| apply (. #‡(#‡H\sup -1)); assumption]]
qed.
-definition BPext: ∀o: basic_pair. form o ⇒ Ω \sup (concr o) ≝ λo.ext ? ? (rel o).
+definition BPext: ∀o: BP. form o ⇒ Ω \sup (concr o) ≝ λo.ext ? ? (rel o).
definition extS: ∀X,S:REL. ∀r: arrows1 ? X S. Ω \sup S ⇒ Ω \sup X.
(* ∃ is not yet a morphism apply (λX,S,r,F.{x ∈ X | ∃a. a ∈ F ∧ x ♮r a});*)
| apply (. (#‡H\sup -1)‡#); assumption]]]
qed.
-definition BPextS: ∀o: basic_pair. Ω \sup (form o) ⇒ Ω \sup (concr o) ≝
+definition BPextS: ∀o: BP. Ω \sup (form o) ⇒ Ω \sup (concr o) ≝
λo.extS ?? (rel o).
-definition fintersects: ∀o: basic_pair. binary_morphism1 (form o) (form o) (Ω \sup (form o)).
+definition fintersects: ∀o: BP. binary_morphism1 (form o) (form o) (Ω \sup (form o)).
intros (o); constructor 1;
[ apply (λa,b: form o.{c | BPext o c ⊆ BPext o a ∩ BPext o b });
intros; simplify; apply (.= (†H)‡#); apply refl1
interpretation "fintersects" 'fintersects U V = (fun1 ___ (fintersects _) U V).
definition fintersectsS:
- ∀o:basic_pair. binary_morphism1 (Ω \sup (form o)) (Ω \sup (form o)) (Ω \sup (form o)).
+ ∀o:BP. binary_morphism1 (Ω \sup (form o)) (Ω \sup (form o)) (Ω \sup (form o)).
intros (o); constructor 1;
[ apply (λo: basic_pair.λa,b: Ω \sup (form o).{c | BPext o c ⊆ BPextS o a ∩ BPextS o b });
intros; simplify; apply (.= (†H)‡#); apply refl1
interpretation "fintersectsS" 'fintersects U V = (fun1 ___ (fintersectsS _) U V).
-definition relS: ∀o: basic_pair. binary_morphism1 (concr o) (Ω \sup (form o)) CPROP.
+definition relS: ∀o: BP. binary_morphism1 (concr o) (Ω \sup (form o)) CPROP.
intros (o); constructor 1;
[ apply (λx:concr o.λS: Ω \sup (form o).∃y: form o.y ∈ S ∧ x ⊩ y);
| intros; split; intros; cases H2; exists [1,3: apply w]
interpretation "basic pair relation for subsets (non applied)" 'Vdash = (fun1 ___ (relS _)).
record concrete_space : Type ≝
- { bp:> basic_pair;
+ { bp:> BP;
converges: ∀a: concr bp.∀U,V: form bp. a ⊩ U → a ⊩ V → a ⊩ (U ↓ V);
all_covered: ∀x: concr bp. x ⊩ form bp
}.
+definition bp': concrete_space → basic_pair ≝ λc.bp c.
+
+coercion bp'.
+
record convergent_relation_pair (CS1,CS2: concrete_space) : Type ≝
- { rp:> relation_pair CS1 CS2;
+ { rp:> arrows1 ? CS1 CS2;
respects_converges:
∀b,c.
extS ?? rp \sub\c (BPextS CS2 (b ↓ c)) =
extS ?? rp\sub\c (BPextS CS2 (form CS2)) = BPextS CS1 (form CS1)
}.
+definition rp' : ∀CS1,CS2. convergent_relation_pair CS1 CS2 → relation_pair CS1 CS2 ≝
+ λCS1,CS2,c. rp CS1 CS2 c.
+
+coercion rp'.
+
definition convergent_relation_space_setoid: concrete_space → concrete_space → setoid1.
intros;
constructor 1;
| intros 3; apply trans1]]
qed.
+definition rp'': ∀CS1,CS2.convergent_relation_space_setoid CS1 CS2 → arrows1 ? CS1 CS2 ≝
+ λCS1,CS2,c.rp ?? c.
+
+coercion rp''.
+
lemma equalset_extS_id_X_X: ∀o:REL.∀X.extS ?? (id1 ? o) X = X.
intros;
unfold extS; simplify;
| exists; [apply a]
split; [ assumption | change with (a = a); apply refl]]]
qed.
-
(*
definition CSPA: category1.
constructor 1;
| intros;
|
]
- | intros; intros 2; simplify;
- letin xxx ≝ (comp BP); clearbody xxx; unfold BP in xxx:(?→?→?→?→?→%); simplify in xxx;
- unfold basic_pair in xxx; simplify in xxx;
- ]
-*)
\ No newline at end of file
+ | intros;
+ change with (a ∘ b = a' ∘ b');
+ change in H with (rp'' ?? a = rp'' ?? a');
+ change in H1 with (rp'' ?? b = rp ?? b');
+ apply (.= (H‡H1));
+ apply refl1]
+ | intros; simplify;
+ change with ((a12 ∘ a23) ∘ a34 = a12 ∘ (a23 ∘ a34));
+ apply (.= ASSOC1);
+ apply refl1
+ | intros; simplify;
+ change with (id o1 ∘ a = a);*)
\ No newline at end of file