(* *)
(**************************************************************************)
-(*definition cast ≝ λA,B:CProp.λa:A.a.*)
-axiom cast: ∀A,B:CProp.B → A.
+include "demo/natural_deduction_support.ma".
-(*notation < "\infrule (t\atop ⋮) (b \ALPOSTODI a) (? \ERROR)" with precedence 19
-for @{ 'caste $a $b $t }.
-interpretation "cast" 'caste a b t = (cast a b t).*)
-notation < "\infrule (t\atop ⋮) mstyle color #ff0000 (b) (? \ERROR)" with precedence 19
-for @{ 'caste $a $b $t }.
-interpretation "cast" 'caste a b t = (cast a b t).
+lemma ex1 : ΠA,B,C,E: CProp.
-notation < "\infrule (t\atop ⋮) a ?" with precedence 19 for @{ 'cast $a $t }.
-interpretation "cast" 'cast a t = (cast a a t).
+ (A ⇒ E) ∨ B ⇒ A ∧ C ⇒ (E ∧ C) ∨ B.
-definition assumpt ≝ λA:CProp.λa:A.a.
-
-notation < "[ a ] \sup mstyle color #ff0000 (H)" with precedence 19 for @{ 'asse $a $H }.
-interpretation "assumption" 'asse a H = (cast _ _ (assumpt a (cast _ _ H))).
-
-notation < "[ a ] \sup H" with precedence 19 for @{ 'ass $a $H }.
-interpretation "assumption" 'ass a H = (cast a a (assumpt a (cast a a H))).
-
-inductive Imply (A,B:CProp) : CProp ≝
- Imply_intro: (A → B) → Imply A B.
-
-notation "hbox(a break ⇒ b)" right associative with precedence 20 for @{ 'Imply $a $b }.
-interpretation "Imply" 'Imply a b = (Imply a b).
-
-notation < "\infrule hbox(\emsp b \emsp) mstyle color #ff0000(ab) (⇒\sub\i \emsp ident H \ERROR) " with precedence 19
-for @{ 'Imply_introe $xxx $ab (λ${ident H}:$p.$b) }.
-interpretation "Imply_intro" 'Imply_introe xxx ab \eta.b = (cast xxx ab (Imply_intro _ _ b)).
-
-notation < "\infrule hbox(\emsp b \emsp) ab (⇒\sub\i \emsp ident H) " with precedence 19
-for @{ 'Imply_intro $ab (λ${ident H}:$p.$b) }.
-interpretation "Imply_intro" 'Imply_intro ab \eta.b = (cast ab ab (Imply_intro _ _ b)).
-
-definition Imply_elim ≝ λA,B.λf:Imply A B.λa:A.match f with [ Imply_intro g ⇒ g a].
-
-notation < "\infrule hbox(\emsp ab \emsp\emsp\emsp a\emsp) b (⇒\sub\e) " with precedence 19 for @{ 'Imply_elim $ab $a $b }.
-interpretation "Imply_elim" 'Imply_elim ab a b = (cast _ b (Imply_elim _ _ ab a)).
-
-inductive And (A,B:CProp) : CProp ≝
- And_intro: A → B → And A B.
-
-interpretation "constructive and" 'and x y = (And x y).
-
-notation < "\infrule hbox(\emsp a \emsp\emsp\emsp b \emsp) ab (∧\sub\i)" with precedence 19 for @{ 'And_intro $a $b $ab }.
-interpretation "And_intro" 'And_intro a b ab = (cast _ ab (And_intro _ _ a b)).
-
-definition And_elim_l ≝
- λA,B.λc:A∧B.match c with [ And_intro a b ⇒ a ].
-
-notation < "\infrule hbox(\emsp ab \emsp) a (∧\sub\e\sup\l)" with precedence 19 for @{ 'And_elim_l $ab $a }.
-interpretation "And_elim_l" 'And_elim_l ab a = (cast _ a (And_elim_l _ _ ab)).
-
-definition And_elim_r ≝
- λA,B.λc:A∧B.match c with [ And_intro a b ⇒ b ].
-
-notation < "\infrule hbox(\emsp ab \emsp) b (∧\sub\e\sup\r)" with precedence 19 for @{ 'And_elim_r $ab $b }.
-interpretation "And_elim_r" 'And_elim_r ab b = (cast _ b (And_elim_r _ _ ab)).
-
-inductive Or (A,B:CProp) : CProp ≝
- | Or_intro_l: A → Or A B
- | Or_intro_r: B → Or A B.
+ intros 4 (A B C E);apply (prove ((A⇒E)∨B⇒A∧C⇒E∧C∨B));
-interpretation "constructive or" 'or x y = (Or x y).
-
-notation < "\infrule hbox(\emsp a \emsp) ab (∨\sub\i\sup\l)" with precedence 19 for @{ 'Or_intro_l $a $ab }.
-interpretation "Or_intro_l" 'Or_intro_l a ab = (cast _ ab (Or_intro_l _ _ a)).
-
-notation < "\infrule hbox(\emsp b \emsp) ab (∨\sub\i\sup\l)" with precedence 19 for @{ 'Or_intro_r $b $ab }.
-interpretation "Or_intro_l" 'Or_intro_r b ab = (cast _ ab (Or_intro_r _ _ b)).
-
-definition Or_elim ≝
- λA,B,C:CProp.λc:A∨B.λfa: A → C.λfb: B → C.
- match c with [ Or_intro_l a ⇒ fa a | Or_intro_r b ⇒ fb b].
-
-notation < "\infrule hbox(\emsp ab \emsp\emsp\emsp ac \emsp\emsp\emsp bc \emsp) c (∨\sub\e \emsp ident Ha \emsp ident Hb)" with precedence 19
-for @{ 'Or_elim $ab (λ${ident Ha}:$ta.$ac) (λ${ident Hb}:$tb.$bc) $c }.
-interpretation "Or_elim" 'Or_elim ab \eta.ac \eta.bc c = (cast _ c (Or_elim _ _ _ ab ac bc)).
-
-inductive Exists (A:Type) (P:A→CProp) : CProp ≝
- Exists_intro: ∀w:A. P w → Exists A P.
-
-interpretation "constructive ex" 'exists \eta.x = (Exists _ x).
-
-notation < "\infrule hbox(\emsp Pn \emsp) Px (∃\sub\i)" with precedence 19
-for @{ 'Exists_intro $Pn $Px }.
-interpretation "Exists_intro" 'Exists_intro Pn Px = (cast _ Px (Exists_intro _ _ _ Pn)).
-
-definition Exists_elim ≝
- λA:Type.λP:A→CProp.λC:CProp.λc:∃x:A.P x.λH:(∀x.P x → C).
- match c with [ Exists_intro w p ⇒ H w p ].
-
-notation < "\infrule hbox(\emsp ExPx \emsp\emsp\emsp Pc \emsp) c (∃\sub\e \emsp ident n \emsp ident HPn)" with precedence 19
-for @{ 'Exists_elim $ExPx (λ${ident n}:$tn.λ${ident HPn}:$Pn.$Pc) $c }.
-interpretation "Exists_elim" 'Exists_elim ExPx Pc c = (cast _ c (Exists_elim _ _ _ ExPx Pc)).
-
-inductive Forall (A:Type) (P:A→CProp) : CProp ≝
- Forall_intro: (∀n:A. P n) → Forall A P.
-
-notation "\forall ident x:A.break term 19 Px" with precedence 20
-for @{ 'Forall (λ${ident x}:$A.$Px) }.
-interpretation "Forall" 'Forall \eta.Px = (Forall _ Px).
-
-notation < "\infrule hbox(\emsp Px \emsp) Pn (∀\sub\i \emsp ident x)" with precedence 19
-for @{ 'Forall_intro (λ${ident x}:$tx.$Px) $Pn }.
-interpretation "Forall_intro" 'Forall_intro Px Pn = (cast _ Pn (Forall_intro _ _ Px)).
-
-definition Forall_elim ≝
- λA:Type.λP:A→CProp.λn:A.λf:∀x:A.P x.match f with [ Forall_intro g ⇒ g n ].
-
-notation < "\infrule hbox(\emsp Px \emsp) Pn (∀\sub\i)" with precedence 19 for @{ 'Forall_elim $Px $Pn }.
-interpretation "Forall_elim" 'Forall_elim Px Pn = (cast _ Pn (Forall_elim _ _ _ Px)).
-
-axiom A: CProp.
-axiom B: CProp.
-axiom C: CProp.
-axiom D: CProp.
-axiom E: CProp.
-
-
-notation > "[H]" with precedence 90
-for @{ assumpt ? (cast ? ? $H)}.
-notation > "⇒\sub\i [ident H] term 90 b" with precedence 19
-for @{ Imply_intro ?? (λ${ident H}.cast ? $b ?) }.
-notation > "⇒\sub\e term 90 ab term 90 a" with precedence 19
-for @{ Imply_elim ?? (cast ? $ab ?) (cast $a $a ?) }.
-notation > "∧\sub\i term 90 a term 90 b" with precedence 19
-for @{ And_intro ?? (cast ? $a ?) (cast ? $b ?) }.
-(*notation > "∧\sub\e\sup\l term 90 ab" with precedence 19
-for @{ And_elim_l ?? (cast (? ∧ False) $ab ?) }.
-notation > "∧\sub\e\sup\l term 90 a ∧ term 90 b" with precedence 19
-for @{ And_elim_l ?? (cast (? ∧ $b) ($a ∧ $b) ?) }. *)
-notation > "∧\sub\e\sup\l term 90 ab" with precedence 19
-for @{ And_elim_l ?? (cast $ab $ab ?) }. (* CSC: WRONG *)
-notation > "∧\sub\e\sup\r term 90 ab" with precedence 19
-for @{ And_elim_r ?? (cast $ab $ab ?) }. (* CSC: WRONG *)
-notation > "∨\sub\i\sup\l term 90 a" with precedence 19
-for @{ Or_intro_l ?? (cast ? $a ?) }.
-notation > "∨\sub\i\sup\r term 90 a" with precedence 19
-for @{ Or_intro_r ?? (cast ? $a ?) }.
-notation > "∨\sub\e term 90 ab [ident Ha] term 90 c1 [ident Hb] term 90 c2" with precedence 19
-for @{ Or_elim ??? (cast $ab $ab ?) (λ${ident Ha}.cast ? $c1 ?) (λ${ident Hb}.cast ? $c2 ?) }.
-notation > "∀\sub\i [ident z] term 90 a" with precedence 19
-for @{ Forall_intro ?? (λ${ident z}.cast ? $a ?) }.
-notation > "∀\sub\e term 90 ab" with precedence 19
-for @{ Forall_elim ?? ? (cast $ab $ab ?) }. (* CSC: WRONG *)
-notation > "∃\sub\e term 90 enpn [ident z] [ident pz] term 90 c" with precedence 19
-for @{ Exists_elim ??? (cast $enpn $enpn ?) (λ${ident z}.λ${ident pz}.cast ? $c ?) }.
-notation > "∃\sub\i term 90 n term 90 pn" with precedence 19
-for @{ Exists_intro ? (λ_.?) $n (cast ? $pn ?) }.
-
-lemma ex1 : (A ⇒ E) ∨ B ⇒ A ∧ C ⇒ (E ∧ C) ∨ B.
- apply (cast ? ((A⇒E)∨B⇒A∧C⇒E∧C∨B));
- (*NICE: TRY THIS ERROR!
- apply (⇒\sub\i [H] (A∧C⇒E∧E∧C∨B));
- apply (⇒\sub\i [K] (E∧E∧C∨B));
+ (*NICE: TRY THIS ERROR!
+ apply (⇒_i [H] (A∧C⇒E∧E∧C∨B));
+ apply (⇒_i [K] (E∧E∧C∨B));
OR DO THE RIGHT THING *)
- apply (⇒\sub\i [H] (A∧C⇒E∧C∨B));
- apply (⇒\sub\i [K] (E∧C∨B));
-
- apply (∨\sub\e ((A⇒E)∨B) [C1] (E∧C∨B) [C2] (E∧C∨B));
+ apply (⇒_i [H] (A∧C⇒E∧C∨B));
+ apply (⇒_i [K] (E∧C∨B));
+ apply (∨_e ((A⇒E)∨B) [C1] (E∧C∨B) [C2] (E∧C∨B));
[ apply [H];
-| apply (∨\sub\i\sup\l (E∧C));
- apply (∧\sub\i E C);
- [ apply (⇒\sub\e (A⇒E) A);
+| apply (∨_i_l (E∧C));
+ apply (∧_i E C);
+ [ apply (⇒_e (A⇒E) A);
[ apply [C1];
- | apply (∧\sub\e\sup\l (A∧C));
- apply [K];
+ | apply (∧_e_l (A∧C)); apply [K];
]
- | apply (∧\sub\e\sup\r (A∧C));
- apply [K];
+ | apply (∧_e_r (A∧C)); apply [K];
]
-| apply (∨\sub\i\sup\r B);
- apply [C2];
+| apply (∨_i_r B); apply [C2];
]
qed.
-axiom N: Type.
-axiom R: N → N → CProp.
+lemma ex2: ΠN:Type.ΠR:N→N→CProp.
-lemma ex2: (∀a:N.∀b:N.R a b ⇒ R b a) ⇒ ∀z:N.(∃x.R x z) ⇒ ∃y. R z y.
- apply (cast ? ((∀a:N.∀b:N.R a b ⇒ R b a) ⇒ ∀z:N.(∃x.R x z) ⇒ ∃y. R z y));
- apply (⇒\sub\i [H] (∀z:N.(∃x:N.R x z)⇒∃y:N.R z y));
- apply (∀\sub\i [z] ((∃x:N.R x z)⇒∃y:N.R z y));
- apply (⇒\sub\i [H2] (∃y:N.R z y));
- apply (∃\sub\e (∃x:N.R x z) [n] [H3] (∃y:N.R z y));
+ (∀a:N.∀b:N.R a b ⇒ R b a) ⇒ ∀z:N.(∃x.R x z) ⇒ ∃y. R z y.
+
+ intros (N R);apply (prove ((∀a:N.∀b:N.R a b ⇒ R b a) ⇒ ∀z:N.(∃x.R x z) ⇒ ∃y. R z y));
+
+ apply (⇒_i [H] (∀z:N.(∃x:N.R x z)⇒∃y:N.R z y));
+ apply (∀_i [z] ((∃x:N.R x z)⇒∃y:N.R z y));
+ apply (⇒_i [H2] (∃y:N.R z y));
+ apply (∃_e (∃x:N.R x z) [n] [H3] (∃y:N.R z y));
[ apply [H2]
- | apply (∃\sub\i n (R z n));
- apply (⇒\sub\e (R n z ⇒ R z n) (R n z));
- [ apply (∀\sub\e (∀b:N.R n b ⇒ R b n));
- apply (∀\sub\e (∀a:N.∀b:N.R a b ⇒ R b a));
+ | apply (∃_i n (R z n));
+ apply (⇒_e (R n z ⇒ R z n) (R n z));
+ [ apply (∀_e (∀b:N.R n b ⇒ R b n) z);
+ apply (∀_e (∀a:N.∀b:N.R a b ⇒ R b a) n);
apply [H]
| apply [H3]
]
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+axiom cast: ∀A,B:CProp.B → A.
+
+notation > "'prove' p" non associative with precedence 19 for @{ cast ? $p}.
+
+notation < "\infrule (t\atop ⋮) mstyle color #ff0000 (b) (? \ERROR)" with precedence 19
+for @{ 'caste $a $b $t }.
+
+interpretation "cast ERR" 'caste a b t = (cast a b t).
+
+notation < "\infrule (t\atop ⋮) a ?" with precedence 19 for @{ 'cast $a $t }.
+
+interpretation "cast OK" 'cast a t = (cast a a t).
+
+definition assumpt ≝ λA:CProp.λa:A.a.
+
+notation < "[ a ] \sup mstyle color #ff0000 (H)" with precedence 19 for @{ 'asse $a $H }.
+interpretation "assumption" 'asse a H = (cast _ _ (assumpt a (cast _ _ H))).
+
+notation < "[ a ] \sup H" with precedence 19 for @{ 'ass $a $H }.
+interpretation "assumption" 'ass a H = (cast a a (assumpt a (cast a a H))).
+
+inductive Imply (A,B:CProp) : CProp ≝
+ Imply_intro: (A → B) → Imply A B.
+
+notation "hbox(a break ⇒ b)" right associative with precedence 20 for @{ 'Imply $a $b }.
+interpretation "Imply" 'Imply a b = (Imply a b).
+
+notation < "\infrule hbox(\emsp b \emsp) mstyle color #ff0000(ab) (⇒\sub\i \emsp ident H \ERROR) " with precedence 19
+for @{ 'Imply_introe $xxx $ab (λ${ident H}:$p.$b) }.
+interpretation "Imply_intro" 'Imply_introe xxx ab \eta.b = (cast xxx ab (Imply_intro _ _ b)).
+
+notation < "\infrule hbox(\emsp b \emsp) ab (⇒\sub\i \emsp ident H) " with precedence 19
+for @{ 'Imply_intro $ab (λ${ident H}:$p.$b) }.
+interpretation "Imply_intro" 'Imply_intro ab \eta.b = (cast ab ab (Imply_intro _ _ b)).
+
+definition Imply_elim ≝ λA,B.λf:Imply A B.λa:A.match f with [ Imply_intro g ⇒ g a].
+
+notation < "\infrule hbox(\emsp ab \emsp\emsp\emsp a\emsp) b (⇒\sub\e) " with precedence 19 for @{ 'Imply_elim $ab $a $b }.
+interpretation "Imply_elim" 'Imply_elim ab a b = (cast _ b (Imply_elim _ _ ab a)).
+
+inductive And (A,B:CProp) : CProp ≝
+ And_intro: A → B → And A B.
+
+interpretation "constructive and" 'and x y = (And x y).
+
+notation < "\infrule hbox(\emsp a \emsp\emsp\emsp b \emsp) ab (∧\sub\i)" with precedence 19 for @{ 'And_intro $a $b $ab }.
+interpretation "And_intro" 'And_intro a b ab = (cast _ ab (And_intro _ _ a b)).
+
+definition And_elim_l ≝
+ λA,B.λc:A∧B.match c with [ And_intro a b ⇒ a ].
+
+notation < "\infrule hbox(\emsp ab \emsp) a (∧\sub(\e_\l))" with precedence 19 for @{ 'And_elim_l $ab $a }.
+interpretation "And_elim_l" 'And_elim_l ab a = (cast _ a (And_elim_l _ _ ab)).
+
+definition And_elim_r ≝
+ λA,B.λc:A∧B.match c with [ And_intro a b ⇒ b ].
+
+notation < "\infrule hbox(\emsp ab \emsp) b (∧\sub(\e_\r))" with precedence 19 for @{ 'And_elim_r $ab $b }.
+interpretation "And_elim_r" 'And_elim_r ab b = (cast _ b (And_elim_r _ _ ab)).
+
+inductive Or (A,B:CProp) : CProp ≝
+ | Or_intro_l: A → Or A B
+ | Or_intro_r: B → Or A B.
+
+interpretation "constructive or" 'or x y = (Or x y).
+
+notation < "\infrule hbox(\emsp a \emsp) ab (∨\sub(\i_\l))" with precedence 19 for @{ 'Or_intro_l $a $ab }.
+interpretation "Or_intro_l" 'Or_intro_l a ab = (cast _ ab (Or_intro_l _ _ a)).
+
+notation < "\infrule hbox(\emsp b \emsp) ab (∨\sub(\i_\r))" with precedence 19 for @{ 'Or_intro_r $b $ab }.
+interpretation "Or_intro_r" 'Or_intro_r b ab = (cast _ ab (Or_intro_r _ _ b)).
+
+definition Or_elim ≝
+ λA,B,C:CProp.λc:A∨B.λfa: A → C.λfb: B → C.
+ match c with [ Or_intro_l a ⇒ fa a | Or_intro_r b ⇒ fb b].
+
+notation < "\infrule hbox(\emsp ab \emsp\emsp\emsp ac \emsp\emsp\emsp bc \emsp) c (∨\sub\e \emsp ident Ha \emsp ident Hb)" with precedence 19
+for @{ 'Or_elim $ab (λ${ident Ha}:$ta.$ac) (λ${ident Hb}:$tb.$bc) $c }.
+interpretation "Or_elim" 'Or_elim ab \eta.ac \eta.bc c = (cast _ c (Or_elim _ _ _ ab ac bc)).
+
+inductive Exists (A:Type) (P:A→CProp) : CProp ≝
+ Exists_intro: ∀w:A. P w → Exists A P.
+
+interpretation "constructive ex" 'exists \eta.x = (Exists _ x).
+
+notation < "\infrule hbox(\emsp Pn \emsp) Px (∃\sub\i)" with precedence 19
+for @{ 'Exists_intro $Pn $Px }.
+interpretation "Exists_intro" 'Exists_intro Pn Px = (cast _ Px (Exists_intro _ _ _ Pn)).
+
+definition Exists_elim ≝
+ λA:Type.λP:A→CProp.λC:CProp.λc:∃x:A.P x.λH:(∀x.P x → C).
+ match c with [ Exists_intro w p ⇒ H w p ].
+
+notation < "\infrule hbox(\emsp ExPx \emsp\emsp\emsp Pc \emsp) c (∃\sub\e \emsp ident n \emsp ident HPn)" with precedence 19
+for @{ 'Exists_elim $ExPx (λ${ident n}:$tn.λ${ident HPn}:$Pn.$Pc) $c }.
+interpretation "Exists_elim" 'Exists_elim ExPx Pc c = (cast _ c (Exists_elim _ _ _ ExPx Pc)).
+
+inductive Forall (A:Type) (P:A→CProp) : CProp ≝
+ Forall_intro: (∀n:A. P n) → Forall A P.
+
+notation "\forall ident x:A.break term 19 Px" with precedence 20
+for @{ 'Forall (λ${ident x}:$A.$Px) }.
+interpretation "Forall" 'Forall \eta.Px = (Forall _ Px).
+
+notation < "\infrule hbox(\emsp Px \emsp) Pn (∀\sub\i \emsp ident x)" with precedence 19
+for @{ 'Forall_intro (λ${ident x}:$tx.$Px) $Pn }.
+interpretation "Forall_intro" 'Forall_intro Px Pn = (cast _ Pn (Forall_intro _ _ Px)).
+
+definition Forall_elim ≝
+ λA:Type.λP:A→CProp.λn:A.λf:∀x:A.P x.match f with [ Forall_intro g ⇒ g n ].
+
+notation < "\infrule hbox(\emsp Px \emsp) Pn (∀\sub\i)" with precedence 19 for @{ 'Forall_elim $Px $Pn }.
+interpretation "Forall_elim" 'Forall_elim Px Pn = (cast _ Pn (Forall_elim _ _ _ Px)).
+
+notation > "[H]" with precedence 90
+for @{ assumpt ? (cast ? ? $H)}.
+notation > "⇒_'i' [ident H] term 90 b" with precedence 19
+for @{ Imply_intro ?? (λ${ident H}.cast ? $b ?) }.
+notation > "⇒_'e' term 90 ab term 90 a" with precedence 19
+for @{ Imply_elim ?? (cast ? $ab ?) (cast $a $a ?) }.
+notation > "∧_'i' term 90 a term 90 b" with precedence 19
+for @{ And_intro ?? (cast ? $a ?) (cast ? $b ?) }.
+(*notation > "∧_'e_l' term 90 ab" with precedence 19
+for @{ And_elim_l ?? (cast (? ∧ False) $ab ?) }.
+notation > "∧_'e_l' term 90 a ∧ term 90 b" with precedence 19
+for @{ And_elim_l ?? (cast (? ∧ $b) ($a ∧ $b) ?) }. *)
+notation > "∧_'e_l' term 90 ab" with precedence 19
+for @{ And_elim_l ?? (cast $ab $ab ?) }. (* CSC: WRONG *)
+notation > "∧_'e_r' term 90 ab" with precedence 19
+for @{ And_elim_r ?? (cast $ab $ab ?) }. (* CSC: WRONG *)
+notation > "∨_'i_l' term 90 a" with precedence 19
+for @{ Or_intro_l ?? (cast ? $a ?) }.
+notation > "∨_'i_r' term 90 a" with precedence 19
+for @{ Or_intro_r ?? (cast ? $a ?) }.
+notation > "∨_'e' term 90 ab [ident Ha] term 90 c1 [ident Hb] term 90 c2" with precedence 19
+for @{ Or_elim ??? (cast $ab $ab ?) (λ${ident Ha}.cast ? $c1 ?) (λ${ident Hb}.cast ? $c2 ?) }.
+notation > "∀_'i' [ident z] term 90 a" with precedence 19
+for @{ Forall_intro ?? (λ${ident z}.cast ? $a ?) }.
+notation > "∀_'e' term 90 ab term 90 a" with precedence 19
+for @{ Forall_elim ?? $a (cast $ab $ab ?) }.
+notation > "∃_'e' term 90 enpn [ident z] [ident pz] term 90 c" with precedence 19
+for @{ Exists_elim ??? (cast $enpn $enpn ?) (λ${ident z}.λ${ident pz}.cast ? $c ?) }.
+notation > "∃_'i' term 90 n term 90 pn" with precedence 19
+for @{ Exists_intro ? (λ_.?) $n (cast ? $pn ?) }.
-Z/times.ma Z/plus.ma nat/lt_arith.ma
-list/sort.ma datatypes/bool.ma datatypes/constructors.ma list/in.ma
-list/list.ma datatypes/bool.ma higher_order_defs/functions.ma logic/equality.ma nat/nat.ma nat/orders.ma nat/plus.ma
-nat/factorial.ma nat/le_arith.ma
-nat/sigma_and_pi.ma nat/exp.ma nat/factorial.ma nat/lt_arith.ma
-nat/compare.ma datatypes/bool.ma datatypes/compare.ma nat/orders.ma
-nat/neper.ma nat/binomial.ma nat/chebyshev.ma nat/div_and_mod_diseq.ma nat/iteration2.ma nat/log.ma
+formal_topology/formal_topologies.ma formal_topology/basic_topologies.ma
+demo/formal_topology.ma logic/cprop_connectives.ma logic/equality.ma
Q/ratio/rtimes.ma Q/fraction/ftimes.ma Q/ratio/rinv.ma
+demo/power_derivative.ma nat/compare.ma nat/nat.ma nat/orders.ma nat/plus.ma
+nat/compare.ma datatypes/bool.ma datatypes/compare.ma nat/orders.ma
nat/lt_arith.ma nat/div_and_mod.ma
+demo/propositional_sequent_calculus.ma datatypes/constructors.ma list/sort.ma nat/compare.ma nat/plus.ma
+Z/inversion.ma Z/dirichlet_product.ma Z/moebius.ma
+nat/factorial2.ma nat/exp.ma nat/factorial.ma
+nat/orders.ma higher_order_defs/ordering.ma logic/connectives.ma nat/nat.ma
+nat/sieve.ma list/sort.ma nat/primes.ma
+technicalities/setoids.ma datatypes/constructors.ma logic/coimplication.ma logic/connectives2.ma
+nat/div_and_mod_diseq.ma nat/lt_arith.ma
+logic/cprop_connectives.ma logic/connectives.ma
+algebra/groups.ma algebra/monoids.ma datatypes/bool.ma logic/connectives.ma nat/compare.ma nat/le_arith.ma
+nat/chinese_reminder.ma nat/congruence.ma nat/exp.ma nat/gcd.ma nat/permutation.ma
+formal_topology/saturations_reductions.ma datatypes/subsets.ma
+Q/q/qinv.ma Q/q/q.ma Q/ratio/rinv.ma
nat/exp.ma nat/div_and_mod.ma nat/lt_arith.ma
-nat/binomial.ma nat/factorial2.ma nat/iteration2.ma
-Q/q/qtimes.ma Q/q/qinv.ma Q/ratio/rtimes.ma
-nat/euler_theorem.ma nat/map_iter_p.ma nat/nat.ma nat/totient.ma
-Z/orders.ma Z/z.ma nat/orders.ma
-datatypes/subsets.ma datatypes/categories.ma logic/cprop_connectives.ma
-logic/connectives2.ma higher_order_defs/relations.ma
+list/in.ma datatypes/bool.ma datatypes/constructors.ma list/list.ma
+datatypes/compare.ma
nat/factorization2.ma list/list.ma nat/factorization.ma nat/sieve.ma
-Q/ratio/rinv.ma Q/fraction/finv.ma Q/ratio/ratio.ma
-nat/o.ma nat/binomial.ma nat/sqrt.ma
-nat/permutation.ma nat/compare.ma nat/sigma_and_pi.ma
-Q/q/qinv.ma Q/q/q.ma Q/ratio/rinv.ma
-nat/plus.ma nat/nat.ma
-Q/fraction/fraction.ma Z/compare.ma nat/factorization.ma
-formal_topology/saturations_reductions.ma datatypes/subsets.ma
-algebra/finite_groups.ma algebra/groups.ma nat/relevant_equations.ma
-Z/dirichlet_product.ma Z/sigma_p.ma Z/times.ma nat/primes.ma
-datatypes/categories.ma logic/cprop_connectives.ma
-nat/chinese_reminder.ma nat/congruence.ma nat/exp.ma nat/gcd.ma nat/permutation.ma
-nat/fermat_little_theorem.ma nat/congruence.ma nat/exp.ma nat/gcd.ma nat/permutation.ma
-nat/div_and_mod.ma datatypes/constructors.ma nat/minus.ma
-nat/count.ma nat/permutation.ma nat/relevant_equations.ma nat/sigma_and_pi.ma
-higher_order_defs/ordering.ma logic/equality.ma
-datatypes/constructors.ma logic/equality.ma
-Q/q.ma Q/fraction/fraction.ma Z/compare.ma Z/plus.ma nat/factorization.ma
-Z/compare.ma Z/orders.ma nat/compare.ma
-Q/q/q.ma Q/fraction/numerator_denominator.ma Q/ratio/ratio.ma
-Q/fraction/numerator_denominator.ma Q/fraction/finv.ma
-nat/log.ma datatypes/constructors.ma nat/div_and_mod_diseq.ma nat/iteration2.ma nat/minimization.ma nat/primes.ma nat/relevant_equations.ma
-datatypes/bool.ma higher_order_defs/functions.ma logic/equality.ma
-nat/chebyshev_teta.ma nat/binomial.ma nat/pi_p.ma
-Q/ratio/ratio.ma Q/fraction/fraction.ma
-nat/div_and_mod_diseq.ma nat/lt_arith.ma
-decidable_kit/list_aux.ma decidable_kit/eqtype.ma list/list.ma nat/plus.ma
+formal_topology/basic_topologies.ma datatypes/categories.ma formal_topology/relations.ma formal_topology/saturations_reductions.ma
logic/connectives.ma
-technicalities/setoids.ma datatypes/constructors.ma logic/coimplication.ma logic/connectives2.ma
-datatypes/compare.ma
-nat/orders.ma higher_order_defs/ordering.ma logic/connectives.ma nat/nat.ma
-nat/sqrt.ma nat/compare.ma nat/log.ma nat/times.ma
-nat/relevant_equations.ma nat/gcd.ma nat/minus.ma nat/times.ma
-nat/factorial2.ma nat/exp.ma nat/factorial.ma
+Q/nat_fact/times.ma nat/factorization.ma
+decidable_kit/fintype.ma decidable_kit/eqtype.ma decidable_kit/list_aux.ma
+demo/natural_deduction_support.ma
+nat/ord.ma datatypes/constructors.ma nat/exp.ma nat/gcd.ma nat/nth_prime.ma nat/relevant_equations.ma
+nat/totient1.ma nat/compare.ma nat/gcd_properties1.ma nat/iteration2.ma nat/totient.ma
+nat/times.ma nat/plus.ma
nat/chebyshev_thm.ma nat/neper.ma
-algebra/groups.ma algebra/monoids.ma datatypes/bool.ma logic/connectives.ma nat/compare.ma nat/le_arith.ma
-demo/power_derivative.ma nat/compare.ma nat/nat.ma nat/orders.ma nat/plus.ma
-nat/gcd_properties1.ma nat/gcd.ma
-nat/minimization.ma nat/minus.ma
+Z/z.ma datatypes/bool.ma nat/nat.ma
+demo/cantor.ma datatypes/constructors.ma demo/formal_topology.ma
+nat/nth_prime.ma nat/lt_arith.ma nat/primes.ma
+nat/le_arith.ma nat/orders.ma nat/times.ma
decidable_kit/fgraph.ma decidable_kit/fintype.ma
-formal_topology/relations.ma datatypes/subsets.ma
-formal_topology/formal_topologies.ma formal_topology/basic_topologies.ma
-Q/fraction/finv.ma Q/fraction/fraction.ma Z/plus.ma
+nat/euler_theorem.ma nat/map_iter_p.ma nat/nat.ma nat/totient.ma
+Q/fraction/ftimes.ma Q/fraction/finv.ma Q/nat_fact/times.ma Q/ratio/ratio.ma Z/times.ma
+nat/factorial.ma nat/le_arith.ma
Z/plus.ma Z/z.ma nat/minus.ma
-nat/minus.ma nat/compare.ma nat/le_arith.ma
-nat/generic_iter_p.ma nat/div_and_mod_diseq.ma nat/ord.ma nat/primes.ma
-Q/Qaxioms.ma Z/compare.ma Z/times.ma nat/iteration2.ma
-Z/z.ma datatypes/bool.ma nat/nat.ma
-formal_topology/concrete_spaces.ma formal_topology/basic_pairs.ma
+Q/ratio/rinv.ma Q/fraction/finv.ma Q/ratio/ratio.ma
decidable_kit/streicher.ma logic/connectives.ma logic/equality.ma
-nat/ord.ma datatypes/constructors.ma nat/exp.ma nat/gcd.ma nat/nth_prime.ma nat/relevant_equations.ma
+nat/fermat_little_theorem.ma nat/congruence.ma nat/exp.ma nat/gcd.ma nat/permutation.ma
+Q/q/qplus.ma nat/factorization.ma
+decidable_kit/list_aux.ma decidable_kit/eqtype.ma list/list.ma nat/plus.ma
nat/map_iter_p.ma nat/count.ma nat/permutation.ma
+Q/q.ma Q/fraction/fraction.ma Z/compare.ma Z/plus.ma nat/factorization.ma
+Z/orders.ma Z/z.ma nat/orders.ma
+nat/permutation.ma nat/compare.ma nat/sigma_and_pi.ma
demo/realisability.ma datatypes/constructors.ma logic/connectives.ma
-nat/totient1.ma nat/compare.ma nat/gcd_properties1.ma nat/iteration2.ma nat/totient.ma
-decidable_kit/eqtype.ma datatypes/constructors.ma decidable_kit/decidable.ma
-nat/gcd.ma nat/lt_arith.ma nat/primes.ma
-nat/factorization.ma nat/ord.ma
-algebra/monoids.ma algebra/semigroups.ma
-demo/propositional_sequent_calculus.ma datatypes/constructors.ma list/sort.ma nat/compare.ma nat/plus.ma
-logic/coimplication.ma logic/connectives.ma
-decidable_kit/fintype.ma decidable_kit/eqtype.ma decidable_kit/list_aux.ma
-logic/equality.ma higher_order_defs/relations.ma logic/connectives.ma
-higher_order_defs/functions.ma logic/equality.ma
-algebra/semigroups.ma higher_order_defs/functions.ma
-nat/sieve.ma list/sort.ma nat/primes.ma
-nat/pi_p.ma nat/generic_iter_p.ma nat/iteration2.ma nat/primes.ma
-Q/nat_fact/times.ma nat/factorization.ma
+list/list.ma datatypes/bool.ma higher_order_defs/functions.ma logic/equality.ma nat/nat.ma nat/orders.ma nat/plus.ma
nat/totient.ma nat/chinese_reminder.ma nat/iteration2.ma
-logic/cprop_connectives.ma logic/connectives.ma
-nat/primes.ma logic/connectives.ma nat/div_and_mod.ma nat/factorial.ma nat/minimization.ma nat/sigma_and_pi.ma
-higher_order_defs/relations.ma logic/connectives.ma
-demo/toolbox.ma logic/cprop_connectives.ma
-demo/natural_deduction.ma
-Q/inv.ma Q/q/q.ma Q/fraction/finv.ma Q/q.ma
+nat/sigma_and_pi.ma nat/exp.ma nat/factorial.ma nat/lt_arith.ma
+nat/count.ma nat/permutation.ma nat/relevant_equations.ma nat/sigma_and_pi.ma
+formal_topology/basic_pairs.ma datatypes/categories.ma formal_topology/relations.ma
+Q/frac.ma Q/q/q.ma Q/q/qinv.ma nat/factorization.ma nat/nat.ma
+Q/q/qtimes.ma Q/q/qinv.ma Q/ratio/rtimes.ma
+formal_topology/concrete_spaces.ma formal_topology/basic_pairs.ma
+nat/minus.ma nat/compare.ma nat/le_arith.ma
+Q/ratio/ratio.ma Q/fraction/fraction.ma
+nat/chebyshev_teta.ma nat/binomial.ma nat/pi_p.ma
+algebra/finite_groups.ma algebra/groups.ma nat/relevant_equations.ma
decidable_kit/decidable.ma datatypes/bool.ma decidable_kit/streicher.ma logic/connectives.ma nat/compare.ma
+nat/pi_p.ma nat/generic_iter_p.ma nat/iteration2.ma nat/primes.ma
+algebra/semigroups.ma higher_order_defs/functions.ma
+higher_order_defs/relations.ma logic/connectives.ma
+nat/factorization.ma nat/ord.ma
+formal_topology/relations.ma datatypes/subsets.ma
+nat/neper.ma nat/binomial.ma nat/chebyshev.ma nat/div_and_mod_diseq.ma nat/iteration2.ma nat/log.ma
Z/moebius.ma Z/sigma_p.ma nat/factorization.ma
-Z/inversion.ma Z/dirichlet_product.ma Z/moebius.ma
-Q/fraction/ftimes.ma Q/fraction/finv.ma Q/nat_fact/times.ma Q/ratio/ratio.ma Z/times.ma
-Q/q/qplus.ma nat/factorization.ma
-Q/frac.ma Q/q/q.ma Q/q/qinv.ma nat/nat.ma nat/factorization.ma
-Z/sigma_p.ma Z/plus.ma Z/times.ma nat/generic_iter_p.ma nat/ord.ma nat/primes.ma
+demo/toolbox.ma logic/cprop_connectives.ma
+nat/iteration2.ma nat/count.ma nat/generic_iter_p.ma nat/ord.ma nat/primes.ma
+logic/coimplication.ma logic/connectives.ma
+nat/minimization.ma nat/minus.ma
+logic/connectives2.ma higher_order_defs/relations.ma
+datatypes/subsets.ma datatypes/categories.ma logic/cprop_connectives.ma
+nat/chebyshev.ma nat/factorial2.ma nat/factorization.ma nat/log.ma nat/o.ma nat/pi_p.ma
+decidable_kit/eqtype.ma datatypes/constructors.ma decidable_kit/decidable.ma
+Q/q/q.ma Q/fraction/numerator_denominator.ma Q/ratio/ratio.ma
nat/bertrand.ma list/in.ma list/sort.ma nat/chebyshev.ma nat/chebyshev_teta.ma nat/o.ma nat/sieve.ma nat/sqrt.ma
nat/nat.ma higher_order_defs/functions.ma
-formal_topology/basic_topologies.ma datatypes/categories.ma formal_topology/relations.ma formal_topology/saturations_reductions.ma
-nat/chebyshev.ma nat/o.ma nat/factorial2.ma nat/factorization.ma nat/log.ma nat/pi_p.ma
-demo/formal_topology.ma logic/cprop_connectives.ma logic/equality.ma
+Q/Qaxioms.ma Z/compare.ma Z/times.ma nat/iteration2.ma
+demo/natural_deduction.ma
+higher_order_defs/ordering.ma logic/equality.ma
nat/congruence.ma nat/primes.ma nat/relevant_equations.ma
-nat/le_arith.ma nat/orders.ma nat/times.ma
-nat/times.ma nat/plus.ma
-formal_topology/basic_pairs.ma datatypes/categories.ma formal_topology/relations.ma
-list/in.ma datatypes/bool.ma datatypes/constructors.ma list/list.ma
-nat/nth_prime.ma nat/lt_arith.ma nat/primes.ma
-nat/iteration2.ma nat/count.ma nat/generic_iter_p.ma nat/ord.ma nat/primes.ma
+logic/equality.ma logic/connectives.ma higher_order_defs/relations.ma
+nat/gcd.ma nat/lt_arith.ma nat/primes.ma
+datatypes/bool.ma higher_order_defs/functions.ma logic/equality.ma
+Z/compare.ma Z/orders.ma nat/compare.ma
+algebra/monoids.ma algebra/semigroups.ma
+nat/div_and_mod.ma datatypes/constructors.ma nat/minus.ma
+Z/dirichlet_product.ma Z/sigma_p.ma Z/times.ma nat/primes.ma
+nat/sqrt.ma nat/compare.ma nat/log.ma nat/times.ma
+datatypes/categories.ma logic/cprop_connectives.ma
+nat/relevant_equations.ma nat/gcd.ma nat/minus.ma nat/times.ma
+Q/fraction/finv.ma Q/fraction/fraction.ma Z/plus.ma
+nat/binomial.ma nat/factorial2.ma nat/iteration2.ma
+nat/log.ma datatypes/constructors.ma nat/div_and_mod_diseq.ma nat/iteration2.ma nat/minimization.ma nat/primes.ma nat/relevant_equations.ma
+higher_order_defs/functions.ma logic/equality.ma
+Q/fraction/numerator_denominator.ma Q/fraction/finv.ma
+nat/generic_iter_p.ma nat/div_and_mod_diseq.ma nat/ord.ma nat/primes.ma
+datatypes/constructors.ma logic/equality.ma
+nat/plus.ma nat/nat.ma
+Q/fraction/fraction.ma Z/compare.ma nat/factorization.ma
+nat/primes.ma logic/connectives.ma nat/div_and_mod.ma nat/factorial.ma nat/minimization.ma nat/sigma_and_pi.ma
+nat/gcd_properties1.ma nat/gcd.ma
+list/sort.ma datatypes/bool.ma datatypes/constructors.ma list/in.ma
+Z/times.ma Z/plus.ma nat/lt_arith.ma
+Z/sigma_p.ma Z/plus.ma Z/times.ma nat/generic_iter_p.ma nat/ord.ma nat/primes.ma
+nat/o.ma nat/binomial.ma nat/sqrt.ma
+Q/inv.ma Q/fraction/finv.ma Q/q/q.ma Q/q.ma