coercion xxx nocomposites.
lemma down_p : ∀S,I:SET.∀u:S⇒S.∀c:arrows1 SET I S.∀a:I.∀a':I.a=a'→u (c a)=u (c a').
-intros; unfold uncurry_arrows; apply (†(†H));
+intros; unfold uncurry_arrows; change in c with (I ⇒ S);
+apply (†(†H));
qed.
alias symbol "eq" = "setoid eq".
∀o1,o2,o3: concrete_space.
binary_morphism1
(convergent_relation_space_setoid o1 o2)
- (convergentin ⊢ (? (? ? ? (? ? ? (? ? ? ? ? (? ? ? (? ? ? (% ? ?))) ?)) ?) ? ? ?)_relation_space_setoid o2 o3)
+ (convergent_relation_space_setoid o2 o3)
(convergent_relation_space_setoid o1 o3).
intros; constructor 1;
[ intros; whd in c c1 ⊢ %;