]> matita.cs.unibo.it Git - helm.git/commitdiff
bug fixing ...
authorFerruccio Guidi <ferruccio.guidi@unibo.it>
Tue, 24 May 2016 19:03:09 +0000 (19:03 +0000)
committerFerruccio Guidi <ferruccio.guidi@unibo.it>
Tue, 24 May 2016 19:03:09 +0000 (19:03 +0000)
matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpx.ma
matita/matita/contribs/lambdadelta/basic_2/rt_transition/lpr.ma
matita/matita/contribs/lambdadelta/basic_2/static/lfeq.ma

index ac024892379aa703d33377ffc012e9e834bb657b..c7dde663e8dfa0e6fc0ea7d379f44a6461995da9 100644 (file)
@@ -21,7 +21,7 @@ definition cpx (h): relation4 genv lenv term term ≝
                     λG,L,T1,T2. ∃c. ⦃G, L⦄ ⊢ T1 ⬈[c, h] T2.
 
 interpretation
-   "uncounted context-sensitive parallel reduction (term)"
+   "uncounted context-sensitive parallel rt-transition (term)"
    'PRedTy h G L T1 T2 = (cpx h G L T1 T2).
 
 (* Basic properties *********************************************************)
index f644a728ffa6b85eb2b7f490922e684f8478207c..24cea1f7e910f6a123f80d0df1768e34cab9299c 100644 (file)
@@ -56,6 +56,10 @@ lemma lpr_pair: ∀I,G,K1,K2,V1,V2. ⦃G, K1⦄ ⊢ ➡ K2 → ⦃G, K1⦄ ⊢ V
 lemma lpr_fwd_length: ∀G,L1,L2. ⦃G, L1⦄ ⊢ ➡ L2 → |L1| = |L2|.
 /2 width=2 by lpx_sn_fwd_length/ qed-.
 
+lemma lpr_lpx: ∀h,o,G,L1,L2. ⦃G, L1⦄ ⊢ ➡ L2 → ⦃G, L1⦄ ⊢ ➡[h, o] L2.
+#h #o #G #L1 #L2 #H elim H -L1 -L2 /3 width=1 by lpx_pair, cpr_cpx/
+qed.
+
 (* Basic_1: removed theorems 3: wcpr0_getl wcpr0_getl_back
                                 pr0_subst1_back
 *)
index 620397024f44aeedde04356862280a2883510aec..1386a6a7dc4a0540c49db2883ebb6286a49e1262 100644 (file)
@@ -67,19 +67,15 @@ lemma lfeq_inv_lref: ∀Y1,Y2,i. Y1 ≡[#⫯i] Y2 →
                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨ 
                      ∃∃I,L1,L2,V1,V2. L1 ≡[#i] L2 &
                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
-#Y1 #Y2 #i #H elim (lfxs_inv_lref … H) -H *
-/3 width=8 by ex3_5_intro, or_introl, or_intror, conj/
-qed-.
+/2 width=1 by lfxs_inv_lref/ qed-.
 
 lemma lfeq_inv_bind: ∀p,I,L1,L2,V,T. L1 ≡[ⓑ{p,I}V.T] L2 →
                      L1 ≡[V] L2 ∧ L1.ⓑ{I}V ≡[T] L2.ⓑ{I}V.
-#p #I #L1 #L2 #V #T #H elim (lfxs_inv_bind … H) -H /2 width=3 by conj/
-qed-.
+/2 width=2 by lfxs_inv_bind/ qed-.
 
 lemma lfeq_inv_flat: ∀I,L1,L2,V,T. L1 ≡[ⓕ{I}V.T] L2 →
                      L1 ≡[V] L2 ∧ L1 ≡[T] L2.
-#I #L1 #L2 #V #T #H elim (lfxs_inv_flat … H) -H /2 width=3 by conj/
-qed-.
+/2 width=2 by lfxs_inv_flat/ qed-.
 
 (* Advanced inversion lemmas ************************************************)