let get_types uri =
let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in
match o with
- | Cic.InductiveDefinition (l,_,_,_) -> l
+ | Cic.InductiveDefinition (l,_,lpsno,_) -> l, lpsno
| _ -> assert false
let name_of_inductive_type uri i =
- let types = get_types uri in
+ let types, _ = get_types uri in
let (name, _, _, _) = try List.nth types i with Not_found -> assert false in
name
(* returns <name, type> pairs *)
let constructors_of_inductive_type uri i =
- let types = get_types uri in
+ let types, _ = get_types uri in
let (_, _, _, constructors) =
try List.nth types i with Not_found -> assert false
in
fst (List.nth (constructors_of_inductive_type uri i) (j-1))
with Not_found -> assert false)
+ (* returns the number of left parameters *)
+let left_params_no_of_inductive_type uri =
+ snd (get_types uri)
let ast_of_acic0 term_info acic k =
let k = k term_info in
in
let case_indty = name, Some (UriManager.uri_of_string puri_str) in
let constructors = constructors_of_inductive_type uri typeno in
- let rec eat_branch ty pat =
+ let lpsno = left_params_no_of_inductive_type uri in
+ let rec eat_branch n ty pat =
match (ty, pat) with
+ | Cic.Prod (_, _, t), _ when n > 0 -> eat_branch (pred n) t pat
| Cic.Prod (_, _, t), Cic.ALambda (_, name, s, t') ->
- let (cv, rhs) = eat_branch t t' in
+ let (cv, rhs) = eat_branch 0 t t' in
(CicNotationUtil.name_of_cic_name name, Some (k s)) :: cv, rhs
| _, _ -> [], k pat
in
List.map2
(fun (name, ty) pat ->
incr j;
- let (capture_variables, rhs) = eat_branch ty pat in
+ let (capture_variables, rhs) = eat_branch lpsno ty pat in
((name, Some (ctor_puri !j), capture_variables), rhs))
constructors patterns
with Invalid_argument _ -> assert false