make_args_for_apply term2pres p.Con.proof_conclude.Con.conclude_args in
P.Mrow([],
P.Mtext([None,"mathcolor","Red"],"by")::P.Mspace([None,"width","0.1cm"])::
- P.Mo([],"(")::pres_args@[P.Mo([],")")])
+ P.Mtext([],"(")::pres_args@[P.Mtext([],")")])
else proof2pres term2pres p
and proof2pres term2pres p =
make_concl "that is equivalent to" concl
else
let conclude_body = conclude_aux conclude in
- let ann_concl = make_concl "we conclude" concl in
+ let ann_concl =
+ if conclude.Con.conclude_method = "TD_Conversion" then
+ make_concl "that is equivalent to" concl
+ else make_concl "we conclude" concl in
P.Mtable ([None,"align","baseline 1"; None,"equalrows","false";
None,"columnalign","left"],
[P.Mtr ([],[P.Mtd ([],conclude_body)]);
byinduction conclude
else if (conclude.Con.conclude_method = "Exists") then
exists conclude
+ else if (conclude.Con.conclude_method = "AndInd") then
+ andind conclude
else if (conclude.Con.conclude_method = "Rewrite") then
let justif =
(match (List.nth conclude.Con.conclude_args 6) with
[P.Mtr([],[P.Mtd([],presacontext)])])
| _ -> assert false
+ and andind conclude =
+ let module P = Mpresentation in
+ let module Con = Content in
+ let proof_conclusion =
+ (match conclude.Con.conclude_conclusion with
+ None -> P.Mtext([],"No conclusion???")
+ | Some t -> term2pres t) in
+ let proof,case_arg =
+ (match conclude.Con.conclude_args with
+ [Con.Aux(n);_;Con.ArgProof proof;case_arg] -> proof,case_arg
+ | _ -> assert false;
+ (*
+ List.map (ContentPp.parg 0) conclude.Con.conclude_args;
+ assert false *)) in
+ let arg =
+ (match case_arg with
+ Con.Aux n -> assert false
+ | Con.Premise prem ->
+ (match prem.Con.premise_binder with
+ None -> []
+ | Some n -> [P.Mtext([],"by");P.smallskip;P.Mi([],n)])
+ | Con.Lemma lemma ->
+ [P.Mtext([],"by");P.smallskip;P.Mi([],lemma.Con.lemma_name)]
+ | _ -> assert false) in
+ match proof.Con.proof_context with
+ `Hypothesis hyp1::`Hypothesis hyp2::tl ->
+ let get_name hyp =
+ (match hyp.Con.dec_name with
+ None -> "_"
+ | Some s -> s) in
+ let preshyp1 =
+ P.Mrow ([],
+ [P.Mtext([],"(");
+ P.Mi([],get_name hyp1);
+ P.Mtext([],")");
+ P.smallskip;
+ term2pres hyp1.Con.dec_type]) in
+ let preshyp2 =
+ P.Mrow ([],
+ [P.Mtext([],"(");
+ P.Mi([],get_name hyp2);
+ P.Mtext([],")");
+ P.smallskip;
+ term2pres hyp2.Con.dec_type]) in
+ (* let body = proof2pres {proof with Con.proof_context = tl} in *)
+ let body = conclude2pres proof.Con.proof_conclude false true in
+ let presacontext =
+ acontext2pres proof.Con.proof_apply_context body false in
+ P.Mtable
+ ([None,"align","baseline 1"; None,"equalrows","false";
+ None,"columnalign","left"],
+ [P.Mtr ([],[P.Mtd ([],
+ P.Mrow([],arg@[P.smallskip;P.Mtext([],"we have")]))]);
+ P.Mtr ([],[P.Mtd ([],preshyp1)]);
+ P.Mtr ([],[P.Mtd ([],P.Mtext([],"and"))]);
+ P.Mtr ([],[P.Mtd ([],preshyp2)]);
+ P.Mtr ([],[P.Mtd ([],presacontext)])]);
+ | _ -> assert false
+
and exists conclude =
let module P = Mpresentation in
let module Con = Content in