assumption.
qed.
+theorem andb_true_true_r: \forall b1,b2. (b1 \land b2) = true \to b2 = true.
+intro. elim b1
+ [assumption
+ |apply False_ind.apply not_eq_true_false.
+ apply sym_eq.assumption
+ ]
+qed.
+
definition orb : bool \to bool \to bool\def
\lambda b1,b2:bool.
match b1 with
intros.
apply eq_to_eq_to_eq_p_q.
exact bool_to_decidable_eq.
-qed.
+qed.
+
+
+(* some basic properties of and - or*)
+theorem andb_sym: \forall A,B:bool.
+(A \land B) = (B \land A).
+intros.
+elim A;
+ elim B;
+ simplify;
+ reflexivity.
+qed.
+
+theorem andb_assoc: \forall A,B,C:bool.
+(A \land (B \land C)) = ((A \land B) \land C).
+intros.
+elim A;
+ elim B;
+ elim C;
+ simplify;
+ reflexivity.
+qed.
+
+theorem orb_sym: \forall A,B:bool.
+(A \lor B) = (B \lor A).
+intros.
+elim A;
+ elim B;
+ simplify;
+ reflexivity.
+qed.
+
+theorem andb_t_t_t: \forall A,B,C:bool.
+A = true \to B = true \to C = true \to (A \land (B \land C)) = true.
+intros.
+rewrite > H.
+rewrite > H1.
+rewrite > H2.
+reflexivity.
+qed.
\ No newline at end of file