--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+set "baseuri" "cic:/matita/RELATIONAL-ARITHMETICS/BEq".
+
+include "logic/equality.ma".
+
+include "BNot.ma".
+
+inductive BEq (b1:Bool): Bool \to Bool \to Prop \def
+ | BEq_false: \forall b2. BNot b1 b2 \to BEq b1 false b2
+ | BEq_true : BEq b1 true b1.
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+set "baseuri" "cic:/matita/RELATIONAL-ARITHMETICS/BNot".
+
+include "Bool.ma".
+
+inductive BNot: Bool \to Bool \to Prop \def
+ | BNot_false: BNot false true
+ | BNot_true : BNot true false.
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+set "baseuri" "cic:/matita/RELATIONAL-ARITHMETICS/Bool".
+
+inductive Bool: Set \def
+ | false: Bool
+ | true: Bool.
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+set "baseuri" "cic:/matita/RELATIONAL-ARITHMETICS/NLE".
+
+include "Nat.ma".
+
+inductive NLE: Nat \to Nat \to Prop \def
+ | NLE_zero: \forall q. NLE zero q
+ | NLE_succ: \forall p,q. NLE p q \to NLE (succ p) (succ q).
set "baseuri" "cic:/matita/RELATIONAL-ARITHMETICS/Nat".
-include "logic/equality.ma".
-
inductive Nat: Set \def
| zero: Nat
| succ: Nat \to Nat.
set "baseuri" "cic:/matita/RELATIONAL-ARITHMETICS/Nat_fwd".
+include "logic/equality.ma".
+
include "Nat.ma".
theorem eq_gen_zero_succ: \forall (P:Prop). \forall m2. zero = succ m2 \to P.
set "baseuri" "cic:/matita/RELATIONAL-ARITHMETICS/Plus".
+include "logic/equality.ma".
+
include "Nat.ma".
inductive Plus (p:Nat): Nat \to Nat \to Prop \def