(**************************************************************************)
include "basic_2/notation/relations/btpredstaralt_8.ma".
+include "basic_2/computation/lpxs_cpxs.ma".
include "basic_2/computation/fpbs_fpbs.ma".
(* "BIG TREE" PARALLEL COMPUTATION FOR CLOSURES *****************************)
interpretation "'big tree' parallel computation (closure) alternative"
'BTPRedStarAlt h g G1 L1 T1 G2 L2 T2 = (fpbsa h g G1 L1 T1 G2 L2 T2).
+(* Basic properties *********************************************************)
+
+lemma fpbsa_fpb_trans: ∀h,g,G1,G,L1,L,T1,T. ⦃G1, L1, T1⦄ ≥≥[h, g] ⦃G, L, T⦄ →
+ ∀G2,L2,T2. ⦃G, L, T⦄ ≽[h, g] ⦃G2, L2, T2⦄ → ⦃G1, L1, T1⦄ ≥≥[h, g] ⦃G2, L2, T2⦄.
+#h #g #G1 #G #L1 #L #T1 #T * #L0 #T0 #H10 #HT0 #HL0 #G2 #L2 #T2 * -G2 -L2 -T2
+[ #G2 #L2 #T2 #H2
+| /4 width=7 by lpxs_cpx_trans, cpxs_trans, ex3_2_intro/
+| /3 width=7 by lpxs_strap1, ex3_2_intro/
+]
+
+(* Main properties **********************************************************)
+
+theorem fpbs_fpbsa: ∀h,g,G1,G2,L1,L2,T1,T2.
+ ⦃G1, L1, T1⦄ ≥[h, g] ⦃G2, L2, T2⦄ → ⦃G1, L1, T1⦄ ≥≥[h, g] ⦃G2, L2, T2⦄.
+#h #g #G1 #G2 #L1 #L2 #T1 #T2 #H @(fpbs_ind … H) -G2 -L2 -T2
+/2 width=5 by fpbsa_fpb_trans, ex3_2_intro/
+qed.
+
(* Main inversion lemmas ****************************************************)
theorem fpbsa_inv_fpbs: ∀h,g,G1,G2,L1,L2,T1,T2.
lemma ssta_cpx: ∀h,g,G,L,T1,T2,l. ⦃G, L⦄ ⊢ T1 •[h, g] T2 →
⦃G, L⦄ ⊢ T1 ▪[h, g] l+1 → ⦃G, L⦄ ⊢ T1 ➡[h, g] T2.
#h #g #G #L #T1 #T2 #l #H elim H -G -L -T1 -T2
-[ #G #L #k #H lapply (da_inv_sort … H) -H /2 width=2/
+[ /3 width=4 by cpx_sort, da_inv_sort/
| #G #L #K #V #U #W #i #HLK #_ #HWU #IHVW #H
elim (da_inv_lref … H) -H * #K0 #V0 [| #l0 ] #HLK0
- lapply (ldrop_mono … HLK0 … HLK) -HLK0 #H destruct /3 width=7/
+ lapply (ldrop_mono … HLK0 … HLK) -HLK0 #H destruct /3 width=7 by cpx_delta/
| #G #L #K #W #U #l0 #i #HLK #_ #HWU #H
elim (da_inv_lref … H) -H * #K0 #W0 [| #l1 ] #HLK0
- lapply (ldrop_mono … HLK0 … HLK) -HLK0 #H destruct /2 width=7/
-| #a #I #G #L #V #T #U #_ #IHTU #H lapply (da_inv_bind … H) -H /3 width=1/
-| #G #L #V #T #U #_ #IHTU #H lapply (da_inv_flat … H) -H /3 width=1/
-| #G #L #W #T #U #_ #IHTU #H lapply (da_inv_flat … H) -H /3 width=1/
+ lapply (ldrop_mono … HLK0 … HLK) -HLK0 #H destruct /2 width=7 by cpx_delta/
+| /4 width=2 by cpx_bind, da_inv_bind/
+| /4 width=3 by cpx_flat, da_inv_flat/
+| /4 width=3 by cpx_tau, da_inv_flat/
]
qed.
>(lift_mono … H1 … H2) -H1 -H2 //
| #G #K #k #l #Hkl #L #d #e #_ #U1 #H1 #U2 #H2
>(lift_inv_sort1 … H1) -U1
- >(lift_inv_sort1 … H2) -U2 /2 width=2/
+ >(lift_inv_sort1 … H2) -U2 /2 width=2 by cpx_sort/
| #I #G #K #KV #V #V2 #W2 #i #HKV #HV2 #HVW2 #IHV2 #L #d #e #HLK #U1 #H #U2 #HWU2
elim (lift_inv_lref1 … H) * #Hid #H destruct
[ elim (lift_trans_ge … HVW2 … HWU2) -W2 // <minus_plus #W2 #HVW2 #HWU2
- elim (ldrop_trans_le … HLK … HKV) -K /2 width=2/ #X #HLK #H
- elim (ldrop_inv_skip2 … H) -H /2 width=1/ -Hid #K #Y #HKV #HVY #H destruct /3 width=9/
- | lapply (lift_trans_be … HVW2 … HWU2 ? ?) -W2 // /2 width=1/ >plus_plus_comm_23 #HVU2
- lapply (ldrop_trans_ge_comm … HLK … HKV ?) -K // -Hid /3 width=7/
+ elim (ldrop_trans_le … HLK … HKV) -K /2 width=2 by lt_to_le/ #X #HLK #H
+ elim (ldrop_inv_skip2 … H) -H /2 width=1 by lt_plus_to_minus_r/ -Hid #K #Y #HKV #HVY #H destruct /3 width=9 by cpx_delta/
+ | lapply (lift_trans_be … HVW2 … HWU2 ? ?) -W2 /2 width=1 by le_S/ >plus_plus_comm_23 #HVU2
+ lapply (ldrop_trans_ge_comm … HLK … HKV ?) -K /3 width=7 by cpx_delta/
]
| #a #I #G #K #V1 #V2 #T1 #T2 #_ #_ #IHV12 #IHT12 #L #d #e #HLK #U1 #H1 #U2 #H2
elim (lift_inv_bind1 … H1) -H1 #VV1 #TT1 #HVV1 #HTT1 #H1 destruct
- elim (lift_inv_bind1 … H2) -H2 #VV2 #TT2 #HVV2 #HTT2 #H2 destruct /4 width=5/
+ elim (lift_inv_bind1 … H2) -H2 #VV2 #TT2 #HVV2 #HTT2 #H2 destruct /4 width=5 by cpx_bind, ldrop_skip/
| #I #G #K #V1 #V2 #T1 #T2 #_ #_ #IHV12 #IHT12 #L #d #e #HLK #U1 #H1 #U2 #H2
elim (lift_inv_flat1 … H1) -H1 #VV1 #TT1 #HVV1 #HTT1 #H1 destruct
- elim (lift_inv_flat1 … H2) -H2 #VV2 #TT2 #HVV2 #HTT2 #H2 destruct /3 width=6/
+ elim (lift_inv_flat1 … H2) -H2 #VV2 #TT2 #HVV2 #HTT2 #H2 destruct /3 width=6 by cpx_flat/
| #G #K #V #T1 #T #T2 #_ #HT2 #IHT1 #L #d #e #HLK #U1 #H #U2 #HTU2
elim (lift_inv_bind1 … H) -H #VV1 #TT1 #HVV1 #HTT1 #H destruct
- elim (lift_conf_O1 … HTU2 … HT2) -T2 /4 width=5/
+ elim (lift_conf_O1 … HTU2 … HT2) -T2 /4 width=5 by cpx_zeta, ldrop_skip/
| #G #K #V #T1 #T2 #_ #IHT12 #L #d #e #HLK #U1 #H #U2 #HTU2
- elim (lift_inv_flat1 … H) -H #VV1 #TT1 #HVV1 #HTT1 #H destruct /3 width=5/
+ elim (lift_inv_flat1 … H) -H #VV1 #TT1 #HVV1 #HTT1 #H destruct /3 width=5 by cpx_tau/
| #G #K #V1 #V2 #T #_ #IHV12 #L #d #e #HLK #U1 #H #U2 #HVU2
- elim (lift_inv_flat1 … H) -H #VV1 #TT1 #HVV1 #HTT1 #H destruct /3 width=5/
+ elim (lift_inv_flat1 … H) -H #VV1 #TT1 #HVV1 #HTT1 #H destruct /3 width=5 by cpx_ti/
| #a #G #K #V1 #V2 #W1 #W2 #T1 #T2 #_ #_ #_ #IHV12 #IHW12 #IHT12 #L #d #e #HLK #X1 #HX1 #X2 #HX2
elim (lift_inv_flat1 … HX1) -HX1 #V0 #X #HV10 #HX #HX1 destruct
elim (lift_inv_bind1 … HX) -HX #W0 #T0 #HW0 #HT10 #HX destruct
elim (lift_inv_bind1 … HX2) -HX2 #X #T3 #HX #HT23 #HX2 destruct
- elim (lift_inv_flat1 … HX) -HX #W3 #V3 #HW23 #HV23 #HX destruct /4 width=5/
+ elim (lift_inv_flat1 … HX) -HX #W3 #V3 #HW23 #HV23 #HX destruct /4 width=5 by cpx_beta, ldrop_skip/
| #a #G #K #V1 #V #V2 #W1 #W2 #T1 #T2 #_ #HV2 #_ #_ #IHV1 #IHW12 #IHT12 #L #d #e #HLK #X1 #HX1 #X2 #HX2
elim (lift_inv_flat1 … HX1) -HX1 #V0 #X #HV10 #HX #HX1 destruct
elim (lift_inv_bind1 … HX) -HX #W0 #T0 #HW0 #HT10 #HX destruct
elim (lift_inv_bind1 … HX2) -HX2 #W3 #X #HW23 #HX #HX2 destruct
elim (lift_inv_flat1 … HX) -HX #V3 #T3 #HV3 #HT23 #HX destruct
- elim (lift_trans_ge … HV2 … HV3) -V2 // /4 width=5/
+ elim (lift_trans_ge … HV2 … HV3) -V2 /4 width=5 by cpx_theta, ldrop_skip/
]
qed.
lemma cpx_inv_lift1: ∀h,g,G. l_deliftable_sn (cpx h g G).
#h #g #G #L #U1 #U2 #H elim H -G -L -U1 -U2
[ * #G #L #i #K #d #e #_ #T1 #H
- [ lapply (lift_inv_sort2 … H) -H #H destruct /2 width=3/
- | elim (lift_inv_lref2 … H) -H * #Hid #H destruct /3 width=3/
- | lapply (lift_inv_gref2 … H) -H #H destruct /2 width=3/
+ [ lapply (lift_inv_sort2 … H) -H #H destruct /2 width=3 by cpx_atom, lift_sort, ex2_intro/
+ | elim (lift_inv_lref2 … H) -H * #Hid #H destruct /3 width=3 by cpx_atom, lift_lref_ge_minus, lift_lref_lt, ex2_intro/
+ | lapply (lift_inv_gref2 … H) -H #H destruct /2 width=3 by cpx_atom, lift_gref, ex2_intro/
]
| #G #L #k #l #Hkl #K #d #e #_ #T1 #H
- lapply (lift_inv_sort2 … H) -H #H destruct /3 width=3/
+ lapply (lift_inv_sort2 … H) -H #H destruct /3 width=3 by cpx_sort, lift_sort, ex2_intro/
| #I #G #L #LV #V #V2 #W2 #i #HLV #HV2 #HVW2 #IHV2 #K #d #e #HLK #T1 #H
elim (lift_inv_lref2 … H) -H * #Hid #H destruct
[ elim (ldrop_conf_lt … HLK … HLV) -L // #L #U #HKL #HLV #HUV
elim (IHV2 … HLV … HUV) -V #U2 #HUV2 #HU2
- elim (lift_trans_le … HUV2 … HVW2) -V2 // >minus_plus <plus_minus_m_m // -Hid /3 width=9/
+ elim (lift_trans_le … HUV2 … HVW2) -V2 // >minus_plus <plus_minus_m_m /3 width=9 by cpx_delta, ex2_intro/
| elim (le_inv_plus_l … Hid) #Hdie #Hei
lapply (ldrop_conf_ge … HLK … HLV ?) -L // #HKLV
- elim (lift_split … HVW2 d (i - e + 1)) -HVW2 [4: // |3: /2 width=1/ |2: /3 width=1/ ] -Hid -Hdie
- #V1 #HV1 >plus_minus // <minus_minus // /2 width=1/ <minus_n_n <plus_n_O /3 width=9/
+ elim (lift_split … HVW2 d (i - e + 1)) -HVW2 /3 width=1 by le_S, le_S_S/ -Hid -Hdie
+ #V1 #HV1 >plus_minus // <minus_minus /2 width=1 by le_S/ <minus_n_n <plus_n_O /3 width=9 by cpx_delta, ex2_intro/
]
| #a #I #G #L #V1 #V2 #U1 #U2 #_ #_ #IHV12 #IHU12 #K #d #e #HLK #X #H
elim (lift_inv_bind2 … H) -H #W1 #T1 #HWV1 #HTU1 #H destruct
elim (IHV12 … HLK … HWV1) -IHV12 #W2 #HW12 #HWV2
- elim (IHU12 … HTU1) -IHU12 -HTU1 /3 width=5/
+ elim (IHU12 … HTU1) -IHU12 -HTU1 /3 width=5 by cpx_bind, ldrop_skip, lift_bind, ex2_intro/
| #I #G #L #V1 #V2 #U1 #U2 #_ #_ #IHV12 #IHU12 #K #d #e #HLK #X #H
elim (lift_inv_flat2 … H) -H #W1 #T1 #HWV1 #HTU1 #H destruct
elim (IHV12 … HLK … HWV1) -V1
- elim (IHU12 … HLK … HTU1) -U1 -HLK /3 width=5/
+ elim (IHU12 … HLK … HTU1) -U1 -HLK /3 width=5 by cpx_flat, lift_flat, ex2_intro/
| #G #L #V #U1 #U #U2 #_ #HU2 #IHU1 #K #d #e #HLK #X #H
elim (lift_inv_bind2 … H) -H #W1 #T1 #HWV1 #HTU1 #H destruct
elim (IHU1 (K.ⓓW1) … HTU1) /2 width=1/ -L -U1 #T #HTU #HT1
- elim (lift_div_le … HU2 … HTU) -U // /3 width=5/
+ elim (lift_div_le … HU2 … HTU) -U /3 width=5 by cpx_zeta, ex2_intro/
| #G #L #V #U1 #U2 #_ #IHU12 #K #d #e #HLK #X #H
elim (lift_inv_flat2 … H) -H #W1 #T1 #HWV1 #HTU1 #H destruct
- elim (IHU12 … HLK … HTU1) -L -U1 /3 width=3/
+ elim (IHU12 … HLK … HTU1) -L -U1 /3 width=3 by cpx_tau, ex2_intro/
| #G #L #V1 #V2 #U1 #_ #IHV12 #K #d #e #HLK #X #H
elim (lift_inv_flat2 … H) -H #W1 #T1 #HWV1 #HTU1 #H destruct
- elim (IHV12 … HLK … HWV1) -L -V1 /3 width=3/
+ elim (IHV12 … HLK … HWV1) -L -V1 /3 width=3 by cpx_ti, ex2_intro/
| #a #G #L #V1 #V2 #W1 #W2 #T1 #T2 #_ #_ #_ #IHV12 #IHW12 #IHT12 #K #d #e #HLK #X #HX
elim (lift_inv_flat2 … HX) -HX #V0 #Y #HV01 #HY #HX destruct
elim (lift_inv_bind2 … HY) -HY #W0 #T0 #HW01 #HT01 #HY destruct
elim (IHV12 … HLK … HV01) -V1 #V3 #HV32 #HV03
- elim (IHT12 (K.ⓛW0) … HT01) -T1 /2 width=1/ #T3 #HT32 #HT03
- elim (IHW12 … HLK … HW01) -W1 #W3 #HW32 #HW03
- @ex2_intro [2: /3 width=2/ | skip |3: /2 width=1/ ] (**) (* /4 width=6/ is slow *)
+ elim (IHT12 (K.ⓛW0) … HT01) -T1 /2 width=1 by ldrop_skip/ #T3 #HT32 #HT03
+ elim (IHW12 … HLK … HW01) -W1
+ /4 width=7 by cpx_beta, lift_bind, lift_flat, ex2_intro/
| #a #G #L #V1 #V #V2 #W1 #W2 #T1 #T2 #_ #HV2 #_ #_ #IHV1 #IHW12 #IHT12 #K #d #e #HLK #X #HX
elim (lift_inv_flat2 … HX) -HX #V0 #Y #HV01 #HY #HX destruct
elim (lift_inv_bind2 … HY) -HY #W0 #T0 #HW01 #HT01 #HY destruct
elim (IHV1 … HLK … HV01) -V1 #V3 #HV3 #HV03
- elim (IHT12 (K.ⓓW0) … HT01) -T1 /2 width=1/ #T3 #HT32 #HT03
+ elim (IHT12 (K.ⓓW0) … HT01) -T1 /2 width=1 by ldrop_skip/ #T3 #HT32 #HT03
elim (IHW12 … HLK … HW01) -W1 #W3 #HW32 #HW03
- elim (lift_trans_le … HV3 … HV2) -V // #V #HV3 #HV2
- @ex2_intro [2: /3 width=2/ | skip |3: /2 width=3/ ] (**) (* /4 width=5/ is slow *)
+ elim (lift_trans_le … HV3 … HV2) -V
+ /4 width=9 by cpx_theta, lift_bind, lift_flat, ex2_intro/
]
qed-.
lemma fsupq_cpx_trans: ∀h,g,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊃⸮ ⦃G2, L2, T2⦄ →
∀U2. ⦃G2, L2⦄ ⊢ T2 ➡[h, g] U2 →
∃∃U1. ⦃G1, L1⦄ ⊢ T1 ➡[h, g] U1 & ⦃G1, L1, U1⦄ ⊃⸮ ⦃G2, L2, U2⦄.
-#h #g #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -G1 -G2 -L1 -L2 -T1 -T2 [1: /2 width=3/ |3,4,5: /3 width=3/ ]
+#h #g #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -G1 -G2 -L1 -L2 -T1 -T2
+/3 width=3 by fsup_fsupq, fsupq_refl, cpx_pair_sn, cpx_bind, cpx_flat, fsup_pair_sn, fsup_bind_dx, fsup_flat_dx, ex2_intro/
[ #I #G #L1 #V2 #U2 #HVU2
- elim (lift_total U2 0 1) /4 width=9/
+ elim (lift_total U2 0 1)
+ /4 width=9 by fsupq_refl, fsupq_ldrop, cpx_delta, ldrop_pair, ldrop_ldrop, ex2_intro/
| #G1 #G2 #L1 #K1 #K2 #T1 #T2 #U1 #d #e #HLK1 #HTU1 #_ #IHT12 #U2 #HTU2
- elim (IHT12 … HTU2) -IHT12 -HTU2 #T #HT1 #HT2
- elim (lift_total T d e) #U #HTU
- lapply (cpx_lift … HT1 … HLK1 … HTU1 … HTU) -HT1 -HTU1 /3 width=11/
+ elim (IHT12 … HTU2) -IHT12 -HTU2 #T
+ elim (lift_total T d e)
+ /3 width=11 by cpx_lift, fsupq_ldrop, ex2_intro/
]
qed-.