrow (\lambda (H13: (eq T (THead (Bind b) u (lift (S O) O
-t5)) t)).(\lambda (H14: (eq T t6 t2)).(eq_ind T (THead (Bind b) u (lift (S O)
-O t5)) (\lambda (_: T).((eq T t6 t2) \to ((not (eq B b Abst)) \to ((pr0 t5
-t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) u2 w) t8)) (\lambda
-(t8: T).(pr0 t2 t8))))))) (\lambda (H15: (eq T t6 t2)).(eq_ind T t2 (\lambda
-(t7: T).((not (eq B b Abst)) \to ((pr0 t5 t7) \to (ex2 T (\lambda (t8:
-T).(pr0 (THead (Bind Abbr) u2 w) t8)) (\lambda (t8: T).(pr0 t2 t8))))))
-(\lambda (H16: (not (eq B b Abst))).(\lambda (H17: (pr0 t5 t2)).(let H18 \def
-(eq_ind_r T t (\lambda (t7: T).(eq T (THead (Bind Abbr) u1 t3) t7)) H5 (THead
-(Bind b) u (lift (S O) O t5)) H13) in (let H19 \def (f_equal T B (\lambda (e:
-T).(match e in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow Abbr |
-(TLRef _) \Rightarrow Abbr | (THead k _ _) \Rightarrow (match k in K return
-(\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow
-Abbr])])) (THead (Bind Abbr) u1 t3) (THead (Bind b) u (lift (S O) O t5)) H18)
-in ((let H20 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda
-(_: T).T) with [(TSort _) \Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead
-_ t7 _) \Rightarrow t7])) (THead (Bind Abbr) u1 t3) (THead (Bind b) u (lift
-(S O) O t5)) H18) in ((let H21 \def (f_equal T T (\lambda (e: T).(match e in
-T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _)
+\def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow u1 |
+(TLRef _) \Rightarrow u1 | (THead _ t7 _) \Rightarrow t7])) (THead (Bind
+Abbr) u1 t3) (THead (Bind Abbr) u0 t5) H20) in ((let H22 \def (f_equal T T
+(\lambda (e: T).(match e with [(TSort _) \Rightarrow t3 | (TLRef _)
\Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead (Bind Abbr) u1 t3)
-(THead (Bind b) u (lift (S O) O t5)) H18) in (\lambda (H22: (eq T u1
+(THead (Bind Abbr) u0 t5) H20) in (\lambda (H23: (eq T u1 u0)).(let H24 \def
+(eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8:
+T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10:
+T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Bind Abbr)
+u0 t5) H14) in (let H25 \def (eq_ind T u1 (\lambda (t7: T).(pr0 t7 u2)) H8 u0
+H23) in (let H26 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H9 t5 H22)
+in (ex2_ind T (\lambda (t7: T).(pr0 t4 t7)) (\lambda (t7: T).(pr0 t6 t7))
+(ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7:
+T).(pr0 (THead (Bind Abbr) u3 w0) t7))) (\lambda (x: T).(\lambda (H27: (pr0
+t4 x)).(\lambda (H28: (pr0 t6 x)).(ex2_ind T (\lambda (t7: T).(pr0 u2 t7))
+(\lambda (t7: T).(pr0 u3 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr)
+u2 w) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) u3 w0) t7))) (\lambda
+(x0: T).(\lambda (H29: (pr0 u2 x0)).(\lambda (H30: (pr0 u3
+x0)).(pr0_confluence__pr0_delta_delta u2 t4 w H10 u3 t6 w0 H19 x0 H29 H30 x
+H27 H28)))) (H24 u0 (tlt_head_sx (Bind Abbr) u0 t5) u2 H25 u3 H17))))) (H24
+t5 (tlt_head_dx (Bind Abbr) u0 t5) t4 H26 t6 H18))))))) H21)))))) t2 H16)) t
+H14 H15 H11 H12 H13))) | (pr0_zeta b H11 t5 t6 H12 u) \Rightarrow (\lambda
+(H13: (eq T (THead (Bind b) u (lift (S O) O t5)) t)).(\lambda (H14: (eq T t6
+t2)).(eq_ind T (THead (Bind b) u (lift (S O) O t5)) (\lambda (_: T).((eq T t6
+t2) \to ((not (eq B b Abst)) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8:
+T).(pr0 (THead (Bind Abbr) u2 w) t8)) (\lambda (t8: T).(pr0 t2 t8)))))))
+(\lambda (H15: (eq T t6 t2)).(eq_ind T t2 (\lambda (t7: T).((not (eq B b
+Abst)) \to ((pr0 t5 t7) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr)
+u2 w) t8)) (\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (H16: (not (eq B b
+Abst))).(\lambda (H17: (pr0 t5 t2)).(let H18 \def (eq_ind_r T t (\lambda (t7:
+T).(eq T (THead (Bind Abbr) u1 t3) t7)) H5 (THead (Bind b) u (lift (S O) O
+t5)) H13) in (let H19 \def (f_equal T B (\lambda (e: T).(match e with [(TSort
+_) \Rightarrow Abbr | (TLRef _) \Rightarrow Abbr | (THead k _ _) \Rightarrow
+(match k with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow Abbr])]))
+(THead (Bind Abbr) u1 t3) (THead (Bind b) u (lift (S O) O t5)) H18) in ((let
+H20 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow u1
+| (TLRef _) \Rightarrow u1 | (THead _ t7 _) \Rightarrow t7])) (THead (Bind
+Abbr) u1 t3) (THead (Bind b) u (lift (S O) O t5)) H18) in ((let H21 \def
+(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow t3 | (TLRef
+_) \Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead (Bind Abbr) u1
+t3) (THead (Bind b) u (lift (S O) O t5)) H18) in (\lambda (H22: (eq T u1
u)).(\lambda (H23: (eq B Abbr b)).(let H24 \def (eq_ind_r B b (\lambda (b0:
B).(not (eq B b0 Abst))) H16 Abbr H23) in (let H25 \def (eq_ind_r B b
(\lambda (b0: B).(eq T (THead (Bind b0) u (lift (S O) O t5)) t)) H13 Abbr
T).(pr0 (THead (Bind Abbr) u2 w) t8)) (\lambda (t8: T).(pr0 t2 t8)))))
(\lambda (_: (pr0 t5 t2)).(let H16 \def (eq_ind_r T t (\lambda (t7: T).(eq T
(THead (Bind Abbr) u1 t3) t7)) H5 (THead (Flat Cast) u t5) H12) in (let H17
-\def (eq_ind T (THead (Bind Abbr) u1 t3) (\lambda (ee: T).(match ee in T
-return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
-\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda
-(_: K).Prop) with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow
+\def (eq_ind T (THead (Bind Abbr) u1 t3) (\lambda (ee: T).(match ee with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _)
+\Rightarrow (match k with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow
False])])) I (THead (Flat Cast) u t5) H16) in (False_ind (ex2 T (\lambda (t7:
T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 t2 t7))) H17))))
t6 (sym_eq T t6 t2 H14))) t H12 H13 H11)))]) in (H11 (refl_equal T t)
(\lambda (H6: (eq T t4 t1)).(eq_ind T t1 (\lambda (t5: T).((not (eq B b
Abst)) \to ((pr0 t3 t5) \to (ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda
(t6: T).(pr0 t2 t6)))))) (\lambda (H7: (not (eq B b Abst))).(\lambda (H8:
-(pr0 t3 t1)).(let H9 \def (match H1 in pr0 return (\lambda (t5: T).(\lambda
-(t6: T).(\lambda (_: (pr0 t5 t6)).((eq T t5 t) \to ((eq T t6 t2) \to (ex2 T
-(\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7)))))))) with
-[(pr0_refl t5) \Rightarrow (\lambda (H9: (eq T t5 t)).(\lambda (H10: (eq T t5
-t2)).(eq_ind T t (\lambda (t6: T).((eq T t6 t2) \to (ex2 T (\lambda (t7:
-T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))))) (\lambda (H11: (eq T t
-t2)).(eq_ind T t2 (\lambda (_: T).(ex2 T (\lambda (t7: T).(pr0 t1 t7))
-(\lambda (t7: T).(pr0 t2 t7)))) (let H12 \def (eq_ind_r T t (\lambda (t6:
-T).(eq T t6 t2)) H11 (THead (Bind b) u (lift (S O) O t3)) H4) in (eq_ind T
-(THead (Bind b) u (lift (S O) O t3)) (\lambda (t6: T).(ex2 T (\lambda (t7:
-T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t6 t7)))) (let H13 \def (eq_ind_r T t
-(\lambda (t6: T).(eq T t5 t6)) H9 (THead (Bind b) u (lift (S O) O t3)) H4) in
-(let H14 \def (eq_ind_r T t (\lambda (t6: T).(\forall (v: T).((tlt v t6) \to
-(\forall (t7: T).((pr0 v t7) \to (\forall (t8: T).((pr0 v t8) \to (ex2 T
-(\lambda (t9: T).(pr0 t7 t9)) (\lambda (t9: T).(pr0 t8 t9)))))))))) H (THead
-(Bind b) u (lift (S O) O t3)) H4) in (ex_intro2 T (\lambda (t6: T).(pr0 t1
-t6)) (\lambda (t6: T).(pr0 (THead (Bind b) u (lift (S O) O t3)) t6)) t1
-(pr0_refl t1) (pr0_zeta b H7 t3 t1 H8 u)))) t2 H12)) t (sym_eq T t t2 H11)))
-t5 (sym_eq T t5 t H9) H10))) | (pr0_comp u1 u2 H9 t5 t6 H10 k) \Rightarrow
-(\lambda (H11: (eq T (THead k u1 t5) t)).(\lambda (H12: (eq T (THead k u2 t6)
-t2)).(eq_ind T (THead k u1 t5) (\lambda (_: T).((eq T (THead k u2 t6) t2) \to
-((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8))
-(\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H13: (eq T (THead k u2 t6)
-t2)).(eq_ind T (THead k u2 t6) (\lambda (t7: T).((pr0 u1 u2) \to ((pr0 t5 t6)
-\to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t7 t8))))))
-(\lambda (_: (pr0 u1 u2)).(\lambda (H15: (pr0 t5 t6)).(let H16 \def (eq_ind_r
-T t (\lambda (t7: T).(eq T (THead (Bind b) u (lift (S O) O t3)) t7)) H4
-(THead k u1 t5) H11) in (let H17 \def (f_equal T K (\lambda (e: T).(match e
-in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow (Bind b) | (TLRef
-_) \Rightarrow (Bind b) | (THead k0 _ _) \Rightarrow k0])) (THead (Bind b) u
-(lift (S O) O t3)) (THead k u1 t5) H16) in ((let H18 \def (f_equal T T
-(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
-\Rightarrow u | (TLRef _) \Rightarrow u | (THead _ t7 _) \Rightarrow t7]))
-(THead (Bind b) u (lift (S O) O t3)) (THead k u1 t5) H16) in ((let H19 \def
-(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
-[(TSort _) \Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat) (t7:
-T) on t7: T \def (match t7 with [(TSort n) \Rightarrow (TSort n) | (TLRef i)
-\Rightarrow (TLRef (match (blt i d) with [true \Rightarrow i | false
-\Rightarrow (f i)])) | (THead k0 u0 t8) \Rightarrow (THead k0 (lref_map f d
-u0) (lref_map f (s k0 d) t8))]) in lref_map) (\lambda (x: nat).(plus x (S
-O))) O t3) | (TLRef _) \Rightarrow ((let rec lref_map (f: ((nat \to nat)))
-(d: nat) (t7: T) on t7: T \def (match t7 with [(TSort n) \Rightarrow (TSort
-n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with [true \Rightarrow i |
-false \Rightarrow (f i)])) | (THead k0 u0 t8) \Rightarrow (THead k0 (lref_map
-f d u0) (lref_map f (s k0 d) t8))]) in lref_map) (\lambda (x: nat).(plus x (S
+(pr0 t3 t1)).(let H9 \def (match H1 with [(pr0_refl t5) \Rightarrow (\lambda
+(H9: (eq T t5 t)).(\lambda (H10: (eq T t5 t2)).(eq_ind T t (\lambda (t6:
+T).((eq T t6 t2) \to (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7:
+T).(pr0 t2 t7))))) (\lambda (H11: (eq T t t2)).(eq_ind T t2 (\lambda (_:
+T).(ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7)))) (let
+H12 \def (eq_ind_r T t (\lambda (t6: T).(eq T t6 t2)) H11 (THead (Bind b) u
+(lift (S O) O t3)) H4) in (eq_ind T (THead (Bind b) u (lift (S O) O t3))
+(\lambda (t6: T).(ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0
+t6 t7)))) (let H13 \def (eq_ind_r T t (\lambda (t6: T).(eq T t5 t6)) H9
+(THead (Bind b) u (lift (S O) O t3)) H4) in (let H14 \def (eq_ind_r T t
+(\lambda (t6: T).(\forall (v: T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7)
+\to (\forall (t8: T).((pr0 v t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9))
+(\lambda (t9: T).(pr0 t8 t9)))))))))) H (THead (Bind b) u (lift (S O) O t3))
+H4) in (ex_intro2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0
+(THead (Bind b) u (lift (S O) O t3)) t6)) t1 (pr0_refl t1) (pr0_zeta b H7 t3
+t1 H8 u)))) t2 H12)) t (sym_eq T t t2 H11))) t5 (sym_eq T t5 t H9) H10))) |
+(pr0_comp u1 u2 H9 t5 t6 H10 k) \Rightarrow (\lambda (H11: (eq T (THead k u1
+t5) t)).(\lambda (H12: (eq T (THead k u2 t6) t2)).(eq_ind T (THead k u1 t5)
+(\lambda (_: T).((eq T (THead k u2 t6) t2) \to ((pr0 u1 u2) \to ((pr0 t5 t6)
+\to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8)))))))
+(\lambda (H13: (eq T (THead k u2 t6) t2)).(eq_ind T (THead k u2 t6) (\lambda
+(t7: T).((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1
+t8)) (\lambda (t8: T).(pr0 t7 t8)))))) (\lambda (_: (pr0 u1 u2)).(\lambda
+(H15: (pr0 t5 t6)).(let H16 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead
+(Bind b) u (lift (S O) O t3)) t7)) H4 (THead k u1 t5) H11) in (let H17 \def
+(f_equal T K (\lambda (e: T).(match e with [(TSort _) \Rightarrow (Bind b) |
+(TLRef _) \Rightarrow (Bind b) | (THead k0 _ _) \Rightarrow k0])) (THead
+(Bind b) u (lift (S O) O t3)) (THead k u1 t5) H16) in ((let H18 \def (f_equal
+T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow u | (TLRef _)
+\Rightarrow u | (THead _ t7 _) \Rightarrow t7])) (THead (Bind b) u (lift (S
+O) O t3)) (THead k u1 t5) H16) in ((let H19 \def (f_equal T T (\lambda (e:
+T).(match e with [(TSort _) \Rightarrow (lref_map (\lambda (x: nat).(plus x
+(S O))) O t3) | (TLRef _) \Rightarrow (lref_map (\lambda (x: nat).(plus x (S
O))) O t3) | (THead _ _ t7) \Rightarrow t7])) (THead (Bind b) u (lift (S O) O
t3)) (THead k u1 t5) H16) in (\lambda (_: (eq T u u1)).(\lambda (H21: (eq K
(Bind b) k)).(eq_ind K (Bind b) (\lambda (k0: K).(ex2 T (\lambda (t7: T).(pr0
(pr0 v1 v2)).(\lambda (_: (pr0 t5 t6)).(let H16 \def (eq_ind_r T t (\lambda
(t7: T).(eq T (THead (Bind b) u (lift (S O) O t3)) t7)) H4 (THead (Flat Appl)
v1 (THead (Bind Abst) u0 t5)) H11) in (let H17 \def (eq_ind T (THead (Bind b)
-u (lift (S O) O t3)) (\lambda (ee: T).(match ee in T return (\lambda (_:
-T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False |
-(THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).Prop) with
+u (lift (S O) O t3)) (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow
+False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k with
[(Bind _) \Rightarrow True | (Flat _) \Rightarrow False])])) I (THead (Flat
Appl) v1 (THead (Bind Abst) u0 t5)) H16) in (False_ind (ex2 T (\lambda (t7:
T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t6) t7)))
(_: (pr0 t5 t6)).(let H20 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead
(Bind b) u (lift (S O) O t3)) t7)) H4 (THead (Flat Appl) v1 (THead (Bind b0)
u1 t5)) H13) in (let H21 \def (eq_ind T (THead (Bind b) u (lift (S O) O t3))
-(\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _)
-\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow
-(match k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow True |
-(Flat _) \Rightarrow False])])) I (THead (Flat Appl) v1 (THead (Bind b0) u1
-t5)) H20) in (False_ind (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7:
-T).(pr0 (THead (Bind b0) u2 (THead (Flat Appl) (lift (S O) O v2) t6)) t7)))
-H21))))))) t2 H15)) t H13 H14 H9 H10 H11 H12))) | (pr0_delta u1 u2 H9 t5 t6
-H10 w H11) \Rightarrow (\lambda (H12: (eq T (THead (Bind Abbr) u1 t5)
-t)).(\lambda (H13: (eq T (THead (Bind Abbr) u2 w) t2)).(eq_ind T (THead (Bind
-Abbr) u1 t5) (\lambda (_: T).((eq T (THead (Bind Abbr) u2 w) t2) \to ((pr0 u1
-u2) \to ((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to (ex2 T (\lambda (t8: T).(pr0
-t1 t8)) (\lambda (t8: T).(pr0 t2 t8)))))))) (\lambda (H14: (eq T (THead (Bind
-Abbr) u2 w) t2)).(eq_ind T (THead (Bind Abbr) u2 w) (\lambda (t7: T).((pr0 u1
-u2) \to ((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to (ex2 T (\lambda (t8: T).(pr0
-t1 t8)) (\lambda (t8: T).(pr0 t7 t8))))))) (\lambda (_: (pr0 u1 u2)).(\lambda
-(H16: (pr0 t5 t6)).(\lambda (H17: (subst0 O u2 t6 w)).(let H18 \def (eq_ind_r
-T t (\lambda (t7: T).(eq T (THead (Bind b) u (lift (S O) O t3)) t7)) H4
-(THead (Bind Abbr) u1 t5) H12) in (let H19 \def (f_equal T B (\lambda (e:
-T).(match e in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow b |
-(TLRef _) \Rightarrow b | (THead k _ _) \Rightarrow (match k in K return
-(\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow
-b])])) (THead (Bind b) u (lift (S O) O t3)) (THead (Bind Abbr) u1 t5) H18) in
-((let H20 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_:
-T).T) with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | (THead _ t7
-_) \Rightarrow t7])) (THead (Bind b) u (lift (S O) O t3)) (THead (Bind Abbr)
-u1 t5) H18) in ((let H21 \def (f_equal T T (\lambda (e: T).(match e in T
-return (\lambda (_: T).T) with [(TSort _) \Rightarrow ((let rec lref_map (f:
-((nat \to nat))) (d: nat) (t7: T) on t7: T \def (match t7 with [(TSort n)
-\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with
-[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k u0 t8)
-\Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) t8))]) in
-lref_map) (\lambda (x: nat).(plus x (S O))) O t3) | (TLRef _) \Rightarrow
-((let rec lref_map (f: ((nat \to nat))) (d: nat) (t7: T) on t7: T \def (match
-t7 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef
-(match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) |
-(THead k u0 t8) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d)
-t8))]) in lref_map) (\lambda (x: nat).(plus x (S O))) O t3) | (THead _ _ t7)
-\Rightarrow t7])) (THead (Bind b) u (lift (S O) O t3)) (THead (Bind Abbr) u1
-t5) H18) in (\lambda (_: (eq T u u1)).(\lambda (H23: (eq B b Abbr)).(let H24
-\def (eq_ind_r T t5 (\lambda (t7: T).(pr0 t7 t6)) H16 (lift (S O) O t3) H21)
-in (ex2_ind T (\lambda (t7: T).(eq T t6 (lift (S O) O t7))) (\lambda (t7:
-T).(pr0 t3 t7)) (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0
-(THead (Bind Abbr) u2 w) t7))) (\lambda (x: T).(\lambda (H25: (eq T t6 (lift
-(S O) O x))).(\lambda (H26: (pr0 t3 x)).(let H27 \def (eq_ind_r T t5 (\lambda
-(t7: T).(eq T (THead (Bind Abbr) u1 t7) t)) H12 (lift (S O) O t3) H21) in
-(let H28 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v t7) \to
-(\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to (ex2 T
-(\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 t10)))))))))) H
-(THead (Bind Abbr) u1 (lift (S O) O t3)) H27) in (let H29 \def (eq_ind T t6
-(\lambda (t7: T).(subst0 O u2 t7 w)) H17 (lift (S O) O x) H25) in (let H30
-\def (eq_ind B b (\lambda (b0: B).(not (eq B b0 Abst))) H7 Abbr H23) in
-(ex2_ind T (\lambda (t7: T).(pr0 x t7)) (\lambda (t7: T).(pr0 t1 t7)) (ex2 T
-(\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w)
-t7))) (\lambda (x0: T).(\lambda (_: (pr0 x x0)).(\lambda (_: (pr0 t1
-x0)).(ex2_sym T (pr0 (THead (Bind Abbr) u2 w)) (pr0 t1)
+(\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead k _ _) \Rightarrow (match k with [(Bind _)
+\Rightarrow True | (Flat _) \Rightarrow False])])) I (THead (Flat Appl) v1
+(THead (Bind b0) u1 t5)) H20) in (False_ind (ex2 T (\lambda (t7: T).(pr0 t1
+t7)) (\lambda (t7: T).(pr0 (THead (Bind b0) u2 (THead (Flat Appl) (lift (S O)
+O v2) t6)) t7))) H21))))))) t2 H15)) t H13 H14 H9 H10 H11 H12))) | (pr0_delta
+u1 u2 H9 t5 t6 H10 w H11) \Rightarrow (\lambda (H12: (eq T (THead (Bind Abbr)
+u1 t5) t)).(\lambda (H13: (eq T (THead (Bind Abbr) u2 w) t2)).(eq_ind T
+(THead (Bind Abbr) u1 t5) (\lambda (_: T).((eq T (THead (Bind Abbr) u2 w) t2)
+\to ((pr0 u1 u2) \to ((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to (ex2 T (\lambda
+(t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8)))))))) (\lambda (H14: (eq T
+(THead (Bind Abbr) u2 w) t2)).(eq_ind T (THead (Bind Abbr) u2 w) (\lambda
+(t7: T).((pr0 u1 u2) \to ((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to (ex2 T
+(\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t7 t8))))))) (\lambda (_:
+(pr0 u1 u2)).(\lambda (H16: (pr0 t5 t6)).(\lambda (H17: (subst0 O u2 t6
+w)).(let H18 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Bind b) u
+(lift (S O) O t3)) t7)) H4 (THead (Bind Abbr) u1 t5) H12) in (let H19 \def
+(f_equal T B (\lambda (e: T).(match e with [(TSort _) \Rightarrow b | (TLRef
+_) \Rightarrow b | (THead k _ _) \Rightarrow (match k with [(Bind b0)
+\Rightarrow b0 | (Flat _) \Rightarrow b])])) (THead (Bind b) u (lift (S O) O
+t3)) (THead (Bind Abbr) u1 t5) H18) in ((let H20 \def (f_equal T T (\lambda
+(e: T).(match e with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u |
+(THead _ t7 _) \Rightarrow t7])) (THead (Bind b) u (lift (S O) O t3)) (THead
+(Bind Abbr) u1 t5) H18) in ((let H21 \def (f_equal T T (\lambda (e: T).(match
+e with [(TSort _) \Rightarrow (lref_map (\lambda (x: nat).(plus x (S O))) O
+t3) | (TLRef _) \Rightarrow (lref_map (\lambda (x: nat).(plus x (S O))) O t3)
+| (THead _ _ t7) \Rightarrow t7])) (THead (Bind b) u (lift (S O) O t3))
+(THead (Bind Abbr) u1 t5) H18) in (\lambda (_: (eq T u u1)).(\lambda (H23:
+(eq B b Abbr)).(let H24 \def (eq_ind_r T t5 (\lambda (t7: T).(pr0 t7 t6)) H16
+(lift (S O) O t3) H21) in (ex2_ind T (\lambda (t7: T).(eq T t6 (lift (S O) O
+t7))) (\lambda (t7: T).(pr0 t3 t7)) (ex2 T (\lambda (t7: T).(pr0 t1 t7))
+(\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7))) (\lambda (x: T).(\lambda
+(H25: (eq T t6 (lift (S O) O x))).(\lambda (H26: (pr0 t3 x)).(let H27 \def
+(eq_ind_r T t5 (\lambda (t7: T).(eq T (THead (Bind Abbr) u1 t7) t)) H12 (lift
+(S O) O t3) H21) in (let H28 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v:
+T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v
+t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9
+t10)))))))))) H (THead (Bind Abbr) u1 (lift (S O) O t3)) H27) in (let H29
+\def (eq_ind T t6 (\lambda (t7: T).(subst0 O u2 t7 w)) H17 (lift (S O) O x)
+H25) in (let H30 \def (eq_ind B b (\lambda (b0: B).(not (eq B b0 Abst))) H7
+Abbr H23) in (ex2_ind T (\lambda (t7: T).(pr0 x t7)) (\lambda (t7: T).(pr0 t1
+t7)) (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 (THead (Bind
+Abbr) u2 w) t7))) (\lambda (x0: T).(\lambda (_: (pr0 x x0)).(\lambda (_: (pr0
+t1 x0)).(ex2_sym T (pr0 (THead (Bind Abbr) u2 w)) (pr0 t1)
(pr0_confluence__pr0_delta_tau u2 (lift (S O) O x) w H29 x (pr0_refl (lift (S
O) O x)) t1))))) (H28 t3 (lift_tlt_dx (Bind Abbr) u1 t3 (S O) O) x H26 t1
H8))))))))) (pr0_gen_lift t3 t6 (S O) O H24)))))) H20)) H19)))))) t2 H14)) t
(\lambda (_: (not (eq B b0 Abst))).(\lambda (H15: (pr0 t5 t2)).(let H16 \def
(eq_ind_r T t (\lambda (t7: T).(eq T (THead (Bind b) u (lift (S O) O t3))
t7)) H4 (THead (Bind b0) u0 (lift (S O) O t5)) H11) in (let H17 \def (f_equal
-T B (\lambda (e: T).(match e in T return (\lambda (_: T).B) with [(TSort _)
-\Rightarrow b | (TLRef _) \Rightarrow b | (THead k _ _) \Rightarrow (match k
-in K return (\lambda (_: K).B) with [(Bind b1) \Rightarrow b1 | (Flat _)
-\Rightarrow b])])) (THead (Bind b) u (lift (S O) O t3)) (THead (Bind b0) u0
-(lift (S O) O t5)) H16) in ((let H18 \def (f_equal T T (\lambda (e: T).(match
-e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u | (TLRef _)
+T B (\lambda (e: T).(match e with [(TSort _) \Rightarrow b | (TLRef _)
+\Rightarrow b | (THead k _ _) \Rightarrow (match k with [(Bind b1)
+\Rightarrow b1 | (Flat _) \Rightarrow b])])) (THead (Bind b) u (lift (S O) O
+t3)) (THead (Bind b0) u0 (lift (S O) O t5)) H16) in ((let H18 \def (f_equal T
+T (\lambda (e: T).(match e with [(TSort _) \Rightarrow u | (TLRef _)
\Rightarrow u | (THead _ t7 _) \Rightarrow t7])) (THead (Bind b) u (lift (S
O) O t3)) (THead (Bind b0) u0 (lift (S O) O t5)) H16) in ((let H19 \def
-(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
-[(TSort _) \Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat) (t7:
-T) on t7: T \def (match t7 with [(TSort n) \Rightarrow (TSort n) | (TLRef i)
-\Rightarrow (TLRef (match (blt i d) with [true \Rightarrow i | false
-\Rightarrow (f i)])) | (THead k u1 t8) \Rightarrow (THead k (lref_map f d u1)
-(lref_map f (s k d) t8))]) in lref_map) (\lambda (x: nat).(plus x (S O))) O
-t3) | (TLRef _) \Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat)
-(t7: T) on t7: T \def (match t7 with [(TSort n) \Rightarrow (TSort n) |
-(TLRef i) \Rightarrow (TLRef (match (blt i d) with [true \Rightarrow i |
-false \Rightarrow (f i)])) | (THead k u1 t8) \Rightarrow (THead k (lref_map f
-d u1) (lref_map f (s k d) t8))]) in lref_map) (\lambda (x: nat).(plus x (S
-O))) O t3) | (THead _ _ t7) \Rightarrow t7])) (THead (Bind b) u (lift (S O) O
-t3)) (THead (Bind b0) u0 (lift (S O) O t5)) H16) in (\lambda (_: (eq T u
-u0)).(\lambda (H21: (eq B b b0)).(let H22 \def (eq_ind_r T t (\lambda (t7:
-T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall
-(t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10:
-T).(pr0 t9 t10)))))))))) H (THead (Bind b0) u0 (lift (S O) O t5)) H11) in
-(let H23 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t1)) H8 t5 (lift_inj t3
-t5 (S O) O H19)) in (let H24 \def (eq_ind B b (\lambda (b1: B).(not (eq B b1
-Abst))) H7 b0 H21) in (ex2_ind T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7:
-T).(pr0 t2 t7)) (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2
-t7))) (\lambda (x: T).(\lambda (H25: (pr0 t1 x)).(\lambda (H26: (pr0 t2
-x)).(ex_intro2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))
-x H25 H26)))) (H22 t5 (lift_tlt_dx (Bind b0) u0 t5 (S O) O) t1 H23 t2
-H15)))))))) H18)) H17))))) t6 (sym_eq T t6 t2 H13))) t H11 H12 H9 H10))) |
-(pr0_tau t5 t6 H9 u0) \Rightarrow (\lambda (H10: (eq T (THead (Flat Cast) u0
-t5) t)).(\lambda (H11: (eq T t6 t2)).(eq_ind T (THead (Flat Cast) u0 t5)
-(\lambda (_: T).((eq T t6 t2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8:
-T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (H12: (eq T t6
-t2)).(eq_ind T t2 (\lambda (t7: T).((pr0 t5 t7) \to (ex2 T (\lambda (t8:
-T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8))))) (\lambda (_: (pr0 t5
-t2)).(let H14 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Bind b) u
-(lift (S O) O t3)) t7)) H4 (THead (Flat Cast) u0 t5) H10) in (let H15 \def
-(eq_ind T (THead (Bind b) u (lift (S O) O t3)) (\lambda (ee: T).(match ee in
-T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
-\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda
-(_: K).Prop) with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow
-False])])) I (THead (Flat Cast) u0 t5) H14) in (False_ind (ex2 T (\lambda
-(t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))) H15)))) t6 (sym_eq T t6
-t2 H12))) t H10 H11 H9)))]) in (H9 (refl_equal T t) (refl_equal T t2))))) t4
-(sym_eq T t4 t1 H6))) t H4 H5 H2 H3))) | (pr0_tau t3 t4 H2 u) \Rightarrow
-(\lambda (H3: (eq T (THead (Flat Cast) u t3) t)).(\lambda (H4: (eq T t4
-t1)).(eq_ind T (THead (Flat Cast) u t3) (\lambda (_: T).((eq T t4 t1) \to
-((pr0 t3 t4) \to (ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0
-t2 t6)))))) (\lambda (H5: (eq T t4 t1)).(eq_ind T t1 (\lambda (t5: T).((pr0
-t3 t5) \to (ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t2
-t6))))) (\lambda (H6: (pr0 t3 t1)).(let H7 \def (match H1 in pr0 return
-(\lambda (t5: T).(\lambda (t6: T).(\lambda (_: (pr0 t5 t6)).((eq T t5 t) \to
-((eq T t6 t2) \to (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0
-t2 t7)))))))) with [(pr0_refl t5) \Rightarrow (\lambda (H7: (eq T t5
-t)).(\lambda (H8: (eq T t5 t2)).(eq_ind T t (\lambda (t6: T).((eq T t6 t2)
-\to (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7)))))
-(\lambda (H9: (eq T t t2)).(eq_ind T t2 (\lambda (_: T).(ex2 T (\lambda (t7:
-T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7)))) (let H10 \def (eq_ind_r T t
-(\lambda (t6: T).(eq T t6 t2)) H9 (THead (Flat Cast) u t3) H3) in (eq_ind T
-(THead (Flat Cast) u t3) (\lambda (t6: T).(ex2 T (\lambda (t7: T).(pr0 t1
-t7)) (\lambda (t7: T).(pr0 t6 t7)))) (let H11 \def (eq_ind_r T t (\lambda
-(t6: T).(eq T t5 t6)) H7 (THead (Flat Cast) u t3) H3) in (let H12 \def
-(eq_ind_r T t (\lambda (t6: T).(\forall (v: T).((tlt v t6) \to (\forall (t7:
-T).((pr0 v t7) \to (\forall (t8: T).((pr0 v t8) \to (ex2 T (\lambda (t9:
-T).(pr0 t7 t9)) (\lambda (t9: T).(pr0 t8 t9)))))))))) H (THead (Flat Cast) u
-t3) H3) in (ex_intro2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0
-(THead (Flat Cast) u t3) t6)) t1 (pr0_refl t1) (pr0_tau t3 t1 H6 u)))) t2
-H10)) t (sym_eq T t t2 H9))) t5 (sym_eq T t5 t H7) H8))) | (pr0_comp u1 u2 H7
-t5 t6 H8 k) \Rightarrow (\lambda (H9: (eq T (THead k u1 t5) t)).(\lambda
-(H10: (eq T (THead k u2 t6) t2)).(eq_ind T (THead k u1 t5) (\lambda (_:
-T).((eq T (THead k u2 t6) t2) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T
-(\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda
-(H11: (eq T (THead k u2 t6) t2)).(eq_ind T (THead k u2 t6) (\lambda (t7:
-T).((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8))
-(\lambda (t8: T).(pr0 t7 t8)))))) (\lambda (_: (pr0 u1 u2)).(\lambda (H13:
-(pr0 t5 t6)).(let H14 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat
-Cast) u t3) t7)) H3 (THead k u1 t5) H9) in (let H15 \def (f_equal T K
-(\lambda (e: T).(match e in T return (\lambda (_: T).K) with [(TSort _)
-\Rightarrow (Flat Cast) | (TLRef _) \Rightarrow (Flat Cast) | (THead k0 _ _)
-\Rightarrow k0])) (THead (Flat Cast) u t3) (THead k u1 t5) H14) in ((let H16
-\def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T)
+(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow (lref_map
+(\lambda (x: nat).(plus x (S O))) O t3) | (TLRef _) \Rightarrow (lref_map
+(\lambda (x: nat).(plus x (S O))) O t3) | (THead _ _ t7) \Rightarrow t7]))
+(THead (Bind b) u (lift (S O) O t3)) (THead (Bind b0) u0 (lift (S O) O t5))
+H16) in (\lambda (_: (eq T u u0)).(\lambda (H21: (eq B b b0)).(let H22 \def
+(eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8:
+T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10:
+T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Bind b0)
+u0 (lift (S O) O t5)) H11) in (let H23 \def (eq_ind T t3 (\lambda (t7:
+T).(pr0 t7 t1)) H8 t5 (lift_inj t3 t5 (S O) O H19)) in (let H24 \def (eq_ind
+B b (\lambda (b1: B).(not (eq B b1 Abst))) H7 b0 H21) in (ex2_ind T (\lambda
+(t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7)) (ex2 T (\lambda (t7:
+T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))) (\lambda (x: T).(\lambda (H25:
+(pr0 t1 x)).(\lambda (H26: (pr0 t2 x)).(ex_intro2 T (\lambda (t7: T).(pr0 t1
+t7)) (\lambda (t7: T).(pr0 t2 t7)) x H25 H26)))) (H22 t5 (lift_tlt_dx (Bind
+b0) u0 t5 (S O) O) t1 H23 t2 H15)))))))) H18)) H17))))) t6 (sym_eq T t6 t2
+H13))) t H11 H12 H9 H10))) | (pr0_tau t5 t6 H9 u0) \Rightarrow (\lambda (H10:
+(eq T (THead (Flat Cast) u0 t5) t)).(\lambda (H11: (eq T t6 t2)).(eq_ind T
+(THead (Flat Cast) u0 t5) (\lambda (_: T).((eq T t6 t2) \to ((pr0 t5 t6) \to
+(ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8))))))
+(\lambda (H12: (eq T t6 t2)).(eq_ind T t2 (\lambda (t7: T).((pr0 t5 t7) \to
+(ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8)))))
+(\lambda (_: (pr0 t5 t2)).(let H14 \def (eq_ind_r T t (\lambda (t7: T).(eq T
+(THead (Bind b) u (lift (S O) O t3)) t7)) H4 (THead (Flat Cast) u0 t5) H10)
+in (let H15 \def (eq_ind T (THead (Bind b) u (lift (S O) O t3)) (\lambda (ee:
+T).(match ee with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False
+| (THead k _ _) \Rightarrow (match k with [(Bind _) \Rightarrow True | (Flat
+_) \Rightarrow False])])) I (THead (Flat Cast) u0 t5) H14) in (False_ind (ex2
+T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))) H15)))) t6
+(sym_eq T t6 t2 H12))) t H10 H11 H9)))]) in (H9 (refl_equal T t) (refl_equal
+T t2))))) t4 (sym_eq T t4 t1 H6))) t H4 H5 H2 H3))) | (pr0_tau t3 t4 H2 u)
+\Rightarrow (\lambda (H3: (eq T (THead (Flat Cast) u t3) t)).(\lambda (H4:
+(eq T t4 t1)).(eq_ind T (THead (Flat Cast) u t3) (\lambda (_: T).((eq T t4
+t1) \to ((pr0 t3 t4) \to (ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6:
+T).(pr0 t2 t6)))))) (\lambda (H5: (eq T t4 t1)).(eq_ind T t1 (\lambda (t5:
+T).((pr0 t3 t5) \to (ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6:
+T).(pr0 t2 t6))))) (\lambda (H6: (pr0 t3 t1)).(let H7 \def (match H1 with
+[(pr0_refl t5) \Rightarrow (\lambda (H7: (eq T t5 t)).(\lambda (H8: (eq T t5
+t2)).(eq_ind T t (\lambda (t6: T).((eq T t6 t2) \to (ex2 T (\lambda (t7:
+T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))))) (\lambda (H9: (eq T t
+t2)).(eq_ind T t2 (\lambda (_: T).(ex2 T (\lambda (t7: T).(pr0 t1 t7))
+(\lambda (t7: T).(pr0 t2 t7)))) (let H10 \def (eq_ind_r T t (\lambda (t6:
+T).(eq T t6 t2)) H9 (THead (Flat Cast) u t3) H3) in (eq_ind T (THead (Flat
+Cast) u t3) (\lambda (t6: T).(ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda
+(t7: T).(pr0 t6 t7)))) (let H11 \def (eq_ind_r T t (\lambda (t6: T).(eq T t5
+t6)) H7 (THead (Flat Cast) u t3) H3) in (let H12 \def (eq_ind_r T t (\lambda
+(t6: T).(\forall (v: T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7) \to
+(\forall (t8: T).((pr0 v t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9))
+(\lambda (t9: T).(pr0 t8 t9)))))))))) H (THead (Flat Cast) u t3) H3) in
+(ex_intro2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 (THead (Flat
+Cast) u t3) t6)) t1 (pr0_refl t1) (pr0_tau t3 t1 H6 u)))) t2 H10)) t (sym_eq
+T t t2 H9))) t5 (sym_eq T t5 t H7) H8))) | (pr0_comp u1 u2 H7 t5 t6 H8 k)
+\Rightarrow (\lambda (H9: (eq T (THead k u1 t5) t)).(\lambda (H10: (eq T
+(THead k u2 t6) t2)).(eq_ind T (THead k u1 t5) (\lambda (_: T).((eq T (THead
+k u2 t6) t2) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8:
+T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H11: (eq T
+(THead k u2 t6) t2)).(eq_ind T (THead k u2 t6) (\lambda (t7: T).((pr0 u1 u2)
+\to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8:
+T).(pr0 t7 t8)))))) (\lambda (_: (pr0 u1 u2)).(\lambda (H13: (pr0 t5
+t6)).(let H14 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Cast) u
+t3) t7)) H3 (THead k u1 t5) H9) in (let H15 \def (f_equal T K (\lambda (e:
+T).(match e with [(TSort _) \Rightarrow (Flat Cast) | (TLRef _) \Rightarrow
+(Flat Cast) | (THead k0 _ _) \Rightarrow k0])) (THead (Flat Cast) u t3)
+(THead k u1 t5) H14) in ((let H16 \def (f_equal T T (\lambda (e: T).(match e
with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | (THead _ t7 _)
\Rightarrow t7])) (THead (Flat Cast) u t3) (THead k u1 t5) H14) in ((let H17
-\def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T)
-with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t7)
-\Rightarrow t7])) (THead (Flat Cast) u t3) (THead k u1 t5) H14) in (\lambda
-(_: (eq T u u1)).(\lambda (H19: (eq K (Flat Cast) k)).(eq_ind K (Flat Cast)
-(\lambda (k0: K).(ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0
-(THead k0 u2 t6) t7)))) (let H20 \def (eq_ind_r K k (\lambda (k0: K).(eq T
-(THead k0 u1 t5) t)) H9 (Flat Cast) H19) in (let H21 \def (eq_ind_r T t
-(\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8)
-\to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10))
-(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Flat Cast) u1 t5) H20) in
-(let H22 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t1)) H6 t5 H17) in
-(ex2_ind T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t6 t7)) (ex2 T
+\def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow t3 |
+(TLRef _) \Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead (Flat
+Cast) u t3) (THead k u1 t5) H14) in (\lambda (_: (eq T u u1)).(\lambda (H19:
+(eq K (Flat Cast) k)).(eq_ind K (Flat Cast) (\lambda (k0: K).(ex2 T (\lambda
+(t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 (THead k0 u2 t6) t7)))) (let H20
+\def (eq_ind_r K k (\lambda (k0: K).(eq T (THead k0 u1 t5) t)) H9 (Flat Cast)
+H19) in (let H21 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v
+t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to
+(ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9
+t10)))))))))) H (THead (Flat Cast) u1 t5) H20) in (let H22 \def (eq_ind T t3
+(\lambda (t7: T).(pr0 t7 t1)) H6 t5 H17) in (ex2_ind T (\lambda (t7: T).(pr0
+t1 t7)) (\lambda (t7: T).(pr0 t6 t7)) (ex2 T (\lambda (t7: T).(pr0 t1 t7))
+(\lambda (t7: T).(pr0 (THead (Flat Cast) u2 t6) t7))) (\lambda (x:
+T).(\lambda (H23: (pr0 t1 x)).(\lambda (H24: (pr0 t6 x)).(ex_intro2 T
(\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 (THead (Flat Cast) u2 t6)
-t7))) (\lambda (x: T).(\lambda (H23: (pr0 t1 x)).(\lambda (H24: (pr0 t6
-x)).(ex_intro2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 (THead
-(Flat Cast) u2 t6) t7)) x H23 (pr0_tau t6 x H24 u2))))) (H21 t5 (tlt_head_dx
-(Flat Cast) u1 t5) t1 H22 t6 H13))))) k H19)))) H16)) H15))))) t2 H11)) t H9
-H10 H7 H8))) | (pr0_beta u0 v1 v2 H7 t5 t6 H8) \Rightarrow (\lambda (H9: (eq
-T (THead (Flat Appl) v1 (THead (Bind Abst) u0 t5)) t)).(\lambda (H10: (eq T
-(THead (Bind Abbr) v2 t6) t2)).(eq_ind T (THead (Flat Appl) v1 (THead (Bind
-Abst) u0 t5)) (\lambda (_: T).((eq T (THead (Bind Abbr) v2 t6) t2) \to ((pr0
-v1 v2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda
-(t8: T).(pr0 t2 t8))))))) (\lambda (H11: (eq T (THead (Bind Abbr) v2 t6)
-t2)).(eq_ind T (THead (Bind Abbr) v2 t6) (\lambda (t7: T).((pr0 v1 v2) \to
+t7)) x H23 (pr0_tau t6 x H24 u2))))) (H21 t5 (tlt_head_dx (Flat Cast) u1 t5)
+t1 H22 t6 H13))))) k H19)))) H16)) H15))))) t2 H11)) t H9 H10 H7 H8))) |
+(pr0_beta u0 v1 v2 H7 t5 t6 H8) \Rightarrow (\lambda (H9: (eq T (THead (Flat
+Appl) v1 (THead (Bind Abst) u0 t5)) t)).(\lambda (H10: (eq T (THead (Bind
+Abbr) v2 t6) t2)).(eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u0 t5))
+(\lambda (_: T).((eq T (THead (Bind Abbr) v2 t6) t2) \to ((pr0 v1 v2) \to
((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0
-t7 t8)))))) (\lambda (_: (pr0 v1 v2)).(\lambda (_: (pr0 t5 t6)).(let H14 \def
-(eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Cast) u t3) t7)) H3 (THead
-(Flat Appl) v1 (THead (Bind Abst) u0 t5)) H9) in (let H15 \def (eq_ind T
-(THead (Flat Cast) u t3) (\lambda (ee: T).(match ee in T return (\lambda (_:
-T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False |
-(THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).Prop) with
-[(Bind _) \Rightarrow False | (Flat f) \Rightarrow (match f in F return
-(\lambda (_: F).Prop) with [Appl \Rightarrow False | Cast \Rightarrow
-True])])])) I (THead (Flat Appl) v1 (THead (Bind Abst) u0 t5)) H14) in
-(False_ind (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 (THead
-(Bind Abbr) v2 t6) t7))) H15))))) t2 H11)) t H9 H10 H7 H8))) | (pr0_upsilon b
-H7 v1 v2 H8 u1 u2 H9 t5 t6 H10) \Rightarrow (\lambda (H11: (eq T (THead (Flat
-Appl) v1 (THead (Bind b) u1 t5)) t)).(\lambda (H12: (eq T (THead (Bind b) u2
-(THead (Flat Appl) (lift (S O) O v2) t6)) t2)).(eq_ind T (THead (Flat Appl)
-v1 (THead (Bind b) u1 t5)) (\lambda (_: T).((eq T (THead (Bind b) u2 (THead
-(Flat Appl) (lift (S O) O v2) t6)) t2) \to ((not (eq B b Abst)) \to ((pr0 v1
-v2) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1
-t8)) (\lambda (t8: T).(pr0 t2 t8))))))))) (\lambda (H13: (eq T (THead (Bind
-b) u2 (THead (Flat Appl) (lift (S O) O v2) t6)) t2)).(eq_ind T (THead (Bind
-b) u2 (THead (Flat Appl) (lift (S O) O v2) t6)) (\lambda (t7: T).((not (eq B
-b Abst)) \to ((pr0 v1 v2) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T
-(\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t7 t8)))))))) (\lambda
-(_: (not (eq B b Abst))).(\lambda (_: (pr0 v1 v2)).(\lambda (_: (pr0 u1
-u2)).(\lambda (_: (pr0 t5 t6)).(let H18 \def (eq_ind_r T t (\lambda (t7:
-T).(eq T (THead (Flat Cast) u t3) t7)) H3 (THead (Flat Appl) v1 (THead (Bind
-b) u1 t5)) H11) in (let H19 \def (eq_ind T (THead (Flat Cast) u t3) (\lambda
-(ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _)
-\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow
-(match k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False |
-(Flat f) \Rightarrow (match f in F return (\lambda (_: F).Prop) with [Appl
-\Rightarrow False | Cast \Rightarrow True])])])) I (THead (Flat Appl) v1
-(THead (Bind b) u1 t5)) H18) in (False_ind (ex2 T (\lambda (t7: T).(pr0 t1
-t7)) (\lambda (t7: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O)
-O v2) t6)) t7))) H19))))))) t2 H13)) t H11 H12 H7 H8 H9 H10))) | (pr0_delta
-u1 u2 H7 t5 t6 H8 w H9) \Rightarrow (\lambda (H10: (eq T (THead (Bind Abbr)
-u1 t5) t)).(\lambda (H11: (eq T (THead (Bind Abbr) u2 w) t2)).(eq_ind T
-(THead (Bind Abbr) u1 t5) (\lambda (_: T).((eq T (THead (Bind Abbr) u2 w) t2)
-\to ((pr0 u1 u2) \to ((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to (ex2 T (\lambda
-(t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8)))))))) (\lambda (H12: (eq T
-(THead (Bind Abbr) u2 w) t2)).(eq_ind T (THead (Bind Abbr) u2 w) (\lambda
-(t7: T).((pr0 u1 u2) \to ((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to (ex2 T
-(\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t7 t8))))))) (\lambda (_:
-(pr0 u1 u2)).(\lambda (_: (pr0 t5 t6)).(\lambda (_: (subst0 O u2 t6 w)).(let
-H16 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Cast) u t3) t7))
-H3 (THead (Bind Abbr) u1 t5) H10) in (let H17 \def (eq_ind T (THead (Flat
-Cast) u t3) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with
+t2 t8))))))) (\lambda (H11: (eq T (THead (Bind Abbr) v2 t6) t2)).(eq_ind T
+(THead (Bind Abbr) v2 t6) (\lambda (t7: T).((pr0 v1 v2) \to ((pr0 t5 t6) \to
+(ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t7 t8))))))
+(\lambda (_: (pr0 v1 v2)).(\lambda (_: (pr0 t5 t6)).(let H14 \def (eq_ind_r T
+t (\lambda (t7: T).(eq T (THead (Flat Cast) u t3) t7)) H3 (THead (Flat Appl)
+v1 (THead (Bind Abst) u0 t5)) H9) in (let H15 \def (eq_ind T (THead (Flat
+Cast) u t3) (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False |
+(TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k with [(Bind
+_) \Rightarrow False | (Flat f) \Rightarrow (match f with [Appl \Rightarrow
+False | Cast \Rightarrow True])])])) I (THead (Flat Appl) v1 (THead (Bind
+Abst) u0 t5)) H14) in (False_ind (ex2 T (\lambda (t7: T).(pr0 t1 t7))
+(\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t6) t7))) H15))))) t2 H11)) t H9
+H10 H7 H8))) | (pr0_upsilon b H7 v1 v2 H8 u1 u2 H9 t5 t6 H10) \Rightarrow
+(\lambda (H11: (eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t5))
+t)).(\lambda (H12: (eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
+v2) t6)) t2)).(eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u1 t5))
+(\lambda (_: T).((eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
+v2) t6)) t2) \to ((not (eq B b Abst)) \to ((pr0 v1 v2) \to ((pr0 u1 u2) \to
+((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0
+t2 t8))))))))) (\lambda (H13: (eq T (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t6)) t2)).(eq_ind T (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t6)) (\lambda (t7: T).((not (eq B b Abst)) \to ((pr0 v1 v2)
+\to ((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8))
+(\lambda (t8: T).(pr0 t7 t8)))))))) (\lambda (_: (not (eq B b
+Abst))).(\lambda (_: (pr0 v1 v2)).(\lambda (_: (pr0 u1 u2)).(\lambda (_: (pr0
+t5 t6)).(let H18 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Cast)
+u t3) t7)) H3 (THead (Flat Appl) v1 (THead (Bind b) u1 t5)) H11) in (let H19
+\def (eq_ind T (THead (Flat Cast) u t3) (\lambda (ee: T).(match ee with
[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _)
-\Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
-\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind Abbr) u1
-t5) H16) in (False_ind (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7:
-T).(pr0 (THead (Bind Abbr) u2 w) t7))) H17)))))) t2 H12)) t H10 H11 H7 H8
-H9))) | (pr0_zeta b H7 t5 t6 H8 u0) \Rightarrow (\lambda (H9: (eq T (THead
-(Bind b) u0 (lift (S O) O t5)) t)).(\lambda (H10: (eq T t6 t2)).(eq_ind T
-(THead (Bind b) u0 (lift (S O) O t5)) (\lambda (_: T).((eq T t6 t2) \to ((not
-(eq B b Abst)) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8))
-(\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H11: (eq T t6 t2)).(eq_ind T t2
-(\lambda (t7: T).((not (eq B b Abst)) \to ((pr0 t5 t7) \to (ex2 T (\lambda
-(t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (_: (not (eq
-B b Abst))).(\lambda (_: (pr0 t5 t2)).(let H14 \def (eq_ind_r T t (\lambda
-(t7: T).(eq T (THead (Flat Cast) u t3) t7)) H3 (THead (Bind b) u0 (lift (S O)
-O t5)) H9) in (let H15 \def (eq_ind T (THead (Flat Cast) u t3) (\lambda (ee:
-T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
-False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K
-return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _)
-\Rightarrow True])])) I (THead (Bind b) u0 (lift (S O) O t5)) H14) in
-(False_ind (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2
-t7))) H15))))) t6 (sym_eq T t6 t2 H11))) t H9 H10 H7 H8))) | (pr0_tau t5 t6
-H7 u0) \Rightarrow (\lambda (H8: (eq T (THead (Flat Cast) u0 t5) t)).(\lambda
-(H9: (eq T t6 t2)).(eq_ind T (THead (Flat Cast) u0 t5) (\lambda (_: T).((eq T
-t6 t2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda
-(t8: T).(pr0 t2 t8)))))) (\lambda (H10: (eq T t6 t2)).(eq_ind T t2 (\lambda
-(t7: T).((pr0 t5 t7) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8:
-T).(pr0 t2 t8))))) (\lambda (H11: (pr0 t5 t2)).(let H12 \def (eq_ind_r T t
-(\lambda (t7: T).(eq T (THead (Flat Cast) u t3) t7)) H3 (THead (Flat Cast) u0
-t5) H8) in (let H13 \def (f_equal T T (\lambda (e: T).(match e in T return
-(\lambda (_: T).T) with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u |
-(THead _ t7 _) \Rightarrow t7])) (THead (Flat Cast) u t3) (THead (Flat Cast)
-u0 t5) H12) in ((let H14 \def (f_equal T T (\lambda (e: T).(match e in T
-return (\lambda (_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _)
-\Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead (Flat Cast) u t3)
-(THead (Flat Cast) u0 t5) H12) in (\lambda (_: (eq T u u0)).(let H16 \def
-(eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8:
-T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10:
-T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Flat Cast)
-u0 t5) H8) in (let H17 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t1)) H6 t5
-H14) in (ex2_ind T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2
-t7)) (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7)))
-(\lambda (x: T).(\lambda (H18: (pr0 t1 x)).(\lambda (H19: (pr0 t2
-x)).(ex_intro2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))
-x H18 H19)))) (H16 t5 (tlt_head_dx (Flat Cast) u0 t5) t1 H17 t2 H11))))))
-H13)))) t6 (sym_eq T t6 t2 H10))) t H8 H9 H7)))]) in (H7 (refl_equal T t)
-(refl_equal T t2)))) t4 (sym_eq T t4 t1 H5))) t H3 H4 H2)))]) in (H2
-(refl_equal T t) (refl_equal T t1))))))))) t0).
-(* COMMENTS
-Initial nodes: 46103
-END *)
+\Rightarrow (match k with [(Bind _) \Rightarrow False | (Flat f) \Rightarrow
+(match f with [Appl \Rightarrow False | Cast \Rightarrow True])])])) I (THead
+(Flat Appl) v1 (THead (Bind b) u1 t5)) H18) in (False_ind (ex2 T (\lambda
+(t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t6)) t7))) H19))))))) t2 H13)) t H11 H12 H7 H8 H9
+H10))) | (pr0_delta u1 u2 H7 t5 t6 H8 w H9) \Rightarrow (\lambda (H10: (eq T
+(THead (Bind Abbr) u1 t5) t)).(\lambda (H11: (eq T (THead (Bind Abbr) u2 w)
+t2)).(eq_ind T (THead (Bind Abbr) u1 t5) (\lambda (_: T).((eq T (THead (Bind
+Abbr) u2 w) t2) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to
+(ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8))))))))
+(\lambda (H12: (eq T (THead (Bind Abbr) u2 w) t2)).(eq_ind T (THead (Bind
+Abbr) u2 w) (\lambda (t7: T).((pr0 u1 u2) \to ((pr0 t5 t6) \to ((subst0 O u2
+t6 w) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t7
+t8))))))) (\lambda (_: (pr0 u1 u2)).(\lambda (_: (pr0 t5 t6)).(\lambda (_:
+(subst0 O u2 t6 w)).(let H16 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead
+(Flat Cast) u t3) t7)) H3 (THead (Bind Abbr) u1 t5) H10) in (let H17 \def
+(eq_ind T (THead (Flat Cast) u t3) (\lambda (ee: T).(match ee with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow
+(match k with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I
+(THead (Bind Abbr) u1 t5) H16) in (False_ind (ex2 T (\lambda (t7: T).(pr0 t1
+t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7))) H17)))))) t2 H12))
+t H10 H11 H7 H8 H9))) | (pr0_zeta b H7 t5 t6 H8 u0) \Rightarrow (\lambda (H9:
+(eq T (THead (Bind b) u0 (lift (S O) O t5)) t)).(\lambda (H10: (eq T t6
+t2)).(eq_ind T (THead (Bind b) u0 (lift (S O) O t5)) (\lambda (_: T).((eq T
+t6 t2) \to ((not (eq B b Abst)) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8:
+T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H11: (eq T t6
+t2)).(eq_ind T t2 (\lambda (t7: T).((not (eq B b Abst)) \to ((pr0 t5 t7) \to
+(ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8))))))
+(\lambda (_: (not (eq B b Abst))).(\lambda (_: (pr0 t5 t2)).(let H14 \def
+(eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Cast) u t3) t7)) H3 (THead
+(Bind b) u0 (lift (S O) O t5)) H9) in (let H15 \def (eq_ind T (THead (Flat
+Cast) u t3) (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False |
+(TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k with [(Bind
+_) \Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind b) u0
+(lift (S O) O t5)) H14) in (False_ind (ex2 T (\lambda (t7: T).(pr0 t1 t7))
+(\lambda (t7: T).(pr0 t2 t7))) H15))))) t6 (sym_eq T t6 t2 H11))) t H9 H10 H7
+H8))) | (pr0_tau t5 t6 H7 u0) \Rightarrow (\lambda (H8: (eq T (THead (Flat
+Cast) u0 t5) t)).(\lambda (H9: (eq T t6 t2)).(eq_ind T (THead (Flat Cast) u0
+t5) (\lambda (_: T).((eq T t6 t2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8:
+T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (H10: (eq T t6
+t2)).(eq_ind T t2 (\lambda (t7: T).((pr0 t5 t7) \to (ex2 T (\lambda (t8:
+T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8))))) (\lambda (H11: (pr0 t5
+t2)).(let H12 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Cast) u
+t3) t7)) H3 (THead (Flat Cast) u0 t5) H8) in (let H13 \def (f_equal T T
+(\lambda (e: T).(match e with [(TSort _) \Rightarrow u | (TLRef _)
+\Rightarrow u | (THead _ t7 _) \Rightarrow t7])) (THead (Flat Cast) u t3)
+(THead (Flat Cast) u0 t5) H12) in ((let H14 \def (f_equal T T (\lambda (e:
+T).(match e with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 |
+(THead _ _ t7) \Rightarrow t7])) (THead (Flat Cast) u t3) (THead (Flat Cast)
+u0 t5) H12) in (\lambda (_: (eq T u u0)).(let H16 \def (eq_ind_r T t (\lambda
+(t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) \to
+(\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10))
+(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Flat Cast) u0 t5) H8) in
+(let H17 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t1)) H6 t5 H14) in
+(ex2_ind T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7)) (ex2 T
+(\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))) (\lambda (x:
+T).(\lambda (H18: (pr0 t1 x)).(\lambda (H19: (pr0 t2 x)).(ex_intro2 T
+(\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7)) x H18 H19))))
+(H16 t5 (tlt_head_dx (Flat Cast) u0 t5) t1 H17 t2 H11)))))) H13)))) t6
+(sym_eq T t6 t2 H10))) t H8 H9 H7)))]) in (H7 (refl_equal T t) (refl_equal T
+t2)))) t4 (sym_eq T t4 t1 H5))) t H3 H4 H2)))]) in (H2 (refl_equal T t)
+(refl_equal T t1))))))))) t0).
(* This file was automatically generated: do not edit *********************)
-include "Basic-1/pr0/defs.ma".
+include "basic_1/pr0/fwd.ma".
-include "Basic-1/subst0/subst0.ma".
+include "basic_1/subst0/props.ma".
theorem pr0_lift:
\forall (t1: T).(\forall (t2: T).((pr0 t1 t2) \to (\forall (h: nat).(\forall
(d: nat).(pr0 (lift h d t1) (lift h d t2))))))
\def
- \lambda (t1: T).(\lambda (t2: T).(\lambda (H: (pr0 t1 t2)).(pr0_ind (\lambda
-(t: T).(\lambda (t0: T).(\forall (h: nat).(\forall (d: nat).(pr0 (lift h d t)
-(lift h d t0)))))) (\lambda (t: T).(\lambda (h: nat).(\lambda (d:
-nat).(pr0_refl (lift h d t))))) (\lambda (u1: T).(\lambda (u2: T).(\lambda
-(_: (pr0 u1 u2)).(\lambda (H1: ((\forall (h: nat).(\forall (d: nat).(pr0
-(lift h d u1) (lift h d u2)))))).(\lambda (t3: T).(\lambda (t4: T).(\lambda
-(_: (pr0 t3 t4)).(\lambda (H3: ((\forall (h: nat).(\forall (d: nat).(pr0
-(lift h d t3) (lift h d t4)))))).(\lambda (k: K).(\lambda (h: nat).(\lambda
-(d: nat).(eq_ind_r T (THead k (lift h d u1) (lift h (s k d) t3)) (\lambda (t:
-T).(pr0 t (lift h d (THead k u2 t4)))) (eq_ind_r T (THead k (lift h d u2)
-(lift h (s k d) t4)) (\lambda (t: T).(pr0 (THead k (lift h d u1) (lift h (s k
-d) t3)) t)) (pr0_comp (lift h d u1) (lift h d u2) (H1 h d) (lift h (s k d)
-t3) (lift h (s k d) t4) (H3 h (s k d)) k) (lift h d (THead k u2 t4))
-(lift_head k u2 t4 h d)) (lift h d (THead k u1 t3)) (lift_head k u1 t3 h
-d))))))))))))) (\lambda (u: T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_:
+ \lambda (t1: T).(\lambda (t2: T).(\lambda (H: (pr0 t1 t2)).(let TMP_3 \def
+(\lambda (t: T).(\lambda (t0: T).(\forall (h: nat).(\forall (d: nat).(let
+TMP_1 \def (lift h d t) in (let TMP_2 \def (lift h d t0) in (pr0 TMP_1
+TMP_2))))))) in (let TMP_5 \def (\lambda (t: T).(\lambda (h: nat).(\lambda
+(d: nat).(let TMP_4 \def (lift h d t) in (pr0_refl TMP_4))))) in (let TMP_39
+\def (\lambda (u1: T).(\lambda (u2: T).(\lambda (_: (pr0 u1 u2)).(\lambda
+(H1: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h d u1) (lift h d
+u2)))))).(\lambda (t3: T).(\lambda (t4: T).(\lambda (_: (pr0 t3 t4)).(\lambda
+(H3: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h d t3) (lift h d
+t4)))))).(\lambda (k: K).(\lambda (h: nat).(\lambda (d: nat).(let TMP_6 \def
+(lift h d u1) in (let TMP_7 \def (s k d) in (let TMP_8 \def (lift h TMP_7 t3)
+in (let TMP_9 \def (THead k TMP_6 TMP_8) in (let TMP_12 \def (\lambda (t:
+T).(let TMP_10 \def (THead k u2 t4) in (let TMP_11 \def (lift h d TMP_10) in
+(pr0 t TMP_11)))) in (let TMP_13 \def (lift h d u2) in (let TMP_14 \def (s k
+d) in (let TMP_15 \def (lift h TMP_14 t4) in (let TMP_16 \def (THead k TMP_13
+TMP_15) in (let TMP_21 \def (\lambda (t: T).(let TMP_17 \def (lift h d u1) in
+(let TMP_18 \def (s k d) in (let TMP_19 \def (lift h TMP_18 t3) in (let
+TMP_20 \def (THead k TMP_17 TMP_19) in (pr0 TMP_20 t)))))) in (let TMP_22
+\def (lift h d u1) in (let TMP_23 \def (lift h d u2) in (let TMP_24 \def (H1
+h d) in (let TMP_25 \def (s k d) in (let TMP_26 \def (lift h TMP_25 t3) in
+(let TMP_27 \def (s k d) in (let TMP_28 \def (lift h TMP_27 t4) in (let
+TMP_29 \def (s k d) in (let TMP_30 \def (H3 h TMP_29) in (let TMP_31 \def
+(pr0_comp TMP_22 TMP_23 TMP_24 TMP_26 TMP_28 TMP_30 k) in (let TMP_32 \def
+(THead k u2 t4) in (let TMP_33 \def (lift h d TMP_32) in (let TMP_34 \def
+(lift_head k u2 t4 h d) in (let TMP_35 \def (eq_ind_r T TMP_16 TMP_21 TMP_31
+TMP_33 TMP_34) in (let TMP_36 \def (THead k u1 t3) in (let TMP_37 \def (lift
+h d TMP_36) in (let TMP_38 \def (lift_head k u1 t3 h d) in (eq_ind_r T TMP_9
+TMP_12 TMP_35 TMP_37 TMP_38))))))))))))))))))))))))))))))))))))))) in (let
+TMP_132 \def (\lambda (u: T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_:
(pr0 v1 v2)).(\lambda (H1: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h
d v1) (lift h d v2)))))).(\lambda (t3: T).(\lambda (t4: T).(\lambda (_: (pr0
t3 t4)).(\lambda (H3: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h d t3)
-(lift h d t4)))))).(\lambda (h: nat).(\lambda (d: nat).(eq_ind_r T (THead
-(Flat Appl) (lift h d v1) (lift h (s (Flat Appl) d) (THead (Bind Abst) u
-t3))) (\lambda (t: T).(pr0 t (lift h d (THead (Bind Abbr) v2 t4)))) (eq_ind_r
-T (THead (Bind Abst) (lift h (s (Flat Appl) d) u) (lift h (s (Bind Abst) (s
-(Flat Appl) d)) t3)) (\lambda (t: T).(pr0 (THead (Flat Appl) (lift h d v1) t)
-(lift h d (THead (Bind Abbr) v2 t4)))) (eq_ind_r T (THead (Bind Abbr) (lift h
-d v2) (lift h (s (Bind Abbr) d) t4)) (\lambda (t: T).(pr0 (THead (Flat Appl)
-(lift h d v1) (THead (Bind Abst) (lift h (s (Flat Appl) d) u) (lift h (s
-(Bind Abst) (s (Flat Appl) d)) t3))) t)) (pr0_beta (lift h (s (Flat Appl) d)
-u) (lift h d v1) (lift h d v2) (H1 h d) (lift h (s (Bind Abst) (s (Flat Appl)
-d)) t3) (lift h (s (Bind Abbr) d) t4) (H3 h (s (Bind Abbr) d))) (lift h d
-(THead (Bind Abbr) v2 t4)) (lift_head (Bind Abbr) v2 t4 h d)) (lift h (s
-(Flat Appl) d) (THead (Bind Abst) u t3)) (lift_head (Bind Abst) u t3 h (s
-(Flat Appl) d))) (lift h d (THead (Flat Appl) v1 (THead (Bind Abst) u t3)))
-(lift_head (Flat Appl) v1 (THead (Bind Abst) u t3) h d))))))))))))) (\lambda
-(b: B).(\lambda (H0: (not (eq B b Abst))).(\lambda (v1: T).(\lambda (v2:
-T).(\lambda (_: (pr0 v1 v2)).(\lambda (H2: ((\forall (h: nat).(\forall (d:
-nat).(pr0 (lift h d v1) (lift h d v2)))))).(\lambda (u1: T).(\lambda (u2:
-T).(\lambda (_: (pr0 u1 u2)).(\lambda (H4: ((\forall (h: nat).(\forall (d:
-nat).(pr0 (lift h d u1) (lift h d u2)))))).(\lambda (t3: T).(\lambda (t4:
-T).(\lambda (_: (pr0 t3 t4)).(\lambda (H6: ((\forall (h: nat).(\forall (d:
-nat).(pr0 (lift h d t3) (lift h d t4)))))).(\lambda (h: nat).(\lambda (d:
-nat).(eq_ind_r T (THead (Flat Appl) (lift h d v1) (lift h (s (Flat Appl) d)
-(THead (Bind b) u1 t3))) (\lambda (t: T).(pr0 t (lift h d (THead (Bind b) u2
-(THead (Flat Appl) (lift (S O) O v2) t4))))) (eq_ind_r T (THead (Bind b)
-(lift h (s (Flat Appl) d) u1) (lift h (s (Bind b) (s (Flat Appl) d)) t3))
-(\lambda (t: T).(pr0 (THead (Flat Appl) (lift h d v1) t) (lift h d (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))))) (eq_ind_r T (THead
-(Bind b) (lift h d u2) (lift h (s (Bind b) d) (THead (Flat Appl) (lift (S O)
-O v2) t4))) (\lambda (t: T).(pr0 (THead (Flat Appl) (lift h d v1) (THead
-(Bind b) (lift h (s (Flat Appl) d) u1) (lift h (s (Bind b) (s (Flat Appl) d))
-t3))) t)) (eq_ind_r T (THead (Flat Appl) (lift h (s (Bind b) d) (lift (S O) O
-v2)) (lift h (s (Flat Appl) (s (Bind b) d)) t4)) (\lambda (t: T).(pr0 (THead
-(Flat Appl) (lift h d v1) (THead (Bind b) (lift h (s (Flat Appl) d) u1) (lift
-h (s (Bind b) (s (Flat Appl) d)) t3))) (THead (Bind b) (lift h d u2) t)))
-(eq_ind nat (plus (S O) d) (\lambda (n: nat).(pr0 (THead (Flat Appl) (lift h
-d v1) (THead (Bind b) (lift h d u1) (lift h n t3))) (THead (Bind b) (lift h d
-u2) (THead (Flat Appl) (lift h n (lift (S O) O v2)) (lift h n t4)))))
-(eq_ind_r T (lift (S O) O (lift h d v2)) (\lambda (t: T).(pr0 (THead (Flat
-Appl) (lift h d v1) (THead (Bind b) (lift h d u1) (lift h (plus (S O) d)
-t3))) (THead (Bind b) (lift h d u2) (THead (Flat Appl) t (lift h (plus (S O)
-d) t4))))) (pr0_upsilon b H0 (lift h d v1) (lift h d v2) (H2 h d) (lift h d
-u1) (lift h d u2) (H4 h d) (lift h (plus (S O) d) t3) (lift h (plus (S O) d)
-t4) (H6 h (plus (S O) d))) (lift h (plus (S O) d) (lift (S O) O v2)) (lift_d
-v2 h (S O) d O (le_O_n d))) (S d) (refl_equal nat (S d))) (lift h (s (Bind b)
-d) (THead (Flat Appl) (lift (S O) O v2) t4)) (lift_head (Flat Appl) (lift (S
-O) O v2) t4 h (s (Bind b) d))) (lift h d (THead (Bind b) u2 (THead (Flat
-Appl) (lift (S O) O v2) t4))) (lift_head (Bind b) u2 (THead (Flat Appl) (lift
-(S O) O v2) t4) h d)) (lift h (s (Flat Appl) d) (THead (Bind b) u1 t3))
-(lift_head (Bind b) u1 t3 h (s (Flat Appl) d))) (lift h d (THead (Flat Appl)
-v1 (THead (Bind b) u1 t3))) (lift_head (Flat Appl) v1 (THead (Bind b) u1 t3)
-h d)))))))))))))))))) (\lambda (u1: T).(\lambda (u2: T).(\lambda (_: (pr0 u1
+(lift h d t4)))))).(\lambda (h: nat).(\lambda (d: nat).(let TMP_40 \def (Flat
+Appl) in (let TMP_41 \def (lift h d v1) in (let TMP_42 \def (Flat Appl) in
+(let TMP_43 \def (s TMP_42 d) in (let TMP_44 \def (Bind Abst) in (let TMP_45
+\def (THead TMP_44 u t3) in (let TMP_46 \def (lift h TMP_43 TMP_45) in (let
+TMP_47 \def (THead TMP_40 TMP_41 TMP_46) in (let TMP_51 \def (\lambda (t:
+T).(let TMP_48 \def (Bind Abbr) in (let TMP_49 \def (THead TMP_48 v2 t4) in
+(let TMP_50 \def (lift h d TMP_49) in (pr0 t TMP_50))))) in (let TMP_52 \def
+(Bind Abst) in (let TMP_53 \def (Flat Appl) in (let TMP_54 \def (s TMP_53 d)
+in (let TMP_55 \def (lift h TMP_54 u) in (let TMP_56 \def (Bind Abst) in (let
+TMP_57 \def (Flat Appl) in (let TMP_58 \def (s TMP_57 d) in (let TMP_59 \def
+(s TMP_56 TMP_58) in (let TMP_60 \def (lift h TMP_59 t3) in (let TMP_61 \def
+(THead TMP_52 TMP_55 TMP_60) in (let TMP_68 \def (\lambda (t: T).(let TMP_62
+\def (Flat Appl) in (let TMP_63 \def (lift h d v1) in (let TMP_64 \def (THead
+TMP_62 TMP_63 t) in (let TMP_65 \def (Bind Abbr) in (let TMP_66 \def (THead
+TMP_65 v2 t4) in (let TMP_67 \def (lift h d TMP_66) in (pr0 TMP_64
+TMP_67)))))))) in (let TMP_69 \def (Bind Abbr) in (let TMP_70 \def (lift h d
+v2) in (let TMP_71 \def (Bind Abbr) in (let TMP_72 \def (s TMP_71 d) in (let
+TMP_73 \def (lift h TMP_72 t4) in (let TMP_74 \def (THead TMP_69 TMP_70
+TMP_73) in (let TMP_88 \def (\lambda (t: T).(let TMP_75 \def (Flat Appl) in
+(let TMP_76 \def (lift h d v1) in (let TMP_77 \def (Bind Abst) in (let TMP_78
+\def (Flat Appl) in (let TMP_79 \def (s TMP_78 d) in (let TMP_80 \def (lift h
+TMP_79 u) in (let TMP_81 \def (Bind Abst) in (let TMP_82 \def (Flat Appl) in
+(let TMP_83 \def (s TMP_82 d) in (let TMP_84 \def (s TMP_81 TMP_83) in (let
+TMP_85 \def (lift h TMP_84 t3) in (let TMP_86 \def (THead TMP_77 TMP_80
+TMP_85) in (let TMP_87 \def (THead TMP_75 TMP_76 TMP_86) in (pr0 TMP_87
+t))))))))))))))) in (let TMP_89 \def (Flat Appl) in (let TMP_90 \def (s
+TMP_89 d) in (let TMP_91 \def (lift h TMP_90 u) in (let TMP_92 \def (lift h d
+v1) in (let TMP_93 \def (lift h d v2) in (let TMP_94 \def (H1 h d) in (let
+TMP_95 \def (Bind Abst) in (let TMP_96 \def (Flat Appl) in (let TMP_97 \def
+(s TMP_96 d) in (let TMP_98 \def (s TMP_95 TMP_97) in (let TMP_99 \def (lift
+h TMP_98 t3) in (let TMP_100 \def (Bind Abbr) in (let TMP_101 \def (s TMP_100
+d) in (let TMP_102 \def (lift h TMP_101 t4) in (let TMP_103 \def (Bind Abbr)
+in (let TMP_104 \def (s TMP_103 d) in (let TMP_105 \def (H3 h TMP_104) in
+(let TMP_106 \def (pr0_beta TMP_91 TMP_92 TMP_93 TMP_94 TMP_99 TMP_102
+TMP_105) in (let TMP_107 \def (Bind Abbr) in (let TMP_108 \def (THead TMP_107
+v2 t4) in (let TMP_109 \def (lift h d TMP_108) in (let TMP_110 \def (Bind
+Abbr) in (let TMP_111 \def (lift_head TMP_110 v2 t4 h d) in (let TMP_112 \def
+(eq_ind_r T TMP_74 TMP_88 TMP_106 TMP_109 TMP_111) in (let TMP_113 \def (Flat
+Appl) in (let TMP_114 \def (s TMP_113 d) in (let TMP_115 \def (Bind Abst) in
+(let TMP_116 \def (THead TMP_115 u t3) in (let TMP_117 \def (lift h TMP_114
+TMP_116) in (let TMP_118 \def (Bind Abst) in (let TMP_119 \def (Flat Appl) in
+(let TMP_120 \def (s TMP_119 d) in (let TMP_121 \def (lift_head TMP_118 u t3
+h TMP_120) in (let TMP_122 \def (eq_ind_r T TMP_61 TMP_68 TMP_112 TMP_117
+TMP_121) in (let TMP_123 \def (Flat Appl) in (let TMP_124 \def (Bind Abst) in
+(let TMP_125 \def (THead TMP_124 u t3) in (let TMP_126 \def (THead TMP_123 v1
+TMP_125) in (let TMP_127 \def (lift h d TMP_126) in (let TMP_128 \def (Flat
+Appl) in (let TMP_129 \def (Bind Abst) in (let TMP_130 \def (THead TMP_129 u
+t3) in (let TMP_131 \def (lift_head TMP_128 v1 TMP_130 h d) in (eq_ind_r T
+TMP_47 TMP_51 TMP_122 TMP_127
+TMP_131)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+))))))))))) in (let TMP_339 \def (\lambda (b: B).(\lambda (H0: (not (eq B b
+Abst))).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (pr0 v1 v2)).(\lambda
+(H2: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h d v1) (lift h d
+v2)))))).(\lambda (u1: T).(\lambda (u2: T).(\lambda (_: (pr0 u1 u2)).(\lambda
+(H4: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h d u1) (lift h d
+u2)))))).(\lambda (t3: T).(\lambda (t4: T).(\lambda (_: (pr0 t3 t4)).(\lambda
+(H6: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h d t3) (lift h d
+t4)))))).(\lambda (h: nat).(\lambda (d: nat).(let TMP_133 \def (Flat Appl) in
+(let TMP_134 \def (lift h d v1) in (let TMP_135 \def (Flat Appl) in (let
+TMP_136 \def (s TMP_135 d) in (let TMP_137 \def (Bind b) in (let TMP_138 \def
+(THead TMP_137 u1 t3) in (let TMP_139 \def (lift h TMP_136 TMP_138) in (let
+TMP_140 \def (THead TMP_133 TMP_134 TMP_139) in (let TMP_148 \def (\lambda
+(t: T).(let TMP_141 \def (Bind b) in (let TMP_142 \def (Flat Appl) in (let
+TMP_143 \def (S O) in (let TMP_144 \def (lift TMP_143 O v2) in (let TMP_145
+\def (THead TMP_142 TMP_144 t4) in (let TMP_146 \def (THead TMP_141 u2
+TMP_145) in (let TMP_147 \def (lift h d TMP_146) in (pr0 t TMP_147)))))))))
+in (let TMP_149 \def (Bind b) in (let TMP_150 \def (Flat Appl) in (let
+TMP_151 \def (s TMP_150 d) in (let TMP_152 \def (lift h TMP_151 u1) in (let
+TMP_153 \def (Bind b) in (let TMP_154 \def (Flat Appl) in (let TMP_155 \def
+(s TMP_154 d) in (let TMP_156 \def (s TMP_153 TMP_155) in (let TMP_157 \def
+(lift h TMP_156 t3) in (let TMP_158 \def (THead TMP_149 TMP_152 TMP_157) in
+(let TMP_169 \def (\lambda (t: T).(let TMP_159 \def (Flat Appl) in (let
+TMP_160 \def (lift h d v1) in (let TMP_161 \def (THead TMP_159 TMP_160 t) in
+(let TMP_162 \def (Bind b) in (let TMP_163 \def (Flat Appl) in (let TMP_164
+\def (S O) in (let TMP_165 \def (lift TMP_164 O v2) in (let TMP_166 \def
+(THead TMP_163 TMP_165 t4) in (let TMP_167 \def (THead TMP_162 u2 TMP_166) in
+(let TMP_168 \def (lift h d TMP_167) in (pr0 TMP_161 TMP_168)))))))))))) in
+(let TMP_170 \def (Bind b) in (let TMP_171 \def (lift h d u2) in (let TMP_172
+\def (Bind b) in (let TMP_173 \def (s TMP_172 d) in (let TMP_174 \def (Flat
+Appl) in (let TMP_175 \def (S O) in (let TMP_176 \def (lift TMP_175 O v2) in
+(let TMP_177 \def (THead TMP_174 TMP_176 t4) in (let TMP_178 \def (lift h
+TMP_173 TMP_177) in (let TMP_179 \def (THead TMP_170 TMP_171 TMP_178) in (let
+TMP_193 \def (\lambda (t: T).(let TMP_180 \def (Flat Appl) in (let TMP_181
+\def (lift h d v1) in (let TMP_182 \def (Bind b) in (let TMP_183 \def (Flat
+Appl) in (let TMP_184 \def (s TMP_183 d) in (let TMP_185 \def (lift h TMP_184
+u1) in (let TMP_186 \def (Bind b) in (let TMP_187 \def (Flat Appl) in (let
+TMP_188 \def (s TMP_187 d) in (let TMP_189 \def (s TMP_186 TMP_188) in (let
+TMP_190 \def (lift h TMP_189 t3) in (let TMP_191 \def (THead TMP_182 TMP_185
+TMP_190) in (let TMP_192 \def (THead TMP_180 TMP_181 TMP_191) in (pr0 TMP_192
+t))))))))))))))) in (let TMP_194 \def (Flat Appl) in (let TMP_195 \def (Bind
+b) in (let TMP_196 \def (s TMP_195 d) in (let TMP_197 \def (S O) in (let
+TMP_198 \def (lift TMP_197 O v2) in (let TMP_199 \def (lift h TMP_196
+TMP_198) in (let TMP_200 \def (Flat Appl) in (let TMP_201 \def (Bind b) in
+(let TMP_202 \def (s TMP_201 d) in (let TMP_203 \def (s TMP_200 TMP_202) in
+(let TMP_204 \def (lift h TMP_203 t4) in (let TMP_205 \def (THead TMP_194
+TMP_199 TMP_204) in (let TMP_222 \def (\lambda (t: T).(let TMP_206 \def (Flat
+Appl) in (let TMP_207 \def (lift h d v1) in (let TMP_208 \def (Bind b) in
+(let TMP_209 \def (Flat Appl) in (let TMP_210 \def (s TMP_209 d) in (let
+TMP_211 \def (lift h TMP_210 u1) in (let TMP_212 \def (Bind b) in (let
+TMP_213 \def (Flat Appl) in (let TMP_214 \def (s TMP_213 d) in (let TMP_215
+\def (s TMP_212 TMP_214) in (let TMP_216 \def (lift h TMP_215 t3) in (let
+TMP_217 \def (THead TMP_208 TMP_211 TMP_216) in (let TMP_218 \def (THead
+TMP_206 TMP_207 TMP_217) in (let TMP_219 \def (Bind b) in (let TMP_220 \def
+(lift h d u2) in (let TMP_221 \def (THead TMP_219 TMP_220 t) in (pr0 TMP_218
+TMP_221)))))))))))))))))) in (let TMP_223 \def (S O) in (let TMP_224 \def
+(plus TMP_223 d) in (let TMP_241 \def (\lambda (n: nat).(let TMP_225 \def
+(Flat Appl) in (let TMP_226 \def (lift h d v1) in (let TMP_227 \def (Bind b)
+in (let TMP_228 \def (lift h d u1) in (let TMP_229 \def (lift h n t3) in (let
+TMP_230 \def (THead TMP_227 TMP_228 TMP_229) in (let TMP_231 \def (THead
+TMP_225 TMP_226 TMP_230) in (let TMP_232 \def (Bind b) in (let TMP_233 \def
+(lift h d u2) in (let TMP_234 \def (Flat Appl) in (let TMP_235 \def (S O) in
+(let TMP_236 \def (lift TMP_235 O v2) in (let TMP_237 \def (lift h n TMP_236)
+in (let TMP_238 \def (lift h n t4) in (let TMP_239 \def (THead TMP_234
+TMP_237 TMP_238) in (let TMP_240 \def (THead TMP_232 TMP_233 TMP_239) in (pr0
+TMP_231 TMP_240)))))))))))))))))) in (let TMP_242 \def (S O) in (let TMP_243
+\def (lift h d v2) in (let TMP_244 \def (lift TMP_242 O TMP_243) in (let
+TMP_262 \def (\lambda (t: T).(let TMP_245 \def (Flat Appl) in (let TMP_246
+\def (lift h d v1) in (let TMP_247 \def (Bind b) in (let TMP_248 \def (lift h
+d u1) in (let TMP_249 \def (S O) in (let TMP_250 \def (plus TMP_249 d) in
+(let TMP_251 \def (lift h TMP_250 t3) in (let TMP_252 \def (THead TMP_247
+TMP_248 TMP_251) in (let TMP_253 \def (THead TMP_245 TMP_246 TMP_252) in (let
+TMP_254 \def (Bind b) in (let TMP_255 \def (lift h d u2) in (let TMP_256 \def
+(Flat Appl) in (let TMP_257 \def (S O) in (let TMP_258 \def (plus TMP_257 d)
+in (let TMP_259 \def (lift h TMP_258 t4) in (let TMP_260 \def (THead TMP_256
+t TMP_259) in (let TMP_261 \def (THead TMP_254 TMP_255 TMP_260) in (pr0
+TMP_253 TMP_261))))))))))))))))))) in (let TMP_263 \def (lift h d v1) in (let
+TMP_264 \def (lift h d v2) in (let TMP_265 \def (H2 h d) in (let TMP_266 \def
+(lift h d u1) in (let TMP_267 \def (lift h d u2) in (let TMP_268 \def (H4 h
+d) in (let TMP_269 \def (S O) in (let TMP_270 \def (plus TMP_269 d) in (let
+TMP_271 \def (lift h TMP_270 t3) in (let TMP_272 \def (S O) in (let TMP_273
+\def (plus TMP_272 d) in (let TMP_274 \def (lift h TMP_273 t4) in (let
+TMP_275 \def (S O) in (let TMP_276 \def (plus TMP_275 d) in (let TMP_277 \def
+(H6 h TMP_276) in (let TMP_278 \def (pr0_upsilon b H0 TMP_263 TMP_264 TMP_265
+TMP_266 TMP_267 TMP_268 TMP_271 TMP_274 TMP_277) in (let TMP_279 \def (S O)
+in (let TMP_280 \def (plus TMP_279 d) in (let TMP_281 \def (S O) in (let
+TMP_282 \def (lift TMP_281 O v2) in (let TMP_283 \def (lift h TMP_280
+TMP_282) in (let TMP_284 \def (S O) in (let TMP_285 \def (le_O_n d) in (let
+TMP_286 \def (lift_d v2 h TMP_284 d O TMP_285) in (let TMP_287 \def (eq_ind_r
+T TMP_244 TMP_262 TMP_278 TMP_283 TMP_286) in (let TMP_288 \def (S d) in (let
+TMP_289 \def (S d) in (let TMP_290 \def (refl_equal nat TMP_289) in (let
+TMP_291 \def (eq_ind nat TMP_224 TMP_241 TMP_287 TMP_288 TMP_290) in (let
+TMP_292 \def (Bind b) in (let TMP_293 \def (s TMP_292 d) in (let TMP_294 \def
+(Flat Appl) in (let TMP_295 \def (S O) in (let TMP_296 \def (lift TMP_295 O
+v2) in (let TMP_297 \def (THead TMP_294 TMP_296 t4) in (let TMP_298 \def
+(lift h TMP_293 TMP_297) in (let TMP_299 \def (Flat Appl) in (let TMP_300
+\def (S O) in (let TMP_301 \def (lift TMP_300 O v2) in (let TMP_302 \def
+(Bind b) in (let TMP_303 \def (s TMP_302 d) in (let TMP_304 \def (lift_head
+TMP_299 TMP_301 t4 h TMP_303) in (let TMP_305 \def (eq_ind_r T TMP_205
+TMP_222 TMP_291 TMP_298 TMP_304) in (let TMP_306 \def (Bind b) in (let
+TMP_307 \def (Flat Appl) in (let TMP_308 \def (S O) in (let TMP_309 \def
+(lift TMP_308 O v2) in (let TMP_310 \def (THead TMP_307 TMP_309 t4) in (let
+TMP_311 \def (THead TMP_306 u2 TMP_310) in (let TMP_312 \def (lift h d
+TMP_311) in (let TMP_313 \def (Bind b) in (let TMP_314 \def (Flat Appl) in
+(let TMP_315 \def (S O) in (let TMP_316 \def (lift TMP_315 O v2) in (let
+TMP_317 \def (THead TMP_314 TMP_316 t4) in (let TMP_318 \def (lift_head
+TMP_313 u2 TMP_317 h d) in (let TMP_319 \def (eq_ind_r T TMP_179 TMP_193
+TMP_305 TMP_312 TMP_318) in (let TMP_320 \def (Flat Appl) in (let TMP_321
+\def (s TMP_320 d) in (let TMP_322 \def (Bind b) in (let TMP_323 \def (THead
+TMP_322 u1 t3) in (let TMP_324 \def (lift h TMP_321 TMP_323) in (let TMP_325
+\def (Bind b) in (let TMP_326 \def (Flat Appl) in (let TMP_327 \def (s
+TMP_326 d) in (let TMP_328 \def (lift_head TMP_325 u1 t3 h TMP_327) in (let
+TMP_329 \def (eq_ind_r T TMP_158 TMP_169 TMP_319 TMP_324 TMP_328) in (let
+TMP_330 \def (Flat Appl) in (let TMP_331 \def (Bind b) in (let TMP_332 \def
+(THead TMP_331 u1 t3) in (let TMP_333 \def (THead TMP_330 v1 TMP_332) in (let
+TMP_334 \def (lift h d TMP_333) in (let TMP_335 \def (Flat Appl) in (let
+TMP_336 \def (Bind b) in (let TMP_337 \def (THead TMP_336 u1 t3) in (let
+TMP_338 \def (lift_head TMP_335 v1 TMP_337 h d) in (eq_ind_r T TMP_140
+TMP_148 TMP_329 TMP_334
+TMP_338)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) in
+(let TMP_405 \def (\lambda (u1: T).(\lambda (u2: T).(\lambda (_: (pr0 u1
u2)).(\lambda (H1: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h d u1)
(lift h d u2)))))).(\lambda (t3: T).(\lambda (t4: T).(\lambda (_: (pr0 t3
t4)).(\lambda (H3: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h d t3)
(lift h d t4)))))).(\lambda (w: T).(\lambda (H4: (subst0 O u2 t4 w)).(\lambda
-(h: nat).(\lambda (d: nat).(eq_ind_r T (THead (Bind Abbr) (lift h d u1) (lift
-h (s (Bind Abbr) d) t3)) (\lambda (t: T).(pr0 t (lift h d (THead (Bind Abbr)
-u2 w)))) (eq_ind_r T (THead (Bind Abbr) (lift h d u2) (lift h (s (Bind Abbr)
-d) w)) (\lambda (t: T).(pr0 (THead (Bind Abbr) (lift h d u1) (lift h (s (Bind
-Abbr) d) t3)) t)) (pr0_delta (lift h d u1) (lift h d u2) (H1 h d) (lift h (S
-d) t3) (lift h (S d) t4) (H3 h (S d)) (lift h (S d) w) (let d' \def (S d) in
-(eq_ind nat (minus (S d) (S O)) (\lambda (n: nat).(subst0 O (lift h n u2)
-(lift h d' t4) (lift h d' w))) (subst0_lift_lt t4 w u2 O H4 (S d) (le_n_S O d
-(le_O_n d)) h) d (eq_ind nat d (\lambda (n: nat).(eq nat n d)) (refl_equal
-nat d) (minus d O) (minus_n_O d))))) (lift h d (THead (Bind Abbr) u2 w))
-(lift_head (Bind Abbr) u2 w h d)) (lift h d (THead (Bind Abbr) u1 t3))
-(lift_head (Bind Abbr) u1 t3 h d)))))))))))))) (\lambda (b: B).(\lambda (H0:
-(not (eq B b Abst))).(\lambda (t3: T).(\lambda (t4: T).(\lambda (_: (pr0 t3
-t4)).(\lambda (H2: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h d t3)
-(lift h d t4)))))).(\lambda (u: T).(\lambda (h: nat).(\lambda (d:
-nat).(eq_ind_r T (THead (Bind b) (lift h d u) (lift h (s (Bind b) d) (lift (S
-O) O t3))) (\lambda (t: T).(pr0 t (lift h d t4))) (eq_ind nat (plus (S O) d)
-(\lambda (n: nat).(pr0 (THead (Bind b) (lift h d u) (lift h n (lift (S O) O
-t3))) (lift h d t4))) (eq_ind_r T (lift (S O) O (lift h d t3)) (\lambda (t:
-T).(pr0 (THead (Bind b) (lift h d u) t) (lift h d t4))) (pr0_zeta b H0 (lift
-h d t3) (lift h d t4) (H2 h d) (lift h d u)) (lift h (plus (S O) d) (lift (S
-O) O t3)) (lift_d t3 h (S O) d O (le_O_n d))) (S d) (refl_equal nat (S d)))
-(lift h d (THead (Bind b) u (lift (S O) O t3))) (lift_head (Bind b) u (lift
-(S O) O t3) h d))))))))))) (\lambda (t3: T).(\lambda (t4: T).(\lambda (_:
-(pr0 t3 t4)).(\lambda (H1: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h
-d t3) (lift h d t4)))))).(\lambda (u: T).(\lambda (h: nat).(\lambda (d:
-nat).(eq_ind_r T (THead (Flat Cast) (lift h d u) (lift h (s (Flat Cast) d)
-t3)) (\lambda (t: T).(pr0 t (lift h d t4))) (pr0_tau (lift h (s (Flat Cast)
-d) t3) (lift h d t4) (H1 h d) (lift h d u)) (lift h d (THead (Flat Cast) u
-t3)) (lift_head (Flat Cast) u t3 h d))))))))) t1 t2 H))).
-(* COMMENTS
-Initial nodes: 2845
-END *)
+(h: nat).(\lambda (d: nat).(let TMP_340 \def (Bind Abbr) in (let TMP_341 \def
+(lift h d u1) in (let TMP_342 \def (Bind Abbr) in (let TMP_343 \def (s
+TMP_342 d) in (let TMP_344 \def (lift h TMP_343 t3) in (let TMP_345 \def
+(THead TMP_340 TMP_341 TMP_344) in (let TMP_349 \def (\lambda (t: T).(let
+TMP_346 \def (Bind Abbr) in (let TMP_347 \def (THead TMP_346 u2 w) in (let
+TMP_348 \def (lift h d TMP_347) in (pr0 t TMP_348))))) in (let TMP_350 \def
+(Bind Abbr) in (let TMP_351 \def (lift h d u2) in (let TMP_352 \def (Bind
+Abbr) in (let TMP_353 \def (s TMP_352 d) in (let TMP_354 \def (lift h TMP_353
+w) in (let TMP_355 \def (THead TMP_350 TMP_351 TMP_354) in (let TMP_362 \def
+(\lambda (t: T).(let TMP_356 \def (Bind Abbr) in (let TMP_357 \def (lift h d
+u1) in (let TMP_358 \def (Bind Abbr) in (let TMP_359 \def (s TMP_358 d) in
+(let TMP_360 \def (lift h TMP_359 t3) in (let TMP_361 \def (THead TMP_356
+TMP_357 TMP_360) in (pr0 TMP_361 t)))))))) in (let TMP_363 \def (lift h d u1)
+in (let TMP_364 \def (lift h d u2) in (let TMP_365 \def (H1 h d) in (let
+TMP_366 \def (S d) in (let TMP_367 \def (lift h TMP_366 t3) in (let TMP_368
+\def (S d) in (let TMP_369 \def (lift h TMP_368 t4) in (let TMP_370 \def (S
+d) in (let TMP_371 \def (H3 h TMP_370) in (let TMP_372 \def (S d) in (let
+TMP_373 \def (lift h TMP_372 w) in (let d' \def (S d) in (let TMP_374 \def (S
+d) in (let TMP_375 \def (S O) in (let TMP_376 \def (minus TMP_374 TMP_375) in
+(let TMP_380 \def (\lambda (n: nat).(let TMP_377 \def (lift h n u2) in (let
+TMP_378 \def (lift h d' t4) in (let TMP_379 \def (lift h d' w) in (subst0 O
+TMP_377 TMP_378 TMP_379))))) in (let TMP_381 \def (S d) in (let TMP_382 \def
+(le_O_n d) in (let TMP_383 \def (le_n_S O d TMP_382) in (let TMP_384 \def
+(subst0_lift_lt t4 w u2 O H4 TMP_381 TMP_383 h) in (let TMP_385 \def (\lambda
+(n: nat).(eq nat n d)) in (let TMP_386 \def (le_n d) in (let TMP_387 \def
+(le_n d) in (let TMP_388 \def (le_antisym d d TMP_386 TMP_387) in (let
+TMP_389 \def (minus d O) in (let TMP_390 \def (minus_n_O d) in (let TMP_391
+\def (eq_ind nat d TMP_385 TMP_388 TMP_389 TMP_390) in (let TMP_392 \def
+(eq_ind nat TMP_376 TMP_380 TMP_384 d TMP_391) in (let TMP_393 \def
+(pr0_delta TMP_363 TMP_364 TMP_365 TMP_367 TMP_369 TMP_371 TMP_373 TMP_392)
+in (let TMP_394 \def (Bind Abbr) in (let TMP_395 \def (THead TMP_394 u2 w) in
+(let TMP_396 \def (lift h d TMP_395) in (let TMP_397 \def (Bind Abbr) in (let
+TMP_398 \def (lift_head TMP_397 u2 w h d) in (let TMP_399 \def (eq_ind_r T
+TMP_355 TMP_362 TMP_393 TMP_396 TMP_398) in (let TMP_400 \def (Bind Abbr) in
+(let TMP_401 \def (THead TMP_400 u1 t3) in (let TMP_402 \def (lift h d
+TMP_401) in (let TMP_403 \def (Bind Abbr) in (let TMP_404 \def (lift_head
+TMP_403 u1 t3 h d) in (eq_ind_r T TMP_345 TMP_349 TMP_399 TMP_402
+TMP_404))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) in
+(let TMP_461 \def (\lambda (b: B).(\lambda (H0: (not (eq B b Abst))).(\lambda
+(t3: T).(\lambda (t4: T).(\lambda (_: (pr0 t3 t4)).(\lambda (H2: ((\forall
+(h: nat).(\forall (d: nat).(pr0 (lift h d t3) (lift h d t4)))))).(\lambda (u:
+T).(\lambda (h: nat).(\lambda (d: nat).(let TMP_406 \def (Bind b) in (let
+TMP_407 \def (lift h d u) in (let TMP_408 \def (Bind b) in (let TMP_409 \def
+(s TMP_408 d) in (let TMP_410 \def (S O) in (let TMP_411 \def (lift TMP_410 O
+t3) in (let TMP_412 \def (lift h TMP_409 TMP_411) in (let TMP_413 \def (THead
+TMP_406 TMP_407 TMP_412) in (let TMP_415 \def (\lambda (t: T).(let TMP_414
+\def (lift h d t4) in (pr0 t TMP_414))) in (let TMP_416 \def (S O) in (let
+TMP_417 \def (plus TMP_416 d) in (let TMP_425 \def (\lambda (n: nat).(let
+TMP_418 \def (Bind b) in (let TMP_419 \def (lift h d u) in (let TMP_420 \def
+(S O) in (let TMP_421 \def (lift TMP_420 O t3) in (let TMP_422 \def (lift h n
+TMP_421) in (let TMP_423 \def (THead TMP_418 TMP_419 TMP_422) in (let TMP_424
+\def (lift h d t4) in (pr0 TMP_423 TMP_424))))))))) in (let TMP_426 \def (S
+O) in (let TMP_427 \def (lift h d t3) in (let TMP_428 \def (lift TMP_426 O
+TMP_427) in (let TMP_433 \def (\lambda (t: T).(let TMP_429 \def (Bind b) in
+(let TMP_430 \def (lift h d u) in (let TMP_431 \def (THead TMP_429 TMP_430 t)
+in (let TMP_432 \def (lift h d t4) in (pr0 TMP_431 TMP_432)))))) in (let
+TMP_434 \def (lift h d t3) in (let TMP_435 \def (lift h d t4) in (let TMP_436
+\def (H2 h d) in (let TMP_437 \def (lift h d u) in (let TMP_438 \def
+(pr0_zeta b H0 TMP_434 TMP_435 TMP_436 TMP_437) in (let TMP_439 \def (S O) in
+(let TMP_440 \def (plus TMP_439 d) in (let TMP_441 \def (S O) in (let TMP_442
+\def (lift TMP_441 O t3) in (let TMP_443 \def (lift h TMP_440 TMP_442) in
+(let TMP_444 \def (S O) in (let TMP_445 \def (le_O_n d) in (let TMP_446 \def
+(lift_d t3 h TMP_444 d O TMP_445) in (let TMP_447 \def (eq_ind_r T TMP_428
+TMP_433 TMP_438 TMP_443 TMP_446) in (let TMP_448 \def (S d) in (let TMP_449
+\def (S d) in (let TMP_450 \def (refl_equal nat TMP_449) in (let TMP_451 \def
+(eq_ind nat TMP_417 TMP_425 TMP_447 TMP_448 TMP_450) in (let TMP_452 \def
+(Bind b) in (let TMP_453 \def (S O) in (let TMP_454 \def (lift TMP_453 O t3)
+in (let TMP_455 \def (THead TMP_452 u TMP_454) in (let TMP_456 \def (lift h d
+TMP_455) in (let TMP_457 \def (Bind b) in (let TMP_458 \def (S O) in (let
+TMP_459 \def (lift TMP_458 O t3) in (let TMP_460 \def (lift_head TMP_457 u
+TMP_459 h d) in (eq_ind_r T TMP_413 TMP_415 TMP_451 TMP_456
+TMP_460))))))))))))))))))))))))))))))))))))))))))))))))))))) in (let TMP_482
+\def (\lambda (t3: T).(\lambda (t4: T).(\lambda (_: (pr0 t3 t4)).(\lambda
+(H1: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h d t3) (lift h d
+t4)))))).(\lambda (u: T).(\lambda (h: nat).(\lambda (d: nat).(let TMP_462
+\def (Flat Cast) in (let TMP_463 \def (lift h d u) in (let TMP_464 \def (Flat
+Cast) in (let TMP_465 \def (s TMP_464 d) in (let TMP_466 \def (lift h TMP_465
+t3) in (let TMP_467 \def (THead TMP_462 TMP_463 TMP_466) in (let TMP_469 \def
+(\lambda (t: T).(let TMP_468 \def (lift h d t4) in (pr0 t TMP_468))) in (let
+TMP_470 \def (Flat Cast) in (let TMP_471 \def (s TMP_470 d) in (let TMP_472
+\def (lift h TMP_471 t3) in (let TMP_473 \def (lift h d t4) in (let TMP_474
+\def (H1 h d) in (let TMP_475 \def (lift h d u) in (let TMP_476 \def (pr0_tau
+TMP_472 TMP_473 TMP_474 TMP_475) in (let TMP_477 \def (Flat Cast) in (let
+TMP_478 \def (THead TMP_477 u t3) in (let TMP_479 \def (lift h d TMP_478) in
+(let TMP_480 \def (Flat Cast) in (let TMP_481 \def (lift_head TMP_480 u t3 h
+d) in (eq_ind_r T TMP_467 TMP_469 TMP_476 TMP_479
+TMP_481))))))))))))))))))))))))))) in (pr0_ind TMP_3 TMP_5 TMP_39 TMP_132
+TMP_339 TMP_405 TMP_461 TMP_482 t1 t2 H))))))))))).
-theorem pr0_subst0_back:
- \forall (u2: T).(\forall (t1: T).(\forall (t2: T).(\forall (i: nat).((subst0
-i u2 t1 t2) \to (\forall (u1: T).((pr0 u1 u2) \to (ex2 T (\lambda (t:
-T).(subst0 i u1 t1 t)) (\lambda (t: T).(pr0 t t2)))))))))
+theorem pr0_gen_abbr:
+ \forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr0 (THead (Bind Abbr) u1
+t1) x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead
+(Bind Abbr) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
+(u2: T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T (\lambda (y: T).(pr0 t1 y))
+(\lambda (y: T).(subst0 O u2 y t2))))))) (pr0 t1 (lift (S O) O x))))))
\def
- \lambda (u2: T).(\lambda (t1: T).(\lambda (t2: T).(\lambda (i: nat).(\lambda
-(H: (subst0 i u2 t1 t2)).(subst0_ind (\lambda (n: nat).(\lambda (t:
-T).(\lambda (t0: T).(\lambda (t3: T).(\forall (u1: T).((pr0 u1 t) \to (ex2 T
-(\lambda (t4: T).(subst0 n u1 t0 t4)) (\lambda (t4: T).(pr0 t4 t3)))))))))
-(\lambda (v: T).(\lambda (i0: nat).(\lambda (u1: T).(\lambda (H0: (pr0 u1
-v)).(ex_intro2 T (\lambda (t: T).(subst0 i0 u1 (TLRef i0) t)) (\lambda (t:
-T).(pr0 t (lift (S i0) O v))) (lift (S i0) O u1) (subst0_lref u1 i0)
-(pr0_lift u1 v H0 (S i0) O)))))) (\lambda (v: T).(\lambda (u3: T).(\lambda
-(u1: T).(\lambda (i0: nat).(\lambda (_: (subst0 i0 v u1 u3)).(\lambda (H1:
-((\forall (u4: T).((pr0 u4 v) \to (ex2 T (\lambda (t: T).(subst0 i0 u4 u1 t))
-(\lambda (t: T).(pr0 t u3))))))).(\lambda (t: T).(\lambda (k: K).(\lambda
-(u0: T).(\lambda (H2: (pr0 u0 v)).(ex2_ind T (\lambda (t0: T).(subst0 i0 u0
-u1 t0)) (\lambda (t0: T).(pr0 t0 u3)) (ex2 T (\lambda (t0: T).(subst0 i0 u0
-(THead k u1 t) t0)) (\lambda (t0: T).(pr0 t0 (THead k u3 t)))) (\lambda (x:
-T).(\lambda (H3: (subst0 i0 u0 u1 x)).(\lambda (H4: (pr0 x u3)).(ex_intro2 T
-(\lambda (t0: T).(subst0 i0 u0 (THead k u1 t) t0)) (\lambda (t0: T).(pr0 t0
-(THead k u3 t))) (THead k x t) (subst0_fst u0 x u1 i0 H3 t k) (pr0_comp x u3
-H4 t t (pr0_refl t) k))))) (H1 u0 H2)))))))))))) (\lambda (k: K).(\lambda (v:
-T).(\lambda (t3: T).(\lambda (t4: T).(\lambda (i0: nat).(\lambda (_: (subst0
-(s k i0) v t4 t3)).(\lambda (H1: ((\forall (u1: T).((pr0 u1 v) \to (ex2 T
-(\lambda (t: T).(subst0 (s k i0) u1 t4 t)) (\lambda (t: T).(pr0 t
-t3))))))).(\lambda (u: T).(\lambda (u1: T).(\lambda (H2: (pr0 u1 v)).(ex2_ind
-T (\lambda (t: T).(subst0 (s k i0) u1 t4 t)) (\lambda (t: T).(pr0 t t3)) (ex2
-T (\lambda (t: T).(subst0 i0 u1 (THead k u t4) t)) (\lambda (t: T).(pr0 t
-(THead k u t3)))) (\lambda (x: T).(\lambda (H3: (subst0 (s k i0) u1 t4
-x)).(\lambda (H4: (pr0 x t3)).(ex_intro2 T (\lambda (t: T).(subst0 i0 u1
-(THead k u t4) t)) (\lambda (t: T).(pr0 t (THead k u t3))) (THead k u x)
-(subst0_snd k u1 x t4 i0 H3 u) (pr0_comp u u (pr0_refl u) x t3 H4 k))))) (H1
-u1 H2)))))))))))) (\lambda (v: T).(\lambda (u1: T).(\lambda (u3: T).(\lambda
-(i0: nat).(\lambda (_: (subst0 i0 v u1 u3)).(\lambda (H1: ((\forall (u4:
-T).((pr0 u4 v) \to (ex2 T (\lambda (t: T).(subst0 i0 u4 u1 t)) (\lambda (t:
-T).(pr0 t u3))))))).(\lambda (k: K).(\lambda (t3: T).(\lambda (t4:
-T).(\lambda (_: (subst0 (s k i0) v t3 t4)).(\lambda (H3: ((\forall (u4:
-T).((pr0 u4 v) \to (ex2 T (\lambda (t: T).(subst0 (s k i0) u4 t3 t)) (\lambda
-(t: T).(pr0 t t4))))))).(\lambda (u0: T).(\lambda (H4: (pr0 u0 v)).(ex2_ind T
-(\lambda (t: T).(subst0 (s k i0) u0 t3 t)) (\lambda (t: T).(pr0 t t4)) (ex2 T
-(\lambda (t: T).(subst0 i0 u0 (THead k u1 t3) t)) (\lambda (t: T).(pr0 t
-(THead k u3 t4)))) (\lambda (x: T).(\lambda (H5: (subst0 (s k i0) u0 t3
-x)).(\lambda (H6: (pr0 x t4)).(ex2_ind T (\lambda (t: T).(subst0 i0 u0 u1 t))
-(\lambda (t: T).(pr0 t u3)) (ex2 T (\lambda (t: T).(subst0 i0 u0 (THead k u1
-t3) t)) (\lambda (t: T).(pr0 t (THead k u3 t4)))) (\lambda (x0: T).(\lambda
-(H7: (subst0 i0 u0 u1 x0)).(\lambda (H8: (pr0 x0 u3)).(ex_intro2 T (\lambda
-(t: T).(subst0 i0 u0 (THead k u1 t3) t)) (\lambda (t: T).(pr0 t (THead k u3
-t4))) (THead k x0 x) (subst0_both u0 u1 x0 i0 H7 k t3 x H5) (pr0_comp x0 u3
-H8 x t4 H6 k))))) (H1 u0 H4))))) (H3 u0 H4))))))))))))))) i u2 t1 t2 H))))).
-(* COMMENTS
-Initial nodes: 979
-END *)
+ \lambda (u1: T).(\lambda (t1: T).(\lambda (x: T).(\lambda (H: (pr0 (THead
+(Bind Abbr) u1 t1) x)).(let TMP_1 \def (Bind Abbr) in (let TMP_2 \def (THead
+TMP_1 u1 t1) in (let TMP_3 \def (\lambda (t: T).(pr0 t x)) in (let TMP_17
+\def (\lambda (_: T).(let TMP_6 \def (\lambda (u2: T).(\lambda (t2: T).(let
+TMP_4 \def (Bind Abbr) in (let TMP_5 \def (THead TMP_4 u2 t2) in (eq T x
+TMP_5))))) in (let TMP_7 \def (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2)))
+in (let TMP_12 \def (\lambda (u2: T).(\lambda (t2: T).(let TMP_8 \def (pr0 t1
+t2) in (let TMP_9 \def (\lambda (y: T).(pr0 t1 y)) in (let TMP_10 \def
+(\lambda (y: T).(subst0 O u2 y t2)) in (let TMP_11 \def (ex2 T TMP_9 TMP_10)
+in (or TMP_8 TMP_11))))))) in (let TMP_13 \def (ex3_2 T T TMP_6 TMP_7 TMP_12)
+in (let TMP_14 \def (S O) in (let TMP_15 \def (lift TMP_14 O x) in (let
+TMP_16 \def (pr0 t1 TMP_15) in (or TMP_13 TMP_16))))))))) in (let TMP_448
+\def (\lambda (y: T).(\lambda (H0: (pr0 y x)).(let TMP_31 \def (\lambda (t:
+T).(\lambda (t0: T).((eq T t (THead (Bind Abbr) u1 t1)) \to (let TMP_20 \def
+(\lambda (u2: T).(\lambda (t2: T).(let TMP_18 \def (Bind Abbr) in (let TMP_19
+\def (THead TMP_18 u2 t2) in (eq T t0 TMP_19))))) in (let TMP_21 \def
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) in (let TMP_26 \def (\lambda
+(u2: T).(\lambda (t2: T).(let TMP_22 \def (pr0 t1 t2) in (let TMP_23 \def
+(\lambda (y0: T).(pr0 t1 y0)) in (let TMP_24 \def (\lambda (y0: T).(subst0 O
+u2 y0 t2)) in (let TMP_25 \def (ex2 T TMP_23 TMP_24) in (or TMP_22
+TMP_25))))))) in (let TMP_27 \def (ex3_2 T T TMP_20 TMP_21 TMP_26) in (let
+TMP_28 \def (S O) in (let TMP_29 \def (lift TMP_28 O t0) in (let TMP_30 \def
+(pr0 t1 TMP_29) in (or TMP_27 TMP_30))))))))))) in (let TMP_91 \def (\lambda
+(t: T).(\lambda (H1: (eq T t (THead (Bind Abbr) u1 t1))).(let TMP_32 \def
+(\lambda (e: T).e) in (let TMP_33 \def (Bind Abbr) in (let TMP_34 \def (THead
+TMP_33 u1 t1) in (let H2 \def (f_equal T T TMP_32 t TMP_34 H1) in (let TMP_35
+\def (Bind Abbr) in (let TMP_36 \def (THead TMP_35 u1 t1) in (let TMP_50 \def
+(\lambda (t0: T).(let TMP_39 \def (\lambda (u2: T).(\lambda (t2: T).(let
+TMP_37 \def (Bind Abbr) in (let TMP_38 \def (THead TMP_37 u2 t2) in (eq T t0
+TMP_38))))) in (let TMP_40 \def (\lambda (u2: T).(\lambda (_: T).(pr0 u1
+u2))) in (let TMP_45 \def (\lambda (u2: T).(\lambda (t2: T).(let TMP_41 \def
+(pr0 t1 t2) in (let TMP_42 \def (\lambda (y0: T).(pr0 t1 y0)) in (let TMP_43
+\def (\lambda (y0: T).(subst0 O u2 y0 t2)) in (let TMP_44 \def (ex2 T TMP_42
+TMP_43) in (or TMP_41 TMP_44))))))) in (let TMP_46 \def (ex3_2 T T TMP_39
+TMP_40 TMP_45) in (let TMP_47 \def (S O) in (let TMP_48 \def (lift TMP_47 O
+t0) in (let TMP_49 \def (pr0 t1 TMP_48) in (or TMP_46 TMP_49))))))))) in (let
+TMP_55 \def (\lambda (u2: T).(\lambda (t2: T).(let TMP_51 \def (Bind Abbr) in
+(let TMP_52 \def (THead TMP_51 u1 t1) in (let TMP_53 \def (Bind Abbr) in (let
+TMP_54 \def (THead TMP_53 u2 t2) in (eq T TMP_52 TMP_54))))))) in (let TMP_56
+\def (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) in (let TMP_61 \def
+(\lambda (u2: T).(\lambda (t2: T).(let TMP_57 \def (pr0 t1 t2) in (let TMP_58
+\def (\lambda (y0: T).(pr0 t1 y0)) in (let TMP_59 \def (\lambda (y0:
+T).(subst0 O u2 y0 t2)) in (let TMP_60 \def (ex2 T TMP_58 TMP_59) in (or
+TMP_57 TMP_60))))))) in (let TMP_62 \def (ex3_2 T T TMP_55 TMP_56 TMP_61) in
+(let TMP_63 \def (S O) in (let TMP_64 \def (Bind Abbr) in (let TMP_65 \def
+(THead TMP_64 u1 t1) in (let TMP_66 \def (lift TMP_63 O TMP_65) in (let
+TMP_67 \def (pr0 t1 TMP_66) in (let TMP_72 \def (\lambda (u2: T).(\lambda
+(t2: T).(let TMP_68 \def (Bind Abbr) in (let TMP_69 \def (THead TMP_68 u1 t1)
+in (let TMP_70 \def (Bind Abbr) in (let TMP_71 \def (THead TMP_70 u2 t2) in
+(eq T TMP_69 TMP_71))))))) in (let TMP_73 \def (\lambda (u2: T).(\lambda (_:
+T).(pr0 u1 u2))) in (let TMP_78 \def (\lambda (u2: T).(\lambda (t2: T).(let
+TMP_74 \def (pr0 t1 t2) in (let TMP_75 \def (\lambda (y0: T).(pr0 t1 y0)) in
+(let TMP_76 \def (\lambda (y0: T).(subst0 O u2 y0 t2)) in (let TMP_77 \def
+(ex2 T TMP_75 TMP_76) in (or TMP_74 TMP_77))))))) in (let TMP_79 \def (Bind
+Abbr) in (let TMP_80 \def (THead TMP_79 u1 t1) in (let TMP_81 \def
+(refl_equal T TMP_80) in (let TMP_82 \def (pr0_refl u1) in (let TMP_83 \def
+(pr0 t1 t1) in (let TMP_84 \def (\lambda (y0: T).(pr0 t1 y0)) in (let TMP_85
+\def (\lambda (y0: T).(subst0 O u1 y0 t1)) in (let TMP_86 \def (ex2 T TMP_84
+TMP_85) in (let TMP_87 \def (pr0_refl t1) in (let TMP_88 \def (or_introl
+TMP_83 TMP_86 TMP_87) in (let TMP_89 \def (ex3_2_intro T T TMP_72 TMP_73
+TMP_78 u1 t1 TMP_81 TMP_82 TMP_88) in (let TMP_90 \def (or_introl TMP_62
+TMP_67 TMP_89) in (eq_ind_r T TMP_36 TMP_50 TMP_90 t
+H2)))))))))))))))))))))))))))))))))) in (let TMP_191 \def (\lambda (u0:
+T).(\lambda (u2: T).(\lambda (H1: (pr0 u0 u2)).(\lambda (H2: (((eq T u0
+(THead (Bind Abbr) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2:
+T).(eq T u2 (THead (Bind Abbr) u3 t2)))) (\lambda (u3: T).(\lambda (_:
+T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T
+(\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u3 y0 t2))))))) (pr0
+t1 (lift (S O) O u2)))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (H3:
+(pr0 t0 t2)).(\lambda (H4: (((eq T t0 (THead (Bind Abbr) u1 t1)) \to (or
+(ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u3
+t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3:
+T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0))
+(\lambda (y0: T).(subst0 O u3 y0 t3))))))) (pr0 t1 (lift (S O) O
+t2)))))).(\lambda (k: K).(\lambda (H5: (eq T (THead k u0 t0) (THead (Bind
+Abbr) u1 t1))).(let TMP_92 \def (\lambda (e: T).(match e with [(TSort _)
+\Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _) \Rightarrow k0])) in
+(let TMP_93 \def (THead k u0 t0) in (let TMP_94 \def (Bind Abbr) in (let
+TMP_95 \def (THead TMP_94 u1 t1) in (let H6 \def (f_equal T K TMP_92 TMP_93
+TMP_95 H5) in (let TMP_96 \def (\lambda (e: T).(match e with [(TSort _)
+\Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t _) \Rightarrow t])) in
+(let TMP_97 \def (THead k u0 t0) in (let TMP_98 \def (Bind Abbr) in (let
+TMP_99 \def (THead TMP_98 u1 t1) in (let H7 \def (f_equal T T TMP_96 TMP_97
+TMP_99 H5) in (let TMP_100 \def (\lambda (e: T).(match e with [(TSort _)
+\Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t) \Rightarrow t])) in
+(let TMP_101 \def (THead k u0 t0) in (let TMP_102 \def (Bind Abbr) in (let
+TMP_103 \def (THead TMP_102 u1 t1) in (let H8 \def (f_equal T T TMP_100
+TMP_101 TMP_103 H5) in (let TMP_189 \def (\lambda (H9: (eq T u0 u1)).(\lambda
+(H10: (eq K k (Bind Abbr))).(let TMP_104 \def (Bind Abbr) in (let TMP_120
+\def (\lambda (k0: K).(let TMP_108 \def (\lambda (u3: T).(\lambda (t3:
+T).(let TMP_105 \def (THead k0 u2 t2) in (let TMP_106 \def (Bind Abbr) in
+(let TMP_107 \def (THead TMP_106 u3 t3) in (eq T TMP_105 TMP_107)))))) in
+(let TMP_109 \def (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) in (let
+TMP_114 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_110 \def (pr0 t1 t3)
+in (let TMP_111 \def (\lambda (y0: T).(pr0 t1 y0)) in (let TMP_112 \def
+(\lambda (y0: T).(subst0 O u3 y0 t3)) in (let TMP_113 \def (ex2 T TMP_111
+TMP_112) in (or TMP_110 TMP_113))))))) in (let TMP_115 \def (ex3_2 T T
+TMP_108 TMP_109 TMP_114) in (let TMP_116 \def (S O) in (let TMP_117 \def
+(THead k0 u2 t2) in (let TMP_118 \def (lift TMP_116 O TMP_117) in (let
+TMP_119 \def (pr0 t1 TMP_118) in (or TMP_115 TMP_119)))))))))) in (let
+TMP_134 \def (\lambda (t: T).((eq T t (THead (Bind Abbr) u1 t1)) \to (let
+TMP_123 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_121 \def (Bind Abbr)
+in (let TMP_122 \def (THead TMP_121 u3 t3) in (eq T t2 TMP_122))))) in (let
+TMP_124 \def (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) in (let TMP_129
+\def (\lambda (u3: T).(\lambda (t3: T).(let TMP_125 \def (pr0 t1 t3) in (let
+TMP_126 \def (\lambda (y0: T).(pr0 t1 y0)) in (let TMP_127 \def (\lambda (y0:
+T).(subst0 O u3 y0 t3)) in (let TMP_128 \def (ex2 T TMP_126 TMP_127) in (or
+TMP_125 TMP_128))))))) in (let TMP_130 \def (ex3_2 T T TMP_123 TMP_124
+TMP_129) in (let TMP_131 \def (S O) in (let TMP_132 \def (lift TMP_131 O t2)
+in (let TMP_133 \def (pr0 t1 TMP_132) in (or TMP_130 TMP_133)))))))))) in
+(let H11 \def (eq_ind T t0 TMP_134 H4 t1 H8) in (let TMP_135 \def (\lambda
+(t: T).(pr0 t t2)) in (let H12 \def (eq_ind T t0 TMP_135 H3 t1 H8) in (let
+TMP_149 \def (\lambda (t: T).((eq T t (THead (Bind Abbr) u1 t1)) \to (let
+TMP_138 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_136 \def (Bind Abbr)
+in (let TMP_137 \def (THead TMP_136 u3 t3) in (eq T u2 TMP_137))))) in (let
+TMP_139 \def (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) in (let TMP_144
+\def (\lambda (u3: T).(\lambda (t3: T).(let TMP_140 \def (pr0 t1 t3) in (let
+TMP_141 \def (\lambda (y0: T).(pr0 t1 y0)) in (let TMP_142 \def (\lambda (y0:
+T).(subst0 O u3 y0 t3)) in (let TMP_143 \def (ex2 T TMP_141 TMP_142) in (or
+TMP_140 TMP_143))))))) in (let TMP_145 \def (ex3_2 T T TMP_138 TMP_139
+TMP_144) in (let TMP_146 \def (S O) in (let TMP_147 \def (lift TMP_146 O u2)
+in (let TMP_148 \def (pr0 t1 TMP_147) in (or TMP_145 TMP_148)))))))))) in
+(let H13 \def (eq_ind T u0 TMP_149 H2 u1 H9) in (let TMP_150 \def (\lambda
+(t: T).(pr0 t u2)) in (let H14 \def (eq_ind T u0 TMP_150 H1 u1 H9) in (let
+TMP_155 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_151 \def (Bind Abbr)
+in (let TMP_152 \def (THead TMP_151 u2 t2) in (let TMP_153 \def (Bind Abbr)
+in (let TMP_154 \def (THead TMP_153 u3 t3) in (eq T TMP_152 TMP_154))))))) in
+(let TMP_156 \def (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) in (let
+TMP_161 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_157 \def (pr0 t1 t3)
+in (let TMP_158 \def (\lambda (y0: T).(pr0 t1 y0)) in (let TMP_159 \def
+(\lambda (y0: T).(subst0 O u3 y0 t3)) in (let TMP_160 \def (ex2 T TMP_158
+TMP_159) in (or TMP_157 TMP_160))))))) in (let TMP_162 \def (ex3_2 T T
+TMP_155 TMP_156 TMP_161) in (let TMP_163 \def (S O) in (let TMP_164 \def
+(Bind Abbr) in (let TMP_165 \def (THead TMP_164 u2 t2) in (let TMP_166 \def
+(lift TMP_163 O TMP_165) in (let TMP_167 \def (pr0 t1 TMP_166) in (let
+TMP_172 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_168 \def (Bind Abbr)
+in (let TMP_169 \def (THead TMP_168 u2 t2) in (let TMP_170 \def (Bind Abbr)
+in (let TMP_171 \def (THead TMP_170 u3 t3) in (eq T TMP_169 TMP_171))))))) in
+(let TMP_173 \def (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) in (let
+TMP_178 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_174 \def (pr0 t1 t3)
+in (let TMP_175 \def (\lambda (y0: T).(pr0 t1 y0)) in (let TMP_176 \def
+(\lambda (y0: T).(subst0 O u3 y0 t3)) in (let TMP_177 \def (ex2 T TMP_175
+TMP_176) in (or TMP_174 TMP_177))))))) in (let TMP_179 \def (Bind Abbr) in
+(let TMP_180 \def (THead TMP_179 u2 t2) in (let TMP_181 \def (refl_equal T
+TMP_180) in (let TMP_182 \def (pr0 t1 t2) in (let TMP_183 \def (\lambda (y0:
+T).(pr0 t1 y0)) in (let TMP_184 \def (\lambda (y0: T).(subst0 O u2 y0 t2)) in
+(let TMP_185 \def (ex2 T TMP_183 TMP_184) in (let TMP_186 \def (or_introl
+TMP_182 TMP_185 H12) in (let TMP_187 \def (ex3_2_intro T T TMP_172 TMP_173
+TMP_178 u2 t2 TMP_181 H14 TMP_186) in (let TMP_188 \def (or_introl TMP_162
+TMP_167 TMP_187) in (eq_ind_r K TMP_104 TMP_120 TMP_188 k
+H10))))))))))))))))))))))))))))))))))) in (let TMP_190 \def (TMP_189 H7) in
+(TMP_190 H6)))))))))))))))))))))))))))) in (let TMP_217 \def (\lambda (u:
+T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (pr0 v1 v2)).(\lambda (_:
+(((eq T v1 (THead (Bind Abbr) u1 t1)) \to (or (ex3_2 T T (\lambda (u2:
+T).(\lambda (t2: T).(eq T v2 (THead (Bind Abbr) u2 t2)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t2: T).(or (pr0
+t1 t2) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u2 y0
+t2))))))) (pr0 t1 (lift (S O) O v2)))))).(\lambda (t0: T).(\lambda (t2:
+T).(\lambda (_: (pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Bind Abbr) u1
+t1)) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead
+(Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
+(u2: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0))
+(\lambda (y0: T).(subst0 O u2 y0 t3))))))) (pr0 t1 (lift (S O) O
+t2)))))).(\lambda (H5: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t0))
+(THead (Bind Abbr) u1 t1))).(let TMP_192 \def (Flat Appl) in (let TMP_193
+\def (Bind Abst) in (let TMP_194 \def (THead TMP_193 u t0) in (let TMP_195
+\def (THead TMP_192 v1 TMP_194) in (let TMP_196 \def (\lambda (ee: T).(match
+ee with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k
+_ _) \Rightarrow (match k with [(Bind _) \Rightarrow False | (Flat _)
+\Rightarrow True])])) in (let TMP_197 \def (Bind Abbr) in (let TMP_198 \def
+(THead TMP_197 u1 t1) in (let H6 \def (eq_ind T TMP_195 TMP_196 I TMP_198 H5)
+in (let TMP_203 \def (\lambda (u2: T).(\lambda (t3: T).(let TMP_199 \def
+(Bind Abbr) in (let TMP_200 \def (THead TMP_199 v2 t2) in (let TMP_201 \def
+(Bind Abbr) in (let TMP_202 \def (THead TMP_201 u2 t3) in (eq T TMP_200
+TMP_202))))))) in (let TMP_204 \def (\lambda (u2: T).(\lambda (_: T).(pr0 u1
+u2))) in (let TMP_209 \def (\lambda (u2: T).(\lambda (t3: T).(let TMP_205
+\def (pr0 t1 t3) in (let TMP_206 \def (\lambda (y0: T).(pr0 t1 y0)) in (let
+TMP_207 \def (\lambda (y0: T).(subst0 O u2 y0 t3)) in (let TMP_208 \def (ex2
+T TMP_206 TMP_207) in (or TMP_205 TMP_208))))))) in (let TMP_210 \def (ex3_2
+T T TMP_203 TMP_204 TMP_209) in (let TMP_211 \def (S O) in (let TMP_212 \def
+(Bind Abbr) in (let TMP_213 \def (THead TMP_212 v2 t2) in (let TMP_214 \def
+(lift TMP_211 O TMP_213) in (let TMP_215 \def (pr0 t1 TMP_214) in (let
+TMP_216 \def (or TMP_210 TMP_215) in (False_ind TMP_216
+H6))))))))))))))))))))))))))))) in (let TMP_251 \def (\lambda (b: B).(\lambda
+(_: (not (eq B b Abst))).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (pr0
+v1 v2)).(\lambda (_: (((eq T v1 (THead (Bind Abbr) u1 t1)) \to (or (ex3_2 T T
+(\lambda (u2: T).(\lambda (t2: T).(eq T v2 (THead (Bind Abbr) u2 t2))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t2:
+T).(or (pr0 t1 t2) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0:
+T).(subst0 O u2 y0 t2))))))) (pr0 t1 (lift (S O) O v2)))))).(\lambda (u0:
+T).(\lambda (u2: T).(\lambda (_: (pr0 u0 u2)).(\lambda (_: (((eq T u0 (THead
+(Bind Abbr) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq
+T u2 (THead (Bind Abbr) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1
+u3))) (\lambda (u3: T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T (\lambda (y0:
+T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u3 y0 t2))))))) (pr0 t1 (lift (S
+O) O u2)))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0
+t2)).(\lambda (_: (((eq T t0 (THead (Bind Abbr) u1 t1)) \to (or (ex3_2 T T
+(\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u3 t3))))
+(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t3:
+T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0:
+T).(subst0 O u3 y0 t3))))))) (pr0 t1 (lift (S O) O t2)))))).(\lambda (H8: (eq
+T (THead (Flat Appl) v1 (THead (Bind b) u0 t0)) (THead (Bind Abbr) u1
+t1))).(let TMP_218 \def (Flat Appl) in (let TMP_219 \def (Bind b) in (let
+TMP_220 \def (THead TMP_219 u0 t0) in (let TMP_221 \def (THead TMP_218 v1
+TMP_220) in (let TMP_222 \def (\lambda (ee: T).(match ee with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow
+(match k with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) in
+(let TMP_223 \def (Bind Abbr) in (let TMP_224 \def (THead TMP_223 u1 t1) in
+(let H9 \def (eq_ind T TMP_221 TMP_222 I TMP_224 H8) in (let TMP_233 \def
+(\lambda (u3: T).(\lambda (t3: T).(let TMP_225 \def (Bind b) in (let TMP_226
+\def (Flat Appl) in (let TMP_227 \def (S O) in (let TMP_228 \def (lift
+TMP_227 O v2) in (let TMP_229 \def (THead TMP_226 TMP_228 t2) in (let TMP_230
+\def (THead TMP_225 u2 TMP_229) in (let TMP_231 \def (Bind Abbr) in (let
+TMP_232 \def (THead TMP_231 u3 t3) in (eq T TMP_230 TMP_232))))))))))) in
+(let TMP_234 \def (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) in (let
+TMP_239 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_235 \def (pr0 t1 t3)
+in (let TMP_236 \def (\lambda (y0: T).(pr0 t1 y0)) in (let TMP_237 \def
+(\lambda (y0: T).(subst0 O u3 y0 t3)) in (let TMP_238 \def (ex2 T TMP_236
+TMP_237) in (or TMP_235 TMP_238))))))) in (let TMP_240 \def (ex3_2 T T
+TMP_233 TMP_234 TMP_239) in (let TMP_241 \def (S O) in (let TMP_242 \def
+(Bind b) in (let TMP_243 \def (Flat Appl) in (let TMP_244 \def (S O) in (let
+TMP_245 \def (lift TMP_244 O v2) in (let TMP_246 \def (THead TMP_243 TMP_245
+t2) in (let TMP_247 \def (THead TMP_242 u2 TMP_246) in (let TMP_248 \def
+(lift TMP_241 O TMP_247) in (let TMP_249 \def (pr0 t1 TMP_248) in (let
+TMP_250 \def (or TMP_240 TMP_249) in (False_ind TMP_250
+H9)))))))))))))))))))))))))))))))))))))) in (let TMP_333 \def (\lambda (u0:
+T).(\lambda (u2: T).(\lambda (H1: (pr0 u0 u2)).(\lambda (H2: (((eq T u0
+(THead (Bind Abbr) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2:
+T).(eq T u2 (THead (Bind Abbr) u3 t2)))) (\lambda (u3: T).(\lambda (_:
+T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T
+(\lambda (y0: T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u3 y0 t2))))))) (pr0
+t1 (lift (S O) O u2)))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (H3:
+(pr0 t0 t2)).(\lambda (H4: (((eq T t0 (THead (Bind Abbr) u1 t1)) \to (or
+(ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u3
+t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3:
+T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0))
+(\lambda (y0: T).(subst0 O u3 y0 t3))))))) (pr0 t1 (lift (S O) O
+t2)))))).(\lambda (w: T).(\lambda (H5: (subst0 O u2 t2 w)).(\lambda (H6: (eq
+T (THead (Bind Abbr) u0 t0) (THead (Bind Abbr) u1 t1))).(let TMP_252 \def
+(\lambda (e: T).(match e with [(TSort _) \Rightarrow u0 | (TLRef _)
+\Rightarrow u0 | (THead _ t _) \Rightarrow t])) in (let TMP_253 \def (Bind
+Abbr) in (let TMP_254 \def (THead TMP_253 u0 t0) in (let TMP_255 \def (Bind
+Abbr) in (let TMP_256 \def (THead TMP_255 u1 t1) in (let H7 \def (f_equal T T
+TMP_252 TMP_254 TMP_256 H6) in (let TMP_257 \def (\lambda (e: T).(match e
+with [(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t)
+\Rightarrow t])) in (let TMP_258 \def (Bind Abbr) in (let TMP_259 \def (THead
+TMP_258 u0 t0) in (let TMP_260 \def (Bind Abbr) in (let TMP_261 \def (THead
+TMP_260 u1 t1) in (let H8 \def (f_equal T T TMP_257 TMP_259 TMP_261 H6) in
+(let TMP_332 \def (\lambda (H9: (eq T u0 u1)).(let TMP_275 \def (\lambda (t:
+T).((eq T t (THead (Bind Abbr) u1 t1)) \to (let TMP_264 \def (\lambda (u3:
+T).(\lambda (t3: T).(let TMP_262 \def (Bind Abbr) in (let TMP_263 \def (THead
+TMP_262 u3 t3) in (eq T t2 TMP_263))))) in (let TMP_265 \def (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) in (let TMP_270 \def (\lambda (u3:
+T).(\lambda (t3: T).(let TMP_266 \def (pr0 t1 t3) in (let TMP_267 \def
+(\lambda (y0: T).(pr0 t1 y0)) in (let TMP_268 \def (\lambda (y0: T).(subst0 O
+u3 y0 t3)) in (let TMP_269 \def (ex2 T TMP_267 TMP_268) in (or TMP_266
+TMP_269))))))) in (let TMP_271 \def (ex3_2 T T TMP_264 TMP_265 TMP_270) in
+(let TMP_272 \def (S O) in (let TMP_273 \def (lift TMP_272 O t2) in (let
+TMP_274 \def (pr0 t1 TMP_273) in (or TMP_271 TMP_274)))))))))) in (let H10
+\def (eq_ind T t0 TMP_275 H4 t1 H8) in (let TMP_276 \def (\lambda (t: T).(pr0
+t t2)) in (let H11 \def (eq_ind T t0 TMP_276 H3 t1 H8) in (let TMP_290 \def
+(\lambda (t: T).((eq T t (THead (Bind Abbr) u1 t1)) \to (let TMP_279 \def
+(\lambda (u3: T).(\lambda (t3: T).(let TMP_277 \def (Bind Abbr) in (let
+TMP_278 \def (THead TMP_277 u3 t3) in (eq T u2 TMP_278))))) in (let TMP_280
+\def (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) in (let TMP_285 \def
+(\lambda (u3: T).(\lambda (t3: T).(let TMP_281 \def (pr0 t1 t3) in (let
+TMP_282 \def (\lambda (y0: T).(pr0 t1 y0)) in (let TMP_283 \def (\lambda (y0:
+T).(subst0 O u3 y0 t3)) in (let TMP_284 \def (ex2 T TMP_282 TMP_283) in (or
+TMP_281 TMP_284))))))) in (let TMP_286 \def (ex3_2 T T TMP_279 TMP_280
+TMP_285) in (let TMP_287 \def (S O) in (let TMP_288 \def (lift TMP_287 O u2)
+in (let TMP_289 \def (pr0 t1 TMP_288) in (or TMP_286 TMP_289)))))))))) in
+(let H12 \def (eq_ind T u0 TMP_290 H2 u1 H9) in (let TMP_291 \def (\lambda
+(t: T).(pr0 t u2)) in (let H13 \def (eq_ind T u0 TMP_291 H1 u1 H9) in (let
+TMP_296 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_292 \def (Bind Abbr)
+in (let TMP_293 \def (THead TMP_292 u2 w) in (let TMP_294 \def (Bind Abbr) in
+(let TMP_295 \def (THead TMP_294 u3 t3) in (eq T TMP_293 TMP_295))))))) in
+(let TMP_297 \def (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) in (let
+TMP_302 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_298 \def (pr0 t1 t3)
+in (let TMP_299 \def (\lambda (y0: T).(pr0 t1 y0)) in (let TMP_300 \def
+(\lambda (y0: T).(subst0 O u3 y0 t3)) in (let TMP_301 \def (ex2 T TMP_299
+TMP_300) in (or TMP_298 TMP_301))))))) in (let TMP_303 \def (ex3_2 T T
+TMP_296 TMP_297 TMP_302) in (let TMP_304 \def (S O) in (let TMP_305 \def
+(Bind Abbr) in (let TMP_306 \def (THead TMP_305 u2 w) in (let TMP_307 \def
+(lift TMP_304 O TMP_306) in (let TMP_308 \def (pr0 t1 TMP_307) in (let
+TMP_313 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_309 \def (Bind Abbr)
+in (let TMP_310 \def (THead TMP_309 u2 w) in (let TMP_311 \def (Bind Abbr) in
+(let TMP_312 \def (THead TMP_311 u3 t3) in (eq T TMP_310 TMP_312))))))) in
+(let TMP_314 \def (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) in (let
+TMP_319 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_315 \def (pr0 t1 t3)
+in (let TMP_316 \def (\lambda (y0: T).(pr0 t1 y0)) in (let TMP_317 \def
+(\lambda (y0: T).(subst0 O u3 y0 t3)) in (let TMP_318 \def (ex2 T TMP_316
+TMP_317) in (or TMP_315 TMP_318))))))) in (let TMP_320 \def (Bind Abbr) in
+(let TMP_321 \def (THead TMP_320 u2 w) in (let TMP_322 \def (refl_equal T
+TMP_321) in (let TMP_323 \def (pr0 t1 w) in (let TMP_324 \def (\lambda (y0:
+T).(pr0 t1 y0)) in (let TMP_325 \def (\lambda (y0: T).(subst0 O u2 y0 w)) in
+(let TMP_326 \def (ex2 T TMP_324 TMP_325) in (let TMP_327 \def (\lambda (y0:
+T).(pr0 t1 y0)) in (let TMP_328 \def (\lambda (y0: T).(subst0 O u2 y0 w)) in
+(let TMP_329 \def (ex_intro2 T TMP_327 TMP_328 t2 H11 H5) in (let TMP_330
+\def (or_intror TMP_323 TMP_326 TMP_329) in (let TMP_331 \def (ex3_2_intro T
+T TMP_313 TMP_314 TMP_319 u2 w TMP_322 H13 TMP_330) in (or_introl TMP_303
+TMP_308 TMP_331)))))))))))))))))))))))))))))))))) in (TMP_332
+H7))))))))))))))))))))))))) in (let TMP_427 \def (\lambda (b: B).(\lambda
+(H1: (not (eq B b Abst))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (H2:
+(pr0 t0 t2)).(\lambda (H3: (((eq T t0 (THead (Bind Abbr) u1 t1)) \to (or
+(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2:
+T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0: T).(pr0 t1 y0))
+(\lambda (y0: T).(subst0 O u2 y0 t3))))))) (pr0 t1 (lift (S O) O
+t2)))))).(\lambda (u: T).(\lambda (H4: (eq T (THead (Bind b) u (lift (S O) O
+t0)) (THead (Bind Abbr) u1 t1))).(let TMP_334 \def (\lambda (e: T).(match e
+with [(TSort _) \Rightarrow b | (TLRef _) \Rightarrow b | (THead k _ _)
+\Rightarrow (match k with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow
+b])])) in (let TMP_335 \def (Bind b) in (let TMP_336 \def (S O) in (let
+TMP_337 \def (lift TMP_336 O t0) in (let TMP_338 \def (THead TMP_335 u
+TMP_337) in (let TMP_339 \def (Bind Abbr) in (let TMP_340 \def (THead TMP_339
+u1 t1) in (let H5 \def (f_equal T B TMP_334 TMP_338 TMP_340 H4) in (let
+TMP_341 \def (\lambda (e: T).(match e with [(TSort _) \Rightarrow u | (TLRef
+_) \Rightarrow u | (THead _ t _) \Rightarrow t])) in (let TMP_342 \def (Bind
+b) in (let TMP_343 \def (S O) in (let TMP_344 \def (lift TMP_343 O t0) in
+(let TMP_345 \def (THead TMP_342 u TMP_344) in (let TMP_346 \def (Bind Abbr)
+in (let TMP_347 \def (THead TMP_346 u1 t1) in (let H6 \def (f_equal T T
+TMP_341 TMP_345 TMP_347 H4) in (let TMP_362 \def (\lambda (e: T).(match e
+with [(TSort _) \Rightarrow (let TMP_361 \def (\lambda (x0: nat).(let TMP_360
+\def (S O) in (plus x0 TMP_360))) in (lref_map TMP_361 O t0)) | (TLRef _)
+\Rightarrow (let TMP_354 \def (\lambda (x0: nat).(let TMP_353 \def (S O) in
+(plus x0 TMP_353))) in (lref_map TMP_354 O t0)) | (THead _ _ t) \Rightarrow
+t])) in (let TMP_363 \def (Bind b) in (let TMP_364 \def (S O) in (let TMP_365
+\def (lift TMP_364 O t0) in (let TMP_366 \def (THead TMP_363 u TMP_365) in
+(let TMP_367 \def (Bind Abbr) in (let TMP_368 \def (THead TMP_367 u1 t1) in
+(let H7 \def (f_equal T T TMP_362 TMP_366 TMP_368 H4) in (let TMP_425 \def
+(\lambda (_: (eq T u u1)).(\lambda (H9: (eq B b Abbr)).(let TMP_370 \def
+(\lambda (b0: B).(let TMP_369 \def (eq B b0 Abst) in (not TMP_369))) in (let
+H10 \def (eq_ind B b TMP_370 H1 Abbr H9) in (let TMP_384 \def (\lambda (t:
+T).((eq T t0 (THead (Bind Abbr) u1 t)) \to (let TMP_373 \def (\lambda (u2:
+T).(\lambda (t3: T).(let TMP_371 \def (Bind Abbr) in (let TMP_372 \def (THead
+TMP_371 u2 t3) in (eq T t2 TMP_372))))) in (let TMP_374 \def (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) in (let TMP_379 \def (\lambda (u2:
+T).(\lambda (t3: T).(let TMP_375 \def (pr0 t t3) in (let TMP_376 \def
+(\lambda (y0: T).(pr0 t y0)) in (let TMP_377 \def (\lambda (y0: T).(subst0 O
+u2 y0 t3)) in (let TMP_378 \def (ex2 T TMP_376 TMP_377) in (or TMP_375
+TMP_378))))))) in (let TMP_380 \def (ex3_2 T T TMP_373 TMP_374 TMP_379) in
+(let TMP_381 \def (S O) in (let TMP_382 \def (lift TMP_381 O t2) in (let
+TMP_383 \def (pr0 t TMP_382) in (or TMP_380 TMP_383)))))))))) in (let TMP_385
+\def (S O) in (let TMP_386 \def (lift TMP_385 O t0) in (let H11 \def
+(eq_ind_r T t1 TMP_384 H3 TMP_386 H7) in (let TMP_387 \def (S O) in (let
+TMP_388 \def (lift TMP_387 O t0) in (let TMP_402 \def (\lambda (t: T).(let
+TMP_391 \def (\lambda (u2: T).(\lambda (t3: T).(let TMP_389 \def (Bind Abbr)
+in (let TMP_390 \def (THead TMP_389 u2 t3) in (eq T t2 TMP_390))))) in (let
+TMP_392 \def (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) in (let TMP_397
+\def (\lambda (u2: T).(\lambda (t3: T).(let TMP_393 \def (pr0 t t3) in (let
+TMP_394 \def (\lambda (y0: T).(pr0 t y0)) in (let TMP_395 \def (\lambda (y0:
+T).(subst0 O u2 y0 t3)) in (let TMP_396 \def (ex2 T TMP_394 TMP_395) in (or
+TMP_393 TMP_396))))))) in (let TMP_398 \def (ex3_2 T T TMP_391 TMP_392
+TMP_397) in (let TMP_399 \def (S O) in (let TMP_400 \def (lift TMP_399 O t2)
+in (let TMP_401 \def (pr0 t TMP_400) in (or TMP_398 TMP_401))))))))) in (let
+TMP_405 \def (\lambda (u2: T).(\lambda (t3: T).(let TMP_403 \def (Bind Abbr)
+in (let TMP_404 \def (THead TMP_403 u2 t3) in (eq T t2 TMP_404))))) in (let
+TMP_406 \def (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) in (let TMP_415
+\def (\lambda (u2: T).(\lambda (t3: T).(let TMP_407 \def (S O) in (let
+TMP_408 \def (lift TMP_407 O t0) in (let TMP_409 \def (pr0 TMP_408 t3) in
+(let TMP_412 \def (\lambda (y0: T).(let TMP_410 \def (S O) in (let TMP_411
+\def (lift TMP_410 O t0) in (pr0 TMP_411 y0)))) in (let TMP_413 \def (\lambda
+(y0: T).(subst0 O u2 y0 t3)) in (let TMP_414 \def (ex2 T TMP_412 TMP_413) in
+(or TMP_409 TMP_414))))))))) in (let TMP_416 \def (ex3_2 T T TMP_405 TMP_406
+TMP_415) in (let TMP_417 \def (S O) in (let TMP_418 \def (lift TMP_417 O t0)
+in (let TMP_419 \def (S O) in (let TMP_420 \def (lift TMP_419 O t2) in (let
+TMP_421 \def (pr0 TMP_418 TMP_420) in (let TMP_422 \def (S O) in (let TMP_423
+\def (pr0_lift t0 t2 H2 TMP_422 O) in (let TMP_424 \def (or_intror TMP_416
+TMP_421 TMP_423) in (eq_ind T TMP_388 TMP_402 TMP_424 t1
+H7)))))))))))))))))))))))) in (let TMP_426 \def (TMP_425 H6) in (TMP_426
+H5))))))))))))))))))))))))))))))))))) in (let TMP_447 \def (\lambda (t0:
+T).(\lambda (t2: T).(\lambda (_: (pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead
+(Bind Abbr) u1 t1)) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq
+T t2 (THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1
+u2))) (\lambda (u2: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y0:
+T).(pr0 t1 y0)) (\lambda (y0: T).(subst0 O u2 y0 t3))))))) (pr0 t1 (lift (S
+O) O t2)))))).(\lambda (u: T).(\lambda (H3: (eq T (THead (Flat Cast) u t0)
+(THead (Bind Abbr) u1 t1))).(let TMP_428 \def (Flat Cast) in (let TMP_429
+\def (THead TMP_428 u t0) in (let TMP_430 \def (\lambda (ee: T).(match ee
+with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _
+_) \Rightarrow (match k with [(Bind _) \Rightarrow False | (Flat _)
+\Rightarrow True])])) in (let TMP_431 \def (Bind Abbr) in (let TMP_432 \def
+(THead TMP_431 u1 t1) in (let H4 \def (eq_ind T TMP_429 TMP_430 I TMP_432 H3)
+in (let TMP_435 \def (\lambda (u2: T).(\lambda (t3: T).(let TMP_433 \def
+(Bind Abbr) in (let TMP_434 \def (THead TMP_433 u2 t3) in (eq T t2
+TMP_434))))) in (let TMP_436 \def (\lambda (u2: T).(\lambda (_: T).(pr0 u1
+u2))) in (let TMP_441 \def (\lambda (u2: T).(\lambda (t3: T).(let TMP_437
+\def (pr0 t1 t3) in (let TMP_438 \def (\lambda (y0: T).(pr0 t1 y0)) in (let
+TMP_439 \def (\lambda (y0: T).(subst0 O u2 y0 t3)) in (let TMP_440 \def (ex2
+T TMP_438 TMP_439) in (or TMP_437 TMP_440))))))) in (let TMP_442 \def (ex3_2
+T T TMP_435 TMP_436 TMP_441) in (let TMP_443 \def (S O) in (let TMP_444 \def
+(lift TMP_443 O t2) in (let TMP_445 \def (pr0 t1 TMP_444) in (let TMP_446
+\def (or TMP_442 TMP_445) in (False_ind TMP_446 H4))))))))))))))))))))) in
+(pr0_ind TMP_31 TMP_91 TMP_191 TMP_217 TMP_251 TMP_333 TMP_427 TMP_447 y x
+H0))))))))))) in (insert_eq T TMP_2 TMP_3 TMP_17 TMP_448 H))))))))).
-theorem pr0_subst0_fwd:
- \forall (u2: T).(\forall (t1: T).(\forall (t2: T).(\forall (i: nat).((subst0
-i u2 t1 t2) \to (\forall (u1: T).((pr0 u2 u1) \to (ex2 T (\lambda (t:
-T).(subst0 i u1 t1 t)) (\lambda (t: T).(pr0 t2 t)))))))))
+theorem pr0_gen_void:
+ \forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr0 (THead (Bind Void) u1
+t1) x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead
+(Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
+(_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O x))))))
\def
- \lambda (u2: T).(\lambda (t1: T).(\lambda (t2: T).(\lambda (i: nat).(\lambda
-(H: (subst0 i u2 t1 t2)).(subst0_ind (\lambda (n: nat).(\lambda (t:
-T).(\lambda (t0: T).(\lambda (t3: T).(\forall (u1: T).((pr0 t u1) \to (ex2 T
-(\lambda (t4: T).(subst0 n u1 t0 t4)) (\lambda (t4: T).(pr0 t3 t4)))))))))
-(\lambda (v: T).(\lambda (i0: nat).(\lambda (u1: T).(\lambda (H0: (pr0 v
-u1)).(ex_intro2 T (\lambda (t: T).(subst0 i0 u1 (TLRef i0) t)) (\lambda (t:
-T).(pr0 (lift (S i0) O v) t)) (lift (S i0) O u1) (subst0_lref u1 i0)
-(pr0_lift v u1 H0 (S i0) O)))))) (\lambda (v: T).(\lambda (u3: T).(\lambda
-(u1: T).(\lambda (i0: nat).(\lambda (_: (subst0 i0 v u1 u3)).(\lambda (H1:
-((\forall (u4: T).((pr0 v u4) \to (ex2 T (\lambda (t: T).(subst0 i0 u4 u1 t))
-(\lambda (t: T).(pr0 u3 t))))))).(\lambda (t: T).(\lambda (k: K).(\lambda
-(u0: T).(\lambda (H2: (pr0 v u0)).(ex2_ind T (\lambda (t0: T).(subst0 i0 u0
-u1 t0)) (\lambda (t0: T).(pr0 u3 t0)) (ex2 T (\lambda (t0: T).(subst0 i0 u0
-(THead k u1 t) t0)) (\lambda (t0: T).(pr0 (THead k u3 t) t0))) (\lambda (x:
-T).(\lambda (H3: (subst0 i0 u0 u1 x)).(\lambda (H4: (pr0 u3 x)).(ex_intro2 T
-(\lambda (t0: T).(subst0 i0 u0 (THead k u1 t) t0)) (\lambda (t0: T).(pr0
-(THead k u3 t) t0)) (THead k x t) (subst0_fst u0 x u1 i0 H3 t k) (pr0_comp u3
-x H4 t t (pr0_refl t) k))))) (H1 u0 H2)))))))))))) (\lambda (k: K).(\lambda
-(v: T).(\lambda (t3: T).(\lambda (t4: T).(\lambda (i0: nat).(\lambda (_:
-(subst0 (s k i0) v t4 t3)).(\lambda (H1: ((\forall (u1: T).((pr0 v u1) \to
-(ex2 T (\lambda (t: T).(subst0 (s k i0) u1 t4 t)) (\lambda (t: T).(pr0 t3
-t))))))).(\lambda (u: T).(\lambda (u1: T).(\lambda (H2: (pr0 v u1)).(ex2_ind
-T (\lambda (t: T).(subst0 (s k i0) u1 t4 t)) (\lambda (t: T).(pr0 t3 t)) (ex2
-T (\lambda (t: T).(subst0 i0 u1 (THead k u t4) t)) (\lambda (t: T).(pr0
-(THead k u t3) t))) (\lambda (x: T).(\lambda (H3: (subst0 (s k i0) u1 t4
-x)).(\lambda (H4: (pr0 t3 x)).(ex_intro2 T (\lambda (t: T).(subst0 i0 u1
-(THead k u t4) t)) (\lambda (t: T).(pr0 (THead k u t3) t)) (THead k u x)
-(subst0_snd k u1 x t4 i0 H3 u) (pr0_comp u u (pr0_refl u) t3 x H4 k))))) (H1
-u1 H2)))))))))))) (\lambda (v: T).(\lambda (u1: T).(\lambda (u3: T).(\lambda
-(i0: nat).(\lambda (_: (subst0 i0 v u1 u3)).(\lambda (H1: ((\forall (u4:
-T).((pr0 v u4) \to (ex2 T (\lambda (t: T).(subst0 i0 u4 u1 t)) (\lambda (t:
-T).(pr0 u3 t))))))).(\lambda (k: K).(\lambda (t3: T).(\lambda (t4:
-T).(\lambda (_: (subst0 (s k i0) v t3 t4)).(\lambda (H3: ((\forall (u4:
-T).((pr0 v u4) \to (ex2 T (\lambda (t: T).(subst0 (s k i0) u4 t3 t)) (\lambda
-(t: T).(pr0 t4 t))))))).(\lambda (u0: T).(\lambda (H4: (pr0 v u0)).(ex2_ind T
-(\lambda (t: T).(subst0 (s k i0) u0 t3 t)) (\lambda (t: T).(pr0 t4 t)) (ex2 T
-(\lambda (t: T).(subst0 i0 u0 (THead k u1 t3) t)) (\lambda (t: T).(pr0 (THead
-k u3 t4) t))) (\lambda (x: T).(\lambda (H5: (subst0 (s k i0) u0 t3
-x)).(\lambda (H6: (pr0 t4 x)).(ex2_ind T (\lambda (t: T).(subst0 i0 u0 u1 t))
-(\lambda (t: T).(pr0 u3 t)) (ex2 T (\lambda (t: T).(subst0 i0 u0 (THead k u1
-t3) t)) (\lambda (t: T).(pr0 (THead k u3 t4) t))) (\lambda (x0: T).(\lambda
-(H7: (subst0 i0 u0 u1 x0)).(\lambda (H8: (pr0 u3 x0)).(ex_intro2 T (\lambda
-(t: T).(subst0 i0 u0 (THead k u1 t3) t)) (\lambda (t: T).(pr0 (THead k u3 t4)
-t)) (THead k x0 x) (subst0_both u0 u1 x0 i0 H7 k t3 x H5) (pr0_comp u3 x0 H8
-t4 x H6 k))))) (H1 u0 H4))))) (H3 u0 H4))))))))))))))) i u2 t1 t2 H))))).
-(* COMMENTS
-Initial nodes: 979
-END *)
-
-theorem pr0_subst0:
- \forall (t1: T).(\forall (t2: T).((pr0 t1 t2) \to (\forall (v1: T).(\forall
-(w1: T).(\forall (i: nat).((subst0 i v1 t1 w1) \to (\forall (v2: T).((pr0 v1
-v2) \to (or (pr0 w1 t2) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
-T).(subst0 i v2 t2 w2))))))))))))
-\def
- \lambda (t1: T).(\lambda (t2: T).(\lambda (H: (pr0 t1 t2)).(pr0_ind (\lambda
-(t: T).(\lambda (t0: T).(\forall (v1: T).(\forall (w1: T).(\forall (i:
-nat).((subst0 i v1 t w1) \to (\forall (v2: T).((pr0 v1 v2) \to (or (pr0 w1
-t0) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t0
-w2)))))))))))) (\lambda (t: T).(\lambda (v1: T).(\lambda (w1: T).(\lambda (i:
-nat).(\lambda (H0: (subst0 i v1 t w1)).(\lambda (v2: T).(\lambda (H1: (pr0 v1
-v2)).(or_intror (pr0 w1 t) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
-T).(subst0 i v2 t w2))) (ex2_sym T (subst0 i v2 t) (pr0 w1) (pr0_subst0_fwd
-v1 t w1 i H0 v2 H1)))))))))) (\lambda (u1: T).(\lambda (u2: T).(\lambda (H0:
-(pr0 u1 u2)).(\lambda (H1: ((\forall (v1: T).(\forall (w1: T).(\forall (i:
-nat).((subst0 i v1 u1 w1) \to (\forall (v2: T).((pr0 v1 v2) \to (or (pr0 w1
-u2) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 u2
-w2)))))))))))).(\lambda (t3: T).(\lambda (t4: T).(\lambda (H2: (pr0 t3
-t4)).(\lambda (H3: ((\forall (v1: T).(\forall (w1: T).(\forall (i:
-nat).((subst0 i v1 t3 w1) \to (\forall (v2: T).((pr0 v1 v2) \to (or (pr0 w1
-t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4
-w2)))))))))))).(\lambda (k: K).(\lambda (v1: T).(\lambda (w1: T).(\lambda (i:
-nat).(\lambda (H4: (subst0 i v1 (THead k u1 t3) w1)).(\lambda (v2:
-T).(\lambda (H5: (pr0 v1 v2)).(or3_ind (ex2 T (\lambda (u3: T).(eq T w1
-(THead k u3 t3))) (\lambda (u3: T).(subst0 i v1 u1 u3))) (ex2 T (\lambda (t5:
-T).(eq T w1 (THead k u1 t5))) (\lambda (t5: T).(subst0 (s k i) v1 t3 t5)))
-(ex3_2 T T (\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead k u3 t5))))
-(\lambda (u3: T).(\lambda (_: T).(subst0 i v1 u1 u3))) (\lambda (_:
-T).(\lambda (t5: T).(subst0 (s k i) v1 t3 t5)))) (or (pr0 w1 (THead k u2 t4))
-(ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 (THead k
-u2 t4) w2)))) (\lambda (H6: (ex2 T (\lambda (u3: T).(eq T w1 (THead k u3
-t3))) (\lambda (u3: T).(subst0 i v1 u1 u3)))).(ex2_ind T (\lambda (u3: T).(eq
-T w1 (THead k u3 t3))) (\lambda (u3: T).(subst0 i v1 u1 u3)) (or (pr0 w1
-(THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
-T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x: T).(\lambda (H7: (eq T w1
-(THead k x t3))).(\lambda (H8: (subst0 i v1 u1 x)).(eq_ind_r T (THead k x t3)
-(\lambda (t: T).(or (pr0 t (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 t
-w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))))) (or_ind (pr0 x u2)
-(ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v2 u2 w2)))
-(or (pr0 (THead k x t3) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead
-k x t3) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda
-(H9: (pr0 x u2)).(or_introl (pr0 (THead k x t3) (THead k u2 t4)) (ex2 T
-(\lambda (w2: T).(pr0 (THead k x t3) w2)) (\lambda (w2: T).(subst0 i v2
-(THead k u2 t4) w2))) (pr0_comp x u2 H9 t3 t4 H2 k))) (\lambda (H9: (ex2 T
-(\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v2 u2 w2)))).(ex2_ind
-T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v2 u2 w2)) (or (pr0
-(THead k x t3) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x t3)
-w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x0:
-T).(\lambda (H10: (pr0 x x0)).(\lambda (H11: (subst0 i v2 u2 x0)).(or_intror
-(pr0 (THead k x t3) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x
-t3) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))) (ex_intro2 T
-(\lambda (w2: T).(pr0 (THead k x t3) w2)) (\lambda (w2: T).(subst0 i v2
-(THead k u2 t4) w2)) (THead k x0 t4) (pr0_comp x x0 H10 t3 t4 H2 k)
-(subst0_fst v2 x0 u2 i H11 t4 k)))))) H9)) (H1 v1 x i H8 v2 H5)) w1 H7))))
-H6)) (\lambda (H6: (ex2 T (\lambda (t5: T).(eq T w1 (THead k u1 t5)))
-(\lambda (t5: T).(subst0 (s k i) v1 t3 t5)))).(ex2_ind T (\lambda (t5: T).(eq
-T w1 (THead k u1 t5))) (\lambda (t5: T).(subst0 (s k i) v1 t3 t5)) (or (pr0
-w1 (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
-T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x: T).(\lambda (H7: (eq T w1
-(THead k u1 x))).(\lambda (H8: (subst0 (s k i) v1 t3 x)).(eq_ind_r T (THead k
-u1 x) (\lambda (t: T).(or (pr0 t (THead k u2 t4)) (ex2 T (\lambda (w2:
-T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))))) (or_ind
-(pr0 x t4) (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s k
-i) v2 t4 w2))) (or (pr0 (THead k u1 x) (THead k u2 t4)) (ex2 T (\lambda (w2:
-T).(pr0 (THead k u1 x) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4)
-w2)))) (\lambda (H9: (pr0 x t4)).(or_introl (pr0 (THead k u1 x) (THead k u2
-t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k u1 x) w2)) (\lambda (w2:
-T).(subst0 i v2 (THead k u2 t4) w2))) (pr0_comp u1 u2 H0 x t4 H9 k)))
-(\lambda (H9: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s
-k i) v2 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2:
-T).(subst0 (s k i) v2 t4 w2)) (or (pr0 (THead k u1 x) (THead k u2 t4)) (ex2 T
-(\lambda (w2: T).(pr0 (THead k u1 x) w2)) (\lambda (w2: T).(subst0 i v2
-(THead k u2 t4) w2)))) (\lambda (x0: T).(\lambda (H10: (pr0 x x0)).(\lambda
-(H11: (subst0 (s k i) v2 t4 x0)).(or_intror (pr0 (THead k u1 x) (THead k u2
-t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k u1 x) w2)) (\lambda (w2:
-T).(subst0 i v2 (THead k u2 t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0
-(THead k u1 x) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)) (THead
-k u2 x0) (pr0_comp u1 u2 H0 x x0 H10 k) (subst0_snd k v2 x0 t4 i H11 u2))))))
-H9)) (H3 v1 x (s k i) H8 v2 H5)) w1 H7)))) H6)) (\lambda (H6: (ex3_2 T T
-(\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead k u3 t5)))) (\lambda (u3:
-T).(\lambda (_: T).(subst0 i v1 u1 u3))) (\lambda (_: T).(\lambda (t5:
-T).(subst0 (s k i) v1 t3 t5))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda
-(t5: T).(eq T w1 (THead k u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0
-i v1 u1 u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s k i) v1 t3 t5)))
-(or (pr0 w1 (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda
-(w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x0: T).(\lambda (x1:
-T).(\lambda (H7: (eq T w1 (THead k x0 x1))).(\lambda (H8: (subst0 i v1 u1
-x0)).(\lambda (H9: (subst0 (s k i) v1 t3 x1)).(eq_ind_r T (THead k x0 x1)
-(\lambda (t: T).(or (pr0 t (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 t
-w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))))) (or_ind (pr0 x1
-t4) (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s k i) v2
-t4 w2))) (or (pr0 (THead k x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2:
-T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4)
-w2)))) (\lambda (H10: (pr0 x1 t4)).(or_ind (pr0 x0 u2) (ex2 T (\lambda (w2:
-T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 u2 w2))) (or (pr0 (THead k x0
-x1) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2))
-(\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (H11: (pr0 x0
-u2)).(or_introl (pr0 (THead k x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2:
-T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4)
-w2))) (pr0_comp x0 u2 H11 x1 t4 H10 k))) (\lambda (H11: (ex2 T (\lambda (w2:
-T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 u2 w2)))).(ex2_ind T (\lambda
-(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 u2 w2)) (or (pr0 (THead k
-x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2))
-(\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x: T).(\lambda
-(H12: (pr0 x0 x)).(\lambda (H13: (subst0 i v2 u2 x)).(or_intror (pr0 (THead k
-x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2))
-(\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))) (ex_intro2 T (\lambda
-(w2: T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2
-t4) w2)) (THead k x t4) (pr0_comp x0 x H12 x1 t4 H10 k) (subst0_fst v2 x u2 i
-H13 t4 k)))))) H11)) (H1 v1 x0 i H8 v2 H5))) (\lambda (H10: (ex2 T (\lambda
-(w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s k i) v2 t4 w2)))).(ex2_ind T
-(\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s k i) v2 t4 w2)) (or
-(pr0 (THead k x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k
-x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x:
-T).(\lambda (H11: (pr0 x1 x)).(\lambda (H12: (subst0 (s k i) v2 t4
-x)).(or_ind (pr0 x0 u2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
-T).(subst0 i v2 u2 w2))) (or (pr0 (THead k x0 x1) (THead k u2 t4)) (ex2 T
-(\lambda (w2: T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2
-(THead k u2 t4) w2)))) (\lambda (H13: (pr0 x0 u2)).(or_intror (pr0 (THead k
-x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2))
-(\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))) (ex_intro2 T (\lambda
-(w2: T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2
-t4) w2)) (THead k u2 x) (pr0_comp x0 u2 H13 x1 x H11 k) (subst0_snd k v2 x t4
-i H12 u2)))) (\lambda (H13: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda
-(w2: T).(subst0 i v2 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2))
-(\lambda (w2: T).(subst0 i v2 u2 w2)) (or (pr0 (THead k x0 x1) (THead k u2
-t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2)) (\lambda (w2:
-T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x2: T).(\lambda (H14: (pr0
-x0 x2)).(\lambda (H15: (subst0 i v2 u2 x2)).(or_intror (pr0 (THead k x0 x1)
-(THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2)) (\lambda
-(w2: T).(subst0 i v2 (THead k u2 t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0
-(THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))
-(THead k x2 x) (pr0_comp x0 x2 H14 x1 x H11 k) (subst0_both v2 u2 x2 i H15 k
-t4 x H12)))))) H13)) (H1 v1 x0 i H8 v2 H5))))) H10)) (H3 v1 x1 (s k i) H9 v2
-H5)) w1 H7)))))) H6)) (subst0_gen_head k v1 u1 t3 w1 i H4)))))))))))))))))
-(\lambda (u: T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (H0: (pr0 v1
-v2)).(\lambda (H1: ((\forall (v3: T).(\forall (w1: T).(\forall (i:
-nat).((subst0 i v3 v1 w1) \to (\forall (v4: T).((pr0 v3 v4) \to (or (pr0 w1
-v2) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v4 v2
-w2)))))))))))).(\lambda (t3: T).(\lambda (t4: T).(\lambda (H2: (pr0 t3
-t4)).(\lambda (H3: ((\forall (v3: T).(\forall (w1: T).(\forall (i:
-nat).((subst0 i v3 t3 w1) \to (\forall (v4: T).((pr0 v3 v4) \to (or (pr0 w1
-t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v4 t4
-w2)))))))))))).(\lambda (v0: T).(\lambda (w1: T).(\lambda (i: nat).(\lambda
-(H4: (subst0 i v0 (THead (Flat Appl) v1 (THead (Bind Abst) u t3))
-w1)).(\lambda (v3: T).(\lambda (H5: (pr0 v0 v3)).(or3_ind (ex2 T (\lambda
-(u2: T).(eq T w1 (THead (Flat Appl) u2 (THead (Bind Abst) u t3)))) (\lambda
-(u2: T).(subst0 i v0 v1 u2))) (ex2 T (\lambda (t5: T).(eq T w1 (THead (Flat
-Appl) v1 t5))) (\lambda (t5: T).(subst0 (s (Flat Appl) i) v0 (THead (Bind
-Abst) u t3) t5))) (ex3_2 T T (\lambda (u2: T).(\lambda (t5: T).(eq T w1
-(THead (Flat Appl) u2 t5)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i v0 v1
-u2))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Flat Appl) i) v0 (THead
-(Bind Abst) u t3) t5)))) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T
-(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind
-Abbr) v2 t4) w2)))) (\lambda (H6: (ex2 T (\lambda (u2: T).(eq T w1 (THead
-(Flat Appl) u2 (THead (Bind Abst) u t3)))) (\lambda (u2: T).(subst0 i v0 v1
-u2)))).(ex2_ind T (\lambda (u2: T).(eq T w1 (THead (Flat Appl) u2 (THead
-(Bind Abst) u t3)))) (\lambda (u2: T).(subst0 i v0 v1 u2)) (or (pr0 w1 (THead
-(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (x: T).(\lambda
-(H7: (eq T w1 (THead (Flat Appl) x (THead (Bind Abst) u t3)))).(\lambda (H8:
-(subst0 i v0 v1 x)).(eq_ind_r T (THead (Flat Appl) x (THead (Bind Abst) u
-t3)) (\lambda (t: T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda
-(w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4)
-w2))))) (or_ind (pr0 x v2) (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2:
-T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat Appl) x (THead (Bind Abst) u
-t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat
-Appl) x (THead (Bind Abst) u t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
-(Bind Abbr) v2 t4) w2)))) (\lambda (H9: (pr0 x v2)).(or_introl (pr0 (THead
-(Flat Appl) x (THead (Bind Abst) u t3)) (THead (Bind Abbr) v2 t4)) (ex2 T
-(\lambda (w2: T).(pr0 (THead (Flat Appl) x (THead (Bind Abst) u t3)) w2))
-(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (pr0_beta u x
-v2 H9 t3 t4 H2))) (\lambda (H9: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda
-(w2: T).(subst0 i v3 v2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2))
-(\lambda (w2: T).(subst0 i v3 v2 w2)) (or (pr0 (THead (Flat Appl) x (THead
-(Bind Abst) u t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0
-(THead (Flat Appl) x (THead (Bind Abst) u t3)) w2)) (\lambda (w2: T).(subst0
-i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (x0: T).(\lambda (H10: (pr0 x
-x0)).(\lambda (H11: (subst0 i v3 v2 x0)).(or_intror (pr0 (THead (Flat Appl) x
-(THead (Bind Abst) u t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2:
-T).(pr0 (THead (Flat Appl) x (THead (Bind Abst) u t3)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2:
-T).(pr0 (THead (Flat Appl) x (THead (Bind Abst) u t3)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)) (THead (Bind Abbr) x0 t4)
-(pr0_beta u x x0 H10 t3 t4 H2) (subst0_fst v3 x0 v2 i H11 t4 (Bind
-Abbr))))))) H9)) (H1 v0 x i H8 v3 H5)) w1 H7)))) H6)) (\lambda (H6: (ex2 T
-(\lambda (t5: T).(eq T w1 (THead (Flat Appl) v1 t5))) (\lambda (t5:
-T).(subst0 (s (Flat Appl) i) v0 (THead (Bind Abst) u t3) t5)))).(ex2_ind T
-(\lambda (t5: T).(eq T w1 (THead (Flat Appl) v1 t5))) (\lambda (t5:
-T).(subst0 (s (Flat Appl) i) v0 (THead (Bind Abst) u t3) t5)) (or (pr0 w1
-(THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (x: T).(\lambda
-(H7: (eq T w1 (THead (Flat Appl) v1 x))).(\lambda (H8: (subst0 (s (Flat Appl)
-i) v0 (THead (Bind Abst) u t3) x)).(or3_ind (ex2 T (\lambda (u2: T).(eq T x
-(THead (Bind Abst) u2 t3))) (\lambda (u2: T).(subst0 (s (Flat Appl) i) v0 u
-u2))) (ex2 T (\lambda (t5: T).(eq T x (THead (Bind Abst) u t5))) (\lambda
-(t5: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5))) (ex3_2 T T
-(\lambda (u2: T).(\lambda (t5: T).(eq T x (THead (Bind Abst) u2 t5))))
-(\lambda (u2: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u u2)))
-(\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0
-t3 t5)))) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0
-w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))))
-(\lambda (H9: (ex2 T (\lambda (u2: T).(eq T x (THead (Bind Abst) u2 t3)))
-(\lambda (u2: T).(subst0 (s (Flat Appl) i) v0 u u2)))).(ex2_ind T (\lambda
-(u2: T).(eq T x (THead (Bind Abst) u2 t3))) (\lambda (u2: T).(subst0 (s (Flat
-Appl) i) v0 u u2)) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda
-(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4)
-w2)))) (\lambda (x0: T).(\lambda (H10: (eq T x (THead (Bind Abst) x0
-t3))).(\lambda (_: (subst0 (s (Flat Appl) i) v0 u x0)).(let H12 \def (eq_ind
-T x (\lambda (t: T).(eq T w1 (THead (Flat Appl) v1 t))) H7 (THead (Bind Abst)
-x0 t3) H10) in (eq_ind_r T (THead (Flat Appl) v1 (THead (Bind Abst) x0 t3))
-(\lambda (t: T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2:
-T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4)
-w2))))) (or_introl (pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 t3))
-(THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1
-(THead (Bind Abst) x0 t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind
-Abbr) v2 t4) w2))) (pr0_beta x0 v1 v2 H0 t3 t4 H2)) w1 H12))))) H9)) (\lambda
-(H9: (ex2 T (\lambda (t5: T).(eq T x (THead (Bind Abst) u t5))) (\lambda (t5:
-T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5)))).(ex2_ind T (\lambda
-(t5: T).(eq T x (THead (Bind Abst) u t5))) (\lambda (t5: T).(subst0 (s (Bind
-Abst) (s (Flat Appl) i)) v0 t3 t5)) (or (pr0 w1 (THead (Bind Abbr) v2 t4))
-(ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead
-(Bind Abbr) v2 t4) w2)))) (\lambda (x0: T).(\lambda (H10: (eq T x (THead
-(Bind Abst) u x0))).(\lambda (H11: (subst0 (s (Bind Abst) (s (Flat Appl) i))
-v0 t3 x0)).(let H12 \def (eq_ind T x (\lambda (t: T).(eq T w1 (THead (Flat
-Appl) v1 t))) H7 (THead (Bind Abst) u x0) H10) in (eq_ind_r T (THead (Flat
-Appl) v1 (THead (Bind Abst) u x0)) (\lambda (t: T).(or (pr0 t (THead (Bind
-Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i
-v3 (THead (Bind Abbr) v2 t4) w2))))) (or_ind (pr0 x0 t4) (ex2 T (\lambda (w2:
-T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3
-t4 w2))) (or (pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u x0)) (THead
-(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead
-(Bind Abst) u x0)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
-t4) w2)))) (\lambda (H13: (pr0 x0 t4)).(or_introl (pr0 (THead (Flat Appl) v1
-(THead (Bind Abst) u x0)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2:
-T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u x0)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (pr0_beta u v1 v2 H0 x0 t4
-H13))) (\lambda (H13: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
-T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda
-(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl)
-i)) v3 t4 w2)) (or (pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u x0))
-(THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1
-(THead (Bind Abst) u x0)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind
-Abbr) v2 t4) w2)))) (\lambda (x1: T).(\lambda (H14: (pr0 x0 x1)).(\lambda
-(H15: (subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 t4 x1)).(or_intror (pr0
-(THead (Flat Appl) v1 (THead (Bind Abst) u x0)) (THead (Bind Abbr) v2 t4))
-(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u x0))
-w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (ex_intro2
-T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u x0)) w2))
-(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)) (THead (Bind
-Abbr) v2 x1) (pr0_beta u v1 v2 H0 x0 x1 H14) (subst0_snd (Bind Abbr) v3 x1 t4
-i H15 v2)))))) H13)) (H3 v0 x0 (s (Bind Abst) (s (Flat Appl) i)) H11 v3 H5))
-w1 H12))))) H9)) (\lambda (H9: (ex3_2 T T (\lambda (u2: T).(\lambda (t5:
-T).(eq T x (THead (Bind Abst) u2 t5)))) (\lambda (u2: T).(\lambda (_:
-T).(subst0 (s (Flat Appl) i) v0 u u2))) (\lambda (_: T).(\lambda (t5:
-T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5))))).(ex3_2_ind T T
-(\lambda (u2: T).(\lambda (t5: T).(eq T x (THead (Bind Abst) u2 t5))))
-(\lambda (u2: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u u2)))
-(\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0
-t3 t5))) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0
-w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))))
-(\lambda (x0: T).(\lambda (x1: T).(\lambda (H10: (eq T x (THead (Bind Abst)
-x0 x1))).(\lambda (_: (subst0 (s (Flat Appl) i) v0 u x0)).(\lambda (H12:
-(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 x1)).(let H13 \def (eq_ind T
-x (\lambda (t: T).(eq T w1 (THead (Flat Appl) v1 t))) H7 (THead (Bind Abst)
-x0 x1) H10) in (eq_ind_r T (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1))
-(\lambda (t: T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2:
-T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4)
-w2))))) (or_ind (pr0 x1 t4) (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda
-(w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2))) (or (pr0 (THead
-(Flat Appl) v1 (THead (Bind Abst) x0 x1)) (THead (Bind Abbr) v2 t4)) (ex2 T
-(\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1)) w2))
-(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H14:
-(pr0 x1 t4)).(or_introl (pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1))
-(THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1
-(THead (Bind Abst) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind
-Abbr) v2 t4) w2))) (pr0_beta x0 v1 v2 H0 x1 t4 H14))) (\lambda (H14: (ex2 T
-(\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s
-(Flat Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x1 w2))
-(\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2)) (or
-(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1)) (THead (Bind Abbr) v2
-t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0
-x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))))
-(\lambda (x2: T).(\lambda (H15: (pr0 x1 x2)).(\lambda (H16: (subst0 (s (Bind
-Abst) (s (Flat Appl) i)) v3 t4 x2)).(or_intror (pr0 (THead (Flat Appl) v1
-(THead (Bind Abst) x0 x1)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2:
-T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2:
-T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)) (THead (Bind Abbr) v2 x2)
-(pr0_beta x0 v1 v2 H0 x1 x2 H15) (subst0_snd (Bind Abbr) v3 x2 t4 i H16
-v2)))))) H14)) (H3 v0 x1 (s (Bind Abst) (s (Flat Appl) i)) H12 v3 H5)) w1
-H13))))))) H9)) (subst0_gen_head (Bind Abst) v0 u t3 x (s (Flat Appl) i)
-H8))))) H6)) (\lambda (H6: (ex3_2 T T (\lambda (u2: T).(\lambda (t5: T).(eq T
-w1 (THead (Flat Appl) u2 t5)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i v0
-v1 u2))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Flat Appl) i) v0 (THead
-(Bind Abst) u t3) t5))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda (t5:
-T).(eq T w1 (THead (Flat Appl) u2 t5)))) (\lambda (u2: T).(\lambda (_:
-T).(subst0 i v0 v1 u2))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Flat
-Appl) i) v0 (THead (Bind Abst) u t3) t5))) (or (pr0 w1 (THead (Bind Abbr) v2
-t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3
-(THead (Bind Abbr) v2 t4) w2)))) (\lambda (x0: T).(\lambda (x1: T).(\lambda
-(H7: (eq T w1 (THead (Flat Appl) x0 x1))).(\lambda (H8: (subst0 i v0 v1
-x0)).(\lambda (H9: (subst0 (s (Flat Appl) i) v0 (THead (Bind Abst) u t3)
-x1)).(or3_ind (ex2 T (\lambda (u2: T).(eq T x1 (THead (Bind Abst) u2 t3)))
-(\lambda (u2: T).(subst0 (s (Flat Appl) i) v0 u u2))) (ex2 T (\lambda (t5:
-T).(eq T x1 (THead (Bind Abst) u t5))) (\lambda (t5: T).(subst0 (s (Bind
-Abst) (s (Flat Appl) i)) v0 t3 t5))) (ex3_2 T T (\lambda (u2: T).(\lambda
-(t5: T).(eq T x1 (THead (Bind Abst) u2 t5)))) (\lambda (u2: T).(\lambda (_:
-T).(subst0 (s (Flat Appl) i) v0 u u2))) (\lambda (_: T).(\lambda (t5:
-T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5)))) (or (pr0 w1 (THead
-(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H10: (ex2 T
-(\lambda (u2: T).(eq T x1 (THead (Bind Abst) u2 t3))) (\lambda (u2:
-T).(subst0 (s (Flat Appl) i) v0 u u2)))).(ex2_ind T (\lambda (u2: T).(eq T x1
-(THead (Bind Abst) u2 t3))) (\lambda (u2: T).(subst0 (s (Flat Appl) i) v0 u
-u2)) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1
-w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda
-(x: T).(\lambda (H11: (eq T x1 (THead (Bind Abst) x t3))).(\lambda (_:
-(subst0 (s (Flat Appl) i) v0 u x)).(let H13 \def (eq_ind T x1 (\lambda (t:
-T).(eq T w1 (THead (Flat Appl) x0 t))) H7 (THead (Bind Abst) x t3) H11) in
-(eq_ind_r T (THead (Flat Appl) x0 (THead (Bind Abst) x t3)) (\lambda (t:
-T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 t w2))
-(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))))) (or_ind (pr0
-x0 v2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2
-w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x t3)) (THead (Bind
-Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
-Abst) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4)
-w2)))) (\lambda (H14: (pr0 x0 v2)).(or_introl (pr0 (THead (Flat Appl) x0
-(THead (Bind Abst) x t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2:
-T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x t3)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (pr0_beta x x0 v2 H14 t3 t4
-H2))) (\lambda (H14: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
-T).(subst0 i v3 v2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda
-(w2: T).(subst0 i v3 v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind
-Abst) x t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead
-(Flat Appl) x0 (THead (Bind Abst) x t3)) w2)) (\lambda (w2: T).(subst0 i v3
-(THead (Bind Abbr) v2 t4) w2)))) (\lambda (x2: T).(\lambda (H15: (pr0 x0
-x2)).(\lambda (H16: (subst0 i v3 v2 x2)).(or_intror (pr0 (THead (Flat Appl)
-x0 (THead (Bind Abst) x t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2:
-T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x t3)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2:
-T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x t3)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)) (THead (Bind Abbr) x2 t4)
-(pr0_beta x x0 x2 H15 t3 t4 H2) (subst0_fst v3 x2 v2 i H16 t4 (Bind
-Abbr))))))) H14)) (H1 v0 x0 i H8 v3 H5)) w1 H13))))) H10)) (\lambda (H10:
-(ex2 T (\lambda (t5: T).(eq T x1 (THead (Bind Abst) u t5))) (\lambda (t5:
-T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5)))).(ex2_ind T (\lambda
-(t5: T).(eq T x1 (THead (Bind Abst) u t5))) (\lambda (t5: T).(subst0 (s (Bind
-Abst) (s (Flat Appl) i)) v0 t3 t5)) (or (pr0 w1 (THead (Bind Abbr) v2 t4))
-(ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead
-(Bind Abbr) v2 t4) w2)))) (\lambda (x: T).(\lambda (H11: (eq T x1 (THead
-(Bind Abst) u x))).(\lambda (H12: (subst0 (s (Bind Abst) (s (Flat Appl) i))
-v0 t3 x)).(let H13 \def (eq_ind T x1 (\lambda (t: T).(eq T w1 (THead (Flat
-Appl) x0 t))) H7 (THead (Bind Abst) u x) H11) in (eq_ind_r T (THead (Flat
-Appl) x0 (THead (Bind Abst) u x)) (\lambda (t: T).(or (pr0 t (THead (Bind
-Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i
-v3 (THead (Bind Abbr) v2 t4) w2))))) (or_ind (pr0 x t4) (ex2 T (\lambda (w2:
-T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3
-t4 w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead (Bind
-Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
-Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4)
-w2)))) (\lambda (H14: (pr0 x t4)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2:
-T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat
-Appl) x0 (THead (Bind Abst) u x)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda
-(w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) w2)) (\lambda
-(w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H15: (pr0 x0
-v2)).(or_introl (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead
-(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
-(Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
-t4) w2))) (pr0_beta u x0 v2 H15 x t4 H14))) (\lambda (H15: (ex2 T (\lambda
-(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)))).(ex2_ind T
-(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)) (or (pr0
-(THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead (Bind Abbr) v2 t4))
-(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x))
-w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda
-(x2: T).(\lambda (H16: (pr0 x0 x2)).(\lambda (H17: (subst0 i v3 v2
-x2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead
-(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
-(Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
-t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
-(Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
-t4) w2)) (THead (Bind Abbr) x2 t4) (pr0_beta u x0 x2 H16 x t4 H14)
-(subst0_fst v3 x2 v2 i H17 t4 (Bind Abbr))))))) H15)) (H1 v0 x0 i H8 v3 H5)))
-(\lambda (H14: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0
-(s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda (w2:
-T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3
-t4 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead (Bind
-Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
-Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4)
-w2)))) (\lambda (x2: T).(\lambda (H15: (pr0 x x2)).(\lambda (H16: (subst0 (s
-(Bind Abst) (s (Flat Appl) i)) v3 t4 x2)).(or_ind (pr0 x0 v2) (ex2 T (\lambda
-(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead
-(Flat Appl) x0 (THead (Bind Abst) u x)) (THead (Bind Abbr) v2 t4)) (ex2 T
-(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) w2))
-(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H17:
-(pr0 x0 v2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x))
-(THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0
-(THead (Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind
-Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0
-(THead (Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind
-Abbr) v2 t4) w2)) (THead (Bind Abbr) v2 x2) (pr0_beta u x0 v2 H17 x x2 H15)
-(subst0_snd (Bind Abbr) v3 x2 t4 i H16 v2)))) (\lambda (H17: (ex2 T (\lambda
-(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)))).(ex2_ind T
-(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)) (or (pr0
-(THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead (Bind Abbr) v2 t4))
-(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x))
-w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda
-(x3: T).(\lambda (H18: (pr0 x0 x3)).(\lambda (H19: (subst0 i v3 v2
-x3)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead
-(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
-(Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
-t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
-(Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
-t4) w2)) (THead (Bind Abbr) x3 x2) (pr0_beta u x0 x3 H18 x x2 H15)
-(subst0_both v3 v2 x3 i H19 (Bind Abbr) t4 x2 H16)))))) H17)) (H1 v0 x0 i H8
-v3 H5))))) H14)) (H3 v0 x (s (Bind Abst) (s (Flat Appl) i)) H12 v3 H5)) w1
-H13))))) H10)) (\lambda (H10: (ex3_2 T T (\lambda (u2: T).(\lambda (t5:
-T).(eq T x1 (THead (Bind Abst) u2 t5)))) (\lambda (u2: T).(\lambda (_:
-T).(subst0 (s (Flat Appl) i) v0 u u2))) (\lambda (_: T).(\lambda (t5:
-T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5))))).(ex3_2_ind T T
-(\lambda (u2: T).(\lambda (t5: T).(eq T x1 (THead (Bind Abst) u2 t5))))
-(\lambda (u2: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u u2)))
-(\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0
-t3 t5))) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0
-w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))))
-(\lambda (x2: T).(\lambda (x3: T).(\lambda (H11: (eq T x1 (THead (Bind Abst)
-x2 x3))).(\lambda (_: (subst0 (s (Flat Appl) i) v0 u x2)).(\lambda (H13:
-(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 x3)).(let H14 \def (eq_ind T
-x1 (\lambda (t: T).(eq T w1 (THead (Flat Appl) x0 t))) H7 (THead (Bind Abst)
-x2 x3) H11) in (eq_ind_r T (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3))
-(\lambda (t: T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2:
-T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4)
-w2))))) (or_ind (pr0 x3 t4) (ex2 T (\lambda (w2: T).(pr0 x3 w2)) (\lambda
-(w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2))) (or (pr0 (THead
-(Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead (Bind Abbr) v2 t4)) (ex2 T
-(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) w2))
-(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H15:
-(pr0 x3 t4)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2: T).(pr0 x0 w2))
-(\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat Appl) x0 (THead
-(Bind Abst) x2 x3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0
-(THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H16: (pr0 x0
-v2)).(or_introl (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead
-(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
-(Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
-t4) w2))) (pr0_beta x2 x0 v2 H16 x3 t4 H15))) (\lambda (H16: (ex2 T (\lambda
-(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)))).(ex2_ind T
-(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)) (or (pr0
-(THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead (Bind Abbr) v2 t4))
-(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3))
-w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda
-(x: T).(\lambda (H17: (pr0 x0 x)).(\lambda (H18: (subst0 i v3 v2
-x)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead
-(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
-(Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
-t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
-(Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
-t4) w2)) (THead (Bind Abbr) x t4) (pr0_beta x2 x0 x H17 x3 t4 H15)
-(subst0_fst v3 x v2 i H18 t4 (Bind Abbr))))))) H16)) (H1 v0 x0 i H8 v3 H5)))
-(\lambda (H15: (ex2 T (\lambda (w2: T).(pr0 x3 w2)) (\lambda (w2: T).(subst0
-(s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda (w2:
-T).(pr0 x3 w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3
-t4 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead
-(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
-(Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
-t4) w2)))) (\lambda (x: T).(\lambda (H16: (pr0 x3 x)).(\lambda (H17: (subst0
-(s (Bind Abst) (s (Flat Appl) i)) v3 t4 x)).(or_ind (pr0 x0 v2) (ex2 T
-(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0
-(THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead (Bind Abbr) v2 t4))
-(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3))
-w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda
-(H18: (pr0 x0 v2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst)
-x2 x3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat
-Appl) x0 (THead (Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
-(Bind Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat
-Appl) x0 (THead (Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
-(Bind Abbr) v2 t4) w2)) (THead (Bind Abbr) v2 x) (pr0_beta x2 x0 v2 H18 x3 x
-H16) (subst0_snd (Bind Abbr) v3 x t4 i H17 v2)))) (\lambda (H18: (ex2 T
-(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2
-w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3
-v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead
-(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
-(Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
-t4) w2)))) (\lambda (x4: T).(\lambda (H19: (pr0 x0 x4)).(\lambda (H20:
-(subst0 i v3 v2 x4)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst)
-x2 x3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat
-Appl) x0 (THead (Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
-(Bind Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat
-Appl) x0 (THead (Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
-(Bind Abbr) v2 t4) w2)) (THead (Bind Abbr) x4 x) (pr0_beta x2 x0 x4 H19 x3 x
-H16) (subst0_both v3 v2 x4 i H20 (Bind Abbr) t4 x H17)))))) H18)) (H1 v0 x0 i
-H8 v3 H5))))) H15)) (H3 v0 x3 (s (Bind Abst) (s (Flat Appl) i)) H13 v3 H5))
-w1 H14))))))) H10)) (subst0_gen_head (Bind Abst) v0 u t3 x1 (s (Flat Appl) i)
-H9))))))) H6)) (subst0_gen_head (Flat Appl) v0 v1 (THead (Bind Abst) u t3) w1
-i H4))))))))))))))))) (\lambda (b: B).(\lambda (H0: (not (eq B b
-Abst))).(\lambda (v1: T).(\lambda (v2: T).(\lambda (H1: (pr0 v1 v2)).(\lambda
-(H2: ((\forall (v3: T).(\forall (w1: T).(\forall (i: nat).((subst0 i v3 v1
-w1) \to (\forall (v4: T).((pr0 v3 v4) \to (or (pr0 w1 v2) (ex2 T (\lambda
-(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v4 v2 w2)))))))))))).(\lambda
-(u1: T).(\lambda (u2: T).(\lambda (H3: (pr0 u1 u2)).(\lambda (H4: ((\forall
-(v3: T).(\forall (w1: T).(\forall (i: nat).((subst0 i v3 u1 w1) \to (\forall
-(v4: T).((pr0 v3 v4) \to (or (pr0 w1 u2) (ex2 T (\lambda (w2: T).(pr0 w1 w2))
-(\lambda (w2: T).(subst0 i v4 u2 w2)))))))))))).(\lambda (t3: T).(\lambda
-(t4: T).(\lambda (H5: (pr0 t3 t4)).(\lambda (H6: ((\forall (v3: T).(\forall
-(w1: T).(\forall (i: nat).((subst0 i v3 t3 w1) \to (\forall (v4: T).((pr0 v3
-v4) \to (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
-T).(subst0 i v4 t4 w2)))))))))))).(\lambda (v0: T).(\lambda (w1: T).(\lambda
-(i: nat).(\lambda (H7: (subst0 i v0 (THead (Flat Appl) v1 (THead (Bind b) u1
-t3)) w1)).(\lambda (v3: T).(\lambda (H8: (pr0 v0 v3)).(or3_ind (ex2 T
-(\lambda (u3: T).(eq T w1 (THead (Flat Appl) u3 (THead (Bind b) u1 t3))))
-(\lambda (u3: T).(subst0 i v0 v1 u3))) (ex2 T (\lambda (t5: T).(eq T w1
-(THead (Flat Appl) v1 t5))) (\lambda (t5: T).(subst0 (s (Flat Appl) i) v0
-(THead (Bind b) u1 t3) t5))) (ex3_2 T T (\lambda (u3: T).(\lambda (t5: T).(eq
-T w1 (THead (Flat Appl) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 i
-v0 v1 u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Flat Appl) i) v0
-(THead (Bind b) u1 t3) t5)))) (or (pr0 w1 (THead (Bind b) u2 (THead (Flat
-Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda
-(w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
-t4)) w2)))) (\lambda (H9: (ex2 T (\lambda (u3: T).(eq T w1 (THead (Flat Appl)
-u3 (THead (Bind b) u1 t3)))) (\lambda (u3: T).(subst0 i v0 v1 u3)))).(ex2_ind
-T (\lambda (u3: T).(eq T w1 (THead (Flat Appl) u3 (THead (Bind b) u1 t3))))
-(\lambda (u3: T).(subst0 i v0 v1 u3)) (or (pr0 w1 (THead (Bind b) u2 (THead
-(Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2))
-(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
-O) O v2) t4)) w2)))) (\lambda (x: T).(\lambda (H10: (eq T w1 (THead (Flat
-Appl) x (THead (Bind b) u1 t3)))).(\lambda (H11: (subst0 i v0 v1
-x)).(eq_ind_r T (THead (Flat Appl) x (THead (Bind b) u1 t3)) (\lambda (t:
-T).(or (pr0 t (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)))
-(ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))) (or_ind (pr0 x
-v2) (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v3 v2
-w2))) (or (pr0 (THead (Flat Appl) x (THead (Bind b) u1 t3)) (THead (Bind b)
-u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
-(THead (Flat Appl) x (THead (Bind b) u1 t3)) w2)) (\lambda (w2: T).(subst0 i
-v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
-(\lambda (H12: (pr0 x v2)).(or_introl (pr0 (THead (Flat Appl) x (THead (Bind
-b) u1 t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2
-T (\lambda (w2: T).(pr0 (THead (Flat Appl) x (THead (Bind b) u1 t3)) w2))
-(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
-O) O v2) t4)) w2))) (pr0_upsilon b H0 x v2 H12 u1 u2 H3 t3 t4 H5))) (\lambda
-(H12: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v3 v2
-w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v3
-v2 w2)) (or (pr0 (THead (Flat Appl) x (THead (Bind b) u1 t3)) (THead (Bind b)
-u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
-(THead (Flat Appl) x (THead (Bind b) u1 t3)) w2)) (\lambda (w2: T).(subst0 i
-v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
-(\lambda (x0: T).(\lambda (H13: (pr0 x x0)).(\lambda (H14: (subst0 i v3 v2
-x0)).(or_intror (pr0 (THead (Flat Appl) x (THead (Bind b) u1 t3)) (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
-T).(pr0 (THead (Flat Appl) x (THead (Bind b) u1 t3)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
-w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x (THead (Bind b)
-u1 t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
-Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead (Flat Appl) (lift
-(S O) O x0) t4)) (pr0_upsilon b H0 x x0 H13 u1 u2 H3 t3 t4 H5) (subst0_snd
-(Bind b) v3 (THead (Flat Appl) (lift (S O) O x0) t4) (THead (Flat Appl) (lift
-(S O) O v2) t4) i (subst0_fst v3 (lift (S O) O x0) (lift (S O) O v2) (s (Bind
-b) i) (subst0_lift_ge_s v2 x0 v3 i H14 O (le_O_n i) b) t4 (Flat Appl))
-u2)))))) H12)) (H2 v0 x i H11 v3 H8)) w1 H10)))) H9)) (\lambda (H9: (ex2 T
-(\lambda (t5: T).(eq T w1 (THead (Flat Appl) v1 t5))) (\lambda (t5:
-T).(subst0 (s (Flat Appl) i) v0 (THead (Bind b) u1 t3) t5)))).(ex2_ind T
-(\lambda (t5: T).(eq T w1 (THead (Flat Appl) v1 t5))) (\lambda (t5:
-T).(subst0 (s (Flat Appl) i) v0 (THead (Bind b) u1 t3) t5)) (or (pr0 w1
-(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda
-(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead
-(Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x: T).(\lambda (H10: (eq
-T w1 (THead (Flat Appl) v1 x))).(\lambda (H11: (subst0 (s (Flat Appl) i) v0
-(THead (Bind b) u1 t3) x)).(or3_ind (ex2 T (\lambda (u3: T).(eq T x (THead
-(Bind b) u3 t3))) (\lambda (u3: T).(subst0 (s (Flat Appl) i) v0 u1 u3))) (ex2
-T (\lambda (t5: T).(eq T x (THead (Bind b) u1 t5))) (\lambda (t5: T).(subst0
-(s (Bind b) (s (Flat Appl) i)) v0 t3 t5))) (ex3_2 T T (\lambda (u3:
-T).(\lambda (t5: T).(eq T x (THead (Bind b) u3 t5)))) (\lambda (u3:
-T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u1 u3))) (\lambda (_:
-T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 t5)))) (or
-(pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
-(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b)
-u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H12: (ex2 T
-(\lambda (u3: T).(eq T x (THead (Bind b) u3 t3))) (\lambda (u3: T).(subst0 (s
-(Flat Appl) i) v0 u1 u3)))).(ex2_ind T (\lambda (u3: T).(eq T x (THead (Bind
-b) u3 t3))) (\lambda (u3: T).(subst0 (s (Flat Appl) i) v0 u1 u3)) (or (pr0 w1
-(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda
-(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead
-(Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x0: T).(\lambda (H13: (eq
-T x (THead (Bind b) x0 t3))).(\lambda (H14: (subst0 (s (Flat Appl) i) v0 u1
-x0)).(let H15 \def (eq_ind T x (\lambda (t: T).(eq T w1 (THead (Flat Appl) v1
-t))) H10 (THead (Bind b) x0 t3) H13) in (eq_ind_r T (THead (Flat Appl) v1
-(THead (Bind b) x0 t3)) (\lambda (t: T).(or (pr0 t (THead (Bind b) u2 (THead
-(Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 t w2))
-(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
-O) O v2) t4)) w2))))) (or_ind (pr0 x0 u2) (ex2 T (\lambda (w2: T).(pr0 x0
-w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2 w2))) (or (pr0 (THead
-(Flat Appl) v1 (THead (Bind b) x0 t3)) (THead (Bind b) u2 (THead (Flat Appl)
-(lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1
-(THead (Bind b) x0 t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2
-(THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H16: (pr0 x0
-u2)).(or_introl (pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 t3)) (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
-T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 t3)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
-w2))) (pr0_upsilon b H0 v1 v2 H1 x0 u2 H16 t3 t4 H5))) (\lambda (H16: (ex2 T
-(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3
-u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0
-(s (Flat Appl) i) v3 u2 w2)) (or (pr0 (THead (Flat Appl) v1 (THead (Bind b)
-x0 t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
-(\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 t3)) w2))
-(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
-O) O v2) t4)) w2)))) (\lambda (x1: T).(\lambda (H17: (pr0 x0 x1)).(\lambda
-(H18: (subst0 (s (Flat Appl) i) v3 u2 x1)).(or_intror (pr0 (THead (Flat Appl)
-v1 (THead (Bind b) x0 t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O)
-O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind
-b) x0 t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
-Appl) (lift (S O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead
-(Flat Appl) v1 (THead (Bind b) x0 t3)) w2)) (\lambda (w2: T).(subst0 i v3
-(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead
-(Bind b) x1 (THead (Flat Appl) (lift (S O) O v2) t4)) (pr0_upsilon b H0 v1 v2
-H1 x0 x1 H17 t3 t4 H5) (subst0_fst v3 x1 u2 i H18 (THead (Flat Appl) (lift (S
-O) O v2) t4) (Bind b))))))) H16)) (H4 v0 x0 (s (Flat Appl) i) H14 v3 H8)) w1
-H15))))) H12)) (\lambda (H12: (ex2 T (\lambda (t5: T).(eq T x (THead (Bind b)
-u1 t5))) (\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3
-t5)))).(ex2_ind T (\lambda (t5: T).(eq T x (THead (Bind b) u1 t5))) (\lambda
-(t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 t5)) (or (pr0 w1 (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
-T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
-Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x0: T).(\lambda (H13: (eq T x
-(THead (Bind b) u1 x0))).(\lambda (H14: (subst0 (s (Bind b) (s (Flat Appl)
-i)) v0 t3 x0)).(let H15 \def (eq_ind T x (\lambda (t: T).(eq T w1 (THead
-(Flat Appl) v1 t))) H10 (THead (Bind b) u1 x0) H13) in (eq_ind_r T (THead
-(Flat Appl) v1 (THead (Bind b) u1 x0)) (\lambda (t: T).(or (pr0 t (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
-T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
-Appl) (lift (S O) O v2) t4)) w2))))) (or_ind (pr0 x0 t4) (ex2 T (\lambda (w2:
-T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4
-w2))) (or (pr0 (THead (Flat Appl) v1 (THead (Bind b) u1 x0)) (THead (Bind b)
-u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
-(THead (Flat Appl) v1 (THead (Bind b) u1 x0)) w2)) (\lambda (w2: T).(subst0 i
-v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
-(\lambda (H16: (pr0 x0 t4)).(or_introl (pr0 (THead (Flat Appl) v1 (THead
-(Bind b) u1 x0)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
-t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) u1
-x0)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
-(lift (S O) O v2) t4)) w2))) (pr0_upsilon b H0 v1 v2 H1 u1 u2 H3 x0 t4 H16)))
-(\lambda (H16: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0
-(s (Bind b) (s (Flat Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0
-x0 w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 w2))
-(or (pr0 (THead (Flat Appl) v1 (THead (Bind b) u1 x0)) (THead (Bind b) u2
-(THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
-(THead (Flat Appl) v1 (THead (Bind b) u1 x0)) w2)) (\lambda (w2: T).(subst0 i
-v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
-(\lambda (x1: T).(\lambda (H17: (pr0 x0 x1)).(\lambda (H18: (subst0 (s (Bind
-b) (s (Flat Appl) i)) v3 t4 x1)).(or_intror (pr0 (THead (Flat Appl) v1 (THead
-(Bind b) u1 x0)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
-t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) u1
-x0)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
-(lift (S O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat
-Appl) v1 (THead (Bind b) u1 x0)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2
-(THead (Flat Appl) (lift (S O) O v2) x1)) (pr0_upsilon b H0 v1 v2 H1 u1 u2 H3
-x0 x1 H17) (subst0_snd (Bind b) v3 (THead (Flat Appl) (lift (S O) O v2) x1)
-(THead (Flat Appl) (lift (S O) O v2) t4) i (subst0_snd (Flat Appl) v3 x1 t4
-(s (Bind b) i) H18 (lift (S O) O v2)) u2)))))) H16)) (H6 v0 x0 (s (Bind b) (s
-(Flat Appl) i)) H14 v3 H8)) w1 H15))))) H12)) (\lambda (H12: (ex3_2 T T
-(\lambda (u3: T).(\lambda (t5: T).(eq T x (THead (Bind b) u3 t5)))) (\lambda
-(u3: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u1 u3))) (\lambda (_:
-T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3
-t5))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda (t5: T).(eq T x (THead (Bind
-b) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u1
-u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i))
-v0 t3 t5))) (or (pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
-v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3
-(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda
-(x0: T).(\lambda (x1: T).(\lambda (H13: (eq T x (THead (Bind b) x0
-x1))).(\lambda (H14: (subst0 (s (Flat Appl) i) v0 u1 x0)).(\lambda (H15:
-(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 x1)).(let H16 \def (eq_ind T x
-(\lambda (t: T).(eq T w1 (THead (Flat Appl) v1 t))) H10 (THead (Bind b) x0
-x1) H13) in (eq_ind_r T (THead (Flat Appl) v1 (THead (Bind b) x0 x1))
-(\lambda (t: T).(or (pr0 t (THead (Bind b) u2 (THead (Flat Appl) (lift (S O)
-O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3
-(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))) (or_ind
-(pr0 x1 t4) (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s
-(Bind b) (s (Flat Appl) i)) v3 t4 w2))) (or (pr0 (THead (Flat Appl) v1 (THead
-(Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
-t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0
-x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
-(lift (S O) O v2) t4)) w2)))) (\lambda (H17: (pr0 x1 t4)).(or_ind (pr0 x0 u2)
-(ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl)
-i) v3 u2 w2))) (or (pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
-T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
-w2)))) (\lambda (H18: (pr0 x0 u2)).(or_introl (pr0 (THead (Flat Appl) v1
-(THead (Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
-v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b)
-x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
-Appl) (lift (S O) O v2) t4)) w2))) (pr0_upsilon b H0 v1 v2 H1 x0 u2 H18 x1 t4
-H17))) (\lambda (H18: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
-T).(subst0 (s (Flat Appl) i) v3 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0
-w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2 w2)) (or (pr0 (THead
-(Flat Appl) v1 (THead (Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl)
-(lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1
-(THead (Bind b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2
-(THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x2: T).(\lambda
-(H19: (pr0 x0 x2)).(\lambda (H20: (subst0 (s (Flat Appl) i) v3 u2
-x2)).(or_intror (pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
-T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
-w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind
-b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
-Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x2 (THead (Flat Appl) (lift
-(S O) O v2) t4)) (pr0_upsilon b H0 v1 v2 H1 x0 x2 H19 x1 t4 H17) (subst0_fst
-v3 x2 u2 i H20 (THead (Flat Appl) (lift (S O) O v2) t4) (Bind b))))))) H18))
-(H4 v0 x0 (s (Flat Appl) i) H14 v3 H8))) (\lambda (H17: (ex2 T (\lambda (w2:
-T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4
-w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s
-(Bind b) (s (Flat Appl) i)) v3 t4 w2)) (or (pr0 (THead (Flat Appl) v1 (THead
-(Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
-t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0
-x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
-(lift (S O) O v2) t4)) w2)))) (\lambda (x2: T).(\lambda (H18: (pr0 x1
-x2)).(\lambda (H19: (subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 x2)).(or_ind
-(pr0 x0 u2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s
-(Flat Appl) i) v3 u2 w2))) (or (pr0 (THead (Flat Appl) v1 (THead (Bind b) x0
-x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
-(\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) w2))
-(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
-O) O v2) t4)) w2)))) (\lambda (H20: (pr0 x0 u2)).(or_intror (pr0 (THead (Flat
-Appl) v1 (THead (Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift
-(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead
-(Bind b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead
-(Flat Appl) (lift (S O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0
-(THead (Flat Appl) v1 (THead (Bind b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i
-v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) x2)) (pr0_upsilon b H0 v1 v2
-H1 x0 u2 H20 x1 x2 H18) (subst0_snd (Bind b) v3 (THead (Flat Appl) (lift (S
-O) O v2) x2) (THead (Flat Appl) (lift (S O) O v2) t4) i (subst0_snd (Flat
-Appl) v3 x2 t4 (s (Bind b) i) H19 (lift (S O) O v2)) u2)))) (\lambda (H20:
-(ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl)
-i) v3 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
-T).(subst0 (s (Flat Appl) i) v3 u2 w2)) (or (pr0 (THead (Flat Appl) v1 (THead
-(Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
-t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0
-x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
-(lift (S O) O v2) t4)) w2)))) (\lambda (x3: T).(\lambda (H21: (pr0 x0
-x3)).(\lambda (H22: (subst0 (s (Flat Appl) i) v3 u2 x3)).(or_intror (pr0
-(THead (Flat Appl) v1 (THead (Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat
-Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl)
-v1 (THead (Bind b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b)
-u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2:
-T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
-w2)) (THead (Bind b) x3 (THead (Flat Appl) (lift (S O) O v2) x2))
-(pr0_upsilon b H0 v1 v2 H1 x0 x3 H21 x1 x2 H18) (subst0_both v3 u2 x3 i H22
-(Bind b) (THead (Flat Appl) (lift (S O) O v2) t4) (THead (Flat Appl) (lift (S
-O) O v2) x2) (subst0_snd (Flat Appl) v3 x2 t4 (s (Bind b) i) H19 (lift (S O)
-O v2)))))))) H20)) (H4 v0 x0 (s (Flat Appl) i) H14 v3 H8))))) H17)) (H6 v0 x1
-(s (Bind b) (s (Flat Appl) i)) H15 v3 H8)) w1 H16))))))) H12))
-(subst0_gen_head (Bind b) v0 u1 t3 x (s (Flat Appl) i) H11))))) H9)) (\lambda
-(H9: (ex3_2 T T (\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead (Flat Appl)
-u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 i v0 v1 u3))) (\lambda (_:
-T).(\lambda (t5: T).(subst0 (s (Flat Appl) i) v0 (THead (Bind b) u1 t3)
-t5))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead
-(Flat Appl) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 i v0 v1 u3)))
-(\lambda (_: T).(\lambda (t5: T).(subst0 (s (Flat Appl) i) v0 (THead (Bind b)
-u1 t3) t5))) (or (pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
-v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3
-(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda
-(x0: T).(\lambda (x1: T).(\lambda (H10: (eq T w1 (THead (Flat Appl) x0
-x1))).(\lambda (H11: (subst0 i v0 v1 x0)).(\lambda (H12: (subst0 (s (Flat
-Appl) i) v0 (THead (Bind b) u1 t3) x1)).(or3_ind (ex2 T (\lambda (u3: T).(eq
-T x1 (THead (Bind b) u3 t3))) (\lambda (u3: T).(subst0 (s (Flat Appl) i) v0
-u1 u3))) (ex2 T (\lambda (t5: T).(eq T x1 (THead (Bind b) u1 t5))) (\lambda
-(t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 t5))) (ex3_2 T T
-(\lambda (u3: T).(\lambda (t5: T).(eq T x1 (THead (Bind b) u3 t5)))) (\lambda
-(u3: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u1 u3))) (\lambda (_:
-T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 t5)))) (or
-(pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
-(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b)
-u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H13: (ex2 T
-(\lambda (u3: T).(eq T x1 (THead (Bind b) u3 t3))) (\lambda (u3: T).(subst0
-(s (Flat Appl) i) v0 u1 u3)))).(ex2_ind T (\lambda (u3: T).(eq T x1 (THead
-(Bind b) u3 t3))) (\lambda (u3: T).(subst0 (s (Flat Appl) i) v0 u1 u3)) (or
-(pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
-(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b)
-u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x: T).(\lambda
-(H14: (eq T x1 (THead (Bind b) x t3))).(\lambda (H15: (subst0 (s (Flat Appl)
-i) v0 u1 x)).(let H16 \def (eq_ind T x1 (\lambda (t: T).(eq T w1 (THead (Flat
-Appl) x0 t))) H10 (THead (Bind b) x t3) H14) in (eq_ind_r T (THead (Flat
-Appl) x0 (THead (Bind b) x t3)) (\lambda (t: T).(or (pr0 t (THead (Bind b) u2
-(THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 t
-w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
-(lift (S O) O v2) t4)) w2))))) (or_ind (pr0 x u2) (ex2 T (\lambda (w2:
-T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2 w2))) (or
-(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) (THead (Bind b) u2 (THead
-(Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat
-Appl) x0 (THead (Bind b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H17:
-(pr0 x u2)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda
-(w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b)
-x t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
-(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2))
-(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
-O) O v2) t4)) w2)))) (\lambda (H18: (pr0 x0 v2)).(or_introl (pr0 (THead (Flat
-Appl) x0 (THead (Bind b) x t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift
-(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
-(Bind b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead
-(Flat Appl) (lift (S O) O v2) t4)) w2))) (pr0_upsilon b H0 x0 v2 H18 x u2 H17
-t3 t4 H5))) (\lambda (H18: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
-T).(subst0 i v3 v2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda
-(w2: T).(subst0 i v3 v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x
-t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
-(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2))
-(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
-O) O v2) t4)) w2)))) (\lambda (x2: T).(\lambda (H19: (pr0 x0 x2)).(\lambda
-(H20: (subst0 i v3 v2 x2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind
-b) x t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2
-T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2))
-(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
-O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0
-(THead (Bind b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2
-(THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead
-(Flat Appl) (lift (S O) O x2) t4)) (pr0_upsilon b H0 x0 x2 H19 x u2 H17 t3 t4
-H5) (subst0_snd (Bind b) v3 (THead (Flat Appl) (lift (S O) O x2) t4) (THead
-(Flat Appl) (lift (S O) O v2) t4) i (subst0_fst v3 (lift (S O) O x2) (lift (S
-O) O v2) (s (Bind b) i) (subst0_lift_ge_s v2 x2 v3 i H20 O (le_O_n i) b) t4
-(Flat Appl)) u2)))))) H18)) (H2 v0 x0 i H11 v3 H8))) (\lambda (H17: (ex2 T
-(\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2
-w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s
-(Flat Appl) i) v3 u2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x
-t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
-(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2))
-(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
-O) O v2) t4)) w2)))) (\lambda (x2: T).(\lambda (H18: (pr0 x x2)).(\lambda
-(H19: (subst0 (s (Flat Appl) i) v3 u2 x2)).(or_ind (pr0 x0 v2) (ex2 T
-(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0
-(THead (Flat Appl) x0 (THead (Bind b) x t3)) (THead (Bind b) u2 (THead (Flat
-Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl)
-x0 (THead (Bind b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b)
-u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H20: (pr0 x0
-v2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
-T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
-w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
-b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
-Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x2 (THead (Flat Appl) (lift
-(S O) O v2) t4)) (pr0_upsilon b H0 x0 v2 H20 x x2 H18 t3 t4 H5) (subst0_fst
-v3 x2 u2 i H19 (THead (Flat Appl) (lift (S O) O v2) t4) (Bind b))))) (\lambda
-(H20: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2
-w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3
-v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) (THead (Bind b)
-u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
-(THead (Flat Appl) x0 (THead (Bind b) x t3)) w2)) (\lambda (w2: T).(subst0 i
-v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
-(\lambda (x3: T).(\lambda (H21: (pr0 x0 x3)).(\lambda (H22: (subst0 i v3 v2
-x3)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
-T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
-w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
-b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
-Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x2 (THead (Flat Appl) (lift
-(S O) O x3) t4)) (pr0_upsilon b H0 x0 x3 H21 x x2 H18 t3 t4 H5) (subst0_both
-v3 u2 x2 i H19 (Bind b) (THead (Flat Appl) (lift (S O) O v2) t4) (THead (Flat
-Appl) (lift (S O) O x3) t4) (subst0_fst v3 (lift (S O) O x3) (lift (S O) O
-v2) (s (Bind b) i) (subst0_lift_ge_s v2 x3 v3 i H22 O (le_O_n i) b) t4 (Flat
-Appl)))))))) H20)) (H2 v0 x0 i H11 v3 H8))))) H17)) (H4 v0 x (s (Flat Appl)
-i) H15 v3 H8)) w1 H16))))) H13)) (\lambda (H13: (ex2 T (\lambda (t5: T).(eq T
-x1 (THead (Bind b) u1 t5))) (\lambda (t5: T).(subst0 (s (Bind b) (s (Flat
-Appl) i)) v0 t3 t5)))).(ex2_ind T (\lambda (t5: T).(eq T x1 (THead (Bind b)
-u1 t5))) (\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 t5))
-(or (pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)))
-(ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x:
-T).(\lambda (H14: (eq T x1 (THead (Bind b) u1 x))).(\lambda (H15: (subst0 (s
-(Bind b) (s (Flat Appl) i)) v0 t3 x)).(let H16 \def (eq_ind T x1 (\lambda (t:
-T).(eq T w1 (THead (Flat Appl) x0 t))) H10 (THead (Bind b) u1 x) H14) in
-(eq_ind_r T (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (\lambda (t: T).(or
-(pr0 t (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
-(\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2
-(THead (Flat Appl) (lift (S O) O v2) t4)) w2))))) (or_ind (pr0 x t4) (ex2 T
-(\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat
-Appl) i)) v3 t4 w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x))
-(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda
-(w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
-w2)))) (\lambda (H17: (pr0 x t4)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2:
-T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat
-Appl) x0 (THead (Bind b) u1 x)) (THead (Bind b) u2 (THead (Flat Appl) (lift
-(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
-(Bind b) u1 x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead
-(Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H18: (pr0 x0
-v2)).(or_introl (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
-T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
-w2))) (pr0_upsilon b H0 x0 v2 H18 u1 u2 H3 x t4 H17))) (\lambda (H18: (ex2 T
-(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2
-w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3
-v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead (Bind b)
-u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
-(THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2: T).(subst0 i
-v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
-(\lambda (x2: T).(\lambda (H19: (pr0 x0 x2)).(\lambda (H20: (subst0 i v3 v2
-x2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
-T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
-w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
-b) u1 x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
-Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead (Flat Appl) (lift
-(S O) O x2) t4)) (pr0_upsilon b H0 x0 x2 H19 u1 u2 H3 x t4 H17) (subst0_snd
-(Bind b) v3 (THead (Flat Appl) (lift (S O) O x2) t4) (THead (Flat Appl) (lift
-(S O) O v2) t4) i (subst0_fst v3 (lift (S O) O x2) (lift (S O) O v2) (s (Bind
-b) i) (subst0_lift_ge_s v2 x2 v3 i H20 O (le_O_n i) b) t4 (Flat Appl))
-u2)))))) H18)) (H2 v0 x0 i H11 v3 H8))) (\lambda (H17: (ex2 T (\lambda (w2:
-T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4
-w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s
-(Bind b) (s (Flat Appl) i)) v3 t4 w2)) (or (pr0 (THead (Flat Appl) x0 (THead
-(Bind b) u1 x)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)))
-(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x))
-w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
-(lift (S O) O v2) t4)) w2)))) (\lambda (x2: T).(\lambda (H18: (pr0 x
-x2)).(\lambda (H19: (subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 x2)).(or_ind
-(pr0 x0 v2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i
-v3 v2 w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
-T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
-w2)))) (\lambda (H20: (pr0 x0 v2)).(or_intror (pr0 (THead (Flat Appl) x0
-(THead (Bind b) u1 x)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
-v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b)
-u1 x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
-Appl) (lift (S O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead
-(Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2: T).(subst0 i v3
-(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) x2)) (pr0_upsilon b H0 x0 v2
-H20 u1 u2 H3 x x2 H18) (subst0_snd (Bind b) v3 (THead (Flat Appl) (lift (S O)
-O v2) x2) (THead (Flat Appl) (lift (S O) O v2) t4) i (subst0_snd (Flat Appl)
-v3 x2 t4 (s (Bind b) i) H19 (lift (S O) O v2)) u2)))) (\lambda (H20: (ex2 T
-(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2
-w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3
-v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead (Bind b)
-u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
-(THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2: T).(subst0 i
-v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
-(\lambda (x3: T).(\lambda (H21: (pr0 x0 x3)).(\lambda (H22: (subst0 i v3 v2
-x3)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
-T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
-w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
-b) u1 x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
-Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead (Flat Appl) (lift
-(S O) O x3) x2)) (pr0_upsilon b H0 x0 x3 H21 u1 u2 H3 x x2 H18) (subst0_snd
-(Bind b) v3 (THead (Flat Appl) (lift (S O) O x3) x2) (THead (Flat Appl) (lift
-(S O) O v2) t4) i (subst0_both v3 (lift (S O) O v2) (lift (S O) O x3) (s
-(Bind b) i) (subst0_lift_ge_s v2 x3 v3 i H22 O (le_O_n i) b) (Flat Appl) t4
-x2 H19) u2)))))) H20)) (H2 v0 x0 i H11 v3 H8))))) H17)) (H6 v0 x (s (Bind b)
-(s (Flat Appl) i)) H15 v3 H8)) w1 H16))))) H13)) (\lambda (H13: (ex3_2 T T
-(\lambda (u3: T).(\lambda (t5: T).(eq T x1 (THead (Bind b) u3 t5)))) (\lambda
-(u3: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u1 u3))) (\lambda (_:
-T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3
-t5))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda (t5: T).(eq T x1 (THead
-(Bind b) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 (s (Flat Appl) i)
-v0 u1 u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat
-Appl) i)) v0 t3 t5))) (or (pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift
-(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
-w2)))) (\lambda (x2: T).(\lambda (x3: T).(\lambda (H14: (eq T x1 (THead (Bind
-b) x2 x3))).(\lambda (H15: (subst0 (s (Flat Appl) i) v0 u1 x2)).(\lambda
-(H16: (subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 x3)).(let H17 \def (eq_ind
-T x1 (\lambda (t: T).(eq T w1 (THead (Flat Appl) x0 t))) H10 (THead (Bind b)
-x2 x3) H14) in (eq_ind_r T (THead (Flat Appl) x0 (THead (Bind b) x2 x3))
-(\lambda (t: T).(or (pr0 t (THead (Bind b) u2 (THead (Flat Appl) (lift (S O)
-O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3
-(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))) (or_ind
-(pr0 x3 t4) (ex2 T (\lambda (w2: T).(pr0 x3 w2)) (\lambda (w2: T).(subst0 (s
-(Bind b) (s (Flat Appl) i)) v3 t4 w2))) (or (pr0 (THead (Flat Appl) x0 (THead
-(Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
-t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2
-x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
-(lift (S O) O v2) t4)) w2)))) (\lambda (H18: (pr0 x3 t4)).(or_ind (pr0 x2 u2)
-(ex2 T (\lambda (w2: T).(pr0 x2 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl)
-i) v3 u2 w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
-T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
-w2)))) (\lambda (H19: (pr0 x2 u2)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2:
-T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat
-Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift
-(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
-(Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead
-(Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H20: (pr0 x0
-v2)).(or_introl (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
-T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
-w2))) (pr0_upsilon b H0 x0 v2 H20 x2 u2 H19 x3 t4 H18))) (\lambda (H20: (ex2
-T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2
-w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3
-v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind
-b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
-(THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i
-v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
-(\lambda (x: T).(\lambda (H21: (pr0 x0 x)).(\lambda (H22: (subst0 i v3 v2
-x)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
-T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
-w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
-b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
-Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead (Flat Appl) (lift
-(S O) O x) t4)) (pr0_upsilon b H0 x0 x H21 x2 u2 H19 x3 t4 H18) (subst0_snd
-(Bind b) v3 (THead (Flat Appl) (lift (S O) O x) t4) (THead (Flat Appl) (lift
-(S O) O v2) t4) i (subst0_fst v3 (lift (S O) O x) (lift (S O) O v2) (s (Bind
-b) i) (subst0_lift_ge_s v2 x v3 i H22 O (le_O_n i) b) t4 (Flat Appl))
-u2)))))) H20)) (H2 v0 x0 i H11 v3 H8))) (\lambda (H19: (ex2 T (\lambda (w2:
-T).(pr0 x2 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2
-w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x2 w2)) (\lambda (w2: T).(subst0 (s
-(Flat Appl) i) v3 u2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2
-x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
-(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2))
-(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
-O) O v2) t4)) w2)))) (\lambda (x: T).(\lambda (H20: (pr0 x2 x)).(\lambda
-(H21: (subst0 (s (Flat Appl) i) v3 u2 x)).(or_ind (pr0 x0 v2) (ex2 T (\lambda
-(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead
-(Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl)
-(lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0
-(THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2
-(THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H22: (pr0 x0
-v2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
-T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
-w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
-b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
-Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x (THead (Flat Appl) (lift
-(S O) O v2) t4)) (pr0_upsilon b H0 x0 v2 H22 x2 x H20 x3 t4 H18) (subst0_fst
-v3 x u2 i H21 (THead (Flat Appl) (lift (S O) O v2) t4) (Bind b))))) (\lambda
-(H22: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2
-w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3
-v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind
-b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
-(THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i
-v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
-(\lambda (x4: T).(\lambda (H23: (pr0 x0 x4)).(\lambda (H24: (subst0 i v3 v2
-x4)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
-T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
-w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
-b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
-Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x (THead (Flat Appl) (lift
-(S O) O x4) t4)) (pr0_upsilon b H0 x0 x4 H23 x2 x H20 x3 t4 H18) (subst0_both
-v3 u2 x i H21 (Bind b) (THead (Flat Appl) (lift (S O) O v2) t4) (THead (Flat
-Appl) (lift (S O) O x4) t4) (subst0_fst v3 (lift (S O) O x4) (lift (S O) O
-v2) (s (Bind b) i) (subst0_lift_ge_s v2 x4 v3 i H24 O (le_O_n i) b) t4 (Flat
-Appl)))))))) H22)) (H2 v0 x0 i H11 v3 H8))))) H19)) (H4 v0 x2 (s (Flat Appl)
-i) H15 v3 H8))) (\lambda (H18: (ex2 T (\lambda (w2: T).(pr0 x3 w2)) (\lambda
-(w2: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 w2)))).(ex2_ind T
-(\lambda (w2: T).(pr0 x3 w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat
-Appl) i)) v3 t4 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3))
-(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda
-(w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
-w2)))) (\lambda (x: T).(\lambda (H19: (pr0 x3 x)).(\lambda (H20: (subst0 (s
-(Bind b) (s (Flat Appl) i)) v3 t4 x)).(or_ind (pr0 x2 u2) (ex2 T (\lambda
-(w2: T).(pr0 x2 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2 w2)))
-(or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind b) u2
-(THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
-(THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i
-v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
-(\lambda (H21: (pr0 x2 u2)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2: T).(pr0
-x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat Appl) x0
-(THead (Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
-v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b)
-x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
-Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H22: (pr0 x0 v2)).(or_intror
-(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind b) u2 (THead
-(Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat
-Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))) (ex_intro2 T
-(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2))
-(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
-O) O v2) t4)) w2)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
-x)) (pr0_upsilon b H0 x0 v2 H22 x2 u2 H21 x3 x H19) (subst0_snd (Bind b) v3
-(THead (Flat Appl) (lift (S O) O v2) x) (THead (Flat Appl) (lift (S O) O v2)
-t4) i (subst0_snd (Flat Appl) v3 x t4 (s (Bind b) i) H20 (lift (S O) O v2))
-u2)))) (\lambda (H22: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
-T).(subst0 i v3 v2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda
-(w2: T).(subst0 i v3 v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b)
-x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
-(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2))
-(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
-O) O v2) t4)) w2)))) (\lambda (x4: T).(\lambda (H23: (pr0 x0 x4)).(\lambda
-(H24: (subst0 i v3 v2 x4)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind
-b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2
-T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2))
-(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
-O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0
-(THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2
-(THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead
-(Flat Appl) (lift (S O) O x4) x)) (pr0_upsilon b H0 x0 x4 H23 x2 u2 H21 x3 x
-H19) (subst0_snd (Bind b) v3 (THead (Flat Appl) (lift (S O) O x4) x) (THead
-(Flat Appl) (lift (S O) O v2) t4) i (subst0_both v3 (lift (S O) O v2) (lift
-(S O) O x4) (s (Bind b) i) (subst0_lift_ge_s v2 x4 v3 i H24 O (le_O_n i) b)
-(Flat Appl) t4 x H20) u2)))))) H22)) (H2 v0 x0 i H11 v3 H8))) (\lambda (H21:
-(ex2 T (\lambda (w2: T).(pr0 x2 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl)
-i) v3 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x2 w2)) (\lambda (w2:
-T).(subst0 (s (Flat Appl) i) v3 u2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead
-(Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
-t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2
-x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
-(lift (S O) O v2) t4)) w2)))) (\lambda (x4: T).(\lambda (H22: (pr0 x2
-x4)).(\lambda (H23: (subst0 (s (Flat Appl) i) v3 u2 x4)).(or_ind (pr0 x0 v2)
-(ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)))
-(or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind b) u2
-(THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
-(THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i
-v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
-(\lambda (H24: (pr0 x0 v2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead
-(Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
-t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2
-x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
-(lift (S O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat
-Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x4
-(THead (Flat Appl) (lift (S O) O v2) x)) (pr0_upsilon b H0 x0 v2 H24 x2 x4
-H22 x3 x H19) (subst0_both v3 u2 x4 i H23 (Bind b) (THead (Flat Appl) (lift
-(S O) O v2) t4) (THead (Flat Appl) (lift (S O) O v2) x) (subst0_snd (Flat
-Appl) v3 x t4 (s (Bind b) i) H20 (lift (S O) O v2)))))) (\lambda (H24: (ex2 T
-(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2
-w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3
-v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind
-b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
-(THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i
-v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
-(\lambda (x5: T).(\lambda (H25: (pr0 x0 x5)).(\lambda (H26: (subst0 i v3 v2
-x5)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead
-(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
-T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2:
-T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
-w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
-b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
-Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x4 (THead (Flat Appl) (lift
-(S O) O x5) x)) (pr0_upsilon b H0 x0 x5 H25 x2 x4 H22 x3 x H19) (subst0_both
-v3 u2 x4 i H23 (Bind b) (THead (Flat Appl) (lift (S O) O v2) t4) (THead (Flat
-Appl) (lift (S O) O x5) x) (subst0_both v3 (lift (S O) O v2) (lift (S O) O
-x5) (s (Bind b) i) (subst0_lift_ge_s v2 x5 v3 i H26 O (le_O_n i) b) (Flat
-Appl) t4 x H20))))))) H24)) (H2 v0 x0 i H11 v3 H8))))) H21)) (H4 v0 x2 (s
-(Flat Appl) i) H15 v3 H8))))) H18)) (H6 v0 x3 (s (Bind b) (s (Flat Appl) i))
-H16 v3 H8)) w1 H17))))))) H13)) (subst0_gen_head (Bind b) v0 u1 t3 x1 (s
-(Flat Appl) i) H12))))))) H9)) (subst0_gen_head (Flat Appl) v0 v1 (THead
-(Bind b) u1 t3) w1 i H7)))))))))))))))))))))) (\lambda (u1: T).(\lambda (u2:
-T).(\lambda (H0: (pr0 u1 u2)).(\lambda (H1: ((\forall (v1: T).(\forall (w1:
-T).(\forall (i: nat).((subst0 i v1 u1 w1) \to (\forall (v2: T).((pr0 v1 v2)
-\to (or (pr0 w1 u2) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
-T).(subst0 i v2 u2 w2)))))))))))).(\lambda (t3: T).(\lambda (t4: T).(\lambda
-(H2: (pr0 t3 t4)).(\lambda (H3: ((\forall (v1: T).(\forall (w1: T).(\forall
-(i: nat).((subst0 i v1 t3 w1) \to (\forall (v2: T).((pr0 v1 v2) \to (or (pr0
-w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4
-w2)))))))))))).(\lambda (w: T).(\lambda (H4: (subst0 O u2 t4 w)).(\lambda
-(v1: T).(\lambda (w1: T).(\lambda (i: nat).(\lambda (H5: (subst0 i v1 (THead
-(Bind Abbr) u1 t3) w1)).(\lambda (v2: T).(\lambda (H6: (pr0 v1 v2)).(or3_ind
-(ex2 T (\lambda (u3: T).(eq T w1 (THead (Bind Abbr) u3 t3))) (\lambda (u3:
-T).(subst0 i v1 u1 u3))) (ex2 T (\lambda (t5: T).(eq T w1 (THead (Bind Abbr)
-u1 t5))) (\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3 t5))) (ex3_2 T T
-(\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead (Bind Abbr) u3 t5))))
-(\lambda (u3: T).(\lambda (_: T).(subst0 i v1 u1 u3))) (\lambda (_:
-T).(\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3 t5)))) (or (pr0 w1 (THead
-(Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
-T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (H7: (ex2 T (\lambda
-(u3: T).(eq T w1 (THead (Bind Abbr) u3 t3))) (\lambda (u3: T).(subst0 i v1 u1
-u3)))).(ex2_ind T (\lambda (u3: T).(eq T w1 (THead (Bind Abbr) u3 t3)))
-(\lambda (u3: T).(subst0 i v1 u1 u3)) (or (pr0 w1 (THead (Bind Abbr) u2 w))
-(ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 (THead
-(Bind Abbr) u2 w) w2)))) (\lambda (x: T).(\lambda (H8: (eq T w1 (THead (Bind
-Abbr) x t3))).(\lambda (H9: (subst0 i v1 u1 x)).(eq_ind_r T (THead (Bind
-Abbr) x t3) (\lambda (t: T).(or (pr0 t (THead (Bind Abbr) u2 w)) (ex2 T
-(\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr)
-u2 w) w2))))) (or_ind (pr0 x u2) (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda
-(w2: T).(subst0 i v2 u2 w2))) (or (pr0 (THead (Bind Abbr) x t3) (THead (Bind
-Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2))
-(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (H10:
-(pr0 x u2)).(or_introl (pr0 (THead (Bind Abbr) x t3) (THead (Bind Abbr) u2
-w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2)) (\lambda (w2:
-T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (pr0_delta x u2 H10 t3 t4 H2 w
-H4))) (\lambda (H10: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2:
-T).(subst0 i v2 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda
-(w2: T).(subst0 i v2 u2 w2)) (or (pr0 (THead (Bind Abbr) x t3) (THead (Bind
-Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2))
-(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x0:
-T).(\lambda (H11: (pr0 x x0)).(\lambda (H12: (subst0 i v2 u2 x0)).(ex2_ind T
-(\lambda (t: T).(subst0 O x0 t4 t)) (\lambda (t: T).(subst0 (S (plus i O)) v2
-w t)) (or (pr0 (THead (Bind Abbr) x t3) (THead (Bind Abbr) u2 w)) (ex2 T
-(\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2)) (\lambda (w2: T).(subst0
-i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x1: T).(\lambda (H13: (subst0
-O x0 t4 x1)).(\lambda (H14: (subst0 (S (plus i O)) v2 w x1)).(let H15 \def
-(f_equal nat nat S (plus i O) i (sym_eq nat i (plus i O) (plus_n_O i))) in
-(let H16 \def (eq_ind nat (S (plus i O)) (\lambda (n: nat).(subst0 n v2 w
-x1)) H14 (S i) H15) in (or_intror (pr0 (THead (Bind Abbr) x t3) (THead (Bind
-Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2))
-(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (ex_intro2 T
-(\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2)) (\lambda (w2: T).(subst0
-i v2 (THead (Bind Abbr) u2 w) w2)) (THead (Bind Abbr) x0 x1) (pr0_delta x x0
-H11 t3 t4 H2 x1 H13) (subst0_both v2 u2 x0 i H12 (Bind Abbr) w x1 H16))))))))
-(subst0_subst0_back t4 w u2 O H4 x0 v2 i H12))))) H10)) (H1 v1 x i H9 v2 H6))
-w1 H8)))) H7)) (\lambda (H7: (ex2 T (\lambda (t5: T).(eq T w1 (THead (Bind
-Abbr) u1 t5))) (\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3
-t5)))).(ex2_ind T (\lambda (t5: T).(eq T w1 (THead (Bind Abbr) u1 t5)))
-(\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3 t5)) (or (pr0 w1 (THead
-(Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
-T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x: T).(\lambda (H8:
-(eq T w1 (THead (Bind Abbr) u1 x))).(\lambda (H9: (subst0 (s (Bind Abbr) i)
-v1 t3 x)).(eq_ind_r T (THead (Bind Abbr) u1 x) (\lambda (t: T).(or (pr0 t
-(THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2:
-T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))))) (or_ind (pr0 x t4) (ex2 T
-(\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind Abbr) i) v2 t4
-w2))) (or (pr0 (THead (Bind Abbr) u1 x) (THead (Bind Abbr) u2 w)) (ex2 T
-(\lambda (w2: T).(pr0 (THead (Bind Abbr) u1 x) w2)) (\lambda (w2: T).(subst0
-i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (H10: (pr0 x t4)).(or_introl
-(pr0 (THead (Bind Abbr) u1 x) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2:
-T).(pr0 (THead (Bind Abbr) u1 x) w2)) (\lambda (w2: T).(subst0 i v2 (THead
-(Bind Abbr) u2 w) w2))) (pr0_delta u1 u2 H0 x t4 H10 w H4))) (\lambda (H10:
-(ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind Abbr)
-i) v2 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2:
-T).(subst0 (s (Bind Abbr) i) v2 t4 w2)) (or (pr0 (THead (Bind Abbr) u1 x)
-(THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) u1
-x) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))))
-(\lambda (x0: T).(\lambda (H11: (pr0 x x0)).(\lambda (H12: (subst0 (s (Bind
-Abbr) i) v2 t4 x0)).(ex2_ind T (\lambda (t: T).(subst0 O u2 x0 t)) (\lambda
-(t: T).(subst0 (s (Bind Abbr) i) v2 w t)) (or (pr0 (THead (Bind Abbr) u1 x)
-(THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) u1
-x) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))))
-(\lambda (x1: T).(\lambda (H13: (subst0 O u2 x0 x1)).(\lambda (H14: (subst0
-(s (Bind Abbr) i) v2 w x1)).(or_intror (pr0 (THead (Bind Abbr) u1 x) (THead
-(Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) u1 x) w2))
-(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (ex_intro2 T
-(\lambda (w2: T).(pr0 (THead (Bind Abbr) u1 x) w2)) (\lambda (w2: T).(subst0
-i v2 (THead (Bind Abbr) u2 w) w2)) (THead (Bind Abbr) u2 x1) (pr0_delta u1 u2
-H0 x x0 H11 x1 H13) (subst0_snd (Bind Abbr) v2 x1 w i H14 u2))))))
-(subst0_confluence_neq t4 x0 v2 (s (Bind Abbr) i) H12 w u2 O H4 (sym_not_eq
-nat O (S i) (O_S i))))))) H10)) (H3 v1 x (s (Bind Abbr) i) H9 v2 H6)) w1
-H8)))) H7)) (\lambda (H7: (ex3_2 T T (\lambda (u3: T).(\lambda (t5: T).(eq T
-w1 (THead (Bind Abbr) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 i v1
-u1 u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3
-t5))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead
-(Bind Abbr) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 i v1 u1 u3)))
-(\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3 t5))) (or
-(pr0 w1 (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 w1 w2))
-(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x0:
-T).(\lambda (x1: T).(\lambda (H8: (eq T w1 (THead (Bind Abbr) x0
-x1))).(\lambda (H9: (subst0 i v1 u1 x0)).(\lambda (H10: (subst0 (s (Bind
-Abbr) i) v1 t3 x1)).(eq_ind_r T (THead (Bind Abbr) x0 x1) (\lambda (t: T).(or
-(pr0 t (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda
-(w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))))) (or_ind (pr0 x1 t4)
-(ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s (Bind Abbr)
-i) v2 t4 w2))) (or (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w))
-(ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2:
-T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (H11: (pr0 x1
-t4)).(or_ind (pr0 x0 u2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
-T).(subst0 i v2 u2 w2))) (or (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind
-Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2))
-(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (H12:
-(pr0 x0 u2)).(or_introl (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2
-w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2:
-T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (pr0_delta x0 u2 H12 x1 t4 H11
-w H4))) (\lambda (H12: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
-T).(subst0 i v2 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda
-(w2: T).(subst0 i v2 u2 w2)) (or (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind
-Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2))
-(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x:
-T).(\lambda (H13: (pr0 x0 x)).(\lambda (H14: (subst0 i v2 u2 x)).(ex2_ind T
-(\lambda (t: T).(subst0 O x t4 t)) (\lambda (t: T).(subst0 (S (plus i O)) v2
-w t)) (or (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T
-(\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0
-i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x2: T).(\lambda (H15: (subst0
-O x t4 x2)).(\lambda (H16: (subst0 (S (plus i O)) v2 w x2)).(let H17 \def
-(f_equal nat nat S (plus i O) i (sym_eq nat i (plus i O) (plus_n_O i))) in
-(let H18 \def (eq_ind nat (S (plus i O)) (\lambda (n: nat).(subst0 n v2 w
-x2)) H16 (S i) H17) in (or_intror (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind
-Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2))
-(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (ex_intro2 T
-(\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0
-i v2 (THead (Bind Abbr) u2 w) w2)) (THead (Bind Abbr) x x2) (pr0_delta x0 x
-H13 x1 t4 H11 x2 H15) (subst0_both v2 u2 x i H14 (Bind Abbr) w x2 H18))))))))
-(subst0_subst0_back t4 w u2 O H4 x v2 i H14))))) H12)) (H1 v1 x0 i H9 v2
-H6))) (\lambda (H11: (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2:
-T).(subst0 (s (Bind Abbr) i) v2 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x1
-w2)) (\lambda (w2: T).(subst0 (s (Bind Abbr) i) v2 t4 w2)) (or (pr0 (THead
-(Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0
-(THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind
-Abbr) u2 w) w2)))) (\lambda (x: T).(\lambda (H12: (pr0 x1 x)).(\lambda (H13:
-(subst0 (s (Bind Abbr) i) v2 t4 x)).(or_ind (pr0 x0 u2) (ex2 T (\lambda (w2:
-T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 u2 w2))) (or (pr0 (THead (Bind
-Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead
-(Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2
-w) w2)))) (\lambda (H14: (pr0 x0 u2)).(ex2_ind T (\lambda (t: T).(subst0 O u2
-x t)) (\lambda (t: T).(subst0 (s (Bind Abbr) i) v2 w t)) (or (pr0 (THead
-(Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0
-(THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind
-Abbr) u2 w) w2)))) (\lambda (x2: T).(\lambda (H15: (subst0 O u2 x
-x2)).(\lambda (H16: (subst0 (s (Bind Abbr) i) v2 w x2)).(or_intror (pr0
-(THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2:
-T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead
-(Bind Abbr) u2 w) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr)
-x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))
-(THead (Bind Abbr) u2 x2) (pr0_delta x0 u2 H14 x1 x H12 x2 H15) (subst0_snd
-(Bind Abbr) v2 x2 w i H16 u2)))))) (subst0_confluence_neq t4 x v2 (s (Bind
-Abbr) i) H13 w u2 O H4 (sym_not_eq nat O (S i) (O_S i))))) (\lambda (H14:
-(ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 u2
-w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2
-u2 w2)) (or (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T
-(\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0
-i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x2: T).(\lambda (H15: (pr0 x0
-x2)).(\lambda (H16: (subst0 i v2 u2 x2)).(ex2_ind T (\lambda (t: T).(subst0 O
-x2 t4 t)) (\lambda (t: T).(subst0 (S (plus i O)) v2 w t)) (or (pr0 (THead
-(Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0
-(THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind
-Abbr) u2 w) w2)))) (\lambda (x3: T).(\lambda (H17: (subst0 O x2 t4
-x3)).(\lambda (H18: (subst0 (S (plus i O)) v2 w x3)).(let H19 \def (f_equal
-nat nat S (plus i O) i (sym_eq nat i (plus i O) (plus_n_O i))) in (let H20
-\def (eq_ind nat (S (plus i O)) (\lambda (n: nat).(subst0 n v2 w x3)) H18 (S
-i) H19) in (ex2_ind T (\lambda (t: T).(subst0 (s (Bind Abbr) i) v2 x3 t))
-(\lambda (t: T).(subst0 O x2 x t)) (or (pr0 (THead (Bind Abbr) x0 x1) (THead
-(Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1)
-w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda
-(x4: T).(\lambda (H21: (subst0 (s (Bind Abbr) i) v2 x3 x4)).(\lambda (H22:
-(subst0 O x2 x x4)).(or_intror (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind
-Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2))
-(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (ex_intro2 T
-(\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0
-i v2 (THead (Bind Abbr) u2 w) w2)) (THead (Bind Abbr) x2 x4) (pr0_delta x0 x2
-H15 x1 x H12 x4 H22) (subst0_both v2 u2 x2 i H16 (Bind Abbr) w x4
-(subst0_trans x3 w v2 (s (Bind Abbr) i) H20 x4 H21)))))))
-(subst0_confluence_neq t4 x3 x2 O H17 x v2 (s (Bind Abbr) i) H13 (O_S
-i)))))))) (subst0_subst0_back t4 w u2 O H4 x2 v2 i H16))))) H14)) (H1 v1 x0 i
-H9 v2 H6))))) H11)) (H3 v1 x1 (s (Bind Abbr) i) H10 v2 H6)) w1 H8)))))) H7))
-(subst0_gen_head (Bind Abbr) v1 u1 t3 w1 i H5)))))))))))))))))) (\lambda (b:
-B).(\lambda (H0: (not (eq B b Abst))).(\lambda (t3: T).(\lambda (t4:
-T).(\lambda (H1: (pr0 t3 t4)).(\lambda (H2: ((\forall (v1: T).(\forall (w1:
-T).(\forall (i: nat).((subst0 i v1 t3 w1) \to (\forall (v2: T).((pr0 v1 v2)
-\to (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
-T).(subst0 i v2 t4 w2)))))))))))).(\lambda (u: T).(\lambda (v1: T).(\lambda
-(w1: T).(\lambda (i: nat).(\lambda (H3: (subst0 i v1 (THead (Bind b) u (lift
-(S O) O t3)) w1)).(\lambda (v2: T).(\lambda (H4: (pr0 v1 v2)).(or3_ind (ex2 T
-(\lambda (u2: T).(eq T w1 (THead (Bind b) u2 (lift (S O) O t3)))) (\lambda
-(u2: T).(subst0 i v1 u u2))) (ex2 T (\lambda (t5: T).(eq T w1 (THead (Bind b)
-u t5))) (\lambda (t5: T).(subst0 (s (Bind b) i) v1 (lift (S O) O t3) t5)))
-(ex3_2 T T (\lambda (u2: T).(\lambda (t5: T).(eq T w1 (THead (Bind b) u2
-t5)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_:
-T).(\lambda (t5: T).(subst0 (s (Bind b) i) v1 (lift (S O) O t3) t5)))) (or
-(pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i
-v2 t4 w2)))) (\lambda (H5: (ex2 T (\lambda (u2: T).(eq T w1 (THead (Bind b)
-u2 (lift (S O) O t3)))) (\lambda (u2: T).(subst0 i v1 u u2)))).(ex2_ind T
-(\lambda (u2: T).(eq T w1 (THead (Bind b) u2 (lift (S O) O t3)))) (\lambda
-(u2: T).(subst0 i v1 u u2)) (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1
-w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (x: T).(\lambda (H6:
-(eq T w1 (THead (Bind b) x (lift (S O) O t3)))).(\lambda (_: (subst0 i v1 u
-x)).(eq_ind_r T (THead (Bind b) x (lift (S O) O t3)) (\lambda (t: T).(or (pr0
-t t4) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 t4
-w2))))) (or_introl (pr0 (THead (Bind b) x (lift (S O) O t3)) t4) (ex2 T
-(\lambda (w2: T).(pr0 (THead (Bind b) x (lift (S O) O t3)) w2)) (\lambda (w2:
-T).(subst0 i v2 t4 w2))) (pr0_zeta b H0 t3 t4 H1 x)) w1 H6)))) H5)) (\lambda
-(H5: (ex2 T (\lambda (t5: T).(eq T w1 (THead (Bind b) u t5))) (\lambda (t5:
-T).(subst0 (s (Bind b) i) v1 (lift (S O) O t3) t5)))).(ex2_ind T (\lambda
-(t5: T).(eq T w1 (THead (Bind b) u t5))) (\lambda (t5: T).(subst0 (s (Bind b)
-i) v1 (lift (S O) O t3) t5)) (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1
-w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (x: T).(\lambda (H6:
-(eq T w1 (THead (Bind b) u x))).(\lambda (H7: (subst0 (s (Bind b) i) v1 (lift
-(S O) O t3) x)).(ex2_ind T (\lambda (t5: T).(eq T x (lift (S O) O t5)))
-(\lambda (t5: T).(subst0 (minus (s (Bind b) i) (S O)) v1 t3 t5)) (or (pr0 w1
-t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4
-w2)))) (\lambda (x0: T).(\lambda (H8: (eq T x (lift (S O) O x0))).(\lambda
-(H9: (subst0 (minus (s (Bind b) i) (S O)) v1 t3 x0)).(let H10 \def (eq_ind T
-x (\lambda (t: T).(eq T w1 (THead (Bind b) u t))) H6 (lift (S O) O x0) H8) in
-(eq_ind_r T (THead (Bind b) u (lift (S O) O x0)) (\lambda (t: T).(or (pr0 t
-t4) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 t4
-w2))))) (let H11 \def (eq_ind_r nat (minus i O) (\lambda (n: nat).(subst0 n
-v1 t3 x0)) H9 i (minus_n_O i)) in (or_ind (pr0 x0 t4) (ex2 T (\lambda (w2:
-T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (or (pr0 (THead (Bind
-b) u (lift (S O) O x0)) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind b) u
-(lift (S O) O x0)) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda
-(H12: (pr0 x0 t4)).(or_introl (pr0 (THead (Bind b) u (lift (S O) O x0)) t4)
-(ex2 T (\lambda (w2: T).(pr0 (THead (Bind b) u (lift (S O) O x0)) w2))
-(\lambda (w2: T).(subst0 i v2 t4 w2))) (pr0_zeta b H0 x0 t4 H12 u))) (\lambda
-(H12: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 t4
-w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2
-t4 w2)) (or (pr0 (THead (Bind b) u (lift (S O) O x0)) t4) (ex2 T (\lambda
-(w2: T).(pr0 (THead (Bind b) u (lift (S O) O x0)) w2)) (\lambda (w2:
-T).(subst0 i v2 t4 w2)))) (\lambda (x1: T).(\lambda (H13: (pr0 x0
-x1)).(\lambda (H14: (subst0 i v2 t4 x1)).(or_intror (pr0 (THead (Bind b) u
-(lift (S O) O x0)) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind b) u (lift
-(S O) O x0)) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (ex_intro2 T
-(\lambda (w2: T).(pr0 (THead (Bind b) u (lift (S O) O x0)) w2)) (\lambda (w2:
-T).(subst0 i v2 t4 w2)) x1 (pr0_zeta b H0 x0 x1 H13 u) H14))))) H12)) (H2 v1
-x0 i H11 v2 H4))) w1 H10))))) (subst0_gen_lift_ge v1 t3 x (s (Bind b) i) (S
-O) O H7 (le_n_S O i (le_O_n i))))))) H5)) (\lambda (H5: (ex3_2 T T (\lambda
-(u2: T).(\lambda (t5: T).(eq T w1 (THead (Bind b) u2 t5)))) (\lambda (u2:
-T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_: T).(\lambda (t5:
-T).(subst0 (s (Bind b) i) v1 (lift (S O) O t3) t5))))).(ex3_2_ind T T
-(\lambda (u2: T).(\lambda (t5: T).(eq T w1 (THead (Bind b) u2 t5)))) (\lambda
-(u2: T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_: T).(\lambda (t5:
-T).(subst0 (s (Bind b) i) v1 (lift (S O) O t3) t5))) (or (pr0 w1 t4) (ex2 T
-(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))))
-(\lambda (x0: T).(\lambda (x1: T).(\lambda (H6: (eq T w1 (THead (Bind b) x0
-x1))).(\lambda (_: (subst0 i v1 u x0)).(\lambda (H8: (subst0 (s (Bind b) i)
-v1 (lift (S O) O t3) x1)).(ex2_ind T (\lambda (t5: T).(eq T x1 (lift (S O) O
-t5))) (\lambda (t5: T).(subst0 (minus (s (Bind b) i) (S O)) v1 t3 t5)) (or
-(pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i
-v2 t4 w2)))) (\lambda (x: T).(\lambda (H9: (eq T x1 (lift (S O) O
-x))).(\lambda (H10: (subst0 (minus (s (Bind b) i) (S O)) v1 t3 x)).(let H11
-\def (eq_ind T x1 (\lambda (t: T).(eq T w1 (THead (Bind b) x0 t))) H6 (lift
-(S O) O x) H9) in (eq_ind_r T (THead (Bind b) x0 (lift (S O) O x)) (\lambda
-(t: T).(or (pr0 t t4) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2:
-T).(subst0 i v2 t4 w2))))) (let H12 \def (eq_ind_r nat (minus i O) (\lambda
-(n: nat).(subst0 n v1 t3 x)) H10 i (minus_n_O i)) in (or_ind (pr0 x t4) (ex2
-T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (or
-(pr0 (THead (Bind b) x0 (lift (S O) O x)) t4) (ex2 T (\lambda (w2: T).(pr0
-(THead (Bind b) x0 (lift (S O) O x)) w2)) (\lambda (w2: T).(subst0 i v2 t4
-w2)))) (\lambda (H13: (pr0 x t4)).(or_introl (pr0 (THead (Bind b) x0 (lift (S
-O) O x)) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind b) x0 (lift (S O) O
-x)) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (pr0_zeta b H0 x t4 H13 x0)))
-(\lambda (H13: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i
-v2 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0
-i v2 t4 w2)) (or (pr0 (THead (Bind b) x0 (lift (S O) O x)) t4) (ex2 T
-(\lambda (w2: T).(pr0 (THead (Bind b) x0 (lift (S O) O x)) w2)) (\lambda (w2:
-T).(subst0 i v2 t4 w2)))) (\lambda (x2: T).(\lambda (H14: (pr0 x
-x2)).(\lambda (H15: (subst0 i v2 t4 x2)).(or_intror (pr0 (THead (Bind b) x0
-(lift (S O) O x)) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind b) x0 (lift
-(S O) O x)) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (ex_intro2 T (\lambda
-(w2: T).(pr0 (THead (Bind b) x0 (lift (S O) O x)) w2)) (\lambda (w2:
-T).(subst0 i v2 t4 w2)) x2 (pr0_zeta b H0 x x2 H14 x0) H15))))) H13)) (H2 v1
-x i H12 v2 H4))) w1 H11))))) (subst0_gen_lift_ge v1 t3 x1 (s (Bind b) i) (S
-O) O H8 (le_n_S O i (le_O_n i))))))))) H5)) (subst0_gen_head (Bind b) v1 u
-(lift (S O) O t3) w1 i H3))))))))))))))) (\lambda (t3: T).(\lambda (t4:
-T).(\lambda (H0: (pr0 t3 t4)).(\lambda (H1: ((\forall (v1: T).(\forall (w1:
-T).(\forall (i: nat).((subst0 i v1 t3 w1) \to (\forall (v2: T).((pr0 v1 v2)
-\to (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
-T).(subst0 i v2 t4 w2)))))))))))).(\lambda (u: T).(\lambda (v1: T).(\lambda
-(w1: T).(\lambda (i: nat).(\lambda (H2: (subst0 i v1 (THead (Flat Cast) u t3)
-w1)).(\lambda (v2: T).(\lambda (H3: (pr0 v1 v2)).(or3_ind (ex2 T (\lambda
-(u2: T).(eq T w1 (THead (Flat Cast) u2 t3))) (\lambda (u2: T).(subst0 i v1 u
-u2))) (ex2 T (\lambda (t5: T).(eq T w1 (THead (Flat Cast) u t5))) (\lambda
-(t5: T).(subst0 (s (Flat Cast) i) v1 t3 t5))) (ex3_2 T T (\lambda (u2:
-T).(\lambda (t5: T).(eq T w1 (THead (Flat Cast) u2 t5)))) (\lambda (u2:
-T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_: T).(\lambda (t5:
-T).(subst0 (s (Flat Cast) i) v1 t3 t5)))) (or (pr0 w1 t4) (ex2 T (\lambda
-(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (H4:
-(ex2 T (\lambda (u2: T).(eq T w1 (THead (Flat Cast) u2 t3))) (\lambda (u2:
-T).(subst0 i v1 u u2)))).(ex2_ind T (\lambda (u2: T).(eq T w1 (THead (Flat
-Cast) u2 t3))) (\lambda (u2: T).(subst0 i v1 u u2)) (or (pr0 w1 t4) (ex2 T
-(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))))
-(\lambda (x: T).(\lambda (H5: (eq T w1 (THead (Flat Cast) x t3))).(\lambda
-(_: (subst0 i v1 u x)).(eq_ind_r T (THead (Flat Cast) x t3) (\lambda (t:
-T).(or (pr0 t t4) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2:
-T).(subst0 i v2 t4 w2))))) (or_introl (pr0 (THead (Flat Cast) x t3) t4) (ex2
-T (\lambda (w2: T).(pr0 (THead (Flat Cast) x t3) w2)) (\lambda (w2:
-T).(subst0 i v2 t4 w2))) (pr0_tau t3 t4 H0 x)) w1 H5)))) H4)) (\lambda (H4:
-(ex2 T (\lambda (t5: T).(eq T w1 (THead (Flat Cast) u t5))) (\lambda (t5:
-T).(subst0 (s (Flat Cast) i) v1 t3 t5)))).(ex2_ind T (\lambda (t5: T).(eq T
-w1 (THead (Flat Cast) u t5))) (\lambda (t5: T).(subst0 (s (Flat Cast) i) v1
-t3 t5)) (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
-T).(subst0 i v2 t4 w2)))) (\lambda (x: T).(\lambda (H5: (eq T w1 (THead (Flat
-Cast) u x))).(\lambda (H6: (subst0 (s (Flat Cast) i) v1 t3 x)).(eq_ind_r T
-(THead (Flat Cast) u x) (\lambda (t: T).(or (pr0 t t4) (ex2 T (\lambda (w2:
-T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))))) (or_ind (pr0 x t4)
-(ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Flat Cast)
-i) v2 t4 w2))) (or (pr0 (THead (Flat Cast) u x) t4) (ex2 T (\lambda (w2:
-T).(pr0 (THead (Flat Cast) u x) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))))
-(\lambda (H7: (pr0 x t4)).(or_introl (pr0 (THead (Flat Cast) u x) t4) (ex2 T
-(\lambda (w2: T).(pr0 (THead (Flat Cast) u x) w2)) (\lambda (w2: T).(subst0 i
-v2 t4 w2))) (pr0_tau x t4 H7 u))) (\lambda (H7: (ex2 T (\lambda (w2: T).(pr0
-x w2)) (\lambda (w2: T).(subst0 (s (Flat Cast) i) v2 t4 w2)))).(ex2_ind T
-(\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Flat Cast) i) v2 t4
-w2)) (or (pr0 (THead (Flat Cast) u x) t4) (ex2 T (\lambda (w2: T).(pr0 (THead
-(Flat Cast) u x) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (x0:
-T).(\lambda (H8: (pr0 x x0)).(\lambda (H9: (subst0 (s (Flat Cast) i) v2 t4
-x0)).(or_intror (pr0 (THead (Flat Cast) u x) t4) (ex2 T (\lambda (w2: T).(pr0
-(THead (Flat Cast) u x) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))
-(ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Cast) u x) w2)) (\lambda (w2:
-T).(subst0 i v2 t4 w2)) x0 (pr0_tau x x0 H8 u) H9))))) H7)) (H1 v1 x (s (Flat
-Cast) i) H6 v2 H3)) w1 H5)))) H4)) (\lambda (H4: (ex3_2 T T (\lambda (u2:
-T).(\lambda (t5: T).(eq T w1 (THead (Flat Cast) u2 t5)))) (\lambda (u2:
-T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_: T).(\lambda (t5:
-T).(subst0 (s (Flat Cast) i) v1 t3 t5))))).(ex3_2_ind T T (\lambda (u2:
-T).(\lambda (t5: T).(eq T w1 (THead (Flat Cast) u2 t5)))) (\lambda (u2:
-T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_: T).(\lambda (t5:
-T).(subst0 (s (Flat Cast) i) v1 t3 t5))) (or (pr0 w1 t4) (ex2 T (\lambda (w2:
-T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (x0:
-T).(\lambda (x1: T).(\lambda (H5: (eq T w1 (THead (Flat Cast) x0
-x1))).(\lambda (_: (subst0 i v1 u x0)).(\lambda (H7: (subst0 (s (Flat Cast)
-i) v1 t3 x1)).(eq_ind_r T (THead (Flat Cast) x0 x1) (\lambda (t: T).(or (pr0
-t t4) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 t4
-w2))))) (or_ind (pr0 x1 t4) (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda
-(w2: T).(subst0 (s (Flat Cast) i) v2 t4 w2))) (or (pr0 (THead (Flat Cast) x0
-x1) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Cast) x0 x1) w2)) (\lambda
-(w2: T).(subst0 i v2 t4 w2)))) (\lambda (H8: (pr0 x1 t4)).(or_introl (pr0
-(THead (Flat Cast) x0 x1) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Cast)
-x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (pr0_tau x1 t4 H8 x0)))
-(\lambda (H8: (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0
-(s (Flat Cast) i) v2 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x1 w2))
-(\lambda (w2: T).(subst0 (s (Flat Cast) i) v2 t4 w2)) (or (pr0 (THead (Flat
-Cast) x0 x1) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Cast) x0 x1) w2))
-(\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (x: T).(\lambda (H9: (pr0 x1
-x)).(\lambda (H10: (subst0 (s (Flat Cast) i) v2 t4 x)).(or_intror (pr0 (THead
-(Flat Cast) x0 x1) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Cast) x0 x1)
-w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (ex_intro2 T (\lambda (w2:
-T).(pr0 (THead (Flat Cast) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))
-x (pr0_tau x1 x H9 x0) H10))))) H8)) (H1 v1 x1 (s (Flat Cast) i) H7 v2 H3))
-w1 H5)))))) H4)) (subst0_gen_head (Flat Cast) v1 u t3 w1 i H2))))))))))))) t1
-t2 H))).
-(* COMMENTS
-Initial nodes: 38857
-END *)
+ \lambda (u1: T).(\lambda (t1: T).(\lambda (x: T).(\lambda (H: (pr0 (THead
+(Bind Void) u1 t1) x)).(let TMP_1 \def (Bind Void) in (let TMP_2 \def (THead
+TMP_1 u1 t1) in (let TMP_3 \def (\lambda (t: T).(pr0 t x)) in (let TMP_13
+\def (\lambda (_: T).(let TMP_6 \def (\lambda (u2: T).(\lambda (t2: T).(let
+TMP_4 \def (Bind Void) in (let TMP_5 \def (THead TMP_4 u2 t2) in (eq T x
+TMP_5))))) in (let TMP_7 \def (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2)))
+in (let TMP_8 \def (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2))) in (let
+TMP_9 \def (ex3_2 T T TMP_6 TMP_7 TMP_8) in (let TMP_10 \def (S O) in (let
+TMP_11 \def (lift TMP_10 O x) in (let TMP_12 \def (pr0 t1 TMP_11) in (or
+TMP_9 TMP_12))))))))) in (let TMP_310 \def (\lambda (y: T).(\lambda (H0: (pr0
+y x)).(let TMP_23 \def (\lambda (t: T).(\lambda (t0: T).((eq T t (THead (Bind
+Void) u1 t1)) \to (let TMP_16 \def (\lambda (u2: T).(\lambda (t2: T).(let
+TMP_14 \def (Bind Void) in (let TMP_15 \def (THead TMP_14 u2 t2) in (eq T t0
+TMP_15))))) in (let TMP_17 \def (\lambda (u2: T).(\lambda (_: T).(pr0 u1
+u2))) in (let TMP_18 \def (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2))) in
+(let TMP_19 \def (ex3_2 T T TMP_16 TMP_17 TMP_18) in (let TMP_20 \def (S O)
+in (let TMP_21 \def (lift TMP_20 O t0) in (let TMP_22 \def (pr0 t1 TMP_21) in
+(or TMP_19 TMP_22))))))))))) in (let TMP_66 \def (\lambda (t: T).(\lambda
+(H1: (eq T t (THead (Bind Void) u1 t1))).(let TMP_24 \def (\lambda (e: T).e)
+in (let TMP_25 \def (Bind Void) in (let TMP_26 \def (THead TMP_25 u1 t1) in
+(let H2 \def (f_equal T T TMP_24 t TMP_26 H1) in (let TMP_27 \def (Bind Void)
+in (let TMP_28 \def (THead TMP_27 u1 t1) in (let TMP_38 \def (\lambda (t0:
+T).(let TMP_31 \def (\lambda (u2: T).(\lambda (t2: T).(let TMP_29 \def (Bind
+Void) in (let TMP_30 \def (THead TMP_29 u2 t2) in (eq T t0 TMP_30))))) in
+(let TMP_32 \def (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) in (let
+TMP_33 \def (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2))) in (let TMP_34
+\def (ex3_2 T T TMP_31 TMP_32 TMP_33) in (let TMP_35 \def (S O) in (let
+TMP_36 \def (lift TMP_35 O t0) in (let TMP_37 \def (pr0 t1 TMP_36) in (or
+TMP_34 TMP_37))))))))) in (let TMP_43 \def (\lambda (u2: T).(\lambda (t2:
+T).(let TMP_39 \def (Bind Void) in (let TMP_40 \def (THead TMP_39 u1 t1) in
+(let TMP_41 \def (Bind Void) in (let TMP_42 \def (THead TMP_41 u2 t2) in (eq
+T TMP_40 TMP_42))))))) in (let TMP_44 \def (\lambda (u2: T).(\lambda (_:
+T).(pr0 u1 u2))) in (let TMP_45 \def (\lambda (_: T).(\lambda (t2: T).(pr0 t1
+t2))) in (let TMP_46 \def (ex3_2 T T TMP_43 TMP_44 TMP_45) in (let TMP_47
+\def (S O) in (let TMP_48 \def (Bind Void) in (let TMP_49 \def (THead TMP_48
+u1 t1) in (let TMP_50 \def (lift TMP_47 O TMP_49) in (let TMP_51 \def (pr0 t1
+TMP_50) in (let TMP_56 \def (\lambda (u2: T).(\lambda (t2: T).(let TMP_52
+\def (Bind Void) in (let TMP_53 \def (THead TMP_52 u1 t1) in (let TMP_54 \def
+(Bind Void) in (let TMP_55 \def (THead TMP_54 u2 t2) in (eq T TMP_53
+TMP_55))))))) in (let TMP_57 \def (\lambda (u2: T).(\lambda (_: T).(pr0 u1
+u2))) in (let TMP_58 \def (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2))) in
+(let TMP_59 \def (Bind Void) in (let TMP_60 \def (THead TMP_59 u1 t1) in (let
+TMP_61 \def (refl_equal T TMP_60) in (let TMP_62 \def (pr0_refl u1) in (let
+TMP_63 \def (pr0_refl t1) in (let TMP_64 \def (ex3_2_intro T T TMP_56 TMP_57
+TMP_58 u1 t1 TMP_61 TMP_62 TMP_63) in (let TMP_65 \def (or_introl TMP_46
+TMP_51 TMP_64) in (eq_ind_r T TMP_28 TMP_38 TMP_65 t
+H2))))))))))))))))))))))))))))) in (let TMP_141 \def (\lambda (u0:
+T).(\lambda (u2: T).(\lambda (H1: (pr0 u0 u2)).(\lambda (H2: (((eq T u0
+(THead (Bind Void) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2:
+T).(eq T u2 (THead (Bind Void) u3 t2)))) (\lambda (u3: T).(\lambda (_:
+T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1
+(lift (S O) O u2)))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (H3: (pr0
+t0 t2)).(\lambda (H4: (((eq T t0 (THead (Bind Void) u1 t1)) \to (or (ex3_2 T
+T (\lambda (u3: T).(\lambda (t3: T).(eq T t2 (THead (Bind Void) u3 t3))))
+(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3:
+T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O t2)))))).(\lambda (k: K).(\lambda
+(H5: (eq T (THead k u0 t0) (THead (Bind Void) u1 t1))).(let TMP_67 \def
+(\lambda (e: T).(match e with [(TSort _) \Rightarrow k | (TLRef _)
+\Rightarrow k | (THead k0 _ _) \Rightarrow k0])) in (let TMP_68 \def (THead k
+u0 t0) in (let TMP_69 \def (Bind Void) in (let TMP_70 \def (THead TMP_69 u1
+t1) in (let H6 \def (f_equal T K TMP_67 TMP_68 TMP_70 H5) in (let TMP_71 \def
+(\lambda (e: T).(match e with [(TSort _) \Rightarrow u0 | (TLRef _)
+\Rightarrow u0 | (THead _ t _) \Rightarrow t])) in (let TMP_72 \def (THead k
+u0 t0) in (let TMP_73 \def (Bind Void) in (let TMP_74 \def (THead TMP_73 u1
+t1) in (let H7 \def (f_equal T T TMP_71 TMP_72 TMP_74 H5) in (let TMP_75 \def
+(\lambda (e: T).(match e with [(TSort _) \Rightarrow t0 | (TLRef _)
+\Rightarrow t0 | (THead _ _ t) \Rightarrow t])) in (let TMP_76 \def (THead k
+u0 t0) in (let TMP_77 \def (Bind Void) in (let TMP_78 \def (THead TMP_77 u1
+t1) in (let H8 \def (f_equal T T TMP_75 TMP_76 TMP_78 H5) in (let TMP_139
+\def (\lambda (H9: (eq T u0 u1)).(\lambda (H10: (eq K k (Bind Void))).(let
+TMP_79 \def (Bind Void) in (let TMP_91 \def (\lambda (k0: K).(let TMP_83 \def
+(\lambda (u3: T).(\lambda (t3: T).(let TMP_80 \def (THead k0 u2 t2) in (let
+TMP_81 \def (Bind Void) in (let TMP_82 \def (THead TMP_81 u3 t3) in (eq T
+TMP_80 TMP_82)))))) in (let TMP_84 \def (\lambda (u3: T).(\lambda (_: T).(pr0
+u1 u3))) in (let TMP_85 \def (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))
+in (let TMP_86 \def (ex3_2 T T TMP_83 TMP_84 TMP_85) in (let TMP_87 \def (S
+O) in (let TMP_88 \def (THead k0 u2 t2) in (let TMP_89 \def (lift TMP_87 O
+TMP_88) in (let TMP_90 \def (pr0 t1 TMP_89) in (or TMP_86 TMP_90)))))))))) in
+(let TMP_101 \def (\lambda (t: T).((eq T t (THead (Bind Void) u1 t1)) \to
+(let TMP_94 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_92 \def (Bind
+Void) in (let TMP_93 \def (THead TMP_92 u3 t3) in (eq T t2 TMP_93))))) in
+(let TMP_95 \def (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) in (let
+TMP_96 \def (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3))) in (let TMP_97
+\def (ex3_2 T T TMP_94 TMP_95 TMP_96) in (let TMP_98 \def (S O) in (let
+TMP_99 \def (lift TMP_98 O t2) in (let TMP_100 \def (pr0 t1 TMP_99) in (or
+TMP_97 TMP_100)))))))))) in (let H11 \def (eq_ind T t0 TMP_101 H4 t1 H8) in
+(let TMP_102 \def (\lambda (t: T).(pr0 t t2)) in (let H12 \def (eq_ind T t0
+TMP_102 H3 t1 H8) in (let TMP_112 \def (\lambda (t: T).((eq T t (THead (Bind
+Void) u1 t1)) \to (let TMP_105 \def (\lambda (u3: T).(\lambda (t3: T).(let
+TMP_103 \def (Bind Void) in (let TMP_104 \def (THead TMP_103 u3 t3) in (eq T
+u2 TMP_104))))) in (let TMP_106 \def (\lambda (u3: T).(\lambda (_: T).(pr0 u1
+u3))) in (let TMP_107 \def (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3))) in
+(let TMP_108 \def (ex3_2 T T TMP_105 TMP_106 TMP_107) in (let TMP_109 \def (S
+O) in (let TMP_110 \def (lift TMP_109 O u2) in (let TMP_111 \def (pr0 t1
+TMP_110) in (or TMP_108 TMP_111)))))))))) in (let H13 \def (eq_ind T u0
+TMP_112 H2 u1 H9) in (let TMP_113 \def (\lambda (t: T).(pr0 t u2)) in (let
+H14 \def (eq_ind T u0 TMP_113 H1 u1 H9) in (let TMP_118 \def (\lambda (u3:
+T).(\lambda (t3: T).(let TMP_114 \def (Bind Void) in (let TMP_115 \def (THead
+TMP_114 u2 t2) in (let TMP_116 \def (Bind Void) in (let TMP_117 \def (THead
+TMP_116 u3 t3) in (eq T TMP_115 TMP_117))))))) in (let TMP_119 \def (\lambda
+(u3: T).(\lambda (_: T).(pr0 u1 u3))) in (let TMP_120 \def (\lambda (_:
+T).(\lambda (t3: T).(pr0 t1 t3))) in (let TMP_121 \def (ex3_2 T T TMP_118
+TMP_119 TMP_120) in (let TMP_122 \def (S O) in (let TMP_123 \def (Bind Void)
+in (let TMP_124 \def (THead TMP_123 u2 t2) in (let TMP_125 \def (lift TMP_122
+O TMP_124) in (let TMP_126 \def (pr0 t1 TMP_125) in (let TMP_131 \def
+(\lambda (u3: T).(\lambda (t3: T).(let TMP_127 \def (Bind Void) in (let
+TMP_128 \def (THead TMP_127 u2 t2) in (let TMP_129 \def (Bind Void) in (let
+TMP_130 \def (THead TMP_129 u3 t3) in (eq T TMP_128 TMP_130))))))) in (let
+TMP_132 \def (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) in (let TMP_133
+\def (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3))) in (let TMP_134 \def
+(Bind Void) in (let TMP_135 \def (THead TMP_134 u2 t2) in (let TMP_136 \def
+(refl_equal T TMP_135) in (let TMP_137 \def (ex3_2_intro T T TMP_131 TMP_132
+TMP_133 u2 t2 TMP_136 H14 H12) in (let TMP_138 \def (or_introl TMP_121
+TMP_126 TMP_137) in (eq_ind_r K TMP_79 TMP_91 TMP_138 k
+H10)))))))))))))))))))))))))))))) in (let TMP_140 \def (TMP_139 H7) in
+(TMP_140 H6)))))))))))))))))))))))))))) in (let TMP_163 \def (\lambda (u:
+T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (pr0 v1 v2)).(\lambda (_:
+(((eq T v1 (THead (Bind Void) u1 t1)) \to (or (ex3_2 T T (\lambda (u2:
+T).(\lambda (t2: T).(eq T v2 (THead (Bind Void) u2 t2)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1
+t2)))) (pr0 t1 (lift (S O) O v2)))))).(\lambda (t0: T).(\lambda (t2:
+T).(\lambda (_: (pr0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Bind Void) u1
+t1)) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead
+(Bind Void) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
+(_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O
+t2)))))).(\lambda (H5: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t0))
+(THead (Bind Void) u1 t1))).(let TMP_142 \def (Flat Appl) in (let TMP_143
+\def (Bind Abst) in (let TMP_144 \def (THead TMP_143 u t0) in (let TMP_145
+\def (THead TMP_142 v1 TMP_144) in (let TMP_146 \def (\lambda (ee: T).(match
+ee with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k
+_ _) \Rightarrow (match k with [(Bind _) \Rightarrow False | (Flat _)
+\Rightarrow True])])) in (let TMP_147 \def (Bind Void) in (let TMP_148 \def
+(THead TMP_147 u1 t1) in (let H6 \def (eq_ind T TMP_145 TMP_146 I TMP_148 H5)
+in (let TMP_153 \def (\lambda (u2: T).(\lambda (t3: T).(let TMP_149 \def
+(Bind Abbr) in (let TMP_150 \def (THead TMP_149 v2 t2) in (let TMP_151 \def
+(Bind Void) in (let TMP_152 \def (THead TMP_151 u2 t3) in (eq T TMP_150
+TMP_152))))))) in (let TMP_154 \def (\lambda (u2: T).(\lambda (_: T).(pr0 u1
+u2))) in (let TMP_155 \def (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3))) in
+(let TMP_156 \def (ex3_2 T T TMP_153 TMP_154 TMP_155) in (let TMP_157 \def (S
+O) in (let TMP_158 \def (Bind Abbr) in (let TMP_159 \def (THead TMP_158 v2
+t2) in (let TMP_160 \def (lift TMP_157 O TMP_159) in (let TMP_161 \def (pr0
+t1 TMP_160) in (let TMP_162 \def (or TMP_156 TMP_161) in (False_ind TMP_162
+H6))))))))))))))))))))))))))))) in (let TMP_193 \def (\lambda (b: B).(\lambda
+(_: (not (eq B b Abst))).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (pr0
+v1 v2)).(\lambda (_: (((eq T v1 (THead (Bind Void) u1 t1)) \to (or (ex3_2 T T
+(\lambda (u2: T).(\lambda (t2: T).(eq T v2 (THead (Bind Void) u2 t2))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2:
+T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O v2)))))).(\lambda (u0: T).(\lambda
+(u2: T).(\lambda (_: (pr0 u0 u2)).(\lambda (_: (((eq T u0 (THead (Bind Void)
+u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead
+(Bind Void) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda
+(_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O
+u2)))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0 t2)).(\lambda
+(_: (((eq T t0 (THead (Bind Void) u1 t1)) \to (or (ex3_2 T T (\lambda (u3:
+T).(\lambda (t3: T).(eq T t2 (THead (Bind Void) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 (lift (S O) O t2)))))).(\lambda (H8: (eq T (THead (Flat Appl)
+v1 (THead (Bind b) u0 t0)) (THead (Bind Void) u1 t1))).(let TMP_164 \def
+(Flat Appl) in (let TMP_165 \def (Bind b) in (let TMP_166 \def (THead TMP_165
+u0 t0) in (let TMP_167 \def (THead TMP_164 v1 TMP_166) in (let TMP_168 \def
+(\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead k _ _) \Rightarrow (match k with [(Bind _)
+\Rightarrow False | (Flat _) \Rightarrow True])])) in (let TMP_169 \def (Bind
+Void) in (let TMP_170 \def (THead TMP_169 u1 t1) in (let H9 \def (eq_ind T
+TMP_167 TMP_168 I TMP_170 H8) in (let TMP_179 \def (\lambda (u3: T).(\lambda
+(t3: T).(let TMP_171 \def (Bind b) in (let TMP_172 \def (Flat Appl) in (let
+TMP_173 \def (S O) in (let TMP_174 \def (lift TMP_173 O v2) in (let TMP_175
+\def (THead TMP_172 TMP_174 t2) in (let TMP_176 \def (THead TMP_171 u2
+TMP_175) in (let TMP_177 \def (Bind Void) in (let TMP_178 \def (THead TMP_177
+u3 t3) in (eq T TMP_176 TMP_178))))))))))) in (let TMP_180 \def (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) in (let TMP_181 \def (\lambda (_:
+T).(\lambda (t3: T).(pr0 t1 t3))) in (let TMP_182 \def (ex3_2 T T TMP_179
+TMP_180 TMP_181) in (let TMP_183 \def (S O) in (let TMP_184 \def (Bind b) in
+(let TMP_185 \def (Flat Appl) in (let TMP_186 \def (S O) in (let TMP_187 \def
+(lift TMP_186 O v2) in (let TMP_188 \def (THead TMP_185 TMP_187 t2) in (let
+TMP_189 \def (THead TMP_184 u2 TMP_188) in (let TMP_190 \def (lift TMP_183 O
+TMP_189) in (let TMP_191 \def (pr0 t1 TMP_190) in (let TMP_192 \def (or
+TMP_182 TMP_191) in (False_ind TMP_192
+H9)))))))))))))))))))))))))))))))))))))) in (let TMP_213 \def (\lambda (u0:
+T).(\lambda (u2: T).(\lambda (_: (pr0 u0 u2)).(\lambda (_: (((eq T u0 (THead
+(Bind Void) u1 t1)) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq
+T u2 (THead (Bind Void) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1
+u3))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O
+u2)))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0 t2)).(\lambda
+(_: (((eq T t0 (THead (Bind Void) u1 t1)) \to (or (ex3_2 T T (\lambda (u3:
+T).(\lambda (t3: T).(eq T t2 (THead (Bind Void) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 (lift (S O) O t2)))))).(\lambda (w: T).(\lambda (_: (subst0 O
+u2 t2 w)).(\lambda (H6: (eq T (THead (Bind Abbr) u0 t0) (THead (Bind Void) u1
+t1))).(let TMP_194 \def (Bind Abbr) in (let TMP_195 \def (THead TMP_194 u0
+t0) in (let TMP_196 \def (\lambda (ee: T).(match ee with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow
+(match k with [(Bind b) \Rightarrow (match b with [Abbr \Rightarrow True |
+Abst \Rightarrow False | Void \Rightarrow False]) | (Flat _) \Rightarrow
+False])])) in (let TMP_197 \def (Bind Void) in (let TMP_198 \def (THead
+TMP_197 u1 t1) in (let H7 \def (eq_ind T TMP_195 TMP_196 I TMP_198 H6) in
+(let TMP_203 \def (\lambda (u3: T).(\lambda (t3: T).(let TMP_199 \def (Bind
+Abbr) in (let TMP_200 \def (THead TMP_199 u2 w) in (let TMP_201 \def (Bind
+Void) in (let TMP_202 \def (THead TMP_201 u3 t3) in (eq T TMP_200
+TMP_202))))))) in (let TMP_204 \def (\lambda (u3: T).(\lambda (_: T).(pr0 u1
+u3))) in (let TMP_205 \def (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3))) in
+(let TMP_206 \def (ex3_2 T T TMP_203 TMP_204 TMP_205) in (let TMP_207 \def (S
+O) in (let TMP_208 \def (Bind Abbr) in (let TMP_209 \def (THead TMP_208 u2 w)
+in (let TMP_210 \def (lift TMP_207 O TMP_209) in (let TMP_211 \def (pr0 t1
+TMP_210) in (let TMP_212 \def (or TMP_206 TMP_211) in (False_ind TMP_212
+H7)))))))))))))))))))))))))))) in (let TMP_293 \def (\lambda (b: B).(\lambda
+(H1: (not (eq B b Abst))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (H2:
+(pr0 t0 t2)).(\lambda (H3: (((eq T t0 (THead (Bind Void) u1 t1)) \to (or
+(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Void) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O t2)))))).(\lambda
+(u: T).(\lambda (H4: (eq T (THead (Bind b) u (lift (S O) O t0)) (THead (Bind
+Void) u1 t1))).(let TMP_214 \def (\lambda (e: T).(match e with [(TSort _)
+\Rightarrow b | (TLRef _) \Rightarrow b | (THead k _ _) \Rightarrow (match k
+with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow b])])) in (let TMP_215
+\def (Bind b) in (let TMP_216 \def (S O) in (let TMP_217 \def (lift TMP_216 O
+t0) in (let TMP_218 \def (THead TMP_215 u TMP_217) in (let TMP_219 \def (Bind
+Void) in (let TMP_220 \def (THead TMP_219 u1 t1) in (let H5 \def (f_equal T B
+TMP_214 TMP_218 TMP_220 H4) in (let TMP_221 \def (\lambda (e: T).(match e
+with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | (THead _ t _)
+\Rightarrow t])) in (let TMP_222 \def (Bind b) in (let TMP_223 \def (S O) in
+(let TMP_224 \def (lift TMP_223 O t0) in (let TMP_225 \def (THead TMP_222 u
+TMP_224) in (let TMP_226 \def (Bind Void) in (let TMP_227 \def (THead TMP_226
+u1 t1) in (let H6 \def (f_equal T T TMP_221 TMP_225 TMP_227 H4) in (let
+TMP_242 \def (\lambda (e: T).(match e with [(TSort _) \Rightarrow (let
+TMP_241 \def (\lambda (x0: nat).(let TMP_240 \def (S O) in (plus x0
+TMP_240))) in (lref_map TMP_241 O t0)) | (TLRef _) \Rightarrow (let TMP_234
+\def (\lambda (x0: nat).(let TMP_233 \def (S O) in (plus x0 TMP_233))) in
+(lref_map TMP_234 O t0)) | (THead _ _ t) \Rightarrow t])) in (let TMP_243
+\def (Bind b) in (let TMP_244 \def (S O) in (let TMP_245 \def (lift TMP_244 O
+t0) in (let TMP_246 \def (THead TMP_243 u TMP_245) in (let TMP_247 \def (Bind
+Void) in (let TMP_248 \def (THead TMP_247 u1 t1) in (let H7 \def (f_equal T T
+TMP_242 TMP_246 TMP_248 H4) in (let TMP_291 \def (\lambda (_: (eq T u
+u1)).(\lambda (H9: (eq B b Void)).(let TMP_250 \def (\lambda (b0: B).(let
+TMP_249 \def (eq B b0 Abst) in (not TMP_249))) in (let H10 \def (eq_ind B b
+TMP_250 H1 Void H9) in (let TMP_260 \def (\lambda (t: T).((eq T t0 (THead
+(Bind Void) u1 t)) \to (let TMP_253 \def (\lambda (u2: T).(\lambda (t3:
+T).(let TMP_251 \def (Bind Void) in (let TMP_252 \def (THead TMP_251 u2 t3)
+in (eq T t2 TMP_252))))) in (let TMP_254 \def (\lambda (u2: T).(\lambda (_:
+T).(pr0 u1 u2))) in (let TMP_255 \def (\lambda (_: T).(\lambda (t3: T).(pr0 t
+t3))) in (let TMP_256 \def (ex3_2 T T TMP_253 TMP_254 TMP_255) in (let
+TMP_257 \def (S O) in (let TMP_258 \def (lift TMP_257 O t2) in (let TMP_259
+\def (pr0 t TMP_258) in (or TMP_256 TMP_259)))))))))) in (let TMP_261 \def (S
+O) in (let TMP_262 \def (lift TMP_261 O t0) in (let H11 \def (eq_ind_r T t1
+TMP_260 H3 TMP_262 H7) in (let TMP_263 \def (S O) in (let TMP_264 \def (lift
+TMP_263 O t0) in (let TMP_274 \def (\lambda (t: T).(let TMP_267 \def (\lambda
+(u2: T).(\lambda (t3: T).(let TMP_265 \def (Bind Void) in (let TMP_266 \def
+(THead TMP_265 u2 t3) in (eq T t2 TMP_266))))) in (let TMP_268 \def (\lambda
+(u2: T).(\lambda (_: T).(pr0 u1 u2))) in (let TMP_269 \def (\lambda (_:
+T).(\lambda (t3: T).(pr0 t t3))) in (let TMP_270 \def (ex3_2 T T TMP_267
+TMP_268 TMP_269) in (let TMP_271 \def (S O) in (let TMP_272 \def (lift
+TMP_271 O t2) in (let TMP_273 \def (pr0 t TMP_272) in (or TMP_270
+TMP_273))))))))) in (let TMP_277 \def (\lambda (u2: T).(\lambda (t3: T).(let
+TMP_275 \def (Bind Void) in (let TMP_276 \def (THead TMP_275 u2 t3) in (eq T
+t2 TMP_276))))) in (let TMP_278 \def (\lambda (u2: T).(\lambda (_: T).(pr0 u1
+u2))) in (let TMP_281 \def (\lambda (_: T).(\lambda (t3: T).(let TMP_279 \def
+(S O) in (let TMP_280 \def (lift TMP_279 O t0) in (pr0 TMP_280 t3))))) in
+(let TMP_282 \def (ex3_2 T T TMP_277 TMP_278 TMP_281) in (let TMP_283 \def (S
+O) in (let TMP_284 \def (lift TMP_283 O t0) in (let TMP_285 \def (S O) in
+(let TMP_286 \def (lift TMP_285 O t2) in (let TMP_287 \def (pr0 TMP_284
+TMP_286) in (let TMP_288 \def (S O) in (let TMP_289 \def (pr0_lift t0 t2 H2
+TMP_288 O) in (let TMP_290 \def (or_intror TMP_282 TMP_287 TMP_289) in
+(eq_ind T TMP_264 TMP_274 TMP_290 t1 H7)))))))))))))))))))))))) in (let
+TMP_292 \def (TMP_291 H6) in (TMP_292 H5)))))))))))))))))))))))))))))))))))
+in (let TMP_309 \def (\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (pr0 t0
+t2)).(\lambda (_: (((eq T t0 (THead (Bind Void) u1 t1)) \to (or (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Void) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3:
+T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O t2)))))).(\lambda (u: T).(\lambda
+(H3: (eq T (THead (Flat Cast) u t0) (THead (Bind Void) u1 t1))).(let TMP_294
+\def (Flat Cast) in (let TMP_295 \def (THead TMP_294 u t0) in (let TMP_296
+\def (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead k _ _) \Rightarrow (match k with [(Bind _)
+\Rightarrow False | (Flat _) \Rightarrow True])])) in (let TMP_297 \def (Bind
+Void) in (let TMP_298 \def (THead TMP_297 u1 t1) in (let H4 \def (eq_ind T
+TMP_295 TMP_296 I TMP_298 H3) in (let TMP_301 \def (\lambda (u2: T).(\lambda
+(t3: T).(let TMP_299 \def (Bind Void) in (let TMP_300 \def (THead TMP_299 u2
+t3) in (eq T t2 TMP_300))))) in (let TMP_302 \def (\lambda (u2: T).(\lambda
+(_: T).(pr0 u1 u2))) in (let TMP_303 \def (\lambda (_: T).(\lambda (t3:
+T).(pr0 t1 t3))) in (let TMP_304 \def (ex3_2 T T TMP_301 TMP_302 TMP_303) in
+(let TMP_305 \def (S O) in (let TMP_306 \def (lift TMP_305 O t2) in (let
+TMP_307 \def (pr0 t1 TMP_306) in (let TMP_308 \def (or TMP_304 TMP_307) in
+(False_ind TMP_308 H4))))))))))))))))))))) in (pr0_ind TMP_23 TMP_66 TMP_141
+TMP_163 TMP_193 TMP_213 TMP_293 TMP_309 y x H0))))))))))) in (insert_eq T
+TMP_2 TMP_3 TMP_13 TMP_310 H))))))))).
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+include "basic_1/pr0/props.ma".
+
+include "basic_1/subst0/subst0.ma".
+
+theorem pr0_subst0_back:
+ \forall (u2: T).(\forall (t1: T).(\forall (t2: T).(\forall (i: nat).((subst0
+i u2 t1 t2) \to (\forall (u1: T).((pr0 u1 u2) \to (ex2 T (\lambda (t:
+T).(subst0 i u1 t1 t)) (\lambda (t: T).(pr0 t t2)))))))))
+\def
+ \lambda (u2: T).(\lambda (t1: T).(\lambda (t2: T).(\lambda (i: nat).(\lambda
+(H: (subst0 i u2 t1 t2)).(subst0_ind (\lambda (n: nat).(\lambda (t:
+T).(\lambda (t0: T).(\lambda (t3: T).(\forall (u1: T).((pr0 u1 t) \to (ex2 T
+(\lambda (t4: T).(subst0 n u1 t0 t4)) (\lambda (t4: T).(pr0 t4 t3)))))))))
+(\lambda (v: T).(\lambda (i0: nat).(\lambda (u1: T).(\lambda (H0: (pr0 u1
+v)).(ex_intro2 T (\lambda (t: T).(subst0 i0 u1 (TLRef i0) t)) (\lambda (t:
+T).(pr0 t (lift (S i0) O v))) (lift (S i0) O u1) (subst0_lref u1 i0)
+(pr0_lift u1 v H0 (S i0) O)))))) (\lambda (v: T).(\lambda (u3: T).(\lambda
+(u1: T).(\lambda (i0: nat).(\lambda (_: (subst0 i0 v u1 u3)).(\lambda (H1:
+((\forall (u4: T).((pr0 u4 v) \to (ex2 T (\lambda (t: T).(subst0 i0 u4 u1 t))
+(\lambda (t: T).(pr0 t u3))))))).(\lambda (t: T).(\lambda (k: K).(\lambda
+(u0: T).(\lambda (H2: (pr0 u0 v)).(ex2_ind T (\lambda (t0: T).(subst0 i0 u0
+u1 t0)) (\lambda (t0: T).(pr0 t0 u3)) (ex2 T (\lambda (t0: T).(subst0 i0 u0
+(THead k u1 t) t0)) (\lambda (t0: T).(pr0 t0 (THead k u3 t)))) (\lambda (x:
+T).(\lambda (H3: (subst0 i0 u0 u1 x)).(\lambda (H4: (pr0 x u3)).(ex_intro2 T
+(\lambda (t0: T).(subst0 i0 u0 (THead k u1 t) t0)) (\lambda (t0: T).(pr0 t0
+(THead k u3 t))) (THead k x t) (subst0_fst u0 x u1 i0 H3 t k) (pr0_comp x u3
+H4 t t (pr0_refl t) k))))) (H1 u0 H2)))))))))))) (\lambda (k: K).(\lambda (v:
+T).(\lambda (t3: T).(\lambda (t4: T).(\lambda (i0: nat).(\lambda (_: (subst0
+(s k i0) v t4 t3)).(\lambda (H1: ((\forall (u1: T).((pr0 u1 v) \to (ex2 T
+(\lambda (t: T).(subst0 (s k i0) u1 t4 t)) (\lambda (t: T).(pr0 t
+t3))))))).(\lambda (u: T).(\lambda (u1: T).(\lambda (H2: (pr0 u1 v)).(ex2_ind
+T (\lambda (t: T).(subst0 (s k i0) u1 t4 t)) (\lambda (t: T).(pr0 t t3)) (ex2
+T (\lambda (t: T).(subst0 i0 u1 (THead k u t4) t)) (\lambda (t: T).(pr0 t
+(THead k u t3)))) (\lambda (x: T).(\lambda (H3: (subst0 (s k i0) u1 t4
+x)).(\lambda (H4: (pr0 x t3)).(ex_intro2 T (\lambda (t: T).(subst0 i0 u1
+(THead k u t4) t)) (\lambda (t: T).(pr0 t (THead k u t3))) (THead k u x)
+(subst0_snd k u1 x t4 i0 H3 u) (pr0_comp u u (pr0_refl u) x t3 H4 k))))) (H1
+u1 H2)))))))))))) (\lambda (v: T).(\lambda (u1: T).(\lambda (u3: T).(\lambda
+(i0: nat).(\lambda (_: (subst0 i0 v u1 u3)).(\lambda (H1: ((\forall (u4:
+T).((pr0 u4 v) \to (ex2 T (\lambda (t: T).(subst0 i0 u4 u1 t)) (\lambda (t:
+T).(pr0 t u3))))))).(\lambda (k: K).(\lambda (t3: T).(\lambda (t4:
+T).(\lambda (_: (subst0 (s k i0) v t3 t4)).(\lambda (H3: ((\forall (u4:
+T).((pr0 u4 v) \to (ex2 T (\lambda (t: T).(subst0 (s k i0) u4 t3 t)) (\lambda
+(t: T).(pr0 t t4))))))).(\lambda (u0: T).(\lambda (H4: (pr0 u0 v)).(ex2_ind T
+(\lambda (t: T).(subst0 (s k i0) u0 t3 t)) (\lambda (t: T).(pr0 t t4)) (ex2 T
+(\lambda (t: T).(subst0 i0 u0 (THead k u1 t3) t)) (\lambda (t: T).(pr0 t
+(THead k u3 t4)))) (\lambda (x: T).(\lambda (H5: (subst0 (s k i0) u0 t3
+x)).(\lambda (H6: (pr0 x t4)).(ex2_ind T (\lambda (t: T).(subst0 i0 u0 u1 t))
+(\lambda (t: T).(pr0 t u3)) (ex2 T (\lambda (t: T).(subst0 i0 u0 (THead k u1
+t3) t)) (\lambda (t: T).(pr0 t (THead k u3 t4)))) (\lambda (x0: T).(\lambda
+(H7: (subst0 i0 u0 u1 x0)).(\lambda (H8: (pr0 x0 u3)).(ex_intro2 T (\lambda
+(t: T).(subst0 i0 u0 (THead k u1 t3) t)) (\lambda (t: T).(pr0 t (THead k u3
+t4))) (THead k x0 x) (subst0_both u0 u1 x0 i0 H7 k t3 x H5) (pr0_comp x0 u3
+H8 x t4 H6 k))))) (H1 u0 H4))))) (H3 u0 H4))))))))))))))) i u2 t1 t2 H))))).
+
+theorem pr0_subst0_fwd:
+ \forall (u2: T).(\forall (t1: T).(\forall (t2: T).(\forall (i: nat).((subst0
+i u2 t1 t2) \to (\forall (u1: T).((pr0 u2 u1) \to (ex2 T (\lambda (t:
+T).(subst0 i u1 t1 t)) (\lambda (t: T).(pr0 t2 t)))))))))
+\def
+ \lambda (u2: T).(\lambda (t1: T).(\lambda (t2: T).(\lambda (i: nat).(\lambda
+(H: (subst0 i u2 t1 t2)).(subst0_ind (\lambda (n: nat).(\lambda (t:
+T).(\lambda (t0: T).(\lambda (t3: T).(\forall (u1: T).((pr0 t u1) \to (ex2 T
+(\lambda (t4: T).(subst0 n u1 t0 t4)) (\lambda (t4: T).(pr0 t3 t4)))))))))
+(\lambda (v: T).(\lambda (i0: nat).(\lambda (u1: T).(\lambda (H0: (pr0 v
+u1)).(ex_intro2 T (\lambda (t: T).(subst0 i0 u1 (TLRef i0) t)) (\lambda (t:
+T).(pr0 (lift (S i0) O v) t)) (lift (S i0) O u1) (subst0_lref u1 i0)
+(pr0_lift v u1 H0 (S i0) O)))))) (\lambda (v: T).(\lambda (u3: T).(\lambda
+(u1: T).(\lambda (i0: nat).(\lambda (_: (subst0 i0 v u1 u3)).(\lambda (H1:
+((\forall (u4: T).((pr0 v u4) \to (ex2 T (\lambda (t: T).(subst0 i0 u4 u1 t))
+(\lambda (t: T).(pr0 u3 t))))))).(\lambda (t: T).(\lambda (k: K).(\lambda
+(u0: T).(\lambda (H2: (pr0 v u0)).(ex2_ind T (\lambda (t0: T).(subst0 i0 u0
+u1 t0)) (\lambda (t0: T).(pr0 u3 t0)) (ex2 T (\lambda (t0: T).(subst0 i0 u0
+(THead k u1 t) t0)) (\lambda (t0: T).(pr0 (THead k u3 t) t0))) (\lambda (x:
+T).(\lambda (H3: (subst0 i0 u0 u1 x)).(\lambda (H4: (pr0 u3 x)).(ex_intro2 T
+(\lambda (t0: T).(subst0 i0 u0 (THead k u1 t) t0)) (\lambda (t0: T).(pr0
+(THead k u3 t) t0)) (THead k x t) (subst0_fst u0 x u1 i0 H3 t k) (pr0_comp u3
+x H4 t t (pr0_refl t) k))))) (H1 u0 H2)))))))))))) (\lambda (k: K).(\lambda
+(v: T).(\lambda (t3: T).(\lambda (t4: T).(\lambda (i0: nat).(\lambda (_:
+(subst0 (s k i0) v t4 t3)).(\lambda (H1: ((\forall (u1: T).((pr0 v u1) \to
+(ex2 T (\lambda (t: T).(subst0 (s k i0) u1 t4 t)) (\lambda (t: T).(pr0 t3
+t))))))).(\lambda (u: T).(\lambda (u1: T).(\lambda (H2: (pr0 v u1)).(ex2_ind
+T (\lambda (t: T).(subst0 (s k i0) u1 t4 t)) (\lambda (t: T).(pr0 t3 t)) (ex2
+T (\lambda (t: T).(subst0 i0 u1 (THead k u t4) t)) (\lambda (t: T).(pr0
+(THead k u t3) t))) (\lambda (x: T).(\lambda (H3: (subst0 (s k i0) u1 t4
+x)).(\lambda (H4: (pr0 t3 x)).(ex_intro2 T (\lambda (t: T).(subst0 i0 u1
+(THead k u t4) t)) (\lambda (t: T).(pr0 (THead k u t3) t)) (THead k u x)
+(subst0_snd k u1 x t4 i0 H3 u) (pr0_comp u u (pr0_refl u) t3 x H4 k))))) (H1
+u1 H2)))))))))))) (\lambda (v: T).(\lambda (u1: T).(\lambda (u3: T).(\lambda
+(i0: nat).(\lambda (_: (subst0 i0 v u1 u3)).(\lambda (H1: ((\forall (u4:
+T).((pr0 v u4) \to (ex2 T (\lambda (t: T).(subst0 i0 u4 u1 t)) (\lambda (t:
+T).(pr0 u3 t))))))).(\lambda (k: K).(\lambda (t3: T).(\lambda (t4:
+T).(\lambda (_: (subst0 (s k i0) v t3 t4)).(\lambda (H3: ((\forall (u4:
+T).((pr0 v u4) \to (ex2 T (\lambda (t: T).(subst0 (s k i0) u4 t3 t)) (\lambda
+(t: T).(pr0 t4 t))))))).(\lambda (u0: T).(\lambda (H4: (pr0 v u0)).(ex2_ind T
+(\lambda (t: T).(subst0 (s k i0) u0 t3 t)) (\lambda (t: T).(pr0 t4 t)) (ex2 T
+(\lambda (t: T).(subst0 i0 u0 (THead k u1 t3) t)) (\lambda (t: T).(pr0 (THead
+k u3 t4) t))) (\lambda (x: T).(\lambda (H5: (subst0 (s k i0) u0 t3
+x)).(\lambda (H6: (pr0 t4 x)).(ex2_ind T (\lambda (t: T).(subst0 i0 u0 u1 t))
+(\lambda (t: T).(pr0 u3 t)) (ex2 T (\lambda (t: T).(subst0 i0 u0 (THead k u1
+t3) t)) (\lambda (t: T).(pr0 (THead k u3 t4) t))) (\lambda (x0: T).(\lambda
+(H7: (subst0 i0 u0 u1 x0)).(\lambda (H8: (pr0 u3 x0)).(ex_intro2 T (\lambda
+(t: T).(subst0 i0 u0 (THead k u1 t3) t)) (\lambda (t: T).(pr0 (THead k u3 t4)
+t)) (THead k x0 x) (subst0_both u0 u1 x0 i0 H7 k t3 x H5) (pr0_comp u3 x0 H8
+t4 x H6 k))))) (H1 u0 H4))))) (H3 u0 H4))))))))))))))) i u2 t1 t2 H))))).
+
+theorem pr0_subst0:
+ \forall (t1: T).(\forall (t2: T).((pr0 t1 t2) \to (\forall (v1: T).(\forall
+(w1: T).(\forall (i: nat).((subst0 i v1 t1 w1) \to (\forall (v2: T).((pr0 v1
+v2) \to (or (pr0 w1 t2) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v2 t2 w2))))))))))))
+\def
+ \lambda (t1: T).(\lambda (t2: T).(\lambda (H: (pr0 t1 t2)).(pr0_ind (\lambda
+(t: T).(\lambda (t0: T).(\forall (v1: T).(\forall (w1: T).(\forall (i:
+nat).((subst0 i v1 t w1) \to (\forall (v2: T).((pr0 v1 v2) \to (or (pr0 w1
+t0) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t0
+w2)))))))))))) (\lambda (t: T).(\lambda (v1: T).(\lambda (w1: T).(\lambda (i:
+nat).(\lambda (H0: (subst0 i v1 t w1)).(\lambda (v2: T).(\lambda (H1: (pr0 v1
+v2)).(or_intror (pr0 w1 t) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v2 t w2))) (ex2_sym T (subst0 i v2 t) (pr0 w1) (pr0_subst0_fwd
+v1 t w1 i H0 v2 H1)))))))))) (\lambda (u1: T).(\lambda (u2: T).(\lambda (H0:
+(pr0 u1 u2)).(\lambda (H1: ((\forall (v1: T).(\forall (w1: T).(\forall (i:
+nat).((subst0 i v1 u1 w1) \to (\forall (v2: T).((pr0 v1 v2) \to (or (pr0 w1
+u2) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 u2
+w2)))))))))))).(\lambda (t3: T).(\lambda (t4: T).(\lambda (H2: (pr0 t3
+t4)).(\lambda (H3: ((\forall (v1: T).(\forall (w1: T).(\forall (i:
+nat).((subst0 i v1 t3 w1) \to (\forall (v2: T).((pr0 v1 v2) \to (or (pr0 w1
+t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4
+w2)))))))))))).(\lambda (k: K).(\lambda (v1: T).(\lambda (w1: T).(\lambda (i:
+nat).(\lambda (H4: (subst0 i v1 (THead k u1 t3) w1)).(\lambda (v2:
+T).(\lambda (H5: (pr0 v1 v2)).(or3_ind (ex2 T (\lambda (u3: T).(eq T w1
+(THead k u3 t3))) (\lambda (u3: T).(subst0 i v1 u1 u3))) (ex2 T (\lambda (t5:
+T).(eq T w1 (THead k u1 t5))) (\lambda (t5: T).(subst0 (s k i) v1 t3 t5)))
+(ex3_2 T T (\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead k u3 t5))))
+(\lambda (u3: T).(\lambda (_: T).(subst0 i v1 u1 u3))) (\lambda (_:
+T).(\lambda (t5: T).(subst0 (s k i) v1 t3 t5)))) (or (pr0 w1 (THead k u2 t4))
+(ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 (THead k
+u2 t4) w2)))) (\lambda (H6: (ex2 T (\lambda (u3: T).(eq T w1 (THead k u3
+t3))) (\lambda (u3: T).(subst0 i v1 u1 u3)))).(ex2_ind T (\lambda (u3: T).(eq
+T w1 (THead k u3 t3))) (\lambda (u3: T).(subst0 i v1 u1 u3)) (or (pr0 w1
+(THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x: T).(\lambda (H7: (eq T w1
+(THead k x t3))).(\lambda (H8: (subst0 i v1 u1 x)).(eq_ind_r T (THead k x t3)
+(\lambda (t: T).(or (pr0 t (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 t
+w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))))) (or_ind (pr0 x u2)
+(ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v2 u2 w2)))
+(or (pr0 (THead k x t3) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead
+k x t3) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda
+(H9: (pr0 x u2)).(or_introl (pr0 (THead k x t3) (THead k u2 t4)) (ex2 T
+(\lambda (w2: T).(pr0 (THead k x t3) w2)) (\lambda (w2: T).(subst0 i v2
+(THead k u2 t4) w2))) (pr0_comp x u2 H9 t3 t4 H2 k))) (\lambda (H9: (ex2 T
+(\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v2 u2 w2)))).(ex2_ind
+T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v2 u2 w2)) (or (pr0
+(THead k x t3) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x t3)
+w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x0:
+T).(\lambda (H10: (pr0 x x0)).(\lambda (H11: (subst0 i v2 u2 x0)).(or_intror
+(pr0 (THead k x t3) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x
+t3) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))) (ex_intro2 T
+(\lambda (w2: T).(pr0 (THead k x t3) w2)) (\lambda (w2: T).(subst0 i v2
+(THead k u2 t4) w2)) (THead k x0 t4) (pr0_comp x x0 H10 t3 t4 H2 k)
+(subst0_fst v2 x0 u2 i H11 t4 k)))))) H9)) (H1 v1 x i H8 v2 H5)) w1 H7))))
+H6)) (\lambda (H6: (ex2 T (\lambda (t5: T).(eq T w1 (THead k u1 t5)))
+(\lambda (t5: T).(subst0 (s k i) v1 t3 t5)))).(ex2_ind T (\lambda (t5: T).(eq
+T w1 (THead k u1 t5))) (\lambda (t5: T).(subst0 (s k i) v1 t3 t5)) (or (pr0
+w1 (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x: T).(\lambda (H7: (eq T w1
+(THead k u1 x))).(\lambda (H8: (subst0 (s k i) v1 t3 x)).(eq_ind_r T (THead k
+u1 x) (\lambda (t: T).(or (pr0 t (THead k u2 t4)) (ex2 T (\lambda (w2:
+T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))))) (or_ind
+(pr0 x t4) (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s k
+i) v2 t4 w2))) (or (pr0 (THead k u1 x) (THead k u2 t4)) (ex2 T (\lambda (w2:
+T).(pr0 (THead k u1 x) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4)
+w2)))) (\lambda (H9: (pr0 x t4)).(or_introl (pr0 (THead k u1 x) (THead k u2
+t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k u1 x) w2)) (\lambda (w2:
+T).(subst0 i v2 (THead k u2 t4) w2))) (pr0_comp u1 u2 H0 x t4 H9 k)))
+(\lambda (H9: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s
+k i) v2 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2:
+T).(subst0 (s k i) v2 t4 w2)) (or (pr0 (THead k u1 x) (THead k u2 t4)) (ex2 T
+(\lambda (w2: T).(pr0 (THead k u1 x) w2)) (\lambda (w2: T).(subst0 i v2
+(THead k u2 t4) w2)))) (\lambda (x0: T).(\lambda (H10: (pr0 x x0)).(\lambda
+(H11: (subst0 (s k i) v2 t4 x0)).(or_intror (pr0 (THead k u1 x) (THead k u2
+t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k u1 x) w2)) (\lambda (w2:
+T).(subst0 i v2 (THead k u2 t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0
+(THead k u1 x) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)) (THead
+k u2 x0) (pr0_comp u1 u2 H0 x x0 H10 k) (subst0_snd k v2 x0 t4 i H11 u2))))))
+H9)) (H3 v1 x (s k i) H8 v2 H5)) w1 H7)))) H6)) (\lambda (H6: (ex3_2 T T
+(\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead k u3 t5)))) (\lambda (u3:
+T).(\lambda (_: T).(subst0 i v1 u1 u3))) (\lambda (_: T).(\lambda (t5:
+T).(subst0 (s k i) v1 t3 t5))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda
+(t5: T).(eq T w1 (THead k u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0
+i v1 u1 u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s k i) v1 t3 t5)))
+(or (pr0 w1 (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda
+(w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x0: T).(\lambda (x1:
+T).(\lambda (H7: (eq T w1 (THead k x0 x1))).(\lambda (H8: (subst0 i v1 u1
+x0)).(\lambda (H9: (subst0 (s k i) v1 t3 x1)).(eq_ind_r T (THead k x0 x1)
+(\lambda (t: T).(or (pr0 t (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 t
+w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))))) (or_ind (pr0 x1
+t4) (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s k i) v2
+t4 w2))) (or (pr0 (THead k x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2:
+T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4)
+w2)))) (\lambda (H10: (pr0 x1 t4)).(or_ind (pr0 x0 u2) (ex2 T (\lambda (w2:
+T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 u2 w2))) (or (pr0 (THead k x0
+x1) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2))
+(\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (H11: (pr0 x0
+u2)).(or_introl (pr0 (THead k x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2:
+T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4)
+w2))) (pr0_comp x0 u2 H11 x1 t4 H10 k))) (\lambda (H11: (ex2 T (\lambda (w2:
+T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 u2 w2)))).(ex2_ind T (\lambda
+(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 u2 w2)) (or (pr0 (THead k
+x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2))
+(\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x: T).(\lambda
+(H12: (pr0 x0 x)).(\lambda (H13: (subst0 i v2 u2 x)).(or_intror (pr0 (THead k
+x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2))
+(\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))) (ex_intro2 T (\lambda
+(w2: T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2
+t4) w2)) (THead k x t4) (pr0_comp x0 x H12 x1 t4 H10 k) (subst0_fst v2 x u2 i
+H13 t4 k)))))) H11)) (H1 v1 x0 i H8 v2 H5))) (\lambda (H10: (ex2 T (\lambda
+(w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s k i) v2 t4 w2)))).(ex2_ind T
+(\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s k i) v2 t4 w2)) (or
+(pr0 (THead k x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k
+x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x:
+T).(\lambda (H11: (pr0 x1 x)).(\lambda (H12: (subst0 (s k i) v2 t4
+x)).(or_ind (pr0 x0 u2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
+T).(subst0 i v2 u2 w2))) (or (pr0 (THead k x0 x1) (THead k u2 t4)) (ex2 T
+(\lambda (w2: T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2
+(THead k u2 t4) w2)))) (\lambda (H13: (pr0 x0 u2)).(or_intror (pr0 (THead k
+x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2))
+(\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))) (ex_intro2 T (\lambda
+(w2: T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2
+t4) w2)) (THead k u2 x) (pr0_comp x0 u2 H13 x1 x H11 k) (subst0_snd k v2 x t4
+i H12 u2)))) (\lambda (H13: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda
+(w2: T).(subst0 i v2 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2))
+(\lambda (w2: T).(subst0 i v2 u2 w2)) (or (pr0 (THead k x0 x1) (THead k u2
+t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2)) (\lambda (w2:
+T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x2: T).(\lambda (H14: (pr0
+x0 x2)).(\lambda (H15: (subst0 i v2 u2 x2)).(or_intror (pr0 (THead k x0 x1)
+(THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2)) (\lambda
+(w2: T).(subst0 i v2 (THead k u2 t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0
+(THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))
+(THead k x2 x) (pr0_comp x0 x2 H14 x1 x H11 k) (subst0_both v2 u2 x2 i H15 k
+t4 x H12)))))) H13)) (H1 v1 x0 i H8 v2 H5))))) H10)) (H3 v1 x1 (s k i) H9 v2
+H5)) w1 H7)))))) H6)) (subst0_gen_head k v1 u1 t3 w1 i H4)))))))))))))))))
+(\lambda (u: T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (H0: (pr0 v1
+v2)).(\lambda (H1: ((\forall (v3: T).(\forall (w1: T).(\forall (i:
+nat).((subst0 i v3 v1 w1) \to (\forall (v4: T).((pr0 v3 v4) \to (or (pr0 w1
+v2) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v4 v2
+w2)))))))))))).(\lambda (t3: T).(\lambda (t4: T).(\lambda (H2: (pr0 t3
+t4)).(\lambda (H3: ((\forall (v3: T).(\forall (w1: T).(\forall (i:
+nat).((subst0 i v3 t3 w1) \to (\forall (v4: T).((pr0 v3 v4) \to (or (pr0 w1
+t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v4 t4
+w2)))))))))))).(\lambda (v0: T).(\lambda (w1: T).(\lambda (i: nat).(\lambda
+(H4: (subst0 i v0 (THead (Flat Appl) v1 (THead (Bind Abst) u t3))
+w1)).(\lambda (v3: T).(\lambda (H5: (pr0 v0 v3)).(or3_ind (ex2 T (\lambda
+(u2: T).(eq T w1 (THead (Flat Appl) u2 (THead (Bind Abst) u t3)))) (\lambda
+(u2: T).(subst0 i v0 v1 u2))) (ex2 T (\lambda (t5: T).(eq T w1 (THead (Flat
+Appl) v1 t5))) (\lambda (t5: T).(subst0 (s (Flat Appl) i) v0 (THead (Bind
+Abst) u t3) t5))) (ex3_2 T T (\lambda (u2: T).(\lambda (t5: T).(eq T w1
+(THead (Flat Appl) u2 t5)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i v0 v1
+u2))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Flat Appl) i) v0 (THead
+(Bind Abst) u t3) t5)))) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T
+(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind
+Abbr) v2 t4) w2)))) (\lambda (H6: (ex2 T (\lambda (u2: T).(eq T w1 (THead
+(Flat Appl) u2 (THead (Bind Abst) u t3)))) (\lambda (u2: T).(subst0 i v0 v1
+u2)))).(ex2_ind T (\lambda (u2: T).(eq T w1 (THead (Flat Appl) u2 (THead
+(Bind Abst) u t3)))) (\lambda (u2: T).(subst0 i v0 v1 u2)) (or (pr0 w1 (THead
+(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (x: T).(\lambda
+(H7: (eq T w1 (THead (Flat Appl) x (THead (Bind Abst) u t3)))).(\lambda (H8:
+(subst0 i v0 v1 x)).(eq_ind_r T (THead (Flat Appl) x (THead (Bind Abst) u
+t3)) (\lambda (t: T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda
+(w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4)
+w2))))) (or_ind (pr0 x v2) (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2:
+T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat Appl) x (THead (Bind Abst) u
+t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat
+Appl) x (THead (Bind Abst) u t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
+(Bind Abbr) v2 t4) w2)))) (\lambda (H9: (pr0 x v2)).(or_introl (pr0 (THead
+(Flat Appl) x (THead (Bind Abst) u t3)) (THead (Bind Abbr) v2 t4)) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) x (THead (Bind Abst) u t3)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (pr0_beta u x
+v2 H9 t3 t4 H2))) (\lambda (H9: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda
+(w2: T).(subst0 i v3 v2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2))
+(\lambda (w2: T).(subst0 i v3 v2 w2)) (or (pr0 (THead (Flat Appl) x (THead
+(Bind Abst) u t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) x (THead (Bind Abst) u t3)) w2)) (\lambda (w2: T).(subst0
+i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (x0: T).(\lambda (H10: (pr0 x
+x0)).(\lambda (H11: (subst0 i v3 v2 x0)).(or_intror (pr0 (THead (Flat Appl) x
+(THead (Bind Abst) u t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x (THead (Bind Abst) u t3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x (THead (Bind Abst) u t3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)) (THead (Bind Abbr) x0 t4)
+(pr0_beta u x x0 H10 t3 t4 H2) (subst0_fst v3 x0 v2 i H11 t4 (Bind
+Abbr))))))) H9)) (H1 v0 x i H8 v3 H5)) w1 H7)))) H6)) (\lambda (H6: (ex2 T
+(\lambda (t5: T).(eq T w1 (THead (Flat Appl) v1 t5))) (\lambda (t5:
+T).(subst0 (s (Flat Appl) i) v0 (THead (Bind Abst) u t3) t5)))).(ex2_ind T
+(\lambda (t5: T).(eq T w1 (THead (Flat Appl) v1 t5))) (\lambda (t5:
+T).(subst0 (s (Flat Appl) i) v0 (THead (Bind Abst) u t3) t5)) (or (pr0 w1
+(THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (x: T).(\lambda
+(H7: (eq T w1 (THead (Flat Appl) v1 x))).(\lambda (H8: (subst0 (s (Flat Appl)
+i) v0 (THead (Bind Abst) u t3) x)).(or3_ind (ex2 T (\lambda (u2: T).(eq T x
+(THead (Bind Abst) u2 t3))) (\lambda (u2: T).(subst0 (s (Flat Appl) i) v0 u
+u2))) (ex2 T (\lambda (t5: T).(eq T x (THead (Bind Abst) u t5))) (\lambda
+(t5: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5))) (ex3_2 T T
+(\lambda (u2: T).(\lambda (t5: T).(eq T x (THead (Bind Abst) u2 t5))))
+(\lambda (u2: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u u2)))
+(\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0
+t3 t5)))) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0
+w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))))
+(\lambda (H9: (ex2 T (\lambda (u2: T).(eq T x (THead (Bind Abst) u2 t3)))
+(\lambda (u2: T).(subst0 (s (Flat Appl) i) v0 u u2)))).(ex2_ind T (\lambda
+(u2: T).(eq T x (THead (Bind Abst) u2 t3))) (\lambda (u2: T).(subst0 (s (Flat
+Appl) i) v0 u u2)) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda
+(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4)
+w2)))) (\lambda (x0: T).(\lambda (H10: (eq T x (THead (Bind Abst) x0
+t3))).(\lambda (_: (subst0 (s (Flat Appl) i) v0 u x0)).(let H12 \def (eq_ind
+T x (\lambda (t: T).(eq T w1 (THead (Flat Appl) v1 t))) H7 (THead (Bind Abst)
+x0 t3) H10) in (eq_ind_r T (THead (Flat Appl) v1 (THead (Bind Abst) x0 t3))
+(\lambda (t: T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2:
+T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4)
+w2))))) (or_introl (pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 t3))
+(THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1
+(THead (Bind Abst) x0 t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind
+Abbr) v2 t4) w2))) (pr0_beta x0 v1 v2 H0 t3 t4 H2)) w1 H12))))) H9)) (\lambda
+(H9: (ex2 T (\lambda (t5: T).(eq T x (THead (Bind Abst) u t5))) (\lambda (t5:
+T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5)))).(ex2_ind T (\lambda
+(t5: T).(eq T x (THead (Bind Abst) u t5))) (\lambda (t5: T).(subst0 (s (Bind
+Abst) (s (Flat Appl) i)) v0 t3 t5)) (or (pr0 w1 (THead (Bind Abbr) v2 t4))
+(ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead
+(Bind Abbr) v2 t4) w2)))) (\lambda (x0: T).(\lambda (H10: (eq T x (THead
+(Bind Abst) u x0))).(\lambda (H11: (subst0 (s (Bind Abst) (s (Flat Appl) i))
+v0 t3 x0)).(let H12 \def (eq_ind T x (\lambda (t: T).(eq T w1 (THead (Flat
+Appl) v1 t))) H7 (THead (Bind Abst) u x0) H10) in (eq_ind_r T (THead (Flat
+Appl) v1 (THead (Bind Abst) u x0)) (\lambda (t: T).(or (pr0 t (THead (Bind
+Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind Abbr) v2 t4) w2))))) (or_ind (pr0 x0 t4) (ex2 T (\lambda (w2:
+T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3
+t4 w2))) (or (pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u x0)) (THead
+(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead
+(Bind Abst) u x0)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
+t4) w2)))) (\lambda (H13: (pr0 x0 t4)).(or_introl (pr0 (THead (Flat Appl) v1
+(THead (Bind Abst) u x0)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u x0)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (pr0_beta u v1 v2 H0 x0 t4
+H13))) (\lambda (H13: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
+T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda
+(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl)
+i)) v3 t4 w2)) (or (pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u x0))
+(THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1
+(THead (Bind Abst) u x0)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind
+Abbr) v2 t4) w2)))) (\lambda (x1: T).(\lambda (H14: (pr0 x0 x1)).(\lambda
+(H15: (subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 t4 x1)).(or_intror (pr0
+(THead (Flat Appl) v1 (THead (Bind Abst) u x0)) (THead (Bind Abbr) v2 t4))
+(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u x0))
+w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (ex_intro2
+T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u x0)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)) (THead (Bind
+Abbr) v2 x1) (pr0_beta u v1 v2 H0 x0 x1 H14) (subst0_snd (Bind Abbr) v3 x1 t4
+i H15 v2)))))) H13)) (H3 v0 x0 (s (Bind Abst) (s (Flat Appl) i)) H11 v3 H5))
+w1 H12))))) H9)) (\lambda (H9: (ex3_2 T T (\lambda (u2: T).(\lambda (t5:
+T).(eq T x (THead (Bind Abst) u2 t5)))) (\lambda (u2: T).(\lambda (_:
+T).(subst0 (s (Flat Appl) i) v0 u u2))) (\lambda (_: T).(\lambda (t5:
+T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5))))).(ex3_2_ind T T
+(\lambda (u2: T).(\lambda (t5: T).(eq T x (THead (Bind Abst) u2 t5))))
+(\lambda (u2: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u u2)))
+(\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0
+t3 t5))) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0
+w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))))
+(\lambda (x0: T).(\lambda (x1: T).(\lambda (H10: (eq T x (THead (Bind Abst)
+x0 x1))).(\lambda (_: (subst0 (s (Flat Appl) i) v0 u x0)).(\lambda (H12:
+(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 x1)).(let H13 \def (eq_ind T
+x (\lambda (t: T).(eq T w1 (THead (Flat Appl) v1 t))) H7 (THead (Bind Abst)
+x0 x1) H10) in (eq_ind_r T (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1))
+(\lambda (t: T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2:
+T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4)
+w2))))) (or_ind (pr0 x1 t4) (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda
+(w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2))) (or (pr0 (THead
+(Flat Appl) v1 (THead (Bind Abst) x0 x1)) (THead (Bind Abbr) v2 t4)) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H14:
+(pr0 x1 t4)).(or_introl (pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1))
+(THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1
+(THead (Bind Abst) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind
+Abbr) v2 t4) w2))) (pr0_beta x0 v1 v2 H0 x1 t4 H14))) (\lambda (H14: (ex2 T
+(\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s
+(Flat Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x1 w2))
+(\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2)) (or
+(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1)) (THead (Bind Abbr) v2
+t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0
+x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))))
+(\lambda (x2: T).(\lambda (H15: (pr0 x1 x2)).(\lambda (H16: (subst0 (s (Bind
+Abst) (s (Flat Appl) i)) v3 t4 x2)).(or_intror (pr0 (THead (Flat Appl) v1
+(THead (Bind Abst) x0 x1)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)) (THead (Bind Abbr) v2 x2)
+(pr0_beta x0 v1 v2 H0 x1 x2 H15) (subst0_snd (Bind Abbr) v3 x2 t4 i H16
+v2)))))) H14)) (H3 v0 x1 (s (Bind Abst) (s (Flat Appl) i)) H12 v3 H5)) w1
+H13))))))) H9)) (subst0_gen_head (Bind Abst) v0 u t3 x (s (Flat Appl) i)
+H8))))) H6)) (\lambda (H6: (ex3_2 T T (\lambda (u2: T).(\lambda (t5: T).(eq T
+w1 (THead (Flat Appl) u2 t5)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i v0
+v1 u2))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Flat Appl) i) v0 (THead
+(Bind Abst) u t3) t5))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda (t5:
+T).(eq T w1 (THead (Flat Appl) u2 t5)))) (\lambda (u2: T).(\lambda (_:
+T).(subst0 i v0 v1 u2))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Flat
+Appl) i) v0 (THead (Bind Abst) u t3) t5))) (or (pr0 w1 (THead (Bind Abbr) v2
+t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3
+(THead (Bind Abbr) v2 t4) w2)))) (\lambda (x0: T).(\lambda (x1: T).(\lambda
+(H7: (eq T w1 (THead (Flat Appl) x0 x1))).(\lambda (H8: (subst0 i v0 v1
+x0)).(\lambda (H9: (subst0 (s (Flat Appl) i) v0 (THead (Bind Abst) u t3)
+x1)).(or3_ind (ex2 T (\lambda (u2: T).(eq T x1 (THead (Bind Abst) u2 t3)))
+(\lambda (u2: T).(subst0 (s (Flat Appl) i) v0 u u2))) (ex2 T (\lambda (t5:
+T).(eq T x1 (THead (Bind Abst) u t5))) (\lambda (t5: T).(subst0 (s (Bind
+Abst) (s (Flat Appl) i)) v0 t3 t5))) (ex3_2 T T (\lambda (u2: T).(\lambda
+(t5: T).(eq T x1 (THead (Bind Abst) u2 t5)))) (\lambda (u2: T).(\lambda (_:
+T).(subst0 (s (Flat Appl) i) v0 u u2))) (\lambda (_: T).(\lambda (t5:
+T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5)))) (or (pr0 w1 (THead
+(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H10: (ex2 T
+(\lambda (u2: T).(eq T x1 (THead (Bind Abst) u2 t3))) (\lambda (u2:
+T).(subst0 (s (Flat Appl) i) v0 u u2)))).(ex2_ind T (\lambda (u2: T).(eq T x1
+(THead (Bind Abst) u2 t3))) (\lambda (u2: T).(subst0 (s (Flat Appl) i) v0 u
+u2)) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1
+w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda
+(x: T).(\lambda (H11: (eq T x1 (THead (Bind Abst) x t3))).(\lambda (_:
+(subst0 (s (Flat Appl) i) v0 u x)).(let H13 \def (eq_ind T x1 (\lambda (t:
+T).(eq T w1 (THead (Flat Appl) x0 t))) H7 (THead (Bind Abst) x t3) H11) in
+(eq_ind_r T (THead (Flat Appl) x0 (THead (Bind Abst) x t3)) (\lambda (t:
+T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 t w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))))) (or_ind (pr0
+x0 v2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2
+w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x t3)) (THead (Bind
+Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
+Abst) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4)
+w2)))) (\lambda (H14: (pr0 x0 v2)).(or_introl (pr0 (THead (Flat Appl) x0
+(THead (Bind Abst) x t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x t3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (pr0_beta x x0 v2 H14 t3 t4
+H2))) (\lambda (H14: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
+T).(subst0 i v3 v2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda
+(w2: T).(subst0 i v3 v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind
+Abst) x t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead
+(Flat Appl) x0 (THead (Bind Abst) x t3)) w2)) (\lambda (w2: T).(subst0 i v3
+(THead (Bind Abbr) v2 t4) w2)))) (\lambda (x2: T).(\lambda (H15: (pr0 x0
+x2)).(\lambda (H16: (subst0 i v3 v2 x2)).(or_intror (pr0 (THead (Flat Appl)
+x0 (THead (Bind Abst) x t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x t3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x t3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)) (THead (Bind Abbr) x2 t4)
+(pr0_beta x x0 x2 H15 t3 t4 H2) (subst0_fst v3 x2 v2 i H16 t4 (Bind
+Abbr))))))) H14)) (H1 v0 x0 i H8 v3 H5)) w1 H13))))) H10)) (\lambda (H10:
+(ex2 T (\lambda (t5: T).(eq T x1 (THead (Bind Abst) u t5))) (\lambda (t5:
+T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5)))).(ex2_ind T (\lambda
+(t5: T).(eq T x1 (THead (Bind Abst) u t5))) (\lambda (t5: T).(subst0 (s (Bind
+Abst) (s (Flat Appl) i)) v0 t3 t5)) (or (pr0 w1 (THead (Bind Abbr) v2 t4))
+(ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead
+(Bind Abbr) v2 t4) w2)))) (\lambda (x: T).(\lambda (H11: (eq T x1 (THead
+(Bind Abst) u x))).(\lambda (H12: (subst0 (s (Bind Abst) (s (Flat Appl) i))
+v0 t3 x)).(let H13 \def (eq_ind T x1 (\lambda (t: T).(eq T w1 (THead (Flat
+Appl) x0 t))) H7 (THead (Bind Abst) u x) H11) in (eq_ind_r T (THead (Flat
+Appl) x0 (THead (Bind Abst) u x)) (\lambda (t: T).(or (pr0 t (THead (Bind
+Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind Abbr) v2 t4) w2))))) (or_ind (pr0 x t4) (ex2 T (\lambda (w2:
+T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3
+t4 w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead (Bind
+Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
+Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4)
+w2)))) (\lambda (H14: (pr0 x t4)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2:
+T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat
+Appl) x0 (THead (Bind Abst) u x)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda
+(w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) w2)) (\lambda
+(w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H15: (pr0 x0
+v2)).(or_introl (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead
+(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
+(Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
+t4) w2))) (pr0_beta u x0 v2 H15 x t4 H14))) (\lambda (H15: (ex2 T (\lambda
+(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)))).(ex2_ind T
+(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)) (or (pr0
+(THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead (Bind Abbr) v2 t4))
+(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x))
+w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda
+(x2: T).(\lambda (H16: (pr0 x0 x2)).(\lambda (H17: (subst0 i v3 v2
+x2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead
+(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
+(Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
+t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
+(Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
+t4) w2)) (THead (Bind Abbr) x2 t4) (pr0_beta u x0 x2 H16 x t4 H14)
+(subst0_fst v3 x2 v2 i H17 t4 (Bind Abbr))))))) H15)) (H1 v0 x0 i H8 v3 H5)))
+(\lambda (H14: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0
+(s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda (w2:
+T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3
+t4 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead (Bind
+Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
+Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4)
+w2)))) (\lambda (x2: T).(\lambda (H15: (pr0 x x2)).(\lambda (H16: (subst0 (s
+(Bind Abst) (s (Flat Appl) i)) v3 t4 x2)).(or_ind (pr0 x0 v2) (ex2 T (\lambda
+(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead
+(Flat Appl) x0 (THead (Bind Abst) u x)) (THead (Bind Abbr) v2 t4)) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H17:
+(pr0 x0 v2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x))
+(THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0
+(THead (Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind
+Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0
+(THead (Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind
+Abbr) v2 t4) w2)) (THead (Bind Abbr) v2 x2) (pr0_beta u x0 v2 H17 x x2 H15)
+(subst0_snd (Bind Abbr) v3 x2 t4 i H16 v2)))) (\lambda (H17: (ex2 T (\lambda
+(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)))).(ex2_ind T
+(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)) (or (pr0
+(THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead (Bind Abbr) v2 t4))
+(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x))
+w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda
+(x3: T).(\lambda (H18: (pr0 x0 x3)).(\lambda (H19: (subst0 i v3 v2
+x3)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead
+(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
+(Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
+t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
+(Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
+t4) w2)) (THead (Bind Abbr) x3 x2) (pr0_beta u x0 x3 H18 x x2 H15)
+(subst0_both v3 v2 x3 i H19 (Bind Abbr) t4 x2 H16)))))) H17)) (H1 v0 x0 i H8
+v3 H5))))) H14)) (H3 v0 x (s (Bind Abst) (s (Flat Appl) i)) H12 v3 H5)) w1
+H13))))) H10)) (\lambda (H10: (ex3_2 T T (\lambda (u2: T).(\lambda (t5:
+T).(eq T x1 (THead (Bind Abst) u2 t5)))) (\lambda (u2: T).(\lambda (_:
+T).(subst0 (s (Flat Appl) i) v0 u u2))) (\lambda (_: T).(\lambda (t5:
+T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5))))).(ex3_2_ind T T
+(\lambda (u2: T).(\lambda (t5: T).(eq T x1 (THead (Bind Abst) u2 t5))))
+(\lambda (u2: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u u2)))
+(\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0
+t3 t5))) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0
+w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))))
+(\lambda (x2: T).(\lambda (x3: T).(\lambda (H11: (eq T x1 (THead (Bind Abst)
+x2 x3))).(\lambda (_: (subst0 (s (Flat Appl) i) v0 u x2)).(\lambda (H13:
+(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 x3)).(let H14 \def (eq_ind T
+x1 (\lambda (t: T).(eq T w1 (THead (Flat Appl) x0 t))) H7 (THead (Bind Abst)
+x2 x3) H11) in (eq_ind_r T (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3))
+(\lambda (t: T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2:
+T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4)
+w2))))) (or_ind (pr0 x3 t4) (ex2 T (\lambda (w2: T).(pr0 x3 w2)) (\lambda
+(w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2))) (or (pr0 (THead
+(Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead (Bind Abbr) v2 t4)) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H15:
+(pr0 x3 t4)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2: T).(pr0 x0 w2))
+(\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat Appl) x0 (THead
+(Bind Abst) x2 x3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H16: (pr0 x0
+v2)).(or_introl (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead
+(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
+(Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
+t4) w2))) (pr0_beta x2 x0 v2 H16 x3 t4 H15))) (\lambda (H16: (ex2 T (\lambda
+(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)))).(ex2_ind T
+(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)) (or (pr0
+(THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead (Bind Abbr) v2 t4))
+(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3))
+w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda
+(x: T).(\lambda (H17: (pr0 x0 x)).(\lambda (H18: (subst0 i v3 v2
+x)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead
+(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
+(Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
+t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
+(Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
+t4) w2)) (THead (Bind Abbr) x t4) (pr0_beta x2 x0 x H17 x3 t4 H15)
+(subst0_fst v3 x v2 i H18 t4 (Bind Abbr))))))) H16)) (H1 v0 x0 i H8 v3 H5)))
+(\lambda (H15: (ex2 T (\lambda (w2: T).(pr0 x3 w2)) (\lambda (w2: T).(subst0
+(s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda (w2:
+T).(pr0 x3 w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3
+t4 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead
+(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
+(Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
+t4) w2)))) (\lambda (x: T).(\lambda (H16: (pr0 x3 x)).(\lambda (H17: (subst0
+(s (Bind Abst) (s (Flat Appl) i)) v3 t4 x)).(or_ind (pr0 x0 v2) (ex2 T
+(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0
+(THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead (Bind Abbr) v2 t4))
+(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3))
+w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda
+(H18: (pr0 x0 v2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst)
+x2 x3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat
+Appl) x0 (THead (Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
+(Bind Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat
+Appl) x0 (THead (Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
+(Bind Abbr) v2 t4) w2)) (THead (Bind Abbr) v2 x) (pr0_beta x2 x0 v2 H18 x3 x
+H16) (subst0_snd (Bind Abbr) v3 x t4 i H17 v2)))) (\lambda (H18: (ex2 T
+(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2
+w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3
+v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead
+(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
+(Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
+t4) w2)))) (\lambda (x4: T).(\lambda (H19: (pr0 x0 x4)).(\lambda (H20:
+(subst0 i v3 v2 x4)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst)
+x2 x3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat
+Appl) x0 (THead (Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
+(Bind Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat
+Appl) x0 (THead (Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
+(Bind Abbr) v2 t4) w2)) (THead (Bind Abbr) x4 x) (pr0_beta x2 x0 x4 H19 x3 x
+H16) (subst0_both v3 v2 x4 i H20 (Bind Abbr) t4 x H17)))))) H18)) (H1 v0 x0 i
+H8 v3 H5))))) H15)) (H3 v0 x3 (s (Bind Abst) (s (Flat Appl) i)) H13 v3 H5))
+w1 H14))))))) H10)) (subst0_gen_head (Bind Abst) v0 u t3 x1 (s (Flat Appl) i)
+H9))))))) H6)) (subst0_gen_head (Flat Appl) v0 v1 (THead (Bind Abst) u t3) w1
+i H4))))))))))))))))) (\lambda (b: B).(\lambda (H0: (not (eq B b
+Abst))).(\lambda (v1: T).(\lambda (v2: T).(\lambda (H1: (pr0 v1 v2)).(\lambda
+(H2: ((\forall (v3: T).(\forall (w1: T).(\forall (i: nat).((subst0 i v3 v1
+w1) \to (\forall (v4: T).((pr0 v3 v4) \to (or (pr0 w1 v2) (ex2 T (\lambda
+(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v4 v2 w2)))))))))))).(\lambda
+(u1: T).(\lambda (u2: T).(\lambda (H3: (pr0 u1 u2)).(\lambda (H4: ((\forall
+(v3: T).(\forall (w1: T).(\forall (i: nat).((subst0 i v3 u1 w1) \to (\forall
+(v4: T).((pr0 v3 v4) \to (or (pr0 w1 u2) (ex2 T (\lambda (w2: T).(pr0 w1 w2))
+(\lambda (w2: T).(subst0 i v4 u2 w2)))))))))))).(\lambda (t3: T).(\lambda
+(t4: T).(\lambda (H5: (pr0 t3 t4)).(\lambda (H6: ((\forall (v3: T).(\forall
+(w1: T).(\forall (i: nat).((subst0 i v3 t3 w1) \to (\forall (v4: T).((pr0 v3
+v4) \to (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v4 t4 w2)))))))))))).(\lambda (v0: T).(\lambda (w1: T).(\lambda
+(i: nat).(\lambda (H7: (subst0 i v0 (THead (Flat Appl) v1 (THead (Bind b) u1
+t3)) w1)).(\lambda (v3: T).(\lambda (H8: (pr0 v0 v3)).(or3_ind (ex2 T
+(\lambda (u3: T).(eq T w1 (THead (Flat Appl) u3 (THead (Bind b) u1 t3))))
+(\lambda (u3: T).(subst0 i v0 v1 u3))) (ex2 T (\lambda (t5: T).(eq T w1
+(THead (Flat Appl) v1 t5))) (\lambda (t5: T).(subst0 (s (Flat Appl) i) v0
+(THead (Bind b) u1 t3) t5))) (ex3_2 T T (\lambda (u3: T).(\lambda (t5: T).(eq
+T w1 (THead (Flat Appl) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 i
+v0 v1 u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Flat Appl) i) v0
+(THead (Bind b) u1 t3) t5)))) (or (pr0 w1 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda
+(w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4)) w2)))) (\lambda (H9: (ex2 T (\lambda (u3: T).(eq T w1 (THead (Flat Appl)
+u3 (THead (Bind b) u1 t3)))) (\lambda (u3: T).(subst0 i v0 v1 u3)))).(ex2_ind
+T (\lambda (u3: T).(eq T w1 (THead (Flat Appl) u3 (THead (Bind b) u1 t3))))
+(\lambda (u3: T).(subst0 i v0 v1 u3)) (or (pr0 w1 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2)))) (\lambda (x: T).(\lambda (H10: (eq T w1 (THead (Flat
+Appl) x (THead (Bind b) u1 t3)))).(\lambda (H11: (subst0 i v0 v1
+x)).(eq_ind_r T (THead (Flat Appl) x (THead (Bind b) u1 t3)) (\lambda (t:
+T).(or (pr0 t (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)))
+(ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))) (or_ind (pr0 x
+v2) (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v3 v2
+w2))) (or (pr0 (THead (Flat Appl) x (THead (Bind b) u1 t3)) (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) x (THead (Bind b) u1 t3)) w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
+(\lambda (H12: (pr0 x v2)).(or_introl (pr0 (THead (Flat Appl) x (THead (Bind
+b) u1 t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2
+T (\lambda (w2: T).(pr0 (THead (Flat Appl) x (THead (Bind b) u1 t3)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2))) (pr0_upsilon b H0 x v2 H12 u1 u2 H3 t3 t4 H5))) (\lambda
+(H12: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v3 v2
+w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v3
+v2 w2)) (or (pr0 (THead (Flat Appl) x (THead (Bind b) u1 t3)) (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) x (THead (Bind b) u1 t3)) w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
+(\lambda (x0: T).(\lambda (H13: (pr0 x x0)).(\lambda (H14: (subst0 i v3 v2
+x0)).(or_intror (pr0 (THead (Flat Appl) x (THead (Bind b) u1 t3)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x (THead (Bind b) u1 t3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x (THead (Bind b)
+u1 t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O x0) t4)) (pr0_upsilon b H0 x x0 H13 u1 u2 H3 t3 t4 H5) (subst0_snd
+(Bind b) v3 (THead (Flat Appl) (lift (S O) O x0) t4) (THead (Flat Appl) (lift
+(S O) O v2) t4) i (subst0_fst v3 (lift (S O) O x0) (lift (S O) O v2) (s (Bind
+b) i) (subst0_lift_ge_s v2 x0 v3 i H14 O (le_O_n i) b) t4 (Flat Appl))
+u2)))))) H12)) (H2 v0 x i H11 v3 H8)) w1 H10)))) H9)) (\lambda (H9: (ex2 T
+(\lambda (t5: T).(eq T w1 (THead (Flat Appl) v1 t5))) (\lambda (t5:
+T).(subst0 (s (Flat Appl) i) v0 (THead (Bind b) u1 t3) t5)))).(ex2_ind T
+(\lambda (t5: T).(eq T w1 (THead (Flat Appl) v1 t5))) (\lambda (t5:
+T).(subst0 (s (Flat Appl) i) v0 (THead (Bind b) u1 t3) t5)) (or (pr0 w1
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda
+(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x: T).(\lambda (H10: (eq
+T w1 (THead (Flat Appl) v1 x))).(\lambda (H11: (subst0 (s (Flat Appl) i) v0
+(THead (Bind b) u1 t3) x)).(or3_ind (ex2 T (\lambda (u3: T).(eq T x (THead
+(Bind b) u3 t3))) (\lambda (u3: T).(subst0 (s (Flat Appl) i) v0 u1 u3))) (ex2
+T (\lambda (t5: T).(eq T x (THead (Bind b) u1 t5))) (\lambda (t5: T).(subst0
+(s (Bind b) (s (Flat Appl) i)) v0 t3 t5))) (ex3_2 T T (\lambda (u3:
+T).(\lambda (t5: T).(eq T x (THead (Bind b) u3 t5)))) (\lambda (u3:
+T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u1 u3))) (\lambda (_:
+T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 t5)))) (or
+(pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
+(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H12: (ex2 T
+(\lambda (u3: T).(eq T x (THead (Bind b) u3 t3))) (\lambda (u3: T).(subst0 (s
+(Flat Appl) i) v0 u1 u3)))).(ex2_ind T (\lambda (u3: T).(eq T x (THead (Bind
+b) u3 t3))) (\lambda (u3: T).(subst0 (s (Flat Appl) i) v0 u1 u3)) (or (pr0 w1
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda
+(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x0: T).(\lambda (H13: (eq
+T x (THead (Bind b) x0 t3))).(\lambda (H14: (subst0 (s (Flat Appl) i) v0 u1
+x0)).(let H15 \def (eq_ind T x (\lambda (t: T).(eq T w1 (THead (Flat Appl) v1
+t))) H10 (THead (Bind b) x0 t3) H13) in (eq_ind_r T (THead (Flat Appl) v1
+(THead (Bind b) x0 t3)) (\lambda (t: T).(or (pr0 t (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 t w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2))))) (or_ind (pr0 x0 u2) (ex2 T (\lambda (w2: T).(pr0 x0
+w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2 w2))) (or (pr0 (THead
+(Flat Appl) v1 (THead (Bind b) x0 t3)) (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1
+(THead (Bind b) x0 t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H16: (pr0 x0
+u2)).(or_introl (pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 t3)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 t3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2))) (pr0_upsilon b H0 v1 v2 H1 x0 u2 H16 t3 t4 H5))) (\lambda (H16: (ex2 T
+(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3
+u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0
+(s (Flat Appl) i) v3 u2 w2)) (or (pr0 (THead (Flat Appl) v1 (THead (Bind b)
+x0 t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 t3)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2)))) (\lambda (x1: T).(\lambda (H17: (pr0 x0 x1)).(\lambda
+(H18: (subst0 (s (Flat Appl) i) v3 u2 x1)).(or_intror (pr0 (THead (Flat Appl)
+v1 (THead (Bind b) x0 t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O)
+O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind
+b) x0 t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead
+(Flat Appl) v1 (THead (Bind b) x0 t3)) w2)) (\lambda (w2: T).(subst0 i v3
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead
+(Bind b) x1 (THead (Flat Appl) (lift (S O) O v2) t4)) (pr0_upsilon b H0 v1 v2
+H1 x0 x1 H17 t3 t4 H5) (subst0_fst v3 x1 u2 i H18 (THead (Flat Appl) (lift (S
+O) O v2) t4) (Bind b))))))) H16)) (H4 v0 x0 (s (Flat Appl) i) H14 v3 H8)) w1
+H15))))) H12)) (\lambda (H12: (ex2 T (\lambda (t5: T).(eq T x (THead (Bind b)
+u1 t5))) (\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3
+t5)))).(ex2_ind T (\lambda (t5: T).(eq T x (THead (Bind b) u1 t5))) (\lambda
+(t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 t5)) (or (pr0 w1 (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x0: T).(\lambda (H13: (eq T x
+(THead (Bind b) u1 x0))).(\lambda (H14: (subst0 (s (Bind b) (s (Flat Appl)
+i)) v0 t3 x0)).(let H15 \def (eq_ind T x (\lambda (t: T).(eq T w1 (THead
+(Flat Appl) v1 t))) H10 (THead (Bind b) u1 x0) H13) in (eq_ind_r T (THead
+(Flat Appl) v1 (THead (Bind b) u1 x0)) (\lambda (t: T).(or (pr0 t (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2))))) (or_ind (pr0 x0 t4) (ex2 T (\lambda (w2:
+T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4
+w2))) (or (pr0 (THead (Flat Appl) v1 (THead (Bind b) u1 x0)) (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) v1 (THead (Bind b) u1 x0)) w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
+(\lambda (H16: (pr0 x0 t4)).(or_introl (pr0 (THead (Flat Appl) v1 (THead
+(Bind b) u1 x0)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) u1
+x0)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4)) w2))) (pr0_upsilon b H0 v1 v2 H1 u1 u2 H3 x0 t4 H16)))
+(\lambda (H16: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0
+(s (Bind b) (s (Flat Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0
+x0 w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 w2))
+(or (pr0 (THead (Flat Appl) v1 (THead (Bind b) u1 x0)) (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) v1 (THead (Bind b) u1 x0)) w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
+(\lambda (x1: T).(\lambda (H17: (pr0 x0 x1)).(\lambda (H18: (subst0 (s (Bind
+b) (s (Flat Appl) i)) v3 t4 x1)).(or_intror (pr0 (THead (Flat Appl) v1 (THead
+(Bind b) u1 x0)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) u1
+x0)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat
+Appl) v1 (THead (Bind b) u1 x0)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) x1)) (pr0_upsilon b H0 v1 v2 H1 u1 u2 H3
+x0 x1 H17) (subst0_snd (Bind b) v3 (THead (Flat Appl) (lift (S O) O v2) x1)
+(THead (Flat Appl) (lift (S O) O v2) t4) i (subst0_snd (Flat Appl) v3 x1 t4
+(s (Bind b) i) H18 (lift (S O) O v2)) u2)))))) H16)) (H6 v0 x0 (s (Bind b) (s
+(Flat Appl) i)) H14 v3 H8)) w1 H15))))) H12)) (\lambda (H12: (ex3_2 T T
+(\lambda (u3: T).(\lambda (t5: T).(eq T x (THead (Bind b) u3 t5)))) (\lambda
+(u3: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u1 u3))) (\lambda (_:
+T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3
+t5))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda (t5: T).(eq T x (THead (Bind
+b) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u1
+u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i))
+v0 t3 t5))) (or (pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
+v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda
+(x0: T).(\lambda (x1: T).(\lambda (H13: (eq T x (THead (Bind b) x0
+x1))).(\lambda (H14: (subst0 (s (Flat Appl) i) v0 u1 x0)).(\lambda (H15:
+(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 x1)).(let H16 \def (eq_ind T x
+(\lambda (t: T).(eq T w1 (THead (Flat Appl) v1 t))) H10 (THead (Bind b) x0
+x1) H13) in (eq_ind_r T (THead (Flat Appl) v1 (THead (Bind b) x0 x1))
+(\lambda (t: T).(or (pr0 t (THead (Bind b) u2 (THead (Flat Appl) (lift (S O)
+O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))) (or_ind
+(pr0 x1 t4) (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s
+(Bind b) (s (Flat Appl) i)) v3 t4 w2))) (or (pr0 (THead (Flat Appl) v1 (THead
+(Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0
+x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4)) w2)))) (\lambda (H17: (pr0 x1 t4)).(or_ind (pr0 x0 u2)
+(ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl)
+i) v3 u2 w2))) (or (pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2)))) (\lambda (H18: (pr0 x0 u2)).(or_introl (pr0 (THead (Flat Appl) v1
+(THead (Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
+v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b)
+x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2))) (pr0_upsilon b H0 v1 v2 H1 x0 u2 H18 x1 t4
+H17))) (\lambda (H18: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
+T).(subst0 (s (Flat Appl) i) v3 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0
+w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2 w2)) (or (pr0 (THead
+(Flat Appl) v1 (THead (Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1
+(THead (Bind b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x2: T).(\lambda
+(H19: (pr0 x0 x2)).(\lambda (H20: (subst0 (s (Flat Appl) i) v3 u2
+x2)).(or_intror (pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind
+b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x2 (THead (Flat Appl) (lift
+(S O) O v2) t4)) (pr0_upsilon b H0 v1 v2 H1 x0 x2 H19 x1 t4 H17) (subst0_fst
+v3 x2 u2 i H20 (THead (Flat Appl) (lift (S O) O v2) t4) (Bind b))))))) H18))
+(H4 v0 x0 (s (Flat Appl) i) H14 v3 H8))) (\lambda (H17: (ex2 T (\lambda (w2:
+T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4
+w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s
+(Bind b) (s (Flat Appl) i)) v3 t4 w2)) (or (pr0 (THead (Flat Appl) v1 (THead
+(Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0
+x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4)) w2)))) (\lambda (x2: T).(\lambda (H18: (pr0 x1
+x2)).(\lambda (H19: (subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 x2)).(or_ind
+(pr0 x0 u2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s
+(Flat Appl) i) v3 u2 w2))) (or (pr0 (THead (Flat Appl) v1 (THead (Bind b) x0
+x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2)))) (\lambda (H20: (pr0 x0 u2)).(or_intror (pr0 (THead (Flat
+Appl) v1 (THead (Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead
+(Bind b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) v1 (THead (Bind b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) x2)) (pr0_upsilon b H0 v1 v2
+H1 x0 u2 H20 x1 x2 H18) (subst0_snd (Bind b) v3 (THead (Flat Appl) (lift (S
+O) O v2) x2) (THead (Flat Appl) (lift (S O) O v2) t4) i (subst0_snd (Flat
+Appl) v3 x2 t4 (s (Bind b) i) H19 (lift (S O) O v2)) u2)))) (\lambda (H20:
+(ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl)
+i) v3 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
+T).(subst0 (s (Flat Appl) i) v3 u2 w2)) (or (pr0 (THead (Flat Appl) v1 (THead
+(Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0
+x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4)) w2)))) (\lambda (x3: T).(\lambda (H21: (pr0 x0
+x3)).(\lambda (H22: (subst0 (s (Flat Appl) i) v3 u2 x3)).(or_intror (pr0
+(THead (Flat Appl) v1 (THead (Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl)
+v1 (THead (Bind b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2)) (THead (Bind b) x3 (THead (Flat Appl) (lift (S O) O v2) x2))
+(pr0_upsilon b H0 v1 v2 H1 x0 x3 H21 x1 x2 H18) (subst0_both v3 u2 x3 i H22
+(Bind b) (THead (Flat Appl) (lift (S O) O v2) t4) (THead (Flat Appl) (lift (S
+O) O v2) x2) (subst0_snd (Flat Appl) v3 x2 t4 (s (Bind b) i) H19 (lift (S O)
+O v2)))))))) H20)) (H4 v0 x0 (s (Flat Appl) i) H14 v3 H8))))) H17)) (H6 v0 x1
+(s (Bind b) (s (Flat Appl) i)) H15 v3 H8)) w1 H16))))))) H12))
+(subst0_gen_head (Bind b) v0 u1 t3 x (s (Flat Appl) i) H11))))) H9)) (\lambda
+(H9: (ex3_2 T T (\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead (Flat Appl)
+u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 i v0 v1 u3))) (\lambda (_:
+T).(\lambda (t5: T).(subst0 (s (Flat Appl) i) v0 (THead (Bind b) u1 t3)
+t5))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead
+(Flat Appl) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 i v0 v1 u3)))
+(\lambda (_: T).(\lambda (t5: T).(subst0 (s (Flat Appl) i) v0 (THead (Bind b)
+u1 t3) t5))) (or (pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
+v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda
+(x0: T).(\lambda (x1: T).(\lambda (H10: (eq T w1 (THead (Flat Appl) x0
+x1))).(\lambda (H11: (subst0 i v0 v1 x0)).(\lambda (H12: (subst0 (s (Flat
+Appl) i) v0 (THead (Bind b) u1 t3) x1)).(or3_ind (ex2 T (\lambda (u3: T).(eq
+T x1 (THead (Bind b) u3 t3))) (\lambda (u3: T).(subst0 (s (Flat Appl) i) v0
+u1 u3))) (ex2 T (\lambda (t5: T).(eq T x1 (THead (Bind b) u1 t5))) (\lambda
+(t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 t5))) (ex3_2 T T
+(\lambda (u3: T).(\lambda (t5: T).(eq T x1 (THead (Bind b) u3 t5)))) (\lambda
+(u3: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u1 u3))) (\lambda (_:
+T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 t5)))) (or
+(pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
+(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H13: (ex2 T
+(\lambda (u3: T).(eq T x1 (THead (Bind b) u3 t3))) (\lambda (u3: T).(subst0
+(s (Flat Appl) i) v0 u1 u3)))).(ex2_ind T (\lambda (u3: T).(eq T x1 (THead
+(Bind b) u3 t3))) (\lambda (u3: T).(subst0 (s (Flat Appl) i) v0 u1 u3)) (or
+(pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
+(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x: T).(\lambda
+(H14: (eq T x1 (THead (Bind b) x t3))).(\lambda (H15: (subst0 (s (Flat Appl)
+i) v0 u1 x)).(let H16 \def (eq_ind T x1 (\lambda (t: T).(eq T w1 (THead (Flat
+Appl) x0 t))) H10 (THead (Bind b) x t3) H14) in (eq_ind_r T (THead (Flat
+Appl) x0 (THead (Bind b) x t3)) (\lambda (t: T).(or (pr0 t (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 t
+w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4)) w2))))) (or_ind (pr0 x u2) (ex2 T (\lambda (w2:
+T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2 w2))) (or
+(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat
+Appl) x0 (THead (Bind b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H17:
+(pr0 x u2)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda
+(w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b)
+x t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2)))) (\lambda (H18: (pr0 x0 v2)).(or_introl (pr0 (THead (Flat
+Appl) x0 (THead (Bind b) x t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
+(Bind b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4)) w2))) (pr0_upsilon b H0 x0 v2 H18 x u2 H17
+t3 t4 H5))) (\lambda (H18: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
+T).(subst0 i v3 v2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda
+(w2: T).(subst0 i v3 v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x
+t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2)))) (\lambda (x2: T).(\lambda (H19: (pr0 x0 x2)).(\lambda
+(H20: (subst0 i v3 v2 x2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind
+b) x t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2
+T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0
+(THead (Bind b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O x2) t4)) (pr0_upsilon b H0 x0 x2 H19 x u2 H17 t3 t4
+H5) (subst0_snd (Bind b) v3 (THead (Flat Appl) (lift (S O) O x2) t4) (THead
+(Flat Appl) (lift (S O) O v2) t4) i (subst0_fst v3 (lift (S O) O x2) (lift (S
+O) O v2) (s (Bind b) i) (subst0_lift_ge_s v2 x2 v3 i H20 O (le_O_n i) b) t4
+(Flat Appl)) u2)))))) H18)) (H2 v0 x0 i H11 v3 H8))) (\lambda (H17: (ex2 T
+(\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2
+w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s
+(Flat Appl) i) v3 u2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x
+t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2)))) (\lambda (x2: T).(\lambda (H18: (pr0 x x2)).(\lambda
+(H19: (subst0 (s (Flat Appl) i) v3 u2 x2)).(or_ind (pr0 x0 v2) (ex2 T
+(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0
+(THead (Flat Appl) x0 (THead (Bind b) x t3)) (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl)
+x0 (THead (Bind b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H20: (pr0 x0
+v2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
+b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x2 (THead (Flat Appl) (lift
+(S O) O v2) t4)) (pr0_upsilon b H0 x0 v2 H20 x x2 H18 t3 t4 H5) (subst0_fst
+v3 x2 u2 i H19 (THead (Flat Appl) (lift (S O) O v2) t4) (Bind b))))) (\lambda
+(H20: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2
+w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3
+v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) x0 (THead (Bind b) x t3)) w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
+(\lambda (x3: T).(\lambda (H21: (pr0 x0 x3)).(\lambda (H22: (subst0 i v3 v2
+x3)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
+b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x2 (THead (Flat Appl) (lift
+(S O) O x3) t4)) (pr0_upsilon b H0 x0 x3 H21 x x2 H18 t3 t4 H5) (subst0_both
+v3 u2 x2 i H19 (Bind b) (THead (Flat Appl) (lift (S O) O v2) t4) (THead (Flat
+Appl) (lift (S O) O x3) t4) (subst0_fst v3 (lift (S O) O x3) (lift (S O) O
+v2) (s (Bind b) i) (subst0_lift_ge_s v2 x3 v3 i H22 O (le_O_n i) b) t4 (Flat
+Appl)))))))) H20)) (H2 v0 x0 i H11 v3 H8))))) H17)) (H4 v0 x (s (Flat Appl)
+i) H15 v3 H8)) w1 H16))))) H13)) (\lambda (H13: (ex2 T (\lambda (t5: T).(eq T
+x1 (THead (Bind b) u1 t5))) (\lambda (t5: T).(subst0 (s (Bind b) (s (Flat
+Appl) i)) v0 t3 t5)))).(ex2_ind T (\lambda (t5: T).(eq T x1 (THead (Bind b)
+u1 t5))) (\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 t5))
+(or (pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)))
+(ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x:
+T).(\lambda (H14: (eq T x1 (THead (Bind b) u1 x))).(\lambda (H15: (subst0 (s
+(Bind b) (s (Flat Appl) i)) v0 t3 x)).(let H16 \def (eq_ind T x1 (\lambda (t:
+T).(eq T w1 (THead (Flat Appl) x0 t))) H10 (THead (Bind b) u1 x) H14) in
+(eq_ind_r T (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (\lambda (t: T).(or
+(pr0 t (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
+(\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4)) w2))))) (or_ind (pr0 x t4) (ex2 T
+(\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat
+Appl) i)) v3 t4 w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x))
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda
+(w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2)))) (\lambda (H17: (pr0 x t4)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2:
+T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat
+Appl) x0 (THead (Bind b) u1 x)) (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
+(Bind b) u1 x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H18: (pr0 x0
+v2)).(or_introl (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2))) (pr0_upsilon b H0 x0 v2 H18 u1 u2 H3 x t4 H17))) (\lambda (H18: (ex2 T
+(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2
+w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3
+v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
+(\lambda (x2: T).(\lambda (H19: (pr0 x0 x2)).(\lambda (H20: (subst0 i v3 v2
+x2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
+b) u1 x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O x2) t4)) (pr0_upsilon b H0 x0 x2 H19 u1 u2 H3 x t4 H17) (subst0_snd
+(Bind b) v3 (THead (Flat Appl) (lift (S O) O x2) t4) (THead (Flat Appl) (lift
+(S O) O v2) t4) i (subst0_fst v3 (lift (S O) O x2) (lift (S O) O v2) (s (Bind
+b) i) (subst0_lift_ge_s v2 x2 v3 i H20 O (le_O_n i) b) t4 (Flat Appl))
+u2)))))) H18)) (H2 v0 x0 i H11 v3 H8))) (\lambda (H17: (ex2 T (\lambda (w2:
+T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4
+w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s
+(Bind b) (s (Flat Appl) i)) v3 t4 w2)) (or (pr0 (THead (Flat Appl) x0 (THead
+(Bind b) u1 x)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)))
+(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x))
+w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4)) w2)))) (\lambda (x2: T).(\lambda (H18: (pr0 x
+x2)).(\lambda (H19: (subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 x2)).(or_ind
+(pr0 x0 v2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i
+v3 v2 w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2)))) (\lambda (H20: (pr0 x0 v2)).(or_intror (pr0 (THead (Flat Appl) x0
+(THead (Bind b) u1 x)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
+v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b)
+u1 x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead
+(Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2: T).(subst0 i v3
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) x2)) (pr0_upsilon b H0 x0 v2
+H20 u1 u2 H3 x x2 H18) (subst0_snd (Bind b) v3 (THead (Flat Appl) (lift (S O)
+O v2) x2) (THead (Flat Appl) (lift (S O) O v2) t4) i (subst0_snd (Flat Appl)
+v3 x2 t4 (s (Bind b) i) H19 (lift (S O) O v2)) u2)))) (\lambda (H20: (ex2 T
+(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2
+w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3
+v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
+(\lambda (x3: T).(\lambda (H21: (pr0 x0 x3)).(\lambda (H22: (subst0 i v3 v2
+x3)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
+b) u1 x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O x3) x2)) (pr0_upsilon b H0 x0 x3 H21 u1 u2 H3 x x2 H18) (subst0_snd
+(Bind b) v3 (THead (Flat Appl) (lift (S O) O x3) x2) (THead (Flat Appl) (lift
+(S O) O v2) t4) i (subst0_both v3 (lift (S O) O v2) (lift (S O) O x3) (s
+(Bind b) i) (subst0_lift_ge_s v2 x3 v3 i H22 O (le_O_n i) b) (Flat Appl) t4
+x2 H19) u2)))))) H20)) (H2 v0 x0 i H11 v3 H8))))) H17)) (H6 v0 x (s (Bind b)
+(s (Flat Appl) i)) H15 v3 H8)) w1 H16))))) H13)) (\lambda (H13: (ex3_2 T T
+(\lambda (u3: T).(\lambda (t5: T).(eq T x1 (THead (Bind b) u3 t5)))) (\lambda
+(u3: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u1 u3))) (\lambda (_:
+T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3
+t5))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda (t5: T).(eq T x1 (THead
+(Bind b) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 (s (Flat Appl) i)
+v0 u1 u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat
+Appl) i)) v0 t3 t5))) (or (pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2)))) (\lambda (x2: T).(\lambda (x3: T).(\lambda (H14: (eq T x1 (THead (Bind
+b) x2 x3))).(\lambda (H15: (subst0 (s (Flat Appl) i) v0 u1 x2)).(\lambda
+(H16: (subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 x3)).(let H17 \def (eq_ind
+T x1 (\lambda (t: T).(eq T w1 (THead (Flat Appl) x0 t))) H10 (THead (Bind b)
+x2 x3) H14) in (eq_ind_r T (THead (Flat Appl) x0 (THead (Bind b) x2 x3))
+(\lambda (t: T).(or (pr0 t (THead (Bind b) u2 (THead (Flat Appl) (lift (S O)
+O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))) (or_ind
+(pr0 x3 t4) (ex2 T (\lambda (w2: T).(pr0 x3 w2)) (\lambda (w2: T).(subst0 (s
+(Bind b) (s (Flat Appl) i)) v3 t4 w2))) (or (pr0 (THead (Flat Appl) x0 (THead
+(Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2
+x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4)) w2)))) (\lambda (H18: (pr0 x3 t4)).(or_ind (pr0 x2 u2)
+(ex2 T (\lambda (w2: T).(pr0 x2 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl)
+i) v3 u2 w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2)))) (\lambda (H19: (pr0 x2 u2)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2:
+T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat
+Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
+(Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H20: (pr0 x0
+v2)).(or_introl (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2))) (pr0_upsilon b H0 x0 v2 H20 x2 u2 H19 x3 t4 H18))) (\lambda (H20: (ex2
+T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2
+w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3
+v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind
+b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
+(\lambda (x: T).(\lambda (H21: (pr0 x0 x)).(\lambda (H22: (subst0 i v3 v2
+x)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
+b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O x) t4)) (pr0_upsilon b H0 x0 x H21 x2 u2 H19 x3 t4 H18) (subst0_snd
+(Bind b) v3 (THead (Flat Appl) (lift (S O) O x) t4) (THead (Flat Appl) (lift
+(S O) O v2) t4) i (subst0_fst v3 (lift (S O) O x) (lift (S O) O v2) (s (Bind
+b) i) (subst0_lift_ge_s v2 x v3 i H22 O (le_O_n i) b) t4 (Flat Appl))
+u2)))))) H20)) (H2 v0 x0 i H11 v3 H8))) (\lambda (H19: (ex2 T (\lambda (w2:
+T).(pr0 x2 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2
+w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x2 w2)) (\lambda (w2: T).(subst0 (s
+(Flat Appl) i) v3 u2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2
+x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2)))) (\lambda (x: T).(\lambda (H20: (pr0 x2 x)).(\lambda
+(H21: (subst0 (s (Flat Appl) i) v3 u2 x)).(or_ind (pr0 x0 v2) (ex2 T (\lambda
+(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead
+(Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0
+(THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H22: (pr0 x0
+v2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
+b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x (THead (Flat Appl) (lift
+(S O) O v2) t4)) (pr0_upsilon b H0 x0 v2 H22 x2 x H20 x3 t4 H18) (subst0_fst
+v3 x u2 i H21 (THead (Flat Appl) (lift (S O) O v2) t4) (Bind b))))) (\lambda
+(H22: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2
+w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3
+v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind
+b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
+(\lambda (x4: T).(\lambda (H23: (pr0 x0 x4)).(\lambda (H24: (subst0 i v3 v2
+x4)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
+b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x (THead (Flat Appl) (lift
+(S O) O x4) t4)) (pr0_upsilon b H0 x0 x4 H23 x2 x H20 x3 t4 H18) (subst0_both
+v3 u2 x i H21 (Bind b) (THead (Flat Appl) (lift (S O) O v2) t4) (THead (Flat
+Appl) (lift (S O) O x4) t4) (subst0_fst v3 (lift (S O) O x4) (lift (S O) O
+v2) (s (Bind b) i) (subst0_lift_ge_s v2 x4 v3 i H24 O (le_O_n i) b) t4 (Flat
+Appl)))))))) H22)) (H2 v0 x0 i H11 v3 H8))))) H19)) (H4 v0 x2 (s (Flat Appl)
+i) H15 v3 H8))) (\lambda (H18: (ex2 T (\lambda (w2: T).(pr0 x3 w2)) (\lambda
+(w2: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 w2)))).(ex2_ind T
+(\lambda (w2: T).(pr0 x3 w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat
+Appl) i)) v3 t4 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3))
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda
+(w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2)))) (\lambda (x: T).(\lambda (H19: (pr0 x3 x)).(\lambda (H20: (subst0 (s
+(Bind b) (s (Flat Appl) i)) v3 t4 x)).(or_ind (pr0 x2 u2) (ex2 T (\lambda
+(w2: T).(pr0 x2 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2 w2)))
+(or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
+(\lambda (H21: (pr0 x2 u2)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2: T).(pr0
+x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat Appl) x0
+(THead (Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
+v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b)
+x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H22: (pr0 x0 v2)).(or_intror
+(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat
+Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))) (ex_intro2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+x)) (pr0_upsilon b H0 x0 v2 H22 x2 u2 H21 x3 x H19) (subst0_snd (Bind b) v3
+(THead (Flat Appl) (lift (S O) O v2) x) (THead (Flat Appl) (lift (S O) O v2)
+t4) i (subst0_snd (Flat Appl) v3 x t4 (s (Bind b) i) H20 (lift (S O) O v2))
+u2)))) (\lambda (H22: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
+T).(subst0 i v3 v2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda
+(w2: T).(subst0 i v3 v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b)
+x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2)))) (\lambda (x4: T).(\lambda (H23: (pr0 x0 x4)).(\lambda
+(H24: (subst0 i v3 v2 x4)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind
+b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2
+T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0
+(THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O x4) x)) (pr0_upsilon b H0 x0 x4 H23 x2 u2 H21 x3 x
+H19) (subst0_snd (Bind b) v3 (THead (Flat Appl) (lift (S O) O x4) x) (THead
+(Flat Appl) (lift (S O) O v2) t4) i (subst0_both v3 (lift (S O) O v2) (lift
+(S O) O x4) (s (Bind b) i) (subst0_lift_ge_s v2 x4 v3 i H24 O (le_O_n i) b)
+(Flat Appl) t4 x H20) u2)))))) H22)) (H2 v0 x0 i H11 v3 H8))) (\lambda (H21:
+(ex2 T (\lambda (w2: T).(pr0 x2 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl)
+i) v3 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x2 w2)) (\lambda (w2:
+T).(subst0 (s (Flat Appl) i) v3 u2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead
+(Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2
+x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4)) w2)))) (\lambda (x4: T).(\lambda (H22: (pr0 x2
+x4)).(\lambda (H23: (subst0 (s (Flat Appl) i) v3 u2 x4)).(or_ind (pr0 x0 v2)
+(ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)))
+(or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
+(\lambda (H24: (pr0 x0 v2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead
+(Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2
+x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat
+Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x4
+(THead (Flat Appl) (lift (S O) O v2) x)) (pr0_upsilon b H0 x0 v2 H24 x2 x4
+H22 x3 x H19) (subst0_both v3 u2 x4 i H23 (Bind b) (THead (Flat Appl) (lift
+(S O) O v2) t4) (THead (Flat Appl) (lift (S O) O v2) x) (subst0_snd (Flat
+Appl) v3 x t4 (s (Bind b) i) H20 (lift (S O) O v2)))))) (\lambda (H24: (ex2 T
+(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2
+w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3
+v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind
+b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
+(\lambda (x5: T).(\lambda (H25: (pr0 x0 x5)).(\lambda (H26: (subst0 i v3 v2
+x5)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
+b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x4 (THead (Flat Appl) (lift
+(S O) O x5) x)) (pr0_upsilon b H0 x0 x5 H25 x2 x4 H22 x3 x H19) (subst0_both
+v3 u2 x4 i H23 (Bind b) (THead (Flat Appl) (lift (S O) O v2) t4) (THead (Flat
+Appl) (lift (S O) O x5) x) (subst0_both v3 (lift (S O) O v2) (lift (S O) O
+x5) (s (Bind b) i) (subst0_lift_ge_s v2 x5 v3 i H26 O (le_O_n i) b) (Flat
+Appl) t4 x H20))))))) H24)) (H2 v0 x0 i H11 v3 H8))))) H21)) (H4 v0 x2 (s
+(Flat Appl) i) H15 v3 H8))))) H18)) (H6 v0 x3 (s (Bind b) (s (Flat Appl) i))
+H16 v3 H8)) w1 H17))))))) H13)) (subst0_gen_head (Bind b) v0 u1 t3 x1 (s
+(Flat Appl) i) H12))))))) H9)) (subst0_gen_head (Flat Appl) v0 v1 (THead
+(Bind b) u1 t3) w1 i H7)))))))))))))))))))))) (\lambda (u1: T).(\lambda (u2:
+T).(\lambda (H0: (pr0 u1 u2)).(\lambda (H1: ((\forall (v1: T).(\forall (w1:
+T).(\forall (i: nat).((subst0 i v1 u1 w1) \to (\forall (v2: T).((pr0 v1 v2)
+\to (or (pr0 w1 u2) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v2 u2 w2)))))))))))).(\lambda (t3: T).(\lambda (t4: T).(\lambda
+(H2: (pr0 t3 t4)).(\lambda (H3: ((\forall (v1: T).(\forall (w1: T).(\forall
+(i: nat).((subst0 i v1 t3 w1) \to (\forall (v2: T).((pr0 v1 v2) \to (or (pr0
+w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4
+w2)))))))))))).(\lambda (w: T).(\lambda (H4: (subst0 O u2 t4 w)).(\lambda
+(v1: T).(\lambda (w1: T).(\lambda (i: nat).(\lambda (H5: (subst0 i v1 (THead
+(Bind Abbr) u1 t3) w1)).(\lambda (v2: T).(\lambda (H6: (pr0 v1 v2)).(or3_ind
+(ex2 T (\lambda (u3: T).(eq T w1 (THead (Bind Abbr) u3 t3))) (\lambda (u3:
+T).(subst0 i v1 u1 u3))) (ex2 T (\lambda (t5: T).(eq T w1 (THead (Bind Abbr)
+u1 t5))) (\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3 t5))) (ex3_2 T T
+(\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead (Bind Abbr) u3 t5))))
+(\lambda (u3: T).(\lambda (_: T).(subst0 i v1 u1 u3))) (\lambda (_:
+T).(\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3 t5)))) (or (pr0 w1 (THead
+(Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (H7: (ex2 T (\lambda
+(u3: T).(eq T w1 (THead (Bind Abbr) u3 t3))) (\lambda (u3: T).(subst0 i v1 u1
+u3)))).(ex2_ind T (\lambda (u3: T).(eq T w1 (THead (Bind Abbr) u3 t3)))
+(\lambda (u3: T).(subst0 i v1 u1 u3)) (or (pr0 w1 (THead (Bind Abbr) u2 w))
+(ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 (THead
+(Bind Abbr) u2 w) w2)))) (\lambda (x: T).(\lambda (H8: (eq T w1 (THead (Bind
+Abbr) x t3))).(\lambda (H9: (subst0 i v1 u1 x)).(eq_ind_r T (THead (Bind
+Abbr) x t3) (\lambda (t: T).(or (pr0 t (THead (Bind Abbr) u2 w)) (ex2 T
+(\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr)
+u2 w) w2))))) (or_ind (pr0 x u2) (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda
+(w2: T).(subst0 i v2 u2 w2))) (or (pr0 (THead (Bind Abbr) x t3) (THead (Bind
+Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2))
+(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (H10:
+(pr0 x u2)).(or_introl (pr0 (THead (Bind Abbr) x t3) (THead (Bind Abbr) u2
+w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2)) (\lambda (w2:
+T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (pr0_delta x u2 H10 t3 t4 H2 w
+H4))) (\lambda (H10: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2:
+T).(subst0 i v2 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda
+(w2: T).(subst0 i v2 u2 w2)) (or (pr0 (THead (Bind Abbr) x t3) (THead (Bind
+Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2))
+(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x0:
+T).(\lambda (H11: (pr0 x x0)).(\lambda (H12: (subst0 i v2 u2 x0)).(ex2_ind T
+(\lambda (t: T).(subst0 O x0 t4 t)) (\lambda (t: T).(subst0 (S (plus i O)) v2
+w t)) (or (pr0 (THead (Bind Abbr) x t3) (THead (Bind Abbr) u2 w)) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2)) (\lambda (w2: T).(subst0
+i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x1: T).(\lambda (H13: (subst0
+O x0 t4 x1)).(\lambda (H14: (subst0 (S (plus i O)) v2 w x1)).(let H15 \def
+(f_equal nat nat S (plus i O) i (sym_eq nat i (plus i O) (plus_n_O i))) in
+(let H16 \def (eq_ind nat (S (plus i O)) (\lambda (n: nat).(subst0 n v2 w
+x1)) H14 (S i) H15) in (or_intror (pr0 (THead (Bind Abbr) x t3) (THead (Bind
+Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2))
+(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (ex_intro2 T
+(\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2)) (\lambda (w2: T).(subst0
+i v2 (THead (Bind Abbr) u2 w) w2)) (THead (Bind Abbr) x0 x1) (pr0_delta x x0
+H11 t3 t4 H2 x1 H13) (subst0_both v2 u2 x0 i H12 (Bind Abbr) w x1 H16))))))))
+(subst0_subst0_back t4 w u2 O H4 x0 v2 i H12))))) H10)) (H1 v1 x i H9 v2 H6))
+w1 H8)))) H7)) (\lambda (H7: (ex2 T (\lambda (t5: T).(eq T w1 (THead (Bind
+Abbr) u1 t5))) (\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3
+t5)))).(ex2_ind T (\lambda (t5: T).(eq T w1 (THead (Bind Abbr) u1 t5)))
+(\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3 t5)) (or (pr0 w1 (THead
+(Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x: T).(\lambda (H8:
+(eq T w1 (THead (Bind Abbr) u1 x))).(\lambda (H9: (subst0 (s (Bind Abbr) i)
+v1 t3 x)).(eq_ind_r T (THead (Bind Abbr) u1 x) (\lambda (t: T).(or (pr0 t
+(THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2:
+T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))))) (or_ind (pr0 x t4) (ex2 T
+(\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind Abbr) i) v2 t4
+w2))) (or (pr0 (THead (Bind Abbr) u1 x) (THead (Bind Abbr) u2 w)) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Bind Abbr) u1 x) w2)) (\lambda (w2: T).(subst0
+i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (H10: (pr0 x t4)).(or_introl
+(pr0 (THead (Bind Abbr) u1 x) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Bind Abbr) u1 x) w2)) (\lambda (w2: T).(subst0 i v2 (THead
+(Bind Abbr) u2 w) w2))) (pr0_delta u1 u2 H0 x t4 H10 w H4))) (\lambda (H10:
+(ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind Abbr)
+i) v2 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2:
+T).(subst0 (s (Bind Abbr) i) v2 t4 w2)) (or (pr0 (THead (Bind Abbr) u1 x)
+(THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) u1
+x) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))))
+(\lambda (x0: T).(\lambda (H11: (pr0 x x0)).(\lambda (H12: (subst0 (s (Bind
+Abbr) i) v2 t4 x0)).(ex2_ind T (\lambda (t: T).(subst0 O u2 x0 t)) (\lambda
+(t: T).(subst0 (s (Bind Abbr) i) v2 w t)) (or (pr0 (THead (Bind Abbr) u1 x)
+(THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) u1
+x) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))))
+(\lambda (x1: T).(\lambda (H13: (subst0 O u2 x0 x1)).(\lambda (H14: (subst0
+(s (Bind Abbr) i) v2 w x1)).(or_intror (pr0 (THead (Bind Abbr) u1 x) (THead
+(Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) u1 x) w2))
+(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (ex_intro2 T
+(\lambda (w2: T).(pr0 (THead (Bind Abbr) u1 x) w2)) (\lambda (w2: T).(subst0
+i v2 (THead (Bind Abbr) u2 w) w2)) (THead (Bind Abbr) u2 x1) (pr0_delta u1 u2
+H0 x x0 H11 x1 H13) (subst0_snd (Bind Abbr) v2 x1 w i H14 u2))))))
+(subst0_confluence_neq t4 x0 v2 (s (Bind Abbr) i) H12 w u2 O H4 (sym_not_eq
+nat O (S i) (O_S i))))))) H10)) (H3 v1 x (s (Bind Abbr) i) H9 v2 H6)) w1
+H8)))) H7)) (\lambda (H7: (ex3_2 T T (\lambda (u3: T).(\lambda (t5: T).(eq T
+w1 (THead (Bind Abbr) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 i v1
+u1 u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3
+t5))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead
+(Bind Abbr) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 i v1 u1 u3)))
+(\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3 t5))) (or
+(pr0 w1 (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 w1 w2))
+(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x0:
+T).(\lambda (x1: T).(\lambda (H8: (eq T w1 (THead (Bind Abbr) x0
+x1))).(\lambda (H9: (subst0 i v1 u1 x0)).(\lambda (H10: (subst0 (s (Bind
+Abbr) i) v1 t3 x1)).(eq_ind_r T (THead (Bind Abbr) x0 x1) (\lambda (t: T).(or
+(pr0 t (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda
+(w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))))) (or_ind (pr0 x1 t4)
+(ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s (Bind Abbr)
+i) v2 t4 w2))) (or (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w))
+(ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2:
+T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (H11: (pr0 x1
+t4)).(or_ind (pr0 x0 u2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
+T).(subst0 i v2 u2 w2))) (or (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind
+Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2))
+(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (H12:
+(pr0 x0 u2)).(or_introl (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2
+w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2:
+T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (pr0_delta x0 u2 H12 x1 t4 H11
+w H4))) (\lambda (H12: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
+T).(subst0 i v2 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda
+(w2: T).(subst0 i v2 u2 w2)) (or (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind
+Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2))
+(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x:
+T).(\lambda (H13: (pr0 x0 x)).(\lambda (H14: (subst0 i v2 u2 x)).(ex2_ind T
+(\lambda (t: T).(subst0 O x t4 t)) (\lambda (t: T).(subst0 (S (plus i O)) v2
+w t)) (or (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0
+i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x2: T).(\lambda (H15: (subst0
+O x t4 x2)).(\lambda (H16: (subst0 (S (plus i O)) v2 w x2)).(let H17 \def
+(f_equal nat nat S (plus i O) i (sym_eq nat i (plus i O) (plus_n_O i))) in
+(let H18 \def (eq_ind nat (S (plus i O)) (\lambda (n: nat).(subst0 n v2 w
+x2)) H16 (S i) H17) in (or_intror (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind
+Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2))
+(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (ex_intro2 T
+(\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0
+i v2 (THead (Bind Abbr) u2 w) w2)) (THead (Bind Abbr) x x2) (pr0_delta x0 x
+H13 x1 t4 H11 x2 H15) (subst0_both v2 u2 x i H14 (Bind Abbr) w x2 H18))))))))
+(subst0_subst0_back t4 w u2 O H4 x v2 i H14))))) H12)) (H1 v1 x0 i H9 v2
+H6))) (\lambda (H11: (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2:
+T).(subst0 (s (Bind Abbr) i) v2 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x1
+w2)) (\lambda (w2: T).(subst0 (s (Bind Abbr) i) v2 t4 w2)) (or (pr0 (THead
+(Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0
+(THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind
+Abbr) u2 w) w2)))) (\lambda (x: T).(\lambda (H12: (pr0 x1 x)).(\lambda (H13:
+(subst0 (s (Bind Abbr) i) v2 t4 x)).(or_ind (pr0 x0 u2) (ex2 T (\lambda (w2:
+T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 u2 w2))) (or (pr0 (THead (Bind
+Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead
+(Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2
+w) w2)))) (\lambda (H14: (pr0 x0 u2)).(ex2_ind T (\lambda (t: T).(subst0 O u2
+x t)) (\lambda (t: T).(subst0 (s (Bind Abbr) i) v2 w t)) (or (pr0 (THead
+(Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0
+(THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind
+Abbr) u2 w) w2)))) (\lambda (x2: T).(\lambda (H15: (subst0 O u2 x
+x2)).(\lambda (H16: (subst0 (s (Bind Abbr) i) v2 w x2)).(or_intror (pr0
+(THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead
+(Bind Abbr) u2 w) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr)
+x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))
+(THead (Bind Abbr) u2 x2) (pr0_delta x0 u2 H14 x1 x H12 x2 H15) (subst0_snd
+(Bind Abbr) v2 x2 w i H16 u2)))))) (subst0_confluence_neq t4 x v2 (s (Bind
+Abbr) i) H13 w u2 O H4 (sym_not_eq nat O (S i) (O_S i))))) (\lambda (H14:
+(ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 u2
+w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2
+u2 w2)) (or (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0
+i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x2: T).(\lambda (H15: (pr0 x0
+x2)).(\lambda (H16: (subst0 i v2 u2 x2)).(ex2_ind T (\lambda (t: T).(subst0 O
+x2 t4 t)) (\lambda (t: T).(subst0 (S (plus i O)) v2 w t)) (or (pr0 (THead
+(Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0
+(THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind
+Abbr) u2 w) w2)))) (\lambda (x3: T).(\lambda (H17: (subst0 O x2 t4
+x3)).(\lambda (H18: (subst0 (S (plus i O)) v2 w x3)).(let H19 \def (f_equal
+nat nat S (plus i O) i (sym_eq nat i (plus i O) (plus_n_O i))) in (let H20
+\def (eq_ind nat (S (plus i O)) (\lambda (n: nat).(subst0 n v2 w x3)) H18 (S
+i) H19) in (ex2_ind T (\lambda (t: T).(subst0 (s (Bind Abbr) i) v2 x3 t))
+(\lambda (t: T).(subst0 O x2 x t)) (or (pr0 (THead (Bind Abbr) x0 x1) (THead
+(Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1)
+w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda
+(x4: T).(\lambda (H21: (subst0 (s (Bind Abbr) i) v2 x3 x4)).(\lambda (H22:
+(subst0 O x2 x x4)).(or_intror (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind
+Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2))
+(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (ex_intro2 T
+(\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0
+i v2 (THead (Bind Abbr) u2 w) w2)) (THead (Bind Abbr) x2 x4) (pr0_delta x0 x2
+H15 x1 x H12 x4 H22) (subst0_both v2 u2 x2 i H16 (Bind Abbr) w x4
+(subst0_trans x3 w v2 (s (Bind Abbr) i) H20 x4 H21)))))))
+(subst0_confluence_neq t4 x3 x2 O H17 x v2 (s (Bind Abbr) i) H13 (O_S
+i)))))))) (subst0_subst0_back t4 w u2 O H4 x2 v2 i H16))))) H14)) (H1 v1 x0 i
+H9 v2 H6))))) H11)) (H3 v1 x1 (s (Bind Abbr) i) H10 v2 H6)) w1 H8)))))) H7))
+(subst0_gen_head (Bind Abbr) v1 u1 t3 w1 i H5)))))))))))))))))) (\lambda (b:
+B).(\lambda (H0: (not (eq B b Abst))).(\lambda (t3: T).(\lambda (t4:
+T).(\lambda (H1: (pr0 t3 t4)).(\lambda (H2: ((\forall (v1: T).(\forall (w1:
+T).(\forall (i: nat).((subst0 i v1 t3 w1) \to (\forall (v2: T).((pr0 v1 v2)
+\to (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v2 t4 w2)))))))))))).(\lambda (u: T).(\lambda (v1: T).(\lambda
+(w1: T).(\lambda (i: nat).(\lambda (H3: (subst0 i v1 (THead (Bind b) u (lift
+(S O) O t3)) w1)).(\lambda (v2: T).(\lambda (H4: (pr0 v1 v2)).(or3_ind (ex2 T
+(\lambda (u2: T).(eq T w1 (THead (Bind b) u2 (lift (S O) O t3)))) (\lambda
+(u2: T).(subst0 i v1 u u2))) (ex2 T (\lambda (t5: T).(eq T w1 (THead (Bind b)
+u t5))) (\lambda (t5: T).(subst0 (s (Bind b) i) v1 (lift (S O) O t3) t5)))
+(ex3_2 T T (\lambda (u2: T).(\lambda (t5: T).(eq T w1 (THead (Bind b) u2
+t5)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_:
+T).(\lambda (t5: T).(subst0 (s (Bind b) i) v1 (lift (S O) O t3) t5)))) (or
+(pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i
+v2 t4 w2)))) (\lambda (H5: (ex2 T (\lambda (u2: T).(eq T w1 (THead (Bind b)
+u2 (lift (S O) O t3)))) (\lambda (u2: T).(subst0 i v1 u u2)))).(ex2_ind T
+(\lambda (u2: T).(eq T w1 (THead (Bind b) u2 (lift (S O) O t3)))) (\lambda
+(u2: T).(subst0 i v1 u u2)) (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1
+w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (x: T).(\lambda (H6:
+(eq T w1 (THead (Bind b) x (lift (S O) O t3)))).(\lambda (_: (subst0 i v1 u
+x)).(eq_ind_r T (THead (Bind b) x (lift (S O) O t3)) (\lambda (t: T).(or (pr0
+t t4) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 t4
+w2))))) (or_introl (pr0 (THead (Bind b) x (lift (S O) O t3)) t4) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Bind b) x (lift (S O) O t3)) w2)) (\lambda (w2:
+T).(subst0 i v2 t4 w2))) (pr0_zeta b H0 t3 t4 H1 x)) w1 H6)))) H5)) (\lambda
+(H5: (ex2 T (\lambda (t5: T).(eq T w1 (THead (Bind b) u t5))) (\lambda (t5:
+T).(subst0 (s (Bind b) i) v1 (lift (S O) O t3) t5)))).(ex2_ind T (\lambda
+(t5: T).(eq T w1 (THead (Bind b) u t5))) (\lambda (t5: T).(subst0 (s (Bind b)
+i) v1 (lift (S O) O t3) t5)) (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1
+w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (x: T).(\lambda (H6:
+(eq T w1 (THead (Bind b) u x))).(\lambda (H7: (subst0 (s (Bind b) i) v1 (lift
+(S O) O t3) x)).(lt_le_e (s (Bind b) i) (S O) (or (pr0 w1 t4) (ex2 T (\lambda
+(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (H8:
+(lt (s (Bind b) i) (S O))).(subst0_gen_lift_false t3 v1 x (S O) O (s (Bind b)
+i) (le_O_n (s (Bind b) i)) H8 H7 (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0
+w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))))) (\lambda (Hle: (le (S O) (s
+(Bind b) i))).(let H_x \def (subst0_gen_lift_ge v1 t3 x (s (Bind b) i) (S O)
+O H7 Hle) in (let H8 \def H_x in (ex2_ind T (\lambda (t5: T).(eq T x (lift (S
+O) O t5))) (\lambda (t5: T).(subst0 (minus i O) v1 t3 t5)) (or (pr0 w1 t4)
+(ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))))
+(\lambda (x0: T).(\lambda (H9: (eq T x (lift (S O) O x0))).(\lambda (H10:
+(subst0 (minus i O) v1 t3 x0)).(let H11 \def (eq_ind T x (\lambda (t: T).(eq
+T w1 (THead (Bind b) u t))) H6 (lift (S O) O x0) H9) in (eq_ind_r T (THead
+(Bind b) u (lift (S O) O x0)) (\lambda (t: T).(or (pr0 t t4) (ex2 T (\lambda
+(w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))))) (let H12 \def
+(eq_ind_r nat (minus i O) (\lambda (n: nat).(subst0 n v1 t3 x0)) H10 i
+(minus_n_O i)) in (or_ind (pr0 x0 t4) (ex2 T (\lambda (w2: T).(pr0 x0 w2))
+(\lambda (w2: T).(subst0 i v2 t4 w2))) (or (pr0 (THead (Bind b) u (lift (S O)
+O x0)) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind b) u (lift (S O) O x0))
+w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (H13: (pr0 x0
+t4)).(or_introl (pr0 (THead (Bind b) u (lift (S O) O x0)) t4) (ex2 T (\lambda
+(w2: T).(pr0 (THead (Bind b) u (lift (S O) O x0)) w2)) (\lambda (w2:
+T).(subst0 i v2 t4 w2))) (pr0_zeta b H0 x0 t4 H13 u))) (\lambda (H13: (ex2 T
+(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 t4
+w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2
+t4 w2)) (or (pr0 (THead (Bind b) u (lift (S O) O x0)) t4) (ex2 T (\lambda
+(w2: T).(pr0 (THead (Bind b) u (lift (S O) O x0)) w2)) (\lambda (w2:
+T).(subst0 i v2 t4 w2)))) (\lambda (x1: T).(\lambda (H14: (pr0 x0
+x1)).(\lambda (H15: (subst0 i v2 t4 x1)).(or_intror (pr0 (THead (Bind b) u
+(lift (S O) O x0)) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind b) u (lift
+(S O) O x0)) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (ex_intro2 T
+(\lambda (w2: T).(pr0 (THead (Bind b) u (lift (S O) O x0)) w2)) (\lambda (w2:
+T).(subst0 i v2 t4 w2)) x1 (pr0_zeta b H0 x0 x1 H14 u) H15))))) H13)) (H2 v1
+x0 i H12 v2 H4))) w1 H11))))) H8)))))))) H5)) (\lambda (H5: (ex3_2 T T
+(\lambda (u2: T).(\lambda (t5: T).(eq T w1 (THead (Bind b) u2 t5)))) (\lambda
+(u2: T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_: T).(\lambda (t5:
+T).(subst0 (s (Bind b) i) v1 (lift (S O) O t3) t5))))).(ex3_2_ind T T
+(\lambda (u2: T).(\lambda (t5: T).(eq T w1 (THead (Bind b) u2 t5)))) (\lambda
+(u2: T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_: T).(\lambda (t5:
+T).(subst0 (s (Bind b) i) v1 (lift (S O) O t3) t5))) (or (pr0 w1 t4) (ex2 T
+(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))))
+(\lambda (x0: T).(\lambda (x1: T).(\lambda (H6: (eq T w1 (THead (Bind b) x0
+x1))).(\lambda (_: (subst0 i v1 u x0)).(\lambda (H8: (subst0 (s (Bind b) i)
+v1 (lift (S O) O t3) x1)).(lt_le_e (s (Bind b) i) (S O) (or (pr0 w1 t4) (ex2
+T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))))
+(\lambda (H9: (lt (s (Bind b) i) (S O))).(subst0_gen_lift_false t3 v1 x1 (S
+O) O (s (Bind b) i) (le_O_n (s (Bind b) i)) H9 H8 (or (pr0 w1 t4) (ex2 T
+(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))))))
+(\lambda (Hle: (le (S O) (s (Bind b) i))).(let H_x \def (subst0_gen_lift_ge
+v1 t3 x1 (s (Bind b) i) (S O) O H8 Hle) in (let H9 \def H_x in (ex2_ind T
+(\lambda (t5: T).(eq T x1 (lift (S O) O t5))) (\lambda (t5: T).(subst0 (minus
+i O) v1 t3 t5)) (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda
+(w2: T).(subst0 i v2 t4 w2)))) (\lambda (x: T).(\lambda (H10: (eq T x1 (lift
+(S O) O x))).(\lambda (H11: (subst0 (minus i O) v1 t3 x)).(let H12 \def
+(eq_ind T x1 (\lambda (t: T).(eq T w1 (THead (Bind b) x0 t))) H6 (lift (S O)
+O x) H10) in (eq_ind_r T (THead (Bind b) x0 (lift (S O) O x)) (\lambda (t:
+T).(or (pr0 t t4) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2:
+T).(subst0 i v2 t4 w2))))) (let H13 \def (eq_ind_r nat (minus i O) (\lambda
+(n: nat).(subst0 n v1 t3 x)) H11 i (minus_n_O i)) in (or_ind (pr0 x t4) (ex2
+T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (or
+(pr0 (THead (Bind b) x0 (lift (S O) O x)) t4) (ex2 T (\lambda (w2: T).(pr0
+(THead (Bind b) x0 (lift (S O) O x)) w2)) (\lambda (w2: T).(subst0 i v2 t4
+w2)))) (\lambda (H14: (pr0 x t4)).(or_introl (pr0 (THead (Bind b) x0 (lift (S
+O) O x)) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind b) x0 (lift (S O) O
+x)) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (pr0_zeta b H0 x t4 H14 x0)))
+(\lambda (H14: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i
+v2 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0
+i v2 t4 w2)) (or (pr0 (THead (Bind b) x0 (lift (S O) O x)) t4) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Bind b) x0 (lift (S O) O x)) w2)) (\lambda (w2:
+T).(subst0 i v2 t4 w2)))) (\lambda (x2: T).(\lambda (H15: (pr0 x
+x2)).(\lambda (H16: (subst0 i v2 t4 x2)).(or_intror (pr0 (THead (Bind b) x0
+(lift (S O) O x)) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind b) x0 (lift
+(S O) O x)) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (ex_intro2 T (\lambda
+(w2: T).(pr0 (THead (Bind b) x0 (lift (S O) O x)) w2)) (\lambda (w2:
+T).(subst0 i v2 t4 w2)) x2 (pr0_zeta b H0 x x2 H15 x0) H16))))) H14)) (H2 v1
+x i H13 v2 H4))) w1 H12))))) H9)))))))))) H5)) (subst0_gen_head (Bind b) v1 u
+(lift (S O) O t3) w1 i H3))))))))))))))) (\lambda (t3: T).(\lambda (t4:
+T).(\lambda (H0: (pr0 t3 t4)).(\lambda (H1: ((\forall (v1: T).(\forall (w1:
+T).(\forall (i: nat).((subst0 i v1 t3 w1) \to (\forall (v2: T).((pr0 v1 v2)
+\to (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v2 t4 w2)))))))))))).(\lambda (u: T).(\lambda (v1: T).(\lambda
+(w1: T).(\lambda (i: nat).(\lambda (H2: (subst0 i v1 (THead (Flat Cast) u t3)
+w1)).(\lambda (v2: T).(\lambda (H3: (pr0 v1 v2)).(or3_ind (ex2 T (\lambda
+(u2: T).(eq T w1 (THead (Flat Cast) u2 t3))) (\lambda (u2: T).(subst0 i v1 u
+u2))) (ex2 T (\lambda (t5: T).(eq T w1 (THead (Flat Cast) u t5))) (\lambda
+(t5: T).(subst0 (s (Flat Cast) i) v1 t3 t5))) (ex3_2 T T (\lambda (u2:
+T).(\lambda (t5: T).(eq T w1 (THead (Flat Cast) u2 t5)))) (\lambda (u2:
+T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_: T).(\lambda (t5:
+T).(subst0 (s (Flat Cast) i) v1 t3 t5)))) (or (pr0 w1 t4) (ex2 T (\lambda
+(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (H4:
+(ex2 T (\lambda (u2: T).(eq T w1 (THead (Flat Cast) u2 t3))) (\lambda (u2:
+T).(subst0 i v1 u u2)))).(ex2_ind T (\lambda (u2: T).(eq T w1 (THead (Flat
+Cast) u2 t3))) (\lambda (u2: T).(subst0 i v1 u u2)) (or (pr0 w1 t4) (ex2 T
+(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))))
+(\lambda (x: T).(\lambda (H5: (eq T w1 (THead (Flat Cast) x t3))).(\lambda
+(_: (subst0 i v1 u x)).(eq_ind_r T (THead (Flat Cast) x t3) (\lambda (t:
+T).(or (pr0 t t4) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2:
+T).(subst0 i v2 t4 w2))))) (or_introl (pr0 (THead (Flat Cast) x t3) t4) (ex2
+T (\lambda (w2: T).(pr0 (THead (Flat Cast) x t3) w2)) (\lambda (w2:
+T).(subst0 i v2 t4 w2))) (pr0_tau t3 t4 H0 x)) w1 H5)))) H4)) (\lambda (H4:
+(ex2 T (\lambda (t5: T).(eq T w1 (THead (Flat Cast) u t5))) (\lambda (t5:
+T).(subst0 (s (Flat Cast) i) v1 t3 t5)))).(ex2_ind T (\lambda (t5: T).(eq T
+w1 (THead (Flat Cast) u t5))) (\lambda (t5: T).(subst0 (s (Flat Cast) i) v1
+t3 t5)) (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v2 t4 w2)))) (\lambda (x: T).(\lambda (H5: (eq T w1 (THead (Flat
+Cast) u x))).(\lambda (H6: (subst0 (s (Flat Cast) i) v1 t3 x)).(eq_ind_r T
+(THead (Flat Cast) u x) (\lambda (t: T).(or (pr0 t t4) (ex2 T (\lambda (w2:
+T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))))) (or_ind (pr0 x t4)
+(ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Flat Cast)
+i) v2 t4 w2))) (or (pr0 (THead (Flat Cast) u x) t4) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Cast) u x) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))))
+(\lambda (H7: (pr0 x t4)).(or_introl (pr0 (THead (Flat Cast) u x) t4) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Flat Cast) u x) w2)) (\lambda (w2: T).(subst0 i
+v2 t4 w2))) (pr0_tau x t4 H7 u))) (\lambda (H7: (ex2 T (\lambda (w2: T).(pr0
+x w2)) (\lambda (w2: T).(subst0 (s (Flat Cast) i) v2 t4 w2)))).(ex2_ind T
+(\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Flat Cast) i) v2 t4
+w2)) (or (pr0 (THead (Flat Cast) u x) t4) (ex2 T (\lambda (w2: T).(pr0 (THead
+(Flat Cast) u x) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (x0:
+T).(\lambda (H8: (pr0 x x0)).(\lambda (H9: (subst0 (s (Flat Cast) i) v2 t4
+x0)).(or_intror (pr0 (THead (Flat Cast) u x) t4) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Cast) u x) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))
+(ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Cast) u x) w2)) (\lambda (w2:
+T).(subst0 i v2 t4 w2)) x0 (pr0_tau x x0 H8 u) H9))))) H7)) (H1 v1 x (s (Flat
+Cast) i) H6 v2 H3)) w1 H5)))) H4)) (\lambda (H4: (ex3_2 T T (\lambda (u2:
+T).(\lambda (t5: T).(eq T w1 (THead (Flat Cast) u2 t5)))) (\lambda (u2:
+T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_: T).(\lambda (t5:
+T).(subst0 (s (Flat Cast) i) v1 t3 t5))))).(ex3_2_ind T T (\lambda (u2:
+T).(\lambda (t5: T).(eq T w1 (THead (Flat Cast) u2 t5)))) (\lambda (u2:
+T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_: T).(\lambda (t5:
+T).(subst0 (s (Flat Cast) i) v1 t3 t5))) (or (pr0 w1 t4) (ex2 T (\lambda (w2:
+T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (x0:
+T).(\lambda (x1: T).(\lambda (H5: (eq T w1 (THead (Flat Cast) x0
+x1))).(\lambda (_: (subst0 i v1 u x0)).(\lambda (H7: (subst0 (s (Flat Cast)
+i) v1 t3 x1)).(eq_ind_r T (THead (Flat Cast) x0 x1) (\lambda (t: T).(or (pr0
+t t4) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 t4
+w2))))) (or_ind (pr0 x1 t4) (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda
+(w2: T).(subst0 (s (Flat Cast) i) v2 t4 w2))) (or (pr0 (THead (Flat Cast) x0
+x1) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Cast) x0 x1) w2)) (\lambda
+(w2: T).(subst0 i v2 t4 w2)))) (\lambda (H8: (pr0 x1 t4)).(or_introl (pr0
+(THead (Flat Cast) x0 x1) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Cast)
+x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (pr0_tau x1 t4 H8 x0)))
+(\lambda (H8: (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0
+(s (Flat Cast) i) v2 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x1 w2))
+(\lambda (w2: T).(subst0 (s (Flat Cast) i) v2 t4 w2)) (or (pr0 (THead (Flat
+Cast) x0 x1) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Cast) x0 x1) w2))
+(\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (x: T).(\lambda (H9: (pr0 x1
+x)).(\lambda (H10: (subst0 (s (Flat Cast) i) v2 t4 x)).(or_intror (pr0 (THead
+(Flat Cast) x0 x1) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Cast) x0 x1)
+w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (ex_intro2 T (\lambda (w2:
+T).(pr0 (THead (Flat Cast) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))
+x (pr0_tau x1 x H9 x0) H10))))) H8)) (H1 v1 x1 (s (Flat Cast) i) H7 v2 H3))
+w1 H5)))))) H4)) (subst0_gen_head (Flat Cast) v1 u t3 w1 i H2))))))))))))) t1
+t2 H))).
+
(* This file was automatically generated: do not edit *********************)
-include "Basic-1/pr0/props.ma".
+include "basic_1/pr0/subst0.ma".
-include "Basic-1/subst1/defs.ma".
+include "basic_1/subst1/fwd.ma".
theorem pr0_delta1:
\forall (u1: T).(\forall (u2: T).((pr0 u1 u2) \to (\forall (t1: T).(\forall
\def
\lambda (u1: T).(\lambda (u2: T).(\lambda (H: (pr0 u1 u2)).(\lambda (t1:
T).(\lambda (t2: T).(\lambda (H0: (pr0 t1 t2)).(\lambda (w: T).(\lambda (H1:
-(subst1 O u2 t2 w)).(subst1_ind O u2 t2 (\lambda (t: T).(pr0 (THead (Bind
-Abbr) u1 t1) (THead (Bind Abbr) u2 t))) (pr0_comp u1 u2 H t1 t2 H0 (Bind
-Abbr)) (\lambda (t0: T).(\lambda (H2: (subst0 O u2 t2 t0)).(pr0_delta u1 u2 H
-t1 t2 H0 t0 H2))) w H1)))))))).
-(* COMMENTS
-Initial nodes: 115
-END *)
+(subst1 O u2 t2 w)).(let TMP_5 \def (\lambda (t: T).(let TMP_1 \def (Bind
+Abbr) in (let TMP_2 \def (THead TMP_1 u1 t1) in (let TMP_3 \def (Bind Abbr)
+in (let TMP_4 \def (THead TMP_3 u2 t) in (pr0 TMP_2 TMP_4)))))) in (let TMP_6
+\def (Bind Abbr) in (let TMP_7 \def (pr0_comp u1 u2 H t1 t2 H0 TMP_6) in (let
+TMP_8 \def (\lambda (t0: T).(\lambda (H2: (subst0 O u2 t2 t0)).(pr0_delta u1
+u2 H t1 t2 H0 t0 H2))) in (subst1_ind O u2 t2 TMP_5 TMP_7 TMP_8 w
+H1)))))))))))).
theorem pr0_subst1_back:
\forall (u2: T).(\forall (t1: T).(\forall (t2: T).(\forall (i: nat).((subst1
T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t t2)))))))))
\def
\lambda (u2: T).(\lambda (t1: T).(\lambda (t2: T).(\lambda (i: nat).(\lambda
-(H: (subst1 i u2 t1 t2)).(subst1_ind i u2 t1 (\lambda (t: T).(\forall (u1:
-T).((pr0 u1 u2) \to (ex2 T (\lambda (t0: T).(subst1 i u1 t1 t0)) (\lambda
-(t0: T).(pr0 t0 t)))))) (\lambda (u1: T).(\lambda (_: (pr0 u1 u2)).(ex_intro2
-T (\lambda (t: T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t t1)) t1
-(subst1_refl i u1 t1) (pr0_refl t1)))) (\lambda (t0: T).(\lambda (H0: (subst0
-i u2 t1 t0)).(\lambda (u1: T).(\lambda (H1: (pr0 u1 u2)).(ex2_ind T (\lambda
-(t: T).(subst0 i u1 t1 t)) (\lambda (t: T).(pr0 t t0)) (ex2 T (\lambda (t:
-T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t t0))) (\lambda (x: T).(\lambda
-(H2: (subst0 i u1 t1 x)).(\lambda (H3: (pr0 x t0)).(ex_intro2 T (\lambda (t:
-T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t t0)) x (subst1_single i u1 t1 x
-H2) H3)))) (pr0_subst0_back u2 t1 t0 i H0 u1 H1)))))) t2 H))))).
-(* COMMENTS
-Initial nodes: 251
-END *)
+(H: (subst1 i u2 t1 t2)).(let TMP_3 \def (\lambda (t: T).(\forall (u1:
+T).((pr0 u1 u2) \to (let TMP_1 \def (\lambda (t0: T).(subst1 i u1 t1 t0)) in
+(let TMP_2 \def (\lambda (t0: T).(pr0 t0 t)) in (ex2 T TMP_1 TMP_2)))))) in
+(let TMP_8 \def (\lambda (u1: T).(\lambda (_: (pr0 u1 u2)).(let TMP_4 \def
+(\lambda (t: T).(subst1 i u1 t1 t)) in (let TMP_5 \def (\lambda (t: T).(pr0 t
+t1)) in (let TMP_6 \def (subst1_refl i u1 t1) in (let TMP_7 \def (pr0_refl
+t1) in (ex_intro2 T TMP_4 TMP_5 t1 TMP_6 TMP_7))))))) in (let TMP_19 \def
+(\lambda (t0: T).(\lambda (H0: (subst0 i u2 t1 t0)).(\lambda (u1: T).(\lambda
+(H1: (pr0 u1 u2)).(let TMP_9 \def (\lambda (t: T).(subst0 i u1 t1 t)) in (let
+TMP_10 \def (\lambda (t: T).(pr0 t t0)) in (let TMP_11 \def (\lambda (t:
+T).(subst1 i u1 t1 t)) in (let TMP_12 \def (\lambda (t: T).(pr0 t t0)) in
+(let TMP_13 \def (ex2 T TMP_11 TMP_12) in (let TMP_17 \def (\lambda (x:
+T).(\lambda (H2: (subst0 i u1 t1 x)).(\lambda (H3: (pr0 x t0)).(let TMP_14
+\def (\lambda (t: T).(subst1 i u1 t1 t)) in (let TMP_15 \def (\lambda (t:
+T).(pr0 t t0)) in (let TMP_16 \def (subst1_single i u1 t1 x H2) in (ex_intro2
+T TMP_14 TMP_15 x TMP_16 H3))))))) in (let TMP_18 \def (pr0_subst0_back u2 t1
+t0 i H0 u1 H1) in (ex2_ind T TMP_9 TMP_10 TMP_13 TMP_17 TMP_18)))))))))))) in
+(subst1_ind i u2 t1 TMP_3 TMP_8 TMP_19 t2 H)))))))).
theorem pr0_subst1_fwd:
\forall (u2: T).(\forall (t1: T).(\forall (t2: T).(\forall (i: nat).((subst1
T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t2 t)))))))))
\def
\lambda (u2: T).(\lambda (t1: T).(\lambda (t2: T).(\lambda (i: nat).(\lambda
-(H: (subst1 i u2 t1 t2)).(subst1_ind i u2 t1 (\lambda (t: T).(\forall (u1:
-T).((pr0 u2 u1) \to (ex2 T (\lambda (t0: T).(subst1 i u1 t1 t0)) (\lambda
-(t0: T).(pr0 t t0)))))) (\lambda (u1: T).(\lambda (_: (pr0 u2 u1)).(ex_intro2
-T (\lambda (t: T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t1 t)) t1
-(subst1_refl i u1 t1) (pr0_refl t1)))) (\lambda (t0: T).(\lambda (H0: (subst0
-i u2 t1 t0)).(\lambda (u1: T).(\lambda (H1: (pr0 u2 u1)).(ex2_ind T (\lambda
-(t: T).(subst0 i u1 t1 t)) (\lambda (t: T).(pr0 t0 t)) (ex2 T (\lambda (t:
-T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t0 t))) (\lambda (x: T).(\lambda
-(H2: (subst0 i u1 t1 x)).(\lambda (H3: (pr0 t0 x)).(ex_intro2 T (\lambda (t:
-T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t0 t)) x (subst1_single i u1 t1 x
-H2) H3)))) (pr0_subst0_fwd u2 t1 t0 i H0 u1 H1)))))) t2 H))))).
-(* COMMENTS
-Initial nodes: 251
-END *)
+(H: (subst1 i u2 t1 t2)).(let TMP_3 \def (\lambda (t: T).(\forall (u1:
+T).((pr0 u2 u1) \to (let TMP_1 \def (\lambda (t0: T).(subst1 i u1 t1 t0)) in
+(let TMP_2 \def (\lambda (t0: T).(pr0 t t0)) in (ex2 T TMP_1 TMP_2)))))) in
+(let TMP_8 \def (\lambda (u1: T).(\lambda (_: (pr0 u2 u1)).(let TMP_4 \def
+(\lambda (t: T).(subst1 i u1 t1 t)) in (let TMP_5 \def (\lambda (t: T).(pr0
+t1 t)) in (let TMP_6 \def (subst1_refl i u1 t1) in (let TMP_7 \def (pr0_refl
+t1) in (ex_intro2 T TMP_4 TMP_5 t1 TMP_6 TMP_7))))))) in (let TMP_19 \def
+(\lambda (t0: T).(\lambda (H0: (subst0 i u2 t1 t0)).(\lambda (u1: T).(\lambda
+(H1: (pr0 u2 u1)).(let TMP_9 \def (\lambda (t: T).(subst0 i u1 t1 t)) in (let
+TMP_10 \def (\lambda (t: T).(pr0 t0 t)) in (let TMP_11 \def (\lambda (t:
+T).(subst1 i u1 t1 t)) in (let TMP_12 \def (\lambda (t: T).(pr0 t0 t)) in
+(let TMP_13 \def (ex2 T TMP_11 TMP_12) in (let TMP_17 \def (\lambda (x:
+T).(\lambda (H2: (subst0 i u1 t1 x)).(\lambda (H3: (pr0 t0 x)).(let TMP_14
+\def (\lambda (t: T).(subst1 i u1 t1 t)) in (let TMP_15 \def (\lambda (t:
+T).(pr0 t0 t)) in (let TMP_16 \def (subst1_single i u1 t1 x H2) in (ex_intro2
+T TMP_14 TMP_15 x TMP_16 H3))))))) in (let TMP_18 \def (pr0_subst0_fwd u2 t1
+t0 i H0 u1 H1) in (ex2_ind T TMP_9 TMP_10 TMP_13 TMP_17 TMP_18)))))))))))) in
+(subst1_ind i u2 t1 TMP_3 TMP_8 TMP_19 t2 H)))))))).
theorem pr0_subst1:
\forall (t1: T).(\forall (t2: T).((pr0 t1 t2) \to (\forall (v1: T).(\forall
w2)))))))))))
\def
\lambda (t1: T).(\lambda (t2: T).(\lambda (H: (pr0 t1 t2)).(\lambda (v1:
-T).(\lambda (w1: T).(\lambda (i: nat).(\lambda (H0: (subst1 i v1 t1
-w1)).(subst1_ind i v1 t1 (\lambda (t: T).(\forall (v2: T).((pr0 v1 v2) \to
-(ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst1 i v2 t2 w2))))))
-(\lambda (v2: T).(\lambda (_: (pr0 v1 v2)).(ex_intro2 T (\lambda (w2: T).(pr0
-t1 w2)) (\lambda (w2: T).(subst1 i v2 t2 w2)) t2 H (subst1_refl i v2 t2))))
-(\lambda (t0: T).(\lambda (H1: (subst0 i v1 t1 t0)).(\lambda (v2: T).(\lambda
-(H2: (pr0 v1 v2)).(or_ind (pr0 t0 t2) (ex2 T (\lambda (w2: T).(pr0 t0 w2))
-(\lambda (w2: T).(subst0 i v2 t2 w2))) (ex2 T (\lambda (w2: T).(pr0 t0 w2))
-(\lambda (w2: T).(subst1 i v2 t2 w2))) (\lambda (H3: (pr0 t0 t2)).(ex_intro2
-T (\lambda (w2: T).(pr0 t0 w2)) (\lambda (w2: T).(subst1 i v2 t2 w2)) t2 H3
-(subst1_refl i v2 t2))) (\lambda (H3: (ex2 T (\lambda (w2: T).(pr0 t0 w2))
-(\lambda (w2: T).(subst0 i v2 t2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 t0
-w2)) (\lambda (w2: T).(subst0 i v2 t2 w2)) (ex2 T (\lambda (w2: T).(pr0 t0
-w2)) (\lambda (w2: T).(subst1 i v2 t2 w2))) (\lambda (x: T).(\lambda (H4:
-(pr0 t0 x)).(\lambda (H5: (subst0 i v2 t2 x)).(ex_intro2 T (\lambda (w2:
-T).(pr0 t0 w2)) (\lambda (w2: T).(subst1 i v2 t2 w2)) x H4 (subst1_single i
-v2 t2 x H5))))) H3)) (pr0_subst0 t1 t2 H v1 t0 i H1 v2 H2)))))) w1 H0))))))).
-(* COMMENTS
-Initial nodes: 385
-END *)
+T).(\lambda (w1: T).(\lambda (i: nat).(\lambda (H0: (subst1 i v1 t1 w1)).(let
+TMP_3 \def (\lambda (t: T).(\forall (v2: T).((pr0 v1 v2) \to (let TMP_1 \def
+(\lambda (w2: T).(pr0 t w2)) in (let TMP_2 \def (\lambda (w2: T).(subst1 i v2
+t2 w2)) in (ex2 T TMP_1 TMP_2)))))) in (let TMP_7 \def (\lambda (v2:
+T).(\lambda (_: (pr0 v1 v2)).(let TMP_4 \def (\lambda (w2: T).(pr0 t1 w2)) in
+(let TMP_5 \def (\lambda (w2: T).(subst1 i v2 t2 w2)) in (let TMP_6 \def
+(subst1_refl i v2 t2) in (ex_intro2 T TMP_4 TMP_5 t2 H TMP_6)))))) in (let
+TMP_30 \def (\lambda (t0: T).(\lambda (H1: (subst0 i v1 t1 t0)).(\lambda (v2:
+T).(\lambda (H2: (pr0 v1 v2)).(let TMP_8 \def (pr0 t0 t2) in (let TMP_9 \def
+(\lambda (w2: T).(pr0 t0 w2)) in (let TMP_10 \def (\lambda (w2: T).(subst0 i
+v2 t2 w2)) in (let TMP_11 \def (ex2 T TMP_9 TMP_10) in (let TMP_12 \def
+(\lambda (w2: T).(pr0 t0 w2)) in (let TMP_13 \def (\lambda (w2: T).(subst1 i
+v2 t2 w2)) in (let TMP_14 \def (ex2 T TMP_12 TMP_13) in (let TMP_18 \def
+(\lambda (H3: (pr0 t0 t2)).(let TMP_15 \def (\lambda (w2: T).(pr0 t0 w2)) in
+(let TMP_16 \def (\lambda (w2: T).(subst1 i v2 t2 w2)) in (let TMP_17 \def
+(subst1_refl i v2 t2) in (ex_intro2 T TMP_15 TMP_16 t2 H3 TMP_17))))) in (let
+TMP_28 \def (\lambda (H3: (ex2 T (\lambda (w2: T).(pr0 t0 w2)) (\lambda (w2:
+T).(subst0 i v2 t2 w2)))).(let TMP_19 \def (\lambda (w2: T).(pr0 t0 w2)) in
+(let TMP_20 \def (\lambda (w2: T).(subst0 i v2 t2 w2)) in (let TMP_21 \def
+(\lambda (w2: T).(pr0 t0 w2)) in (let TMP_22 \def (\lambda (w2: T).(subst1 i
+v2 t2 w2)) in (let TMP_23 \def (ex2 T TMP_21 TMP_22) in (let TMP_27 \def
+(\lambda (x: T).(\lambda (H4: (pr0 t0 x)).(\lambda (H5: (subst0 i v2 t2
+x)).(let TMP_24 \def (\lambda (w2: T).(pr0 t0 w2)) in (let TMP_25 \def
+(\lambda (w2: T).(subst1 i v2 t2 w2)) in (let TMP_26 \def (subst1_single i v2
+t2 x H5) in (ex_intro2 T TMP_24 TMP_25 x H4 TMP_26))))))) in (ex2_ind T
+TMP_19 TMP_20 TMP_23 TMP_27 H3)))))))) in (let TMP_29 \def (pr0_subst0 t1 t2
+H v1 t0 i H1 v2 H2) in (or_ind TMP_8 TMP_11 TMP_14 TMP_18 TMP_28
+TMP_29))))))))))))))) in (subst1_ind i v1 t1 TMP_3 TMP_7 TMP_30 w1
+H0)))))))))).