[ true \Rightarrow b2
| false \Rightarrow false ].
+(*CSC: the URI must disappear: there is a bug now *)
+interpretation "boolean and" 'and x y = (cic:/matita/datatypes/bool/andb.con x y).
+
theorem andb_elim: \forall b1,b2:bool. \forall P:bool \to Prop.
match b1 with
[ true \Rightarrow P b2
-| false \Rightarrow P false] \to P (andb b1 b2).
+| false \Rightarrow P false] \to P (b1 \land b2).
intros 3.elim b1.exact H. exact H.
qed.
-(*CSC: the URI must disappear: there is a bug now *)
-interpretation "boolean and" 'and x y = (cic:/matita/datatypes/bool/andb.con x y).
+theorem andb_true_true: \forall b1,b2. (b1 \land b2) = true \to b1 = true.
+intro. elim b1.
+reflexivity.
+assumption.
+qed.
definition orb : bool \to bool \to bool\def
\lambda b1,b2:bool.