-(*
-
-Macchina A:
-postcondizione
-PA(in,out) ≝
- ∀ls,cs,d,rs.
- left (tape in) = cs@'#'::ls →
- right (tape in) = d::rs →
- state in = q0 →
- left (tape out) = ls ∧
- right (tape out) = d::'#'::rev cs@rs ∧
- state out = qfinal
-
-Macchina A0:
-postcondizione:
-PA0(in,out) ≝
- ∀ls,c,rs.
- left (tape in) = c::ls →
- right (tape in) = d::rs →
- state in = q0 →
- left (tape out) = ls ∧
- right (tape out) = d::c::rs
- state out = qfinal
-
-Macchina A1
-postcondizione true:
-PA1t(in,out) ≝
- ∀c,rs.
- right (tape in) = c::rs →
- tape in = tape out ∧
- (c ≠ '#' → state out = qtrue)
-
-postcondizione false:
-PA1f(in,out) ≝
- ∀c,rs.
- right (tape in) = c::rs →
- tape in = tape out ∧
- (c = '#' → state out = qfalse) ∧
+include "turing/mono.ma".
+include "basics/vectors.ma".
+
+(* We do not distinuish an input tape *)
+
+record mTM (sig:FinSet): Type[1] ≝
+{ states : FinSet;
+ tapes_no: nat; (* additional working tapes *)
+ trans : states × (Vector (option sig) (S tapes_no)) →
+ states × (Vector (option (sig × move))(S tapes_no));
+ start: states;
+ halt : states → bool
+}.
+
+record mconfig (sig,states:FinSet) (n:nat): Type[0] ≝
+{ cstate : states;
+ ctapes : Vector (tape sig) (S n)
+}.
+
+definition current_chars ≝ λsig.λn.λtapes.
+ vec_map ?? (current sig) (S n) tapes.
+
+definition step ≝ λsig.λM:mTM sig.λc:mconfig sig (states ? M) (tapes_no ? M).
+ let 〈news,mvs〉 ≝ trans sig M 〈cstate ??? c,current_chars ?? (ctapes ??? c)〉 in
+ mk_mconfig ???
+ news
+ (pmap_vec ??? (tape_move sig) ? (ctapes ??? c) mvs).
+
+definition empty_tapes ≝ λsig.λn.
+mk_Vector ? n (make_list (tape sig) (niltape sig) n) ?.
+elim n // normalize //
+qed.
+(************************** Realizability *************************************)
+definition loopM ≝ λsig.λM:mTM sig.λi,cin.
+ loop ? i (step sig M) (λc.halt sig M (cstate ??? c)) cin.
-A = do A0 while A1 inv PA0 var |right (tape in)|;
+lemma loopM_unfold : ∀sig,M,i,cin.
+ loopM sig M i cin = loop ? i (step sig M) (λc.halt sig M (cstate ??? c)) cin.
+// qed.
- posso assumere le precondizioni di A
- H1 : left (tape in) = c::cs@'#'::ls
- H2 : right (tape in) = d::rs
+definition initc ≝ λsig.λM:mTM sig.λtapes.
+ mk_mconfig sig (states sig M) (tapes_no sig M) (start sig M) tapes.
- in particolare H2 → precondizioni di A1
-
- eseguiamo dunque if A1 then (A0; A) else skip
-
+definition Realize ≝ λsig.λM:mTM sig.λR:relation (Vector (tape sig) ?).
+∀t.∃i.∃outc.
+ loopM sig M i (initc sig M t) = Some ? outc ∧ R t (ctapes ??? outc).
+
+definition WRealize ≝ λsig.λM:mTM sig.λR:relation (Vector (tape sig) ?).
+∀t,i,outc.
+ loopM sig M i (initc sig M t) = Some ? outc → R t (ctapes ??? outc).
+
+definition Terminate ≝ λsig.λM:mTM sig.λt. ∃i,outc.
+ loopM sig M i (initc sig M t) = Some ? outc.
-
-by induction on left (tape in)
-
- per casi su d =?= '#'
-
- Hcase: d ≠ '#' ⇒
- eseguo (A1; A0; A)
- devo allora provare che PA1°PA0°PA(in,out) → PA(in,out)
- ∃s1,s2: PA1t(in,s1) ∧ PA0(s1,s2) ∧ PA(s2,out)
-
- usando anche Hcase, ottengo che tape in = tape s1
- soddisfo allora le precondizioni di PA0(s1,s2) ottenendo che
- left (tape s2) = cs@'#'::ls
- right (tape s2) = d::c::rs
-
- soddisfo allora le precondizioni di PA e per ipotesi induttiva
-
-
- left (tape s) = d::cs@'#'::ls
- right (tape s) =
-
+(* notation "M \vDash R" non associative with precedence 45 for @{ 'models $M $R}. *)
+interpretation "multi realizability" 'models M R = (Realize ? M R).
+
+(* notation "M \VDash R" non associative with precedence 45 for @{ 'wmodels $M $R}. *)
+interpretation "weak multi realizability" 'wmodels M R = (WRealize ? M R).
+
+interpretation "multi termination" 'fintersects M t = (Terminate ? M t).
+
+lemma WRealize_to_Realize : ∀sig.∀M: mTM sig.∀R.
+ (∀t.M ↓ t) → M ⊫ R → M ⊨ R.
+#sig #M #R #HT #HW #t cases (HT … t) #i * #outc #Hloop
+@(ex_intro … i) @(ex_intro … outc) % // @(HW … i) //
+qed.
+
+theorem Realize_to_WRealize : ∀sig.∀M:mTM sig.∀R.
+ M ⊨ R → M ⊫ R.
+#sig #M #R #H1 #inc #i #outc #Hloop
+cases (H1 inc) #k * #outc1 * #Hloop1 #HR >(loop_eq … Hloop Hloop1) //
+qed.
+
+definition accRealize ≝ λsig.λM:mTM sig.λacc:states sig M.λRtrue,Rfalse.
+∀t.∃i.∃outc.
+ loopM sig M i (initc sig M t) = Some ? outc ∧
+ (cstate ??? outc = acc → Rtrue t (ctapes ??? outc)) ∧
+ (cstate ??? outc ≠ acc → Rfalse t (ctapes ??? outc)).
+(* notation "M ⊨ [q: R1,R2]" non associative with precedence 45 for @{ 'cmodels $M $q $R1 $R2}. *)
+interpretation "conditional multi realizability" 'cmodels M q R1 R2 = (accRealize ? M q R1 R2).
+(*************************** guarded realizablity *****************************)
+definition GRealize ≝ λsig.λM:mTM sig.λPre:Vector (tape sig) ? →Prop.λR:relation (Vector (tape sig) ?).
+∀t.Pre t → ∃i.∃outc.
+ loopM sig M i (initc sig M t) = Some ? outc ∧ R t (ctapes ??? outc).
+
+definition accGRealize ≝ λsig.λM:mTM sig.λacc:states sig M.
+λPre: Vector (tape sig) ? → Prop.λRtrue,Rfalse.
+∀t.Pre t → ∃i.∃outc.
+ loopM sig M i (initc sig M t) = Some ? outc ∧
+ (cstate ??? outc = acc → Rtrue t (ctapes ??? outc)) ∧
+ (cstate ??? outc ≠ acc → Rfalse t (ctapes ??? outc)).
+
+lemma WRealize_to_GRealize : ∀sig.∀M: mTM sig.∀Pre,R.
+ (∀t.Pre t → M ↓ t) → M ⊫ R → GRealize sig M Pre R.
+#sig #M #Pre #R #HT #HW #t #HPre cases (HT … t HPre) #i * #outc #Hloop
+@(ex_intro … i) @(ex_intro … outc) % // @(HW … i) //
+qed.
+lemma Realize_to_GRealize : ∀sig.∀M: mTM sig.∀P,R.
+ M ⊨ R → GRealize sig M P R.
+#alpha #M #Pre #R #HR #t #HPre
+cases (HR t) -HR #k * #outc * #Hloop #HR
+@(ex_intro ?? k) @(ex_intro ?? outc) %
+ [ @Hloop | @HR ]
+qed.
+lemma acc_Realize_to_acc_GRealize: ∀sig.∀M:mTM sig.∀q:states sig M.∀P,R1,R2.
+ M ⊨ [q:R1,R2] → accGRealize sig M q P R1 R2.
+#alpha #M #q #Pre #R1 #R2 #HR #t #HPre
+cases (HR t) -HR #k * #outc * * #Hloop #HRtrue #HRfalse
+@(ex_intro ?? k) @(ex_intro ?? outc) %
+ [ % [@Hloop] @HRtrue | @HRfalse]
+qed.
+(******************************** monotonicity ********************************)
+lemma Realize_to_Realize : ∀sig.∀M:mTM sig.∀R1,R2.
+ R1 ⊆ R2 → Realize sig M R1 → Realize sig M R2.
+#alpha #M #R1 #R2 #Himpl #HR1 #intape
+cases (HR1 intape) -HR1 #k * #outc * #Hloop #HR1
+@(ex_intro ?? k) @(ex_intro ?? outc) % /2/
+qed.
+lemma WRealize_to_WRealize: ∀sig.∀M:mTM sig.∀R1,R2.
+ R1 ⊆ R2 → WRealize sig M R1 → WRealize ? M R2.
+#alpha #M #R1 #R2 #Hsub #HR1 #intape #i #outc #Hloop
+@Hsub @(HR1 … i) @Hloop
+qed.
-∀inc.
- (∃ls,cs,d,rs. left inc = ... ∧ right inc = ... ∧ state inc = q0) →
-∃i,outc. loop i step inc = Some ? outc
- ∧(∀ls,cs,d,rs.left inc = ... → right inc = ... →
- ∧ left outc = ls
- ∧ right outc = d::"#"::rev cs::rs
- ∧ state outc = qfinal)
+lemma GRealize_to_GRealize : ∀sig.∀M:mTM sig.∀P,R1,R2.
+ R1 ⊆ R2 → GRealize sig M P R1 → GRealize sig M P R2.
+#alpha #M #P #R1 #R2 #Himpl #HR1 #intape #HP
+cases (HR1 intape HP) -HR1 #k * #outc * #Hloop #HR1
+@(ex_intro ?? k) @(ex_intro ?? outc) % /2/
+qed.
-ϕ1 M1 ψ1 → ϕ2 M2 ψ2 →
-(ψ1(in1,out1) → ϕ2(out1)) → (ψ2(out1,out2) → ψ3(in1,out2)) →
-ϕ1 (M1;M2) ψ3
+lemma GRealize_to_GRealize_2 : ∀sig.∀M:mTM sig.∀P1,P2,R1,R2.
+ P2 ⊆ P1 → R1 ⊆ R2 → GRealize sig M P1 R1 → GRealize sig M P2 R2.
+#alpha #M #P1 #P2 #R1 #R2 #Himpl1 #Himpl2 #H1 #intape #HP
+cases (H1 intape (Himpl1 … HP)) -H1 #k * #outc * #Hloop #H1
+@(ex_intro ?? k) @(ex_intro ?? outc) % /2/
+qed.
+lemma acc_Realize_to_acc_Realize: ∀sig.∀M:mTM sig.∀q:states sig M.∀R1,R2,R3,R4.
+ R1 ⊆ R3 → R2 ⊆ R4 → M ⊨ [q:R1,R2] → M ⊨ [q:R3,R4].
+#alpha #M #q #R1 #R2 #R3 #R4 #Hsub13 #Hsub24 #HRa #intape
+cases (HRa intape) -HRa #k * #outc * * #Hloop #HRtrue #HRfalse
+@(ex_intro ?? k) @(ex_intro ?? outc) %
+ [ % [@Hloop] #Hq @Hsub13 @HRtrue // | #Hq @Hsub24 @HRfalse //]
+qed.
+(**************************** A canonical relation ****************************)
------------------------------------------------------
-{} (tmp ≝ x; x ≝ y; y ≝ tmp) {x = old(x), y = old(y)}
+definition R_mTM ≝ λsig.λM:mTM sig.λq.λt1,t2.
+∃i,outc.
+ loopM ? M i (mk_mconfig ??? q t1) = Some ? outc ∧
+ t2 = (ctapes ??? outc).
+lemma R_mTM_to_R: ∀sig.∀M:mTM sig.∀R. ∀t1,t2.
+ M ⊫ R → R_mTM ? M (start sig M) t1 t2 → R t1 t2.
+#sig #M #R #t1 #t2 whd in ⊢ (%→?); #HMR * #i * #outc *
+#Hloop #Ht2 >Ht2 @(HMR … Hloop)
+qed.
-∀inc.
- ∀ls:list sig.
- ∀cs:list (sig\#).
- ∀d.sig.
- ∀rs:list sig.
- left inc = cs@"#"::ls →
- right inc = d::rs →
- state inc = q0 →
-∃i,outc. loop i step inc = Some outc
- ∧
- (∀ls,cs,d,rs.left inc = ... → right inc = ... →
- ∧ left outc = ls
- ∧ right outc = d::"#"::rev cs::rs
- ∧ state outc = qfinal
-
-*)
-
-
-(*
- ||M|| This file is part of HELM, an Hypertextual, Electronic
- ||A|| Library of Mathematics, developed at the Computer Science
- ||T|| Department of the University of Bologna, Italy.
- ||I||
- ||T||
- ||A||
- \ / This file is distributed under the terms of the
- \ / GNU General Public License Version 2
- V_____________________________________________________________*)
+(******************************** NOP Machine *********************************)
-include "basics/vectors.ma".
+(* NO OPERATION
+ t1 = t2
+
+definition nop_states ≝ initN 1.
+definition start_nop : initN 1 ≝ mk_Sig ?? 0 (le_n … 1). *)
+
+definition mnop ≝
+ λalpha:FinSet.λn.mk_mTM alpha nop_states n
+ (λp.let 〈q,a〉 ≝ p in 〈q,mk_Vector ? (S n) (make_list ? (None ?) (S n)) ?〉)
+ start_nop (λ_.true).
+elim n normalize //
+qed.
+
+definition R_mnop ≝ λalpha,n.λt1,t2:Vector (tape alpha) (S n).t2 = t1.
-record tape (sig:FinSet): Type[0] ≝
-{ left : list sig;
- right: list sig
-}.
+lemma sem_mnop :
+ ∀alpha,n.mnop alpha n⊨ R_mnop alpha n.
+#alpha #n #intapes @(ex_intro ?? 1)
+@(ex_intro … (mk_mconfig ??? start_nop intapes)) % %
+qed.
-inductive move : Type[0] ≝
-| L : move
-| R : move
-| N : move.
+lemma mnop_single_state: ∀sig,n.∀q1,q2:states ? (mnop sig n). q1 = q2.
+normalize #sig #n0 * #n #ltn1 * #m #ltm1
+generalize in match ltn1; generalize in match ltm1;
+<(le_n_O_to_eq … (le_S_S_to_le … ltn1)) <(le_n_O_to_eq … (le_S_S_to_le … ltm1))
+// qed.
+
+(************************** Sequential Composition ****************************)
+
+definition seq_trans ≝ λsig. λM1,M2 : TM sig.
+λp. let 〈s,a〉 ≝ p in
+ match s with
+ [ inl s1 ⇒
+ if halt sig M1 s1 then 〈inr … (start sig M2), None ?〉
+ else let 〈news1,m〉 ≝ trans sig M1 〈s1,a〉 in 〈inl … news1,m〉
+ | inr s2 ⇒ let 〈news2,m〉 ≝ trans sig M2 〈s2,a〉 in 〈inr … news2,m〉
+ ].
+
+definition seq ≝ λsig. λM1,M2 : TM sig.
+ mk_TM sig
+ (FinSum (states sig M1) (states sig M2))
+ (seq_trans sig M1 M2)
+ (inl … (start sig M1))
+ (λs.match s with
+ [ inl _ ⇒ false | inr s2 ⇒ halt sig M2 s2]).
+
+notation "a · b" right associative with precedence 65 for @{ 'middot $a $b}.
+interpretation "sequential composition" 'middot a b = (seq ? a b).
+
+definition lift_confL ≝
+ λsig,S1,S2,c.match c with
+ [ mk_config s t ⇒ mk_config sig (FinSum S1 S2) (inl … s) t ].
+
+definition lift_confR ≝
+ λsig,S1,S2,c.match c with
+ [ mk_config s t ⇒ mk_config sig (FinSum S1 S2) (inr … s) t ].
+
+definition halt_liftL ≝
+ λS1,S2,halt.λs:FinSum S1 S2.
+ match s with
+ [ inl s1 ⇒ halt s1
+ | inr _ ⇒ true ]. (* should be vacuous in all cases we use halt_liftL *)
+
+definition halt_liftR ≝
+ λS1,S2,halt.λs:FinSum S1 S2.
+ match s with
+ [ inl _ ⇒ false
+ | inr s2 ⇒ halt s2 ].
+
+lemma p_halt_liftL : ∀sig,S1,S2,halt,c.
+ halt (cstate sig S1 c) =
+ halt_liftL S1 S2 halt (cstate … (lift_confL … c)).
+#sig #S1 #S2 #halt #c cases c #s #t %
+qed.
-(* We do not distinuish an input tape *)
+lemma trans_seq_liftL : ∀sig,M1,M2,s,a,news,move.
+ halt ? M1 s = false →
+ trans sig M1 〈s,a〉 = 〈news,move〉 →
+ trans sig (seq sig M1 M2) 〈inl … s,a〉 = 〈inl … news,move〉.
+#sig (*#M1*) * #Q1 #T1 #init1 #halt1 #M2 #s #a #news #move
+#Hhalt #Htrans whd in ⊢ (??%?); >Hhalt >Htrans %
+qed.
-record TM (sig:FinSet): Type[1] ≝
-{ states : FinSet;
- tapes_no: nat; (* additional working tapes *)
- trans : states × (Vector (option sig) (S tapes_no)) →
- states × (Vector (sig × move) (S tapes_no)) × (option sig) ;
- output: list sig;
- start: states;
- halt : states → bool
-}.
+lemma trans_seq_liftR : ∀sig,M1,M2,s,a,news,move.
+ halt ? M2 s = false →
+ trans sig M2 〈s,a〉 = 〈news,move〉 →
+ trans sig (seq sig M1 M2) 〈inr … s,a〉 = 〈inr … news,move〉.
+#sig #M1 * #Q2 #T2 #init2 #halt2 #s #a #news #move
+#Hhalt #Htrans whd in ⊢ (??%?); >Hhalt >Htrans %
+qed.
-record config (sig:FinSet) (M:TM sig): Type[0] ≝
-{ state : states sig M;
- tapes : Vector (tape sig) (S (tapes_no sig M));
- out : list sig
-}.
+lemma step_seq_liftR : ∀sig,M1,M2,c0.
+ halt ? M2 (cstate ?? c0) = false →
+ step sig (seq sig M1 M2) (lift_confR sig (states ? M1) (states ? M2) c0) =
+ lift_confR sig (states ? M1) (states ? M2) (step sig M2 c0).
+#sig #M1 (* * #Q1 #T1 #init1 #halt1 *) #M2 * #s #t
+ lapply (refl ? (trans ?? 〈s,current sig t〉))
+ cases (trans ?? 〈s,current sig t〉) in ⊢ (???% → %);
+ #s0 #m0 cases t
+ [ #Heq #Hhalt
+ | 2,3: #s1 #l1 #Heq #Hhalt
+ |#ls #s1 #rs #Heq #Hhalt ]
+ whd in ⊢ (???(????%)); >Heq whd in ⊢ (???%);
+ whd in ⊢ (??(???%)?); whd in ⊢ (??%?); >(trans_seq_liftR … Heq) //
+qed.
-definition option_hd ≝ λA.λl:list A.
- match l with
- [nil ⇒ None ?
- |cons a _ ⇒ Some ? a
- ].
+lemma step_seq_liftL : ∀sig,M1,M2,c0.
+ halt ? M1 (cstate ?? c0) = false →
+ step sig (seq sig M1 M2) (lift_confL sig (states ? M1) (states ? M2) c0) =
+ lift_confL sig ?? (step sig M1 c0).
+#sig #M1 (* * #Q1 #T1 #init1 #halt1 *) #M2 * #s #t
+ lapply (refl ? (trans ?? 〈s,current sig t〉))
+ cases (trans ?? 〈s,current sig t〉) in ⊢ (???% → %);
+ #s0 #m0 cases t
+ [ #Heq #Hhalt
+ | 2,3: #s1 #l1 #Heq #Hhalt
+ |#ls #s1 #rs #Heq #Hhalt ]
+ whd in ⊢ (???(????%)); >Heq whd in ⊢ (???%);
+ whd in ⊢ (??(???%)?); whd in ⊢ (??%?); >(trans_seq_liftL … Heq) //
+qed.
-definition tape_move ≝ λsig.λt: tape sig.λm:sig × move.
- match \snd m with
- [ R ⇒ mk_tape sig ((\fst m)::(left ? t)) (tail ? (right ? t))
- | L ⇒ mk_tape sig (tail ? (left ? t)) ((\fst m)::(right ? t))
- | N ⇒ mk_tape sig (left ? t) ((\fst m)::(tail ? (right ? t)))
- ].
+lemma trans_liftL_true : ∀sig,M1,M2,s,a.
+ halt ? M1 s = true →
+ trans sig (seq sig M1 M2) 〈inl … s,a〉 = 〈inr … (start ? M2),None ?〉.
+#sig #M1 #M2 #s #a #Hhalt whd in ⊢ (??%?); >Hhalt %
+qed.
-definition current_chars ≝ λsig.λM:TM sig.λc:config sig M.
- vec_map ?? (λt.option_hd ? (right ? t)) (S (tapes_no sig M)) (tapes ?? c).
+lemma eq_ctape_lift_conf_L : ∀sig,S1,S2,outc.
+ ctape sig (FinSum S1 S2) (lift_confL … outc) = ctape … outc.
+#sig #S1 #S2 #outc cases outc #s #t %
+qed.
+
+lemma eq_ctape_lift_conf_R : ∀sig,S1,S2,outc.
+ ctape sig (FinSum S1 S2) (lift_confR … outc) = ctape … outc.
+#sig #S1 #S2 #outc cases outc #s #t %
+qed.
-definition opt_cons ≝ λA.λa:option A.λl:list A.
- match a with
- [ None ⇒ l
- | Some a ⇒ a::l
- ].
+theorem sem_seq: ∀sig.∀M1,M2:TM sig.∀R1,R2.
+ M1 ⊨ R1 → M2 ⊨ R2 → M1 · M2 ⊨ R1 ∘ R2.
+#sig #M1 #M2 #R1 #R2 #HR1 #HR2 #t
+cases (HR1 t) #k1 * #outc1 * #Hloop1 #HM1
+cases (HR2 (ctape sig (states ? M1) outc1)) #k2 * #outc2 * #Hloop2 #HM2
+@(ex_intro … (k1+k2)) @(ex_intro … (lift_confR … outc2))
+%
+[@(loop_merge ???????????
+ (loop_lift ??? (lift_confL sig (states sig M1) (states sig M2))
+ (step sig M1) (step sig (seq sig M1 M2))
+ (λc.halt sig M1 (cstate … c))
+ (λc.halt_liftL ?? (halt sig M1) (cstate … c)) … Hloop1))
+ [ * *
+ [ #sl #tl whd in ⊢ (??%? → ?); #Hl %
+ | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ]
+ || #c0 #Hhalt <step_seq_liftL //
+ | #x <p_halt_liftL %
+ |6:cases outc1 #s1 #t1 %
+ |7:@(loop_lift … (initc ?? (ctape … outc1)) … Hloop2)
+ [ * #s2 #t2 %
+ | #c0 #Hhalt <step_seq_liftR // ]
+ |whd in ⊢ (??(???%)?);whd in ⊢ (??%?);
+ generalize in match Hloop1; cases outc1 #sc1 #tc1 #Hloop10
+ >(trans_liftL_true sig M1 M2 ??)
+ [ whd in ⊢ (??%?); whd in ⊢ (???%);
+ @config_eq whd in ⊢ (???%); //
+ | @(loop_Some ?????? Hloop10) ]
+ ]
+| @(ex_intro … (ctape ? (FinSum (states ? M1) (states ? M2)) (lift_confL … outc1)))
+ % // >eq_ctape_lift_conf_L >eq_ctape_lift_conf_R //
+]
+qed.
-definition step ≝ λsig.λM:TM sig.λc:config sig M.
- let 〈news,mvs,outchar〉 ≝ trans sig M 〈state ?? c,current_chars ?? c〉 in
- mk_config ??
- news
- (pmap_vec ??? (tape_move sig) ? (tapes ?? c) mvs)
- (opt_cons ? outchar (out ?? c)).
+theorem sem_seq_app: ∀sig.∀M1,M2:TM sig.∀R1,R2,R3.
+ M1 ⊨ R1 → M2 ⊨ R2 → R1 ∘ R2 ⊆ R3 → M1 · M2 ⊨ R3.
+#sig #M1 #M2 #R1 #R2 #R3 #HR1 #HR2 #Hsub
+#t cases (sem_seq … HR1 HR2 t)
+#k * #outc * #Hloop #Houtc @(ex_intro … k) @(ex_intro … outc)
+% [@Hloop |@Hsub @Houtc]
+qed.
-definition empty_tapes ≝ λsig.λn.
-mk_Vector ? n (make_list (tape sig) (mk_tape sig [] []) n) ?.
-elim n // normalize //
+(* composition with guards *)
+theorem sem_seq_guarded: ∀sig.∀M1,M2:TM sig.∀Pre1,Pre2,R1,R2.
+ GRealize sig M1 Pre1 R1 → GRealize sig M2 Pre2 R2 →
+ (∀t1,t2.Pre1 t1 → R1 t1 t2 → Pre2 t2) →
+ GRealize sig (M1 · M2) Pre1 (R1 ∘ R2).
+#sig #M1 #M2 #Pre1 #Pre2 #R1 #R2 #HGR1 #HGR2 #Hinv #t1 #HPre1
+cases (HGR1 t1 HPre1) #k1 * #outc1 * #Hloop1 #HM1
+cases (HGR2 (ctape sig (states ? M1) outc1) ?)
+ [2: @(Hinv … HPre1 HM1)]
+#k2 * #outc2 * #Hloop2 #HM2
+@(ex_intro … (k1+k2)) @(ex_intro … (lift_confR … outc2))
+%
+[@(loop_merge ???????????
+ (loop_lift ??? (lift_confL sig (states sig M1) (states sig M2))
+ (step sig M1) (step sig (seq sig M1 M2))
+ (λc.halt sig M1 (cstate … c))
+ (λc.halt_liftL ?? (halt sig M1) (cstate … c)) … Hloop1))
+ [ * *
+ [ #sl #tl whd in ⊢ (??%? → ?); #Hl %
+ | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ]
+ || #c0 #Hhalt <step_seq_liftL //
+ | #x <p_halt_liftL %
+ |6:cases outc1 #s1 #t1 %
+ |7:@(loop_lift … (initc ?? (ctape … outc1)) … Hloop2)
+ [ * #s2 #t2 %
+ | #c0 #Hhalt <step_seq_liftR // ]
+ |whd in ⊢ (??(???%)?);whd in ⊢ (??%?);
+ generalize in match Hloop1; cases outc1 #sc1 #tc1 #Hloop10
+ >(trans_liftL_true sig M1 M2 ??)
+ [ whd in ⊢ (??%?); whd in ⊢ (???%);
+ @config_eq whd in ⊢ (???%); //
+ | @(loop_Some ?????? Hloop10) ]
+ ]
+| @(ex_intro … (ctape ? (FinSum (states ? M1) (states ? M2)) (lift_confL … outc1)))
+ % // >eq_ctape_lift_conf_L >eq_ctape_lift_conf_R //
+]
qed.
-definition init ≝ λsig.λM:TM sig.λi:(list sig).
- mk_config ??
- (start sig M)
- (vec_cons ? (mk_tape sig [] i) ? (empty_tapes sig (tapes_no sig M)))
- [ ].
+theorem sem_seq_app_guarded: ∀sig.∀M1,M2:TM sig.∀Pre1,Pre2,R1,R2,R3.
+ GRealize sig M1 Pre1 R1 → GRealize sig M2 Pre2 R2 →
+ (∀t1,t2.Pre1 t1 → R1 t1 t2 → Pre2 t2) → R1 ∘ R2 ⊆ R3 →
+ GRealize sig (M1 · M2) Pre1 R3.
+#sig #M1 #M2 #Pre1 #Pre2 #R1 #R2 #R3 #HR1 #HR2 #Hinv #Hsub
+#t #HPre1 cases (sem_seq_guarded … HR1 HR2 Hinv t HPre1)
+#k * #outc * #Hloop #Houtc @(ex_intro … k) @(ex_intro … outc)
+% [@Hloop |@Hsub @Houtc]
+qed.
+
+
+
+
+
+
+
definition stop ≝ λsig.λM:TM sig.λc:config sig M.
halt sig M (state sig M c).
definition ComputeB_expl ≝ λsig.λM:TM sig.λf:(list sig) → bool.
∀l.∃c.computation sig M (init sig M l) c →
(stop sig M c = true) ∧ (isnilb ? (out ?? c) = false).
+
\ No newline at end of file