*)
inductive lifts: pr_map → relation term ≝
| lifts_sort: ∀f,s. lifts f (⋆s) (⋆s)
-| lifts_lref: ∀f,i1,i2. @↑❨i1,f❩ ≘ i2 → lifts f (#i1) (#i2)
+| lifts_lref: ∀f,i1,i2. @§❨i1,f❩ ≘ i2 → lifts f (#i1) (#i2)
| lifts_gref: ∀f,l. lifts f (§l) (§l)
| lifts_bind: ∀f,p,I,V1,V2,T1,T2.
lifts f V1 V2 → lifts (⫯f) T1 T2 →
/2 width=4 by lifts_inv_sort1_aux/ qed-.
fact lifts_inv_lref1_aux: ∀f,X,Y. ⇧*[f] X ≘ Y → ∀i1. X = #i1 →
- ∃∃i2. @↑❨i1,f❩ ≘ i2 & Y = #i2.
+ ∃∃i2. @§❨i1,f❩ ≘ i2 & Y = #i2.
#f #X #Y * -f -X -Y
[ #f #s #x #H destruct
| #f #i1 #i2 #Hi12 #x #H destruct /2 width=3 by ex2_intro/
(* Basic_1: was: lift1_lref *)
(* Basic_2A1: includes: lift_inv_lref1 lift_inv_lref1_lt lift_inv_lref1_ge *)
lemma lifts_inv_lref1: ∀f,Y,i1. ⇧*[f] #i1 ≘ Y →
- ∃∃i2. @↑❨i1,f❩ ≘ i2 & Y = #i2.
+ ∃∃i2. @§❨i1,f❩ ≘ i2 & Y = #i2.
/2 width=3 by lifts_inv_lref1_aux/ qed-.
fact lifts_inv_gref1_aux: ∀f,X,Y. ⇧*[f] X ≘ Y → ∀l. X = §l → Y = §l.
/2 width=4 by lifts_inv_sort2_aux/ qed-.
fact lifts_inv_lref2_aux: ∀f,X,Y. ⇧*[f] X ≘ Y → ∀i2. Y = #i2 →
- ∃∃i1. @↑❨i1,f❩ ≘ i2 & X = #i1.
+ ∃∃i1. @§❨i1,f❩ ≘ i2 & X = #i1.
#f #X #Y * -f -X -Y
[ #f #s #x #H destruct
| #f #i1 #i2 #Hi12 #x #H destruct /2 width=3 by ex2_intro/
(* Basic_1: includes: lift_gen_lref lift_gen_lref_lt lift_gen_lref_false lift_gen_lref_ge *)
(* Basic_2A1: includes: lift_inv_lref2 lift_inv_lref2_lt lift_inv_lref2_be lift_inv_lref2_ge lift_inv_lref2_plus *)
lemma lifts_inv_lref2: ∀f,X,i2. ⇧*[f] X ≘ #i2 →
- ∃∃i1. @↑❨i1,f❩ ≘ i2 & X = #i1.
+ ∃∃i1. @§❨i1,f❩ ≘ i2 & X = #i1.
/2 width=3 by lifts_inv_lref2_aux/ qed-.
fact lifts_inv_gref2_aux: ∀f,X,Y. ⇧*[f] X ≘ Y → ∀l. Y = §l → X = §l.
lemma lifts_inv_atom1: ∀f,I,Y. ⇧*[f] ⓪[I] ≘ Y →
∨∨ ∃∃s. I = Sort s & Y = ⋆s
- | ∃∃i,j. @↑❨i,f❩ ≘ j & I = LRef i & Y = #j
+ | ∃∃i,j. @§❨i,f❩ ≘ j & I = LRef i & Y = #j
| ∃∃l. I = GRef l & Y = §l.
#f * #n #Y #H
[ lapply (lifts_inv_sort1 … H)
lemma lifts_inv_atom2: ∀f,I,X. ⇧*[f] X ≘ ⓪[I] →
∨∨ ∃∃s. X = ⋆s & I = Sort s
- | ∃∃i,j. @↑❨i,f❩ ≘ j & X = #i & I = LRef j
+ | ∃∃i,j. @§❨i,f❩ ≘ j & X = #i & I = LRef j
| ∃∃l. X = §l & I = GRef l.
#f * #n #X #H
[ lapply (lifts_inv_sort2 … H)