(* This file was automatically generated: do not edit *********************)
-include "Basic-1/sty0/defs.ma".
+include "basic_1/sty0/defs.ma".
+
+let rec sty0_ind (g: G) (P: (C \to (T \to (T \to Prop)))) (f: (\forall (c:
+C).(\forall (n: nat).(P c (TSort n) (TSort (next g n)))))) (f0: (\forall (c:
+C).(\forall (d: C).(\forall (v: T).(\forall (i: nat).((getl i c (CHead d
+(Bind Abbr) v)) \to (\forall (w: T).((sty0 g d v w) \to ((P d v w) \to (P c
+(TLRef i) (lift (S i) O w))))))))))) (f1: (\forall (c: C).(\forall (d:
+C).(\forall (v: T).(\forall (i: nat).((getl i c (CHead d (Bind Abst) v)) \to
+(\forall (w: T).((sty0 g d v w) \to ((P d v w) \to (P c (TLRef i) (lift (S i)
+O v))))))))))) (f2: (\forall (b: B).(\forall (c: C).(\forall (v: T).(\forall
+(t1: T).(\forall (t2: T).((sty0 g (CHead c (Bind b) v) t1 t2) \to ((P (CHead
+c (Bind b) v) t1 t2) \to (P c (THead (Bind b) v t1) (THead (Bind b) v
+t2)))))))))) (f3: (\forall (c: C).(\forall (v: T).(\forall (t1: T).(\forall
+(t2: T).((sty0 g c t1 t2) \to ((P c t1 t2) \to (P c (THead (Flat Appl) v t1)
+(THead (Flat Appl) v t2))))))))) (f4: (\forall (c: C).(\forall (v1:
+T).(\forall (v2: T).((sty0 g c v1 v2) \to ((P c v1 v2) \to (\forall (t1:
+T).(\forall (t2: T).((sty0 g c t1 t2) \to ((P c t1 t2) \to (P c (THead (Flat
+Cast) v1 t1) (THead (Flat Cast) v2 t2)))))))))))) (c: C) (t: T) (t0: T) (s0:
+sty0 g c t t0) on s0: P c t t0 \def match s0 with [(sty0_sort c0 n)
+\Rightarrow (f c0 n) | (sty0_abbr c0 d v i g0 w s1) \Rightarrow (f0 c0 d v i
+g0 w s1 ((sty0_ind g P f f0 f1 f2 f3 f4) d v w s1)) | (sty0_abst c0 d v i g0
+w s1) \Rightarrow (f1 c0 d v i g0 w s1 ((sty0_ind g P f f0 f1 f2 f3 f4) d v w
+s1)) | (sty0_bind b c0 v t1 t2 s1) \Rightarrow (f2 b c0 v t1 t2 s1 ((sty0_ind
+g P f f0 f1 f2 f3 f4) (CHead c0 (Bind b) v) t1 t2 s1)) | (sty0_appl c0 v t1
+t2 s1) \Rightarrow (f3 c0 v t1 t2 s1 ((sty0_ind g P f f0 f1 f2 f3 f4) c0 t1
+t2 s1)) | (sty0_cast c0 v1 v2 s1 t1 t2 s2) \Rightarrow (f4 c0 v1 v2 s1
+((sty0_ind g P f f0 f1 f2 f3 f4) c0 v1 v2 s1) t1 t2 s2 ((sty0_ind g P f f0 f1
+f2 f3 f4) c0 t1 t2 s2))].
theorem sty0_gen_sort:
\forall (g: G).(\forall (c: C).(\forall (x: T).(\forall (n: nat).((sty0 g c
(H0: (sty0 g c y x)).(sty0_ind g (\lambda (_: C).(\lambda (t: T).(\lambda
(t0: T).((eq T t (TSort n)) \to (eq T t0 (TSort (next g n))))))) (\lambda (_:
C).(\lambda (n0: nat).(\lambda (H1: (eq T (TSort n0) (TSort n))).(let H2 \def
-(f_equal T nat (\lambda (e: T).(match e in T return (\lambda (_: T).nat) with
-[(TSort n1) \Rightarrow n1 | (TLRef _) \Rightarrow n0 | (THead _ _ _)
-\Rightarrow n0])) (TSort n0) (TSort n) H1) in (eq_ind_r nat n (\lambda (n1:
-nat).(eq T (TSort (next g n1)) (TSort (next g n)))) (refl_equal T (TSort
-(next g n))) n0 H2))))) (\lambda (c0: C).(\lambda (d: C).(\lambda (v:
-T).(\lambda (i: nat).(\lambda (_: (getl i c0 (CHead d (Bind Abbr)
-v))).(\lambda (w: T).(\lambda (_: (sty0 g d v w)).(\lambda (_: (((eq T v
-(TSort n)) \to (eq T w (TSort (next g n)))))).(\lambda (H4: (eq T (TLRef i)
-(TSort n))).(let H5 \def (eq_ind T (TLRef i) (\lambda (ee: T).(match ee in T
-return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
-\Rightarrow True | (THead _ _ _) \Rightarrow False])) I (TSort n) H4) in
-(False_ind (eq T (lift (S i) O w) (TSort (next g n))) H5))))))))))) (\lambda
-(c0: C).(\lambda (d: C).(\lambda (v: T).(\lambda (i: nat).(\lambda (_: (getl
-i c0 (CHead d (Bind Abst) v))).(\lambda (w: T).(\lambda (_: (sty0 g d v
+(f_equal T nat (\lambda (e: T).(match e with [(TSort n1) \Rightarrow n1 |
+(TLRef _) \Rightarrow n0 | (THead _ _ _) \Rightarrow n0])) (TSort n0) (TSort
+n) H1) in (eq_ind_r nat n (\lambda (n1: nat).(eq T (TSort (next g n1)) (TSort
+(next g n)))) (refl_equal T (TSort (next g n))) n0 H2))))) (\lambda (c0:
+C).(\lambda (d: C).(\lambda (v: T).(\lambda (i: nat).(\lambda (_: (getl i c0
+(CHead d (Bind Abbr) v))).(\lambda (w: T).(\lambda (_: (sty0 g d v
w)).(\lambda (_: (((eq T v (TSort n)) \to (eq T w (TSort (next g
n)))))).(\lambda (H4: (eq T (TLRef i) (TSort n))).(let H5 \def (eq_ind T
-(TLRef i) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with
-[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow True | (THead _ _ _)
-\Rightarrow False])) I (TSort n) H4) in (False_ind (eq T (lift (S i) O v)
-(TSort (next g n))) H5))))))))))) (\lambda (b: B).(\lambda (c0: C).(\lambda
-(v: T).(\lambda (t1: T).(\lambda (t2: T).(\lambda (_: (sty0 g (CHead c0 (Bind
-b) v) t1 t2)).(\lambda (_: (((eq T t1 (TSort n)) \to (eq T t2 (TSort (next g
-n)))))).(\lambda (H3: (eq T (THead (Bind b) v t1) (TSort n))).(let H4 \def
-(eq_ind T (THead (Bind b) v t1) (\lambda (ee: T).(match ee in T return
-(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
+(TLRef i) (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False |
+(TLRef _) \Rightarrow True | (THead _ _ _) \Rightarrow False])) I (TSort n)
+H4) in (False_ind (eq T (lift (S i) O w) (TSort (next g n))) H5)))))))))))
+(\lambda (c0: C).(\lambda (d: C).(\lambda (v: T).(\lambda (i: nat).(\lambda
+(_: (getl i c0 (CHead d (Bind Abst) v))).(\lambda (w: T).(\lambda (_: (sty0 g
+d v w)).(\lambda (_: (((eq T v (TSort n)) \to (eq T w (TSort (next g
+n)))))).(\lambda (H4: (eq T (TLRef i) (TSort n))).(let H5 \def (eq_ind T
+(TLRef i) (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False |
+(TLRef _) \Rightarrow True | (THead _ _ _) \Rightarrow False])) I (TSort n)
+H4) in (False_ind (eq T (lift (S i) O v) (TSort (next g n))) H5)))))))))))
+(\lambda (b: B).(\lambda (c0: C).(\lambda (v: T).(\lambda (t1: T).(\lambda
+(t2: T).(\lambda (_: (sty0 g (CHead c0 (Bind b) v) t1 t2)).(\lambda (_: (((eq
+T t1 (TSort n)) \to (eq T t2 (TSort (next g n)))))).(\lambda (H3: (eq T
+(THead (Bind b) v t1) (TSort n))).(let H4 \def (eq_ind T (THead (Bind b) v
+t1) (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _)
\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TSort n) H3) in
(False_ind (eq T (THead (Bind b) v t2) (TSort (next g n))) H4))))))))))
(\lambda (c0: C).(\lambda (v: T).(\lambda (t1: T).(\lambda (t2: T).(\lambda
(_: (sty0 g c0 t1 t2)).(\lambda (_: (((eq T t1 (TSort n)) \to (eq T t2 (TSort
(next g n)))))).(\lambda (H3: (eq T (THead (Flat Appl) v t1) (TSort n))).(let
-H4 \def (eq_ind T (THead (Flat Appl) v t1) (\lambda (ee: T).(match ee in T
-return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
-\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TSort n) H3) in
-(False_ind (eq T (THead (Flat Appl) v t2) (TSort (next g n))) H4)))))))))
-(\lambda (c0: C).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (sty0 g c0 v1
-v2)).(\lambda (_: (((eq T v1 (TSort n)) \to (eq T v2 (TSort (next g
-n)))))).(\lambda (t1: T).(\lambda (t2: T).(\lambda (_: (sty0 g c0 t1
-t2)).(\lambda (_: (((eq T t1 (TSort n)) \to (eq T t2 (TSort (next g
-n)))))).(\lambda (H5: (eq T (THead (Flat Cast) v1 t1) (TSort n))).(let H6
-\def (eq_ind T (THead (Flat Cast) v1 t1) (\lambda (ee: T).(match ee in T
-return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
-\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TSort n) H5) in
-(False_ind (eq T (THead (Flat Cast) v2 t2) (TSort (next g n))) H6))))))))))))
-c y x H0))) H))))).
-(* COMMENTS
-Initial nodes: 869
-END *)
+H4 \def (eq_ind T (THead (Flat Appl) v t1) (\lambda (ee: T).(match ee with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _)
+\Rightarrow True])) I (TSort n) H3) in (False_ind (eq T (THead (Flat Appl) v
+t2) (TSort (next g n))) H4))))))))) (\lambda (c0: C).(\lambda (v1:
+T).(\lambda (v2: T).(\lambda (_: (sty0 g c0 v1 v2)).(\lambda (_: (((eq T v1
+(TSort n)) \to (eq T v2 (TSort (next g n)))))).(\lambda (t1: T).(\lambda (t2:
+T).(\lambda (_: (sty0 g c0 t1 t2)).(\lambda (_: (((eq T t1 (TSort n)) \to (eq
+T t2 (TSort (next g n)))))).(\lambda (H5: (eq T (THead (Flat Cast) v1 t1)
+(TSort n))).(let H6 \def (eq_ind T (THead (Flat Cast) v1 t1) (\lambda (ee:
+T).(match ee with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False
+| (THead _ _ _) \Rightarrow True])) I (TSort n) H5) in (False_ind (eq T
+(THead (Flat Cast) v2 t2) (TSort (next g n))) H6)))))))))))) c y x H0)))
+H))))).
theorem sty0_gen_lref:
\forall (g: G).(\forall (c: C).(\forall (x: T).(\forall (n: nat).((sty0 g c
(t1: T).(sty0 g e u t1)))) (\lambda (_: C).(\lambda (u: T).(\lambda (_:
T).(eq T t0 (lift (S n) O u))))))))))) (\lambda (c0: C).(\lambda (n0:
nat).(\lambda (H1: (eq T (TSort n0) (TLRef n))).(let H2 \def (eq_ind T (TSort
-n0) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort
-_) \Rightarrow True | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow
-False])) I (TLRef n) H1) in (False_ind (or (ex3_3 C T T (\lambda (e:
-C).(\lambda (u: T).(\lambda (_: T).(getl n c0 (CHead e (Bind Abbr) u)))))
-(\lambda (e: C).(\lambda (u: T).(\lambda (t: T).(sty0 g e u t)))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (t: T).(eq T (TSort (next g n0)) (lift (S n)
-O t)))))) (ex3_3 C T T (\lambda (e: C).(\lambda (u: T).(\lambda (_: T).(getl
-n c0 (CHead e (Bind Abst) u))))) (\lambda (e: C).(\lambda (u: T).(\lambda (t:
-T).(sty0 g e u t)))) (\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq T
-(TSort (next g n0)) (lift (S n) O u))))))) H2))))) (\lambda (c0: C).(\lambda
-(d: C).(\lambda (v: T).(\lambda (i: nat).(\lambda (H1: (getl i c0 (CHead d
-(Bind Abbr) v))).(\lambda (w: T).(\lambda (H2: (sty0 g d v w)).(\lambda (_:
-(((eq T v (TLRef n)) \to (or (ex3_3 C T T (\lambda (e: C).(\lambda (u:
-T).(\lambda (_: T).(getl n d (CHead e (Bind Abbr) u))))) (\lambda (e:
-C).(\lambda (u: T).(\lambda (t: T).(sty0 g e u t)))) (\lambda (_: C).(\lambda
-(_: T).(\lambda (t: T).(eq T w (lift (S n) O t)))))) (ex3_3 C T T (\lambda
-(e: C).(\lambda (u: T).(\lambda (_: T).(getl n d (CHead e (Bind Abst) u)))))
-(\lambda (e: C).(\lambda (u: T).(\lambda (t: T).(sty0 g e u t)))) (\lambda
-(_: C).(\lambda (u: T).(\lambda (_: T).(eq T w (lift (S n) O
-u)))))))))).(\lambda (H4: (eq T (TLRef i) (TLRef n))).(let H5 \def (f_equal T
-nat (\lambda (e: T).(match e in T return (\lambda (_: T).nat) with [(TSort _)
-\Rightarrow i | (TLRef n0) \Rightarrow n0 | (THead _ _ _) \Rightarrow i]))
-(TLRef i) (TLRef n) H4) in (let H6 \def (eq_ind nat i (\lambda (n0:
-nat).(getl n0 c0 (CHead d (Bind Abbr) v))) H1 n H5) in (eq_ind_r nat n
-(\lambda (n0: nat).(or (ex3_3 C T T (\lambda (e: C).(\lambda (u: T).(\lambda
-(_: T).(getl n c0 (CHead e (Bind Abbr) u))))) (\lambda (e: C).(\lambda (u:
+n0) (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow True | (TLRef _)
+\Rightarrow False | (THead _ _ _) \Rightarrow False])) I (TLRef n) H1) in
+(False_ind (or (ex3_3 C T T (\lambda (e: C).(\lambda (u: T).(\lambda (_:
+T).(getl n c0 (CHead e (Bind Abbr) u))))) (\lambda (e: C).(\lambda (u:
T).(\lambda (t: T).(sty0 g e u t)))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(t: T).(eq T (lift (S n0) O w) (lift (S n) O t)))))) (ex3_3 C T T (\lambda
+(t: T).(eq T (TSort (next g n0)) (lift (S n) O t)))))) (ex3_3 C T T (\lambda
(e: C).(\lambda (u: T).(\lambda (_: T).(getl n c0 (CHead e (Bind Abst) u)))))
(\lambda (e: C).(\lambda (u: T).(\lambda (t: T).(sty0 g e u t)))) (\lambda
-(_: C).(\lambda (u: T).(\lambda (_: T).(eq T (lift (S n0) O w) (lift (S n) O
-u)))))))) (or_introl (ex3_3 C T T (\lambda (e: C).(\lambda (u: T).(\lambda
-(_: T).(getl n c0 (CHead e (Bind Abbr) u))))) (\lambda (e: C).(\lambda (u:
-T).(\lambda (t: T).(sty0 g e u t)))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(t: T).(eq T (lift (S n) O w) (lift (S n) O t)))))) (ex3_3 C T T (\lambda (e:
-C).(\lambda (u: T).(\lambda (_: T).(getl n c0 (CHead e (Bind Abst) u)))))
-(\lambda (e: C).(\lambda (u: T).(\lambda (t: T).(sty0 g e u t)))) (\lambda
-(_: C).(\lambda (u: T).(\lambda (_: T).(eq T (lift (S n) O w) (lift (S n) O
-u)))))) (ex3_3_intro C T T (\lambda (e: C).(\lambda (u: T).(\lambda (_:
-T).(getl n c0 (CHead e (Bind Abbr) u))))) (\lambda (e: C).(\lambda (u:
-T).(\lambda (t: T).(sty0 g e u t)))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(t: T).(eq T (lift (S n) O w) (lift (S n) O t))))) d v w H6 H2 (refl_equal T
-(lift (S n) O w)))) i H5)))))))))))) (\lambda (c0: C).(\lambda (d:
-C).(\lambda (v: T).(\lambda (i: nat).(\lambda (H1: (getl i c0 (CHead d (Bind
-Abst) v))).(\lambda (w: T).(\lambda (H2: (sty0 g d v w)).(\lambda (_: (((eq T
-v (TLRef n)) \to (or (ex3_3 C T T (\lambda (e: C).(\lambda (u: T).(\lambda
-(_: T).(getl n d (CHead e (Bind Abbr) u))))) (\lambda (e: C).(\lambda (u:
-T).(\lambda (t: T).(sty0 g e u t)))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(t: T).(eq T w (lift (S n) O t)))))) (ex3_3 C T T (\lambda (e: C).(\lambda
-(u: T).(\lambda (_: T).(getl n d (CHead e (Bind Abst) u))))) (\lambda (e:
-C).(\lambda (u: T).(\lambda (t: T).(sty0 g e u t)))) (\lambda (_: C).(\lambda
-(u: T).(\lambda (_: T).(eq T w (lift (S n) O u)))))))))).(\lambda (H4: (eq T
-(TLRef i) (TLRef n))).(let H5 \def (f_equal T nat (\lambda (e: T).(match e in
-T return (\lambda (_: T).nat) with [(TSort _) \Rightarrow i | (TLRef n0)
-\Rightarrow n0 | (THead _ _ _) \Rightarrow i])) (TLRef i) (TLRef n) H4) in
-(let H6 \def (eq_ind nat i (\lambda (n0: nat).(getl n0 c0 (CHead d (Bind
-Abst) v))) H1 n H5) in (eq_ind_r nat n (\lambda (n0: nat).(or (ex3_3 C T T
+(_: C).(\lambda (u: T).(\lambda (_: T).(eq T (TSort (next g n0)) (lift (S n)
+O u))))))) H2))))) (\lambda (c0: C).(\lambda (d: C).(\lambda (v: T).(\lambda
+(i: nat).(\lambda (H1: (getl i c0 (CHead d (Bind Abbr) v))).(\lambda (w:
+T).(\lambda (H2: (sty0 g d v w)).(\lambda (_: (((eq T v (TLRef n)) \to (or
+(ex3_3 C T T (\lambda (e: C).(\lambda (u: T).(\lambda (_: T).(getl n d (CHead
+e (Bind Abbr) u))))) (\lambda (e: C).(\lambda (u: T).(\lambda (t: T).(sty0 g
+e u t)))) (\lambda (_: C).(\lambda (_: T).(\lambda (t: T).(eq T w (lift (S n)
+O t)))))) (ex3_3 C T T (\lambda (e: C).(\lambda (u: T).(\lambda (_: T).(getl
+n d (CHead e (Bind Abst) u))))) (\lambda (e: C).(\lambda (u: T).(\lambda (t:
+T).(sty0 g e u t)))) (\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq T w
+(lift (S n) O u)))))))))).(\lambda (H4: (eq T (TLRef i) (TLRef n))).(let H5
+\def (f_equal T nat (\lambda (e: T).(match e with [(TSort _) \Rightarrow i |
+(TLRef n0) \Rightarrow n0 | (THead _ _ _) \Rightarrow i])) (TLRef i) (TLRef
+n) H4) in (let H6 \def (eq_ind nat i (\lambda (n0: nat).(getl n0 c0 (CHead d
+(Bind Abbr) v))) H1 n H5) in (eq_ind_r nat n (\lambda (n0: nat).(or (ex3_3 C
+T T (\lambda (e: C).(\lambda (u: T).(\lambda (_: T).(getl n c0 (CHead e (Bind
+Abbr) u))))) (\lambda (e: C).(\lambda (u: T).(\lambda (t: T).(sty0 g e u
+t)))) (\lambda (_: C).(\lambda (_: T).(\lambda (t: T).(eq T (lift (S n0) O w)
+(lift (S n) O t)))))) (ex3_3 C T T (\lambda (e: C).(\lambda (u: T).(\lambda
+(_: T).(getl n c0 (CHead e (Bind Abst) u))))) (\lambda (e: C).(\lambda (u:
+T).(\lambda (t: T).(sty0 g e u t)))) (\lambda (_: C).(\lambda (u: T).(\lambda
+(_: T).(eq T (lift (S n0) O w) (lift (S n) O u)))))))) (or_introl (ex3_3 C T
+T (\lambda (e: C).(\lambda (u: T).(\lambda (_: T).(getl n c0 (CHead e (Bind
+Abbr) u))))) (\lambda (e: C).(\lambda (u: T).(\lambda (t: T).(sty0 g e u
+t)))) (\lambda (_: C).(\lambda (_: T).(\lambda (t: T).(eq T (lift (S n) O w)
+(lift (S n) O t)))))) (ex3_3 C T T (\lambda (e: C).(\lambda (u: T).(\lambda
+(_: T).(getl n c0 (CHead e (Bind Abst) u))))) (\lambda (e: C).(\lambda (u:
+T).(\lambda (t: T).(sty0 g e u t)))) (\lambda (_: C).(\lambda (u: T).(\lambda
+(_: T).(eq T (lift (S n) O w) (lift (S n) O u)))))) (ex3_3_intro C T T
(\lambda (e: C).(\lambda (u: T).(\lambda (_: T).(getl n c0 (CHead e (Bind
Abbr) u))))) (\lambda (e: C).(\lambda (u: T).(\lambda (t: T).(sty0 g e u
+t)))) (\lambda (_: C).(\lambda (_: T).(\lambda (t: T).(eq T (lift (S n) O w)
+(lift (S n) O t))))) d v w H6 H2 (refl_equal T (lift (S n) O w)))) i
+H5)))))))))))) (\lambda (c0: C).(\lambda (d: C).(\lambda (v: T).(\lambda (i:
+nat).(\lambda (H1: (getl i c0 (CHead d (Bind Abst) v))).(\lambda (w:
+T).(\lambda (H2: (sty0 g d v w)).(\lambda (_: (((eq T v (TLRef n)) \to (or
+(ex3_3 C T T (\lambda (e: C).(\lambda (u: T).(\lambda (_: T).(getl n d (CHead
+e (Bind Abbr) u))))) (\lambda (e: C).(\lambda (u: T).(\lambda (t: T).(sty0 g
+e u t)))) (\lambda (_: C).(\lambda (_: T).(\lambda (t: T).(eq T w (lift (S n)
+O t)))))) (ex3_3 C T T (\lambda (e: C).(\lambda (u: T).(\lambda (_: T).(getl
+n d (CHead e (Bind Abst) u))))) (\lambda (e: C).(\lambda (u: T).(\lambda (t:
+T).(sty0 g e u t)))) (\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq T w
+(lift (S n) O u)))))))))).(\lambda (H4: (eq T (TLRef i) (TLRef n))).(let H5
+\def (f_equal T nat (\lambda (e: T).(match e with [(TSort _) \Rightarrow i |
+(TLRef n0) \Rightarrow n0 | (THead _ _ _) \Rightarrow i])) (TLRef i) (TLRef
+n) H4) in (let H6 \def (eq_ind nat i (\lambda (n0: nat).(getl n0 c0 (CHead d
+(Bind Abst) v))) H1 n H5) in (eq_ind_r nat n (\lambda (n0: nat).(or (ex3_3 C
+T T (\lambda (e: C).(\lambda (u: T).(\lambda (_: T).(getl n c0 (CHead e (Bind
+Abbr) u))))) (\lambda (e: C).(\lambda (u: T).(\lambda (t: T).(sty0 g e u
t)))) (\lambda (_: C).(\lambda (_: T).(\lambda (t: T).(eq T (lift (S n0) O v)
(lift (S n) O t)))))) (ex3_3 C T T (\lambda (e: C).(\lambda (u: T).(\lambda
(_: T).(getl n c0 (CHead e (Bind Abst) u))))) (\lambda (e: C).(\lambda (u:
(u: T).(\lambda (t: T).(sty0 g e u t)))) (\lambda (_: C).(\lambda (u:
T).(\lambda (_: T).(eq T t2 (lift (S n) O u)))))))))).(\lambda (H3: (eq T
(THead (Bind b) v t1) (TLRef n))).(let H4 \def (eq_ind T (THead (Bind b) v
-t1) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort
-_) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _)
+t1) (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TLRef n) H3) in
+(False_ind (or (ex3_3 C T T (\lambda (e: C).(\lambda (u: T).(\lambda (_:
+T).(getl n c0 (CHead e (Bind Abbr) u))))) (\lambda (e: C).(\lambda (u:
+T).(\lambda (t: T).(sty0 g e u t)))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(t: T).(eq T (THead (Bind b) v t2) (lift (S n) O t)))))) (ex3_3 C T T
+(\lambda (e: C).(\lambda (u: T).(\lambda (_: T).(getl n c0 (CHead e (Bind
+Abst) u))))) (\lambda (e: C).(\lambda (u: T).(\lambda (t: T).(sty0 g e u
+t)))) (\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq T (THead (Bind b) v
+t2) (lift (S n) O u))))))) H4)))))))))) (\lambda (c0: C).(\lambda (v:
+T).(\lambda (t1: T).(\lambda (t2: T).(\lambda (_: (sty0 g c0 t1 t2)).(\lambda
+(_: (((eq T t1 (TLRef n)) \to (or (ex3_3 C T T (\lambda (e: C).(\lambda (u:
+T).(\lambda (_: T).(getl n c0 (CHead e (Bind Abbr) u))))) (\lambda (e:
+C).(\lambda (u: T).(\lambda (t: T).(sty0 g e u t)))) (\lambda (_: C).(\lambda
+(_: T).(\lambda (t: T).(eq T t2 (lift (S n) O t)))))) (ex3_3 C T T (\lambda
+(e: C).(\lambda (u: T).(\lambda (_: T).(getl n c0 (CHead e (Bind Abst) u)))))
+(\lambda (e: C).(\lambda (u: T).(\lambda (t: T).(sty0 g e u t)))) (\lambda
+(_: C).(\lambda (u: T).(\lambda (_: T).(eq T t2 (lift (S n) O
+u)))))))))).(\lambda (H3: (eq T (THead (Flat Appl) v t1) (TLRef n))).(let H4
+\def (eq_ind T (THead (Flat Appl) v t1) (\lambda (ee: T).(match ee with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _)
\Rightarrow True])) I (TLRef n) H3) in (False_ind (or (ex3_3 C T T (\lambda
(e: C).(\lambda (u: T).(\lambda (_: T).(getl n c0 (CHead e (Bind Abbr) u)))))
(\lambda (e: C).(\lambda (u: T).(\lambda (t: T).(sty0 g e u t)))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (t: T).(eq T (THead (Bind b) v t2) (lift (S
-n) O t)))))) (ex3_3 C T T (\lambda (e: C).(\lambda (u: T).(\lambda (_:
+(_: C).(\lambda (_: T).(\lambda (t: T).(eq T (THead (Flat Appl) v t2) (lift
+(S n) O t)))))) (ex3_3 C T T (\lambda (e: C).(\lambda (u: T).(\lambda (_:
T).(getl n c0 (CHead e (Bind Abst) u))))) (\lambda (e: C).(\lambda (u:
T).(\lambda (t: T).(sty0 g e u t)))) (\lambda (_: C).(\lambda (u: T).(\lambda
-(_: T).(eq T (THead (Bind b) v t2) (lift (S n) O u))))))) H4))))))))))
-(\lambda (c0: C).(\lambda (v: T).(\lambda (t1: T).(\lambda (t2: T).(\lambda
-(_: (sty0 g c0 t1 t2)).(\lambda (_: (((eq T t1 (TLRef n)) \to (or (ex3_3 C T
-T (\lambda (e: C).(\lambda (u: T).(\lambda (_: T).(getl n c0 (CHead e (Bind
-Abbr) u))))) (\lambda (e: C).(\lambda (u: T).(\lambda (t: T).(sty0 g e u
-t)))) (\lambda (_: C).(\lambda (_: T).(\lambda (t: T).(eq T t2 (lift (S n) O
-t)))))) (ex3_3 C T T (\lambda (e: C).(\lambda (u: T).(\lambda (_: T).(getl n
-c0 (CHead e (Bind Abst) u))))) (\lambda (e: C).(\lambda (u: T).(\lambda (t:
-T).(sty0 g e u t)))) (\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq T t2
-(lift (S n) O u)))))))))).(\lambda (H3: (eq T (THead (Flat Appl) v t1) (TLRef
-n))).(let H4 \def (eq_ind T (THead (Flat Appl) v t1) (\lambda (ee: T).(match
-ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False |
-(TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TLRef n)
-H3) in (False_ind (or (ex3_3 C T T (\lambda (e: C).(\lambda (u: T).(\lambda
-(_: T).(getl n c0 (CHead e (Bind Abbr) u))))) (\lambda (e: C).(\lambda (u:
-T).(\lambda (t: T).(sty0 g e u t)))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(t: T).(eq T (THead (Flat Appl) v t2) (lift (S n) O t)))))) (ex3_3 C T T
-(\lambda (e: C).(\lambda (u: T).(\lambda (_: T).(getl n c0 (CHead e (Bind
-Abst) u))))) (\lambda (e: C).(\lambda (u: T).(\lambda (t: T).(sty0 g e u
-t)))) (\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq T (THead (Flat
-Appl) v t2) (lift (S n) O u))))))) H4))))))))) (\lambda (c0: C).(\lambda (v1:
-T).(\lambda (v2: T).(\lambda (_: (sty0 g c0 v1 v2)).(\lambda (_: (((eq T v1
-(TLRef n)) \to (or (ex3_3 C T T (\lambda (e: C).(\lambda (u: T).(\lambda (_:
-T).(getl n c0 (CHead e (Bind Abbr) u))))) (\lambda (e: C).(\lambda (u:
-T).(\lambda (t: T).(sty0 g e u t)))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(t: T).(eq T v2 (lift (S n) O t)))))) (ex3_3 C T T (\lambda (e: C).(\lambda
-(u: T).(\lambda (_: T).(getl n c0 (CHead e (Bind Abst) u))))) (\lambda (e:
-C).(\lambda (u: T).(\lambda (t: T).(sty0 g e u t)))) (\lambda (_: C).(\lambda
-(u: T).(\lambda (_: T).(eq T v2 (lift (S n) O u)))))))))).(\lambda (t1:
-T).(\lambda (t2: T).(\lambda (_: (sty0 g c0 t1 t2)).(\lambda (_: (((eq T t1
-(TLRef n)) \to (or (ex3_3 C T T (\lambda (e: C).(\lambda (u: T).(\lambda (_:
-T).(getl n c0 (CHead e (Bind Abbr) u))))) (\lambda (e: C).(\lambda (u:
-T).(\lambda (t: T).(sty0 g e u t)))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(t: T).(eq T t2 (lift (S n) O t)))))) (ex3_3 C T T (\lambda (e: C).(\lambda
-(u: T).(\lambda (_: T).(getl n c0 (CHead e (Bind Abst) u))))) (\lambda (e:
-C).(\lambda (u: T).(\lambda (t: T).(sty0 g e u t)))) (\lambda (_: C).(\lambda
-(u: T).(\lambda (_: T).(eq T t2 (lift (S n) O u)))))))))).(\lambda (H5: (eq T
-(THead (Flat Cast) v1 t1) (TLRef n))).(let H6 \def (eq_ind T (THead (Flat
-Cast) v1 t1) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop)
-with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _
-_) \Rightarrow True])) I (TLRef n) H5) in (False_ind (or (ex3_3 C T T
-(\lambda (e: C).(\lambda (u: T).(\lambda (_: T).(getl n c0 (CHead e (Bind
-Abbr) u))))) (\lambda (e: C).(\lambda (u: T).(\lambda (t: T).(sty0 g e u
-t)))) (\lambda (_: C).(\lambda (_: T).(\lambda (t: T).(eq T (THead (Flat
-Cast) v2 t2) (lift (S n) O t)))))) (ex3_3 C T T (\lambda (e: C).(\lambda (u:
-T).(\lambda (_: T).(getl n c0 (CHead e (Bind Abst) u))))) (\lambda (e:
-C).(\lambda (u: T).(\lambda (t: T).(sty0 g e u t)))) (\lambda (_: C).(\lambda
-(u: T).(\lambda (_: T).(eq T (THead (Flat Cast) v2 t2) (lift (S n) O u)))))))
-H6)))))))))))) c y x H0))) H))))).
-(* COMMENTS
-Initial nodes: 3231
-END *)
+(_: T).(eq T (THead (Flat Appl) v t2) (lift (S n) O u))))))) H4)))))))))
+(\lambda (c0: C).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (sty0 g c0 v1
+v2)).(\lambda (_: (((eq T v1 (TLRef n)) \to (or (ex3_3 C T T (\lambda (e:
+C).(\lambda (u: T).(\lambda (_: T).(getl n c0 (CHead e (Bind Abbr) u)))))
+(\lambda (e: C).(\lambda (u: T).(\lambda (t: T).(sty0 g e u t)))) (\lambda
+(_: C).(\lambda (_: T).(\lambda (t: T).(eq T v2 (lift (S n) O t)))))) (ex3_3
+C T T (\lambda (e: C).(\lambda (u: T).(\lambda (_: T).(getl n c0 (CHead e
+(Bind Abst) u))))) (\lambda (e: C).(\lambda (u: T).(\lambda (t: T).(sty0 g e
+u t)))) (\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq T v2 (lift (S n)
+O u)))))))))).(\lambda (t1: T).(\lambda (t2: T).(\lambda (_: (sty0 g c0 t1
+t2)).(\lambda (_: (((eq T t1 (TLRef n)) \to (or (ex3_3 C T T (\lambda (e:
+C).(\lambda (u: T).(\lambda (_: T).(getl n c0 (CHead e (Bind Abbr) u)))))
+(\lambda (e: C).(\lambda (u: T).(\lambda (t: T).(sty0 g e u t)))) (\lambda
+(_: C).(\lambda (_: T).(\lambda (t: T).(eq T t2 (lift (S n) O t)))))) (ex3_3
+C T T (\lambda (e: C).(\lambda (u: T).(\lambda (_: T).(getl n c0 (CHead e
+(Bind Abst) u))))) (\lambda (e: C).(\lambda (u: T).(\lambda (t: T).(sty0 g e
+u t)))) (\lambda (_: C).(\lambda (u: T).(\lambda (_: T).(eq T t2 (lift (S n)
+O u)))))))))).(\lambda (H5: (eq T (THead (Flat Cast) v1 t1) (TLRef n))).(let
+H6 \def (eq_ind T (THead (Flat Cast) v1 t1) (\lambda (ee: T).(match ee with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _)
+\Rightarrow True])) I (TLRef n) H5) in (False_ind (or (ex3_3 C T T (\lambda
+(e: C).(\lambda (u: T).(\lambda (_: T).(getl n c0 (CHead e (Bind Abbr) u)))))
+(\lambda (e: C).(\lambda (u: T).(\lambda (t: T).(sty0 g e u t)))) (\lambda
+(_: C).(\lambda (_: T).(\lambda (t: T).(eq T (THead (Flat Cast) v2 t2) (lift
+(S n) O t)))))) (ex3_3 C T T (\lambda (e: C).(\lambda (u: T).(\lambda (_:
+T).(getl n c0 (CHead e (Bind Abst) u))))) (\lambda (e: C).(\lambda (u:
+T).(\lambda (t: T).(sty0 g e u t)))) (\lambda (_: C).(\lambda (u: T).(\lambda
+(_: T).(eq T (THead (Flat Cast) v2 t2) (lift (S n) O u))))))) H6))))))))))))
+c y x H0))) H))))).
theorem sty0_gen_bind:
\forall (g: G).(\forall (b: B).(\forall (c: C).(\forall (u: T).(\forall (t1:
(CHead c0 (Bind b) u) t1 t2)) (\lambda (t2: T).(eq T t0 (THead (Bind b) u
t2)))))))) (\lambda (c0: C).(\lambda (n: nat).(\lambda (H1: (eq T (TSort n)
(THead (Bind b) u t1))).(let H2 \def (eq_ind T (TSort n) (\lambda (ee:
-T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
-True | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow False])) I
-(THead (Bind b) u t1) H1) in (False_ind (ex2 T (\lambda (t2: T).(sty0 g
-(CHead c0 (Bind b) u) t1 t2)) (\lambda (t2: T).(eq T (TSort (next g n))
-(THead (Bind b) u t2)))) H2))))) (\lambda (c0: C).(\lambda (d: C).(\lambda
-(v: T).(\lambda (i: nat).(\lambda (_: (getl i c0 (CHead d (Bind Abbr)
-v))).(\lambda (w: T).(\lambda (_: (sty0 g d v w)).(\lambda (_: (((eq T v
-(THead (Bind b) u t1)) \to (ex2 T (\lambda (t2: T).(sty0 g (CHead d (Bind b)
-u) t1 t2)) (\lambda (t2: T).(eq T w (THead (Bind b) u t2))))))).(\lambda (H4:
-(eq T (TLRef i) (THead (Bind b) u t1))).(let H5 \def (eq_ind T (TLRef i)
-(\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _)
+T).(match ee with [(TSort _) \Rightarrow True | (TLRef _) \Rightarrow False |
+(THead _ _ _) \Rightarrow False])) I (THead (Bind b) u t1) H1) in (False_ind
+(ex2 T (\lambda (t2: T).(sty0 g (CHead c0 (Bind b) u) t1 t2)) (\lambda (t2:
+T).(eq T (TSort (next g n)) (THead (Bind b) u t2)))) H2))))) (\lambda (c0:
+C).(\lambda (d: C).(\lambda (v: T).(\lambda (i: nat).(\lambda (_: (getl i c0
+(CHead d (Bind Abbr) v))).(\lambda (w: T).(\lambda (_: (sty0 g d v
+w)).(\lambda (_: (((eq T v (THead (Bind b) u t1)) \to (ex2 T (\lambda (t2:
+T).(sty0 g (CHead d (Bind b) u) t1 t2)) (\lambda (t2: T).(eq T w (THead (Bind
+b) u t2))))))).(\lambda (H4: (eq T (TLRef i) (THead (Bind b) u t1))).(let H5
+\def (eq_ind T (TLRef i) (\lambda (ee: T).(match ee with [(TSort _)
\Rightarrow False | (TLRef _) \Rightarrow True | (THead _ _ _) \Rightarrow
False])) I (THead (Bind b) u t1) H4) in (False_ind (ex2 T (\lambda (t2:
T).(sty0 g (CHead c0 (Bind b) u) t1 t2)) (\lambda (t2: T).(eq T (lift (S i) O
v (THead (Bind b) u t1)) \to (ex2 T (\lambda (t2: T).(sty0 g (CHead d (Bind
b) u) t1 t2)) (\lambda (t2: T).(eq T w (THead (Bind b) u t2))))))).(\lambda
(H4: (eq T (TLRef i) (THead (Bind b) u t1))).(let H5 \def (eq_ind T (TLRef i)
-(\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _)
-\Rightarrow False | (TLRef _) \Rightarrow True | (THead _ _ _) \Rightarrow
-False])) I (THead (Bind b) u t1) H4) in (False_ind (ex2 T (\lambda (t2:
-T).(sty0 g (CHead c0 (Bind b) u) t1 t2)) (\lambda (t2: T).(eq T (lift (S i) O
-v) (THead (Bind b) u t2)))) H5))))))))))) (\lambda (b0: B).(\lambda (c0:
-C).(\lambda (v: T).(\lambda (t0: T).(\lambda (t2: T).(\lambda (H1: (sty0 g
-(CHead c0 (Bind b0) v) t0 t2)).(\lambda (H2: (((eq T t0 (THead (Bind b) u
-t1)) \to (ex2 T (\lambda (t3: T).(sty0 g (CHead (CHead c0 (Bind b0) v) (Bind
-b) u) t1 t3)) (\lambda (t3: T).(eq T t2 (THead (Bind b) u t3))))))).(\lambda
-(H3: (eq T (THead (Bind b0) v t0) (THead (Bind b) u t1))).(let H4 \def
-(f_equal T B (\lambda (e: T).(match e in T return (\lambda (_: T).B) with
-[(TSort _) \Rightarrow b0 | (TLRef _) \Rightarrow b0 | (THead k _ _)
-\Rightarrow (match k in K return (\lambda (_: K).B) with [(Bind b1)
-\Rightarrow b1 | (Flat _) \Rightarrow b0])])) (THead (Bind b0) v t0) (THead
-(Bind b) u t1) H3) in ((let H5 \def (f_equal T T (\lambda (e: T).(match e in
-T return (\lambda (_: T).T) with [(TSort _) \Rightarrow v | (TLRef _)
-\Rightarrow v | (THead _ t _) \Rightarrow t])) (THead (Bind b0) v t0) (THead
-(Bind b) u t1) H3) in ((let H6 \def (f_equal T T (\lambda (e: T).(match e in
-T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0 | (TLRef _)
-\Rightarrow t0 | (THead _ _ t) \Rightarrow t])) (THead (Bind b0) v t0) (THead
-(Bind b) u t1) H3) in (\lambda (H7: (eq T v u)).(\lambda (H8: (eq B b0
-b)).(let H9 \def (eq_ind T t0 (\lambda (t: T).((eq T t (THead (Bind b) u t1))
-\to (ex2 T (\lambda (t3: T).(sty0 g (CHead (CHead c0 (Bind b0) v) (Bind b) u)
-t1 t3)) (\lambda (t3: T).(eq T t2 (THead (Bind b) u t3)))))) H2 t1 H6) in
-(let H10 \def (eq_ind T t0 (\lambda (t: T).(sty0 g (CHead c0 (Bind b0) v) t
-t2)) H1 t1 H6) in (let H11 \def (eq_ind T v (\lambda (t: T).((eq T t1 (THead
-(Bind b) u t1)) \to (ex2 T (\lambda (t3: T).(sty0 g (CHead (CHead c0 (Bind
-b0) t) (Bind b) u) t1 t3)) (\lambda (t3: T).(eq T t2 (THead (Bind b) u
-t3)))))) H9 u H7) in (let H12 \def (eq_ind T v (\lambda (t: T).(sty0 g (CHead
-c0 (Bind b0) t) t1 t2)) H10 u H7) in (eq_ind_r T u (\lambda (t: T).(ex2 T
+(\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow True | (THead _ _ _) \Rightarrow False])) I (THead (Bind b) u t1)
+H4) in (False_ind (ex2 T (\lambda (t2: T).(sty0 g (CHead c0 (Bind b) u) t1
+t2)) (\lambda (t2: T).(eq T (lift (S i) O v) (THead (Bind b) u t2))))
+H5))))))))))) (\lambda (b0: B).(\lambda (c0: C).(\lambda (v: T).(\lambda (t0:
+T).(\lambda (t2: T).(\lambda (H1: (sty0 g (CHead c0 (Bind b0) v) t0
+t2)).(\lambda (H2: (((eq T t0 (THead (Bind b) u t1)) \to (ex2 T (\lambda (t3:
+T).(sty0 g (CHead (CHead c0 (Bind b0) v) (Bind b) u) t1 t3)) (\lambda (t3:
+T).(eq T t2 (THead (Bind b) u t3))))))).(\lambda (H3: (eq T (THead (Bind b0)
+v t0) (THead (Bind b) u t1))).(let H4 \def (f_equal T B (\lambda (e:
+T).(match e with [(TSort _) \Rightarrow b0 | (TLRef _) \Rightarrow b0 |
+(THead k _ _) \Rightarrow (match k with [(Bind b1) \Rightarrow b1 | (Flat _)
+\Rightarrow b0])])) (THead (Bind b0) v t0) (THead (Bind b) u t1) H3) in ((let
+H5 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow v |
+(TLRef _) \Rightarrow v | (THead _ t _) \Rightarrow t])) (THead (Bind b0) v
+t0) (THead (Bind b) u t1) H3) in ((let H6 \def (f_equal T T (\lambda (e:
+T).(match e with [(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 |
+(THead _ _ t) \Rightarrow t])) (THead (Bind b0) v t0) (THead (Bind b) u t1)
+H3) in (\lambda (H7: (eq T v u)).(\lambda (H8: (eq B b0 b)).(let H9 \def
+(eq_ind T t0 (\lambda (t: T).((eq T t (THead (Bind b) u t1)) \to (ex2 T
+(\lambda (t3: T).(sty0 g (CHead (CHead c0 (Bind b0) v) (Bind b) u) t1 t3))
+(\lambda (t3: T).(eq T t2 (THead (Bind b) u t3)))))) H2 t1 H6) in (let H10
+\def (eq_ind T t0 (\lambda (t: T).(sty0 g (CHead c0 (Bind b0) v) t t2)) H1 t1
+H6) in (let H11 \def (eq_ind T v (\lambda (t: T).((eq T t1 (THead (Bind b) u
+t1)) \to (ex2 T (\lambda (t3: T).(sty0 g (CHead (CHead c0 (Bind b0) t) (Bind
+b) u) t1 t3)) (\lambda (t3: T).(eq T t2 (THead (Bind b) u t3)))))) H9 u H7)
+in (let H12 \def (eq_ind T v (\lambda (t: T).(sty0 g (CHead c0 (Bind b0) t)
+t1 t2)) H10 u H7) in (eq_ind_r T u (\lambda (t: T).(ex2 T (\lambda (t3:
+T).(sty0 g (CHead c0 (Bind b) u) t1 t3)) (\lambda (t3: T).(eq T (THead (Bind
+b0) t t2) (THead (Bind b) u t3))))) (let H13 \def (eq_ind B b0 (\lambda (b1:
+B).((eq T t1 (THead (Bind b) u t1)) \to (ex2 T (\lambda (t3: T).(sty0 g
+(CHead (CHead c0 (Bind b1) u) (Bind b) u) t1 t3)) (\lambda (t3: T).(eq T t2
+(THead (Bind b) u t3)))))) H11 b H8) in (let H14 \def (eq_ind B b0 (\lambda
+(b1: B).(sty0 g (CHead c0 (Bind b1) u) t1 t2)) H12 b H8) in (eq_ind_r B b
+(\lambda (b1: B).(ex2 T (\lambda (t3: T).(sty0 g (CHead c0 (Bind b) u) t1
+t3)) (\lambda (t3: T).(eq T (THead (Bind b1) u t2) (THead (Bind b) u t3)))))
+(ex_intro2 T (\lambda (t3: T).(sty0 g (CHead c0 (Bind b) u) t1 t3)) (\lambda
+(t3: T).(eq T (THead (Bind b) u t2) (THead (Bind b) u t3))) t2 H14
+(refl_equal T (THead (Bind b) u t2))) b0 H8))) v H7)))))))) H5)) H4))))))))))
+(\lambda (c0: C).(\lambda (v: T).(\lambda (t0: T).(\lambda (t2: T).(\lambda
+(_: (sty0 g c0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Bind b) u t1)) \to
+(ex2 T (\lambda (t3: T).(sty0 g (CHead c0 (Bind b) u) t1 t3)) (\lambda (t3:
+T).(eq T t2 (THead (Bind b) u t3))))))).(\lambda (H3: (eq T (THead (Flat
+Appl) v t0) (THead (Bind b) u t1))).(let H4 \def (eq_ind T (THead (Flat Appl)
+v t0) (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef
+_) \Rightarrow False | (THead k _ _) \Rightarrow (match k with [(Bind _)
+\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind b) u t1)
+H3) in (False_ind (ex2 T (\lambda (t3: T).(sty0 g (CHead c0 (Bind b) u) t1
+t3)) (\lambda (t3: T).(eq T (THead (Flat Appl) v t2) (THead (Bind b) u t3))))
+H4))))))))) (\lambda (c0: C).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_:
+(sty0 g c0 v1 v2)).(\lambda (_: (((eq T v1 (THead (Bind b) u t1)) \to (ex2 T
+(\lambda (t2: T).(sty0 g (CHead c0 (Bind b) u) t1 t2)) (\lambda (t2: T).(eq T
+v2 (THead (Bind b) u t2))))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_:
+(sty0 g c0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Bind b) u t1)) \to (ex2 T
(\lambda (t3: T).(sty0 g (CHead c0 (Bind b) u) t1 t3)) (\lambda (t3: T).(eq T
-(THead (Bind b0) t t2) (THead (Bind b) u t3))))) (let H13 \def (eq_ind B b0
-(\lambda (b1: B).((eq T t1 (THead (Bind b) u t1)) \to (ex2 T (\lambda (t3:
-T).(sty0 g (CHead (CHead c0 (Bind b1) u) (Bind b) u) t1 t3)) (\lambda (t3:
-T).(eq T t2 (THead (Bind b) u t3)))))) H11 b H8) in (let H14 \def (eq_ind B
-b0 (\lambda (b1: B).(sty0 g (CHead c0 (Bind b1) u) t1 t2)) H12 b H8) in
-(eq_ind_r B b (\lambda (b1: B).(ex2 T (\lambda (t3: T).(sty0 g (CHead c0
-(Bind b) u) t1 t3)) (\lambda (t3: T).(eq T (THead (Bind b1) u t2) (THead
-(Bind b) u t3))))) (ex_intro2 T (\lambda (t3: T).(sty0 g (CHead c0 (Bind b)
-u) t1 t3)) (\lambda (t3: T).(eq T (THead (Bind b) u t2) (THead (Bind b) u
-t3))) t2 H14 (refl_equal T (THead (Bind b) u t2))) b0 H8))) v H7)))))))) H5))
-H4)))))))))) (\lambda (c0: C).(\lambda (v: T).(\lambda (t0: T).(\lambda (t2:
-T).(\lambda (_: (sty0 g c0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Bind b) u
-t1)) \to (ex2 T (\lambda (t3: T).(sty0 g (CHead c0 (Bind b) u) t1 t3))
-(\lambda (t3: T).(eq T t2 (THead (Bind b) u t3))))))).(\lambda (H3: (eq T
-(THead (Flat Appl) v t0) (THead (Bind b) u t1))).(let H4 \def (eq_ind T
-(THead (Flat Appl) v t0) (\lambda (ee: T).(match ee in T return (\lambda (_:
-T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False |
-(THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).Prop) with
-[(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind
-b) u t1) H3) in (False_ind (ex2 T (\lambda (t3: T).(sty0 g (CHead c0 (Bind b)
-u) t1 t3)) (\lambda (t3: T).(eq T (THead (Flat Appl) v t2) (THead (Bind b) u
-t3)))) H4))))))))) (\lambda (c0: C).(\lambda (v1: T).(\lambda (v2:
-T).(\lambda (_: (sty0 g c0 v1 v2)).(\lambda (_: (((eq T v1 (THead (Bind b) u
-t1)) \to (ex2 T (\lambda (t2: T).(sty0 g (CHead c0 (Bind b) u) t1 t2))
-(\lambda (t2: T).(eq T v2 (THead (Bind b) u t2))))))).(\lambda (t0:
-T).(\lambda (t2: T).(\lambda (_: (sty0 g c0 t0 t2)).(\lambda (_: (((eq T t0
-(THead (Bind b) u t1)) \to (ex2 T (\lambda (t3: T).(sty0 g (CHead c0 (Bind b)
-u) t1 t3)) (\lambda (t3: T).(eq T t2 (THead (Bind b) u t3))))))).(\lambda
-(H5: (eq T (THead (Flat Cast) v1 t0) (THead (Bind b) u t1))).(let H6 \def
-(eq_ind T (THead (Flat Cast) v1 t0) (\lambda (ee: T).(match ee in T return
-(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
-\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda
-(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow
-True])])) I (THead (Bind b) u t1) H5) in (False_ind (ex2 T (\lambda (t3:
-T).(sty0 g (CHead c0 (Bind b) u) t1 t3)) (\lambda (t3: T).(eq T (THead (Flat
-Cast) v2 t2) (THead (Bind b) u t3)))) H6)))))))))))) c y x H0))) H))))))).
-(* COMMENTS
-Initial nodes: 1975
-END *)
+t2 (THead (Bind b) u t3))))))).(\lambda (H5: (eq T (THead (Flat Cast) v1 t0)
+(THead (Bind b) u t1))).(let H6 \def (eq_ind T (THead (Flat Cast) v1 t0)
+(\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead k _ _) \Rightarrow (match k with [(Bind _)
+\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind b) u t1)
+H5) in (False_ind (ex2 T (\lambda (t3: T).(sty0 g (CHead c0 (Bind b) u) t1
+t3)) (\lambda (t3: T).(eq T (THead (Flat Cast) v2 t2) (THead (Bind b) u
+t3)))) H6)))))))))))) c y x H0))) H))))))).
theorem sty0_gen_appl:
\forall (g: G).(\forall (c: C).(\forall (u: T).(\forall (t1: T).(\forall (x:
u t1)) \to (ex2 T (\lambda (t2: T).(sty0 g c0 t1 t2)) (\lambda (t2: T).(eq T
t0 (THead (Flat Appl) u t2)))))))) (\lambda (c0: C).(\lambda (n:
nat).(\lambda (H1: (eq T (TSort n) (THead (Flat Appl) u t1))).(let H2 \def
-(eq_ind T (TSort n) (\lambda (ee: T).(match ee in T return (\lambda (_:
-T).Prop) with [(TSort _) \Rightarrow True | (TLRef _) \Rightarrow False |
-(THead _ _ _) \Rightarrow False])) I (THead (Flat Appl) u t1) H1) in
-(False_ind (ex2 T (\lambda (t2: T).(sty0 g c0 t1 t2)) (\lambda (t2: T).(eq T
-(TSort (next g n)) (THead (Flat Appl) u t2)))) H2))))) (\lambda (c0:
-C).(\lambda (d: C).(\lambda (v: T).(\lambda (i: nat).(\lambda (_: (getl i c0
-(CHead d (Bind Abbr) v))).(\lambda (w: T).(\lambda (_: (sty0 g d v
-w)).(\lambda (_: (((eq T v (THead (Flat Appl) u t1)) \to (ex2 T (\lambda (t2:
-T).(sty0 g d t1 t2)) (\lambda (t2: T).(eq T w (THead (Flat Appl) u
-t2))))))).(\lambda (H4: (eq T (TLRef i) (THead (Flat Appl) u t1))).(let H5
-\def (eq_ind T (TLRef i) (\lambda (ee: T).(match ee in T return (\lambda (_:
-T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow True |
-(THead _ _ _) \Rightarrow False])) I (THead (Flat Appl) u t1) H4) in
-(False_ind (ex2 T (\lambda (t2: T).(sty0 g c0 t1 t2)) (\lambda (t2: T).(eq T
-(lift (S i) O w) (THead (Flat Appl) u t2)))) H5))))))))))) (\lambda (c0:
-C).(\lambda (d: C).(\lambda (v: T).(\lambda (i: nat).(\lambda (_: (getl i c0
-(CHead d (Bind Abst) v))).(\lambda (w: T).(\lambda (_: (sty0 g d v
-w)).(\lambda (_: (((eq T v (THead (Flat Appl) u t1)) \to (ex2 T (\lambda (t2:
-T).(sty0 g d t1 t2)) (\lambda (t2: T).(eq T w (THead (Flat Appl) u
-t2))))))).(\lambda (H4: (eq T (TLRef i) (THead (Flat Appl) u t1))).(let H5
-\def (eq_ind T (TLRef i) (\lambda (ee: T).(match ee in T return (\lambda (_:
-T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow True |
-(THead _ _ _) \Rightarrow False])) I (THead (Flat Appl) u t1) H4) in
-(False_ind (ex2 T (\lambda (t2: T).(sty0 g c0 t1 t2)) (\lambda (t2: T).(eq T
-(lift (S i) O v) (THead (Flat Appl) u t2)))) H5))))))))))) (\lambda (b:
-B).(\lambda (c0: C).(\lambda (v: T).(\lambda (t0: T).(\lambda (t2:
-T).(\lambda (_: (sty0 g (CHead c0 (Bind b) v) t0 t2)).(\lambda (_: (((eq T t0
-(THead (Flat Appl) u t1)) \to (ex2 T (\lambda (t3: T).(sty0 g (CHead c0 (Bind
-b) v) t1 t3)) (\lambda (t3: T).(eq T t2 (THead (Flat Appl) u
+(eq_ind T (TSort n) (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow
+True | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow False])) I
+(THead (Flat Appl) u t1) H1) in (False_ind (ex2 T (\lambda (t2: T).(sty0 g c0
+t1 t2)) (\lambda (t2: T).(eq T (TSort (next g n)) (THead (Flat Appl) u t2))))
+H2))))) (\lambda (c0: C).(\lambda (d: C).(\lambda (v: T).(\lambda (i:
+nat).(\lambda (_: (getl i c0 (CHead d (Bind Abbr) v))).(\lambda (w:
+T).(\lambda (_: (sty0 g d v w)).(\lambda (_: (((eq T v (THead (Flat Appl) u
+t1)) \to (ex2 T (\lambda (t2: T).(sty0 g d t1 t2)) (\lambda (t2: T).(eq T w
+(THead (Flat Appl) u t2))))))).(\lambda (H4: (eq T (TLRef i) (THead (Flat
+Appl) u t1))).(let H5 \def (eq_ind T (TLRef i) (\lambda (ee: T).(match ee
+with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow True | (THead _ _
+_) \Rightarrow False])) I (THead (Flat Appl) u t1) H4) in (False_ind (ex2 T
+(\lambda (t2: T).(sty0 g c0 t1 t2)) (\lambda (t2: T).(eq T (lift (S i) O w)
+(THead (Flat Appl) u t2)))) H5))))))))))) (\lambda (c0: C).(\lambda (d:
+C).(\lambda (v: T).(\lambda (i: nat).(\lambda (_: (getl i c0 (CHead d (Bind
+Abst) v))).(\lambda (w: T).(\lambda (_: (sty0 g d v w)).(\lambda (_: (((eq T
+v (THead (Flat Appl) u t1)) \to (ex2 T (\lambda (t2: T).(sty0 g d t1 t2))
+(\lambda (t2: T).(eq T w (THead (Flat Appl) u t2))))))).(\lambda (H4: (eq T
+(TLRef i) (THead (Flat Appl) u t1))).(let H5 \def (eq_ind T (TLRef i)
+(\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow True | (THead _ _ _) \Rightarrow False])) I (THead (Flat Appl) u
+t1) H4) in (False_ind (ex2 T (\lambda (t2: T).(sty0 g c0 t1 t2)) (\lambda
+(t2: T).(eq T (lift (S i) O v) (THead (Flat Appl) u t2)))) H5)))))))))))
+(\lambda (b: B).(\lambda (c0: C).(\lambda (v: T).(\lambda (t0: T).(\lambda
+(t2: T).(\lambda (_: (sty0 g (CHead c0 (Bind b) v) t0 t2)).(\lambda (_: (((eq
+T t0 (THead (Flat Appl) u t1)) \to (ex2 T (\lambda (t3: T).(sty0 g (CHead c0
+(Bind b) v) t1 t3)) (\lambda (t3: T).(eq T t2 (THead (Flat Appl) u
t3))))))).(\lambda (H3: (eq T (THead (Bind b) v t0) (THead (Flat Appl) u
t1))).(let H4 \def (eq_ind T (THead (Bind b) v t0) (\lambda (ee: T).(match ee
-in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef
-_) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K return
-(\lambda (_: K).Prop) with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow
-False])])) I (THead (Flat Appl) u t1) H3) in (False_ind (ex2 T (\lambda (t3:
-T).(sty0 g c0 t1 t3)) (\lambda (t3: T).(eq T (THead (Bind b) v t2) (THead
-(Flat Appl) u t3)))) H4)))))))))) (\lambda (c0: C).(\lambda (v: T).(\lambda
-(t0: T).(\lambda (t2: T).(\lambda (H1: (sty0 g c0 t0 t2)).(\lambda (H2: (((eq
-T t0 (THead (Flat Appl) u t1)) \to (ex2 T (\lambda (t3: T).(sty0 g c0 t1 t3))
-(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u t3))))))).(\lambda (H3: (eq T
-(THead (Flat Appl) v t0) (THead (Flat Appl) u t1))).(let H4 \def (f_equal T T
-(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _
+_) \Rightarrow (match k with [(Bind _) \Rightarrow True | (Flat _)
+\Rightarrow False])])) I (THead (Flat Appl) u t1) H3) in (False_ind (ex2 T
+(\lambda (t3: T).(sty0 g c0 t1 t3)) (\lambda (t3: T).(eq T (THead (Bind b) v
+t2) (THead (Flat Appl) u t3)))) H4)))))))))) (\lambda (c0: C).(\lambda (v:
+T).(\lambda (t0: T).(\lambda (t2: T).(\lambda (H1: (sty0 g c0 t0
+t2)).(\lambda (H2: (((eq T t0 (THead (Flat Appl) u t1)) \to (ex2 T (\lambda
+(t3: T).(sty0 g c0 t1 t3)) (\lambda (t3: T).(eq T t2 (THead (Flat Appl) u
+t3))))))).(\lambda (H3: (eq T (THead (Flat Appl) v t0) (THead (Flat Appl) u
+t1))).(let H4 \def (f_equal T T (\lambda (e: T).(match e with [(TSort _)
\Rightarrow v | (TLRef _) \Rightarrow v | (THead _ t _) \Rightarrow t]))
(THead (Flat Appl) v t0) (THead (Flat Appl) u t1) H3) in ((let H5 \def
-(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
-[(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t)
-\Rightarrow t])) (THead (Flat Appl) v t0) (THead (Flat Appl) u t1) H3) in
-(\lambda (H6: (eq T v u)).(let H7 \def (eq_ind T t0 (\lambda (t: T).((eq T t
-(THead (Flat Appl) u t1)) \to (ex2 T (\lambda (t3: T).(sty0 g c0 t1 t3))
-(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u t3)))))) H2 t1 H5) in (let H8
-\def (eq_ind T t0 (\lambda (t: T).(sty0 g c0 t t2)) H1 t1 H5) in (eq_ind_r T
-u (\lambda (t: T).(ex2 T (\lambda (t3: T).(sty0 g c0 t1 t3)) (\lambda (t3:
-T).(eq T (THead (Flat Appl) t t2) (THead (Flat Appl) u t3))))) (ex_intro2 T
-(\lambda (t3: T).(sty0 g c0 t1 t3)) (\lambda (t3: T).(eq T (THead (Flat Appl)
-u t2) (THead (Flat Appl) u t3))) t2 H8 (refl_equal T (THead (Flat Appl) u
-t2))) v H6))))) H4))))))))) (\lambda (c0: C).(\lambda (v1: T).(\lambda (v2:
-T).(\lambda (_: (sty0 g c0 v1 v2)).(\lambda (_: (((eq T v1 (THead (Flat Appl)
-u t1)) \to (ex2 T (\lambda (t2: T).(sty0 g c0 t1 t2)) (\lambda (t2: T).(eq T
-v2 (THead (Flat Appl) u t2))))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda
-(_: (sty0 g c0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Flat Appl) u t1)) \to
-(ex2 T (\lambda (t3: T).(sty0 g c0 t1 t3)) (\lambda (t3: T).(eq T t2 (THead
-(Flat Appl) u t3))))))).(\lambda (H5: (eq T (THead (Flat Cast) v1 t0) (THead
-(Flat Appl) u t1))).(let H6 \def (eq_ind T (THead (Flat Cast) v1 t0) (\lambda
-(ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _)
-\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow
-(match k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False |
-(Flat f) \Rightarrow (match f in F return (\lambda (_: F).Prop) with [Appl
-\Rightarrow False | Cast \Rightarrow True])])])) I (THead (Flat Appl) u t1)
-H5) in (False_ind (ex2 T (\lambda (t3: T).(sty0 g c0 t1 t3)) (\lambda (t3:
-T).(eq T (THead (Flat Cast) v2 t2) (THead (Flat Appl) u t3)))) H6))))))))))))
-c y x H0))) H)))))).
-(* COMMENTS
-Initial nodes: 1489
-END *)
+(f_equal T T (\lambda (e: T).(match e with [(TSort _) \Rightarrow t0 | (TLRef
+_) \Rightarrow t0 | (THead _ _ t) \Rightarrow t])) (THead (Flat Appl) v t0)
+(THead (Flat Appl) u t1) H3) in (\lambda (H6: (eq T v u)).(let H7 \def
+(eq_ind T t0 (\lambda (t: T).((eq T t (THead (Flat Appl) u t1)) \to (ex2 T
+(\lambda (t3: T).(sty0 g c0 t1 t3)) (\lambda (t3: T).(eq T t2 (THead (Flat
+Appl) u t3)))))) H2 t1 H5) in (let H8 \def (eq_ind T t0 (\lambda (t: T).(sty0
+g c0 t t2)) H1 t1 H5) in (eq_ind_r T u (\lambda (t: T).(ex2 T (\lambda (t3:
+T).(sty0 g c0 t1 t3)) (\lambda (t3: T).(eq T (THead (Flat Appl) t t2) (THead
+(Flat Appl) u t3))))) (ex_intro2 T (\lambda (t3: T).(sty0 g c0 t1 t3))
+(\lambda (t3: T).(eq T (THead (Flat Appl) u t2) (THead (Flat Appl) u t3))) t2
+H8 (refl_equal T (THead (Flat Appl) u t2))) v H6))))) H4))))))))) (\lambda
+(c0: C).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_: (sty0 g c0 v1
+v2)).(\lambda (_: (((eq T v1 (THead (Flat Appl) u t1)) \to (ex2 T (\lambda
+(t2: T).(sty0 g c0 t1 t2)) (\lambda (t2: T).(eq T v2 (THead (Flat Appl) u
+t2))))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (sty0 g c0 t0
+t2)).(\lambda (_: (((eq T t0 (THead (Flat Appl) u t1)) \to (ex2 T (\lambda
+(t3: T).(sty0 g c0 t1 t3)) (\lambda (t3: T).(eq T t2 (THead (Flat Appl) u
+t3))))))).(\lambda (H5: (eq T (THead (Flat Cast) v1 t0) (THead (Flat Appl) u
+t1))).(let H6 \def (eq_ind T (THead (Flat Cast) v1 t0) (\lambda (ee:
+T).(match ee with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False
+| (THead k _ _) \Rightarrow (match k with [(Bind _) \Rightarrow False | (Flat
+f) \Rightarrow (match f with [Appl \Rightarrow False | Cast \Rightarrow
+True])])])) I (THead (Flat Appl) u t1) H5) in (False_ind (ex2 T (\lambda (t3:
+T).(sty0 g c0 t1 t3)) (\lambda (t3: T).(eq T (THead (Flat Cast) v2 t2) (THead
+(Flat Appl) u t3)))) H6)))))))))))) c y x H0))) H)))))).
theorem sty0_gen_cast:
\forall (g: G).(\forall (c: C).(\forall (v1: T).(\forall (t1: T).(\forall
T).(sty0 g c0 v1 v2))) (\lambda (_: T).(\lambda (t2: T).(sty0 g c0 t1 t2)))
(\lambda (v2: T).(\lambda (t2: T).(eq T t0 (THead (Flat Cast) v2 t2)))))))))
(\lambda (c0: C).(\lambda (n: nat).(\lambda (H1: (eq T (TSort n) (THead (Flat
-Cast) v1 t1))).(let H2 \def (eq_ind T (TSort n) (\lambda (ee: T).(match ee in
-T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow True | (TLRef _)
-\Rightarrow False | (THead _ _ _) \Rightarrow False])) I (THead (Flat Cast)
-v1 t1) H1) in (False_ind (ex3_2 T T (\lambda (v2: T).(\lambda (_: T).(sty0 g
-c0 v1 v2))) (\lambda (_: T).(\lambda (t2: T).(sty0 g c0 t1 t2))) (\lambda
-(v2: T).(\lambda (t2: T).(eq T (TSort (next g n)) (THead (Flat Cast) v2
-t2))))) H2))))) (\lambda (c0: C).(\lambda (d: C).(\lambda (v: T).(\lambda (i:
-nat).(\lambda (_: (getl i c0 (CHead d (Bind Abbr) v))).(\lambda (w:
-T).(\lambda (_: (sty0 g d v w)).(\lambda (_: (((eq T v (THead (Flat Cast) v1
-t1)) \to (ex3_2 T T (\lambda (v2: T).(\lambda (_: T).(sty0 g d v1 v2)))
-(\lambda (_: T).(\lambda (t2: T).(sty0 g d t1 t2))) (\lambda (v2: T).(\lambda
-(t2: T).(eq T w (THead (Flat Cast) v2 t2)))))))).(\lambda (H4: (eq T (TLRef
-i) (THead (Flat Cast) v1 t1))).(let H5 \def (eq_ind T (TLRef i) (\lambda (ee:
-T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
-False | (TLRef _) \Rightarrow True | (THead _ _ _) \Rightarrow False])) I
-(THead (Flat Cast) v1 t1) H4) in (False_ind (ex3_2 T T (\lambda (v2:
-T).(\lambda (_: T).(sty0 g c0 v1 v2))) (\lambda (_: T).(\lambda (t2: T).(sty0
-g c0 t1 t2))) (\lambda (v2: T).(\lambda (t2: T).(eq T (lift (S i) O w) (THead
-(Flat Cast) v2 t2))))) H5))))))))))) (\lambda (c0: C).(\lambda (d:
-C).(\lambda (v: T).(\lambda (i: nat).(\lambda (_: (getl i c0 (CHead d (Bind
-Abst) v))).(\lambda (w: T).(\lambda (_: (sty0 g d v w)).(\lambda (_: (((eq T
-v (THead (Flat Cast) v1 t1)) \to (ex3_2 T T (\lambda (v2: T).(\lambda (_:
-T).(sty0 g d v1 v2))) (\lambda (_: T).(\lambda (t2: T).(sty0 g d t1 t2)))
+Cast) v1 t1))).(let H2 \def (eq_ind T (TSort n) (\lambda (ee: T).(match ee
+with [(TSort _) \Rightarrow True | (TLRef _) \Rightarrow False | (THead _ _
+_) \Rightarrow False])) I (THead (Flat Cast) v1 t1) H1) in (False_ind (ex3_2
+T T (\lambda (v2: T).(\lambda (_: T).(sty0 g c0 v1 v2))) (\lambda (_:
+T).(\lambda (t2: T).(sty0 g c0 t1 t2))) (\lambda (v2: T).(\lambda (t2: T).(eq
+T (TSort (next g n)) (THead (Flat Cast) v2 t2))))) H2))))) (\lambda (c0:
+C).(\lambda (d: C).(\lambda (v: T).(\lambda (i: nat).(\lambda (_: (getl i c0
+(CHead d (Bind Abbr) v))).(\lambda (w: T).(\lambda (_: (sty0 g d v
+w)).(\lambda (_: (((eq T v (THead (Flat Cast) v1 t1)) \to (ex3_2 T T (\lambda
+(v2: T).(\lambda (_: T).(sty0 g d v1 v2))) (\lambda (_: T).(\lambda (t2:
+T).(sty0 g d t1 t2))) (\lambda (v2: T).(\lambda (t2: T).(eq T w (THead (Flat
+Cast) v2 t2)))))))).(\lambda (H4: (eq T (TLRef i) (THead (Flat Cast) v1
+t1))).(let H5 \def (eq_ind T (TLRef i) (\lambda (ee: T).(match ee with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow True | (THead _ _ _)
+\Rightarrow False])) I (THead (Flat Cast) v1 t1) H4) in (False_ind (ex3_2 T T
+(\lambda (v2: T).(\lambda (_: T).(sty0 g c0 v1 v2))) (\lambda (_: T).(\lambda
+(t2: T).(sty0 g c0 t1 t2))) (\lambda (v2: T).(\lambda (t2: T).(eq T (lift (S
+i) O w) (THead (Flat Cast) v2 t2))))) H5))))))))))) (\lambda (c0: C).(\lambda
+(d: C).(\lambda (v: T).(\lambda (i: nat).(\lambda (_: (getl i c0 (CHead d
+(Bind Abst) v))).(\lambda (w: T).(\lambda (_: (sty0 g d v w)).(\lambda (_:
+(((eq T v (THead (Flat Cast) v1 t1)) \to (ex3_2 T T (\lambda (v2: T).(\lambda
+(_: T).(sty0 g d v1 v2))) (\lambda (_: T).(\lambda (t2: T).(sty0 g d t1 t2)))
(\lambda (v2: T).(\lambda (t2: T).(eq T w (THead (Flat Cast) v2
t2)))))))).(\lambda (H4: (eq T (TLRef i) (THead (Flat Cast) v1 t1))).(let H5
-\def (eq_ind T (TLRef i) (\lambda (ee: T).(match ee in T return (\lambda (_:
-T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow True |
-(THead _ _ _) \Rightarrow False])) I (THead (Flat Cast) v1 t1) H4) in
-(False_ind (ex3_2 T T (\lambda (v2: T).(\lambda (_: T).(sty0 g c0 v1 v2)))
-(\lambda (_: T).(\lambda (t2: T).(sty0 g c0 t1 t2))) (\lambda (v2:
-T).(\lambda (t2: T).(eq T (lift (S i) O v) (THead (Flat Cast) v2 t2)))))
-H5))))))))))) (\lambda (b: B).(\lambda (c0: C).(\lambda (v: T).(\lambda (t0:
-T).(\lambda (t2: T).(\lambda (_: (sty0 g (CHead c0 (Bind b) v) t0
-t2)).(\lambda (_: (((eq T t0 (THead (Flat Cast) v1 t1)) \to (ex3_2 T T
-(\lambda (v2: T).(\lambda (_: T).(sty0 g (CHead c0 (Bind b) v) v1 v2)))
-(\lambda (_: T).(\lambda (t3: T).(sty0 g (CHead c0 (Bind b) v) t1 t3)))
-(\lambda (v2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) v2
+\def (eq_ind T (TLRef i) (\lambda (ee: T).(match ee with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow True | (THead _ _ _) \Rightarrow
+False])) I (THead (Flat Cast) v1 t1) H4) in (False_ind (ex3_2 T T (\lambda
+(v2: T).(\lambda (_: T).(sty0 g c0 v1 v2))) (\lambda (_: T).(\lambda (t2:
+T).(sty0 g c0 t1 t2))) (\lambda (v2: T).(\lambda (t2: T).(eq T (lift (S i) O
+v) (THead (Flat Cast) v2 t2))))) H5))))))))))) (\lambda (b: B).(\lambda (c0:
+C).(\lambda (v: T).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (sty0 g
+(CHead c0 (Bind b) v) t0 t2)).(\lambda (_: (((eq T t0 (THead (Flat Cast) v1
+t1)) \to (ex3_2 T T (\lambda (v2: T).(\lambda (_: T).(sty0 g (CHead c0 (Bind
+b) v) v1 v2))) (\lambda (_: T).(\lambda (t3: T).(sty0 g (CHead c0 (Bind b) v)
+t1 t3))) (\lambda (v2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) v2
t3)))))))).(\lambda (H3: (eq T (THead (Bind b) v t0) (THead (Flat Cast) v1
t1))).(let H4 \def (eq_ind T (THead (Bind b) v t0) (\lambda (ee: T).(match ee
-in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef
-_) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K return
-(\lambda (_: K).Prop) with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow
-False])])) I (THead (Flat Cast) v1 t1) H3) in (False_ind (ex3_2 T T (\lambda
-(v2: T).(\lambda (_: T).(sty0 g c0 v1 v2))) (\lambda (_: T).(\lambda (t3:
-T).(sty0 g c0 t1 t3))) (\lambda (v2: T).(\lambda (t3: T).(eq T (THead (Bind
-b) v t2) (THead (Flat Cast) v2 t3))))) H4)))))))))) (\lambda (c0: C).(\lambda
-(v: T).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (sty0 g c0 t0
-t2)).(\lambda (_: (((eq T t0 (THead (Flat Cast) v1 t1)) \to (ex3_2 T T
-(\lambda (v2: T).(\lambda (_: T).(sty0 g c0 v1 v2))) (\lambda (_: T).(\lambda
-(t3: T).(sty0 g c0 t1 t3))) (\lambda (v2: T).(\lambda (t3: T).(eq T t2 (THead
-(Flat Cast) v2 t3)))))))).(\lambda (H3: (eq T (THead (Flat Appl) v t0) (THead
-(Flat Cast) v1 t1))).(let H4 \def (eq_ind T (THead (Flat Appl) v t0) (\lambda
-(ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _)
-\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow
-(match k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False |
-(Flat f) \Rightarrow (match f in F return (\lambda (_: F).Prop) with [Appl
-\Rightarrow True | Cast \Rightarrow False])])])) I (THead (Flat Cast) v1 t1)
-H3) in (False_ind (ex3_2 T T (\lambda (v2: T).(\lambda (_: T).(sty0 g c0 v1
-v2))) (\lambda (_: T).(\lambda (t3: T).(sty0 g c0 t1 t3))) (\lambda (v2:
-T).(\lambda (t3: T).(eq T (THead (Flat Appl) v t2) (THead (Flat Cast) v2
-t3))))) H4))))))))) (\lambda (c0: C).(\lambda (v0: T).(\lambda (v2:
-T).(\lambda (H1: (sty0 g c0 v0 v2)).(\lambda (H2: (((eq T v0 (THead (Flat
-Cast) v1 t1)) \to (ex3_2 T T (\lambda (v3: T).(\lambda (_: T).(sty0 g c0 v1
-v3))) (\lambda (_: T).(\lambda (t2: T).(sty0 g c0 t1 t2))) (\lambda (v3:
-T).(\lambda (t2: T).(eq T v2 (THead (Flat Cast) v3 t2)))))))).(\lambda (t0:
-T).(\lambda (t2: T).(\lambda (H3: (sty0 g c0 t0 t2)).(\lambda (H4: (((eq T t0
-(THead (Flat Cast) v1 t1)) \to (ex3_2 T T (\lambda (v3: T).(\lambda (_:
-T).(sty0 g c0 v1 v3))) (\lambda (_: T).(\lambda (t3: T).(sty0 g c0 t1 t3)))
-(\lambda (v3: T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) v3
-t3)))))))).(\lambda (H5: (eq T (THead (Flat Cast) v0 t0) (THead (Flat Cast)
-v1 t1))).(let H6 \def (f_equal T T (\lambda (e: T).(match e in T return
-(\lambda (_: T).T) with [(TSort _) \Rightarrow v0 | (TLRef _) \Rightarrow v0
-| (THead _ t _) \Rightarrow t])) (THead (Flat Cast) v0 t0) (THead (Flat Cast)
-v1 t1) H5) in ((let H7 \def (f_equal T T (\lambda (e: T).(match e in T return
-(\lambda (_: T).T) with [(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0
-| (THead _ _ t) \Rightarrow t])) (THead (Flat Cast) v0 t0) (THead (Flat Cast)
-v1 t1) H5) in (\lambda (H8: (eq T v0 v1)).(let H9 \def (eq_ind T t0 (\lambda
-(t: T).((eq T t (THead (Flat Cast) v1 t1)) \to (ex3_2 T T (\lambda (v3:
-T).(\lambda (_: T).(sty0 g c0 v1 v3))) (\lambda (_: T).(\lambda (t3: T).(sty0
-g c0 t1 t3))) (\lambda (v3: T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast)
-v3 t3))))))) H4 t1 H7) in (let H10 \def (eq_ind T t0 (\lambda (t: T).(sty0 g
-c0 t t2)) H3 t1 H7) in (let H11 \def (eq_ind T v0 (\lambda (t: T).((eq T t
-(THead (Flat Cast) v1 t1)) \to (ex3_2 T T (\lambda (v3: T).(\lambda (_:
+with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _
+_) \Rightarrow (match k with [(Bind _) \Rightarrow True | (Flat _)
+\Rightarrow False])])) I (THead (Flat Cast) v1 t1) H3) in (False_ind (ex3_2 T
+T (\lambda (v2: T).(\lambda (_: T).(sty0 g c0 v1 v2))) (\lambda (_:
+T).(\lambda (t3: T).(sty0 g c0 t1 t3))) (\lambda (v2: T).(\lambda (t3: T).(eq
+T (THead (Bind b) v t2) (THead (Flat Cast) v2 t3))))) H4)))))))))) (\lambda
+(c0: C).(\lambda (v: T).(\lambda (t0: T).(\lambda (t2: T).(\lambda (_: (sty0
+g c0 t0 t2)).(\lambda (_: (((eq T t0 (THead (Flat Cast) v1 t1)) \to (ex3_2 T
+T (\lambda (v2: T).(\lambda (_: T).(sty0 g c0 v1 v2))) (\lambda (_:
+T).(\lambda (t3: T).(sty0 g c0 t1 t3))) (\lambda (v2: T).(\lambda (t3: T).(eq
+T t2 (THead (Flat Cast) v2 t3)))))))).(\lambda (H3: (eq T (THead (Flat Appl)
+v t0) (THead (Flat Cast) v1 t1))).(let H4 \def (eq_ind T (THead (Flat Appl) v
+t0) (\lambda (ee: T).(match ee with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead k _ _) \Rightarrow (match k with [(Bind _)
+\Rightarrow False | (Flat f) \Rightarrow (match f with [Appl \Rightarrow True
+| Cast \Rightarrow False])])])) I (THead (Flat Cast) v1 t1) H3) in (False_ind
+(ex3_2 T T (\lambda (v2: T).(\lambda (_: T).(sty0 g c0 v1 v2))) (\lambda (_:
+T).(\lambda (t3: T).(sty0 g c0 t1 t3))) (\lambda (v2: T).(\lambda (t3: T).(eq
+T (THead (Flat Appl) v t2) (THead (Flat Cast) v2 t3))))) H4))))))))) (\lambda
+(c0: C).(\lambda (v0: T).(\lambda (v2: T).(\lambda (H1: (sty0 g c0 v0
+v2)).(\lambda (H2: (((eq T v0 (THead (Flat Cast) v1 t1)) \to (ex3_2 T T
+(\lambda (v3: T).(\lambda (_: T).(sty0 g c0 v1 v3))) (\lambda (_: T).(\lambda
+(t2: T).(sty0 g c0 t1 t2))) (\lambda (v3: T).(\lambda (t2: T).(eq T v2 (THead
+(Flat Cast) v3 t2)))))))).(\lambda (t0: T).(\lambda (t2: T).(\lambda (H3:
+(sty0 g c0 t0 t2)).(\lambda (H4: (((eq T t0 (THead (Flat Cast) v1 t1)) \to
+(ex3_2 T T (\lambda (v3: T).(\lambda (_: T).(sty0 g c0 v1 v3))) (\lambda (_:
+T).(\lambda (t3: T).(sty0 g c0 t1 t3))) (\lambda (v3: T).(\lambda (t3: T).(eq
+T t2 (THead (Flat Cast) v3 t3)))))))).(\lambda (H5: (eq T (THead (Flat Cast)
+v0 t0) (THead (Flat Cast) v1 t1))).(let H6 \def (f_equal T T (\lambda (e:
+T).(match e with [(TSort _) \Rightarrow v0 | (TLRef _) \Rightarrow v0 |
+(THead _ t _) \Rightarrow t])) (THead (Flat Cast) v0 t0) (THead (Flat Cast)
+v1 t1) H5) in ((let H7 \def (f_equal T T (\lambda (e: T).(match e with
+[(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t)
+\Rightarrow t])) (THead (Flat Cast) v0 t0) (THead (Flat Cast) v1 t1) H5) in
+(\lambda (H8: (eq T v0 v1)).(let H9 \def (eq_ind T t0 (\lambda (t: T).((eq T
+t (THead (Flat Cast) v1 t1)) \to (ex3_2 T T (\lambda (v3: T).(\lambda (_:
T).(sty0 g c0 v1 v3))) (\lambda (_: T).(\lambda (t3: T).(sty0 g c0 t1 t3)))
-(\lambda (v3: T).(\lambda (t3: T).(eq T v2 (THead (Flat Cast) v3 t3))))))) H2
-v1 H8) in (let H12 \def (eq_ind T v0 (\lambda (t: T).(sty0 g c0 t v2)) H1 v1
-H8) in (ex3_2_intro T T (\lambda (v3: T).(\lambda (_: T).(sty0 g c0 v1 v3)))
+(\lambda (v3: T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) v3 t3))))))) H4
+t1 H7) in (let H10 \def (eq_ind T t0 (\lambda (t: T).(sty0 g c0 t t2)) H3 t1
+H7) in (let H11 \def (eq_ind T v0 (\lambda (t: T).((eq T t (THead (Flat Cast)
+v1 t1)) \to (ex3_2 T T (\lambda (v3: T).(\lambda (_: T).(sty0 g c0 v1 v3)))
+(\lambda (_: T).(\lambda (t3: T).(sty0 g c0 t1 t3))) (\lambda (v3:
+T).(\lambda (t3: T).(eq T v2 (THead (Flat Cast) v3 t3))))))) H2 v1 H8) in
+(let H12 \def (eq_ind T v0 (\lambda (t: T).(sty0 g c0 t v2)) H1 v1 H8) in
+(ex3_2_intro T T (\lambda (v3: T).(\lambda (_: T).(sty0 g c0 v1 v3)))
(\lambda (_: T).(\lambda (t3: T).(sty0 g c0 t1 t3))) (\lambda (v3:
T).(\lambda (t3: T).(eq T (THead (Flat Cast) v2 t2) (THead (Flat Cast) v3
t3)))) v2 t2 H12 H10 (refl_equal T (THead (Flat Cast) v2 t2)))))))))
H6)))))))))))) c y x H0))) H)))))).
-(* COMMENTS
-Initial nodes: 1855
-END *)
(* This file was automatically generated: do not edit *********************)
-include "Basic-1/sty0/defs.ma".
+include "basic_1/sty0/fwd.ma".
-include "Basic-1/getl/drop.ma".
+include "basic_1/getl/drop.ma".
theorem sty0_lift:
\forall (g: G).(\forall (e: C).(\forall (t1: T).(\forall (t2: T).((sty0 g e
w)))))))).(\lambda (c0: C).(\lambda (h: nat).(\lambda (d0: nat).(\lambda (H3:
(drop h d0 c0 c)).(lt_le_e i d0 (sty0 g c0 (lift h d0 (TLRef i)) (lift h d0
(lift (S i) O w))) (\lambda (H4: (lt i d0)).(let H5 \def (drop_getl_trans_le
-i d0 (le_S_n i d0 (le_S (S i) d0 H4)) c0 c h H3 (CHead d (Bind Abbr) v) H0)
-in (ex3_2_ind C C (\lambda (e0: C).(\lambda (_: C).(drop i O c0 e0)))
+i d0 (le_S_n i d0 (le_S_n (S i) (S d0) (le_S (S (S i)) (S d0) (le_n_S (S i)
+d0 H4)))) c0 c h H3 (CHead d (Bind Abbr) v) H0) in (ex3_2_ind C C (\lambda
+(e0: C).(\lambda (_: C).(drop i O c0 e0))) (\lambda (e0: C).(\lambda (e1:
+C).(drop h (minus d0 i) e0 e1))) (\lambda (_: C).(\lambda (e1: C).(clear e1
+(CHead d (Bind Abbr) v)))) (sty0 g c0 (lift h d0 (TLRef i)) (lift h d0 (lift
+(S i) O w))) (\lambda (x0: C).(\lambda (x1: C).(\lambda (H6: (drop i O c0
+x0)).(\lambda (H7: (drop h (minus d0 i) x0 x1)).(\lambda (H8: (clear x1
+(CHead d (Bind Abbr) v))).(let H9 \def (eq_ind nat (minus d0 i) (\lambda (n:
+nat).(drop h n x0 x1)) H7 (S (minus d0 (S i))) (minus_x_Sy d0 i H4)) in (let
+H10 \def (drop_clear_S x1 x0 h (minus d0 (S i)) H9 Abbr d v H8) in (ex2_ind C
+(\lambda (c1: C).(clear x0 (CHead c1 (Bind Abbr) (lift h (minus d0 (S i))
+v)))) (\lambda (c1: C).(drop h (minus d0 (S i)) c1 d)) (sty0 g c0 (lift h d0
+(TLRef i)) (lift h d0 (lift (S i) O w))) (\lambda (x: C).(\lambda (H11:
+(clear x0 (CHead x (Bind Abbr) (lift h (minus d0 (S i)) v)))).(\lambda (H12:
+(drop h (minus d0 (S i)) x d)).(eq_ind_r T (TLRef i) (\lambda (t: T).(sty0 g
+c0 t (lift h d0 (lift (S i) O w)))) (eq_ind nat (plus (S i) (minus d0 (S i)))
+(\lambda (n: nat).(sty0 g c0 (TLRef i) (lift h n (lift (S i) O w))))
+(eq_ind_r T (lift (S i) O (lift h (minus d0 (S i)) w)) (\lambda (t: T).(sty0
+g c0 (TLRef i) t)) (eq_ind nat d0 (\lambda (_: nat).(sty0 g c0 (TLRef i)
+(lift (S i) O (lift h (minus d0 (S i)) w)))) (sty0_abbr g c0 x (lift h (minus
+d0 (S i)) v) i (getl_intro i c0 (CHead x (Bind Abbr) (lift h (minus d0 (S i))
+v)) x0 H6 H11) (lift h (minus d0 (S i)) w) (H2 x h (minus d0 (S i)) H12))
+(plus (S i) (minus d0 (S i))) (le_plus_minus (S i) d0 H4)) (lift h (plus (S
+i) (minus d0 (S i))) (lift (S i) O w)) (lift_d w h (S i) (minus d0 (S i)) O
+(le_O_n (minus d0 (S i))))) d0 (le_plus_minus_r (S i) d0 H4)) (lift h d0
+(TLRef i)) (lift_lref_lt i h d0 H4))))) H10)))))))) H5))) (\lambda (H4: (le
+d0 i)).(eq_ind_r T (TLRef (plus i h)) (\lambda (t: T).(sty0 g c0 t (lift h d0
+(lift (S i) O w)))) (eq_ind nat (S i) (\lambda (_: nat).(sty0 g c0 (TLRef
+(plus i h)) (lift h d0 (lift (S i) O w)))) (eq_ind_r T (lift (plus h (S i)) O
+w) (\lambda (t: T).(sty0 g c0 (TLRef (plus i h)) t)) (eq_ind_r nat (plus (S
+i) h) (\lambda (n: nat).(sty0 g c0 (TLRef (plus i h)) (lift n O w)))
+(sty0_abbr g c0 d v (plus i h) (drop_getl_trans_ge i c0 c d0 h H3 (CHead d
+(Bind Abbr) v) H0 H4) w H1) (plus h (S i)) (plus_sym h (S i))) (lift h d0
+(lift (S i) O w)) (lift_free w (S i) h O d0 (le_S_n d0 (S i) (le_S (S d0) (S
+i) (le_n_S d0 i H4))) (le_O_n d0))) (plus i (S O)) (eq_ind_r nat (plus (S O)
+i) (\lambda (n: nat).(eq nat (S i) n)) (le_antisym (S i) (plus (S O) i) (le_n
+(plus (S O) i)) (le_n (S i))) (plus i (S O)) (plus_sym i (S O)))) (lift h d0
+(TLRef i)) (lift_lref_ge i h d0 H4)))))))))))))))) (\lambda (c: C).(\lambda
+(d: C).(\lambda (v: T).(\lambda (i: nat).(\lambda (H0: (getl i c (CHead d
+(Bind Abst) v))).(\lambda (w: T).(\lambda (H1: (sty0 g d v w)).(\lambda (H2:
+((\forall (c0: C).(\forall (h: nat).(\forall (d0: nat).((drop h d0 c0 d) \to
+(sty0 g c0 (lift h d0 v) (lift h d0 w)))))))).(\lambda (c0: C).(\lambda (h:
+nat).(\lambda (d0: nat).(\lambda (H3: (drop h d0 c0 c)).(lt_le_e i d0 (sty0 g
+c0 (lift h d0 (TLRef i)) (lift h d0 (lift (S i) O v))) (\lambda (H4: (lt i
+d0)).(let H5 \def (drop_getl_trans_le i d0 (le_S_n i d0 (le_S_n (S i) (S d0)
+(le_S (S (S i)) (S d0) (le_n_S (S i) d0 H4)))) c0 c h H3 (CHead d (Bind Abst)
+v) H0) in (ex3_2_ind C C (\lambda (e0: C).(\lambda (_: C).(drop i O c0 e0)))
(\lambda (e0: C).(\lambda (e1: C).(drop h (minus d0 i) e0 e1))) (\lambda (_:
-C).(\lambda (e1: C).(clear e1 (CHead d (Bind Abbr) v)))) (sty0 g c0 (lift h
-d0 (TLRef i)) (lift h d0 (lift (S i) O w))) (\lambda (x0: C).(\lambda (x1:
+C).(\lambda (e1: C).(clear e1 (CHead d (Bind Abst) v)))) (sty0 g c0 (lift h
+d0 (TLRef i)) (lift h d0 (lift (S i) O v))) (\lambda (x0: C).(\lambda (x1:
C).(\lambda (H6: (drop i O c0 x0)).(\lambda (H7: (drop h (minus d0 i) x0
-x1)).(\lambda (H8: (clear x1 (CHead d (Bind Abbr) v))).(let H9 \def (eq_ind
+x1)).(\lambda (H8: (clear x1 (CHead d (Bind Abst) v))).(let H9 \def (eq_ind
nat (minus d0 i) (\lambda (n: nat).(drop h n x0 x1)) H7 (S (minus d0 (S i)))
(minus_x_Sy d0 i H4)) in (let H10 \def (drop_clear_S x1 x0 h (minus d0 (S i))
-H9 Abbr d v H8) in (ex2_ind C (\lambda (c1: C).(clear x0 (CHead c1 (Bind
-Abbr) (lift h (minus d0 (S i)) v)))) (\lambda (c1: C).(drop h (minus d0 (S
-i)) c1 d)) (sty0 g c0 (lift h d0 (TLRef i)) (lift h d0 (lift (S i) O w)))
-(\lambda (x: C).(\lambda (H11: (clear x0 (CHead x (Bind Abbr) (lift h (minus
+H9 Abst d v H8) in (ex2_ind C (\lambda (c1: C).(clear x0 (CHead c1 (Bind
+Abst) (lift h (minus d0 (S i)) v)))) (\lambda (c1: C).(drop h (minus d0 (S
+i)) c1 d)) (sty0 g c0 (lift h d0 (TLRef i)) (lift h d0 (lift (S i) O v)))
+(\lambda (x: C).(\lambda (H11: (clear x0 (CHead x (Bind Abst) (lift h (minus
d0 (S i)) v)))).(\lambda (H12: (drop h (minus d0 (S i)) x d)).(eq_ind_r T
-(TLRef i) (\lambda (t: T).(sty0 g c0 t (lift h d0 (lift (S i) O w)))) (eq_ind
+(TLRef i) (\lambda (t: T).(sty0 g c0 t (lift h d0 (lift (S i) O v)))) (eq_ind
nat (plus (S i) (minus d0 (S i))) (\lambda (n: nat).(sty0 g c0 (TLRef i)
-(lift h n (lift (S i) O w)))) (eq_ind_r T (lift (S i) O (lift h (minus d0 (S
-i)) w)) (\lambda (t: T).(sty0 g c0 (TLRef i) t)) (eq_ind nat d0 (\lambda (_:
-nat).(sty0 g c0 (TLRef i) (lift (S i) O (lift h (minus d0 (S i)) w))))
-(sty0_abbr g c0 x (lift h (minus d0 (S i)) v) i (getl_intro i c0 (CHead x
-(Bind Abbr) (lift h (minus d0 (S i)) v)) x0 H6 H11) (lift h (minus d0 (S i))
+(lift h n (lift (S i) O v)))) (eq_ind_r T (lift (S i) O (lift h (minus d0 (S
+i)) v)) (\lambda (t: T).(sty0 g c0 (TLRef i) t)) (eq_ind nat d0 (\lambda (_:
+nat).(sty0 g c0 (TLRef i) (lift (S i) O (lift h (minus d0 (S i)) v))))
+(sty0_abst g c0 x (lift h (minus d0 (S i)) v) i (getl_intro i c0 (CHead x
+(Bind Abst) (lift h (minus d0 (S i)) v)) x0 H6 H11) (lift h (minus d0 (S i))
w) (H2 x h (minus d0 (S i)) H12)) (plus (S i) (minus d0 (S i)))
(le_plus_minus (S i) d0 H4)) (lift h (plus (S i) (minus d0 (S i))) (lift (S
-i) O w)) (lift_d w h (S i) (minus d0 (S i)) O (le_O_n (minus d0 (S i))))) d0
-(le_plus_minus_r (S i) d0 H4)) (lift h d0 (TLRef i)) (lift_lref_lt i h d0
-H4))))) H10)))))))) H5))) (\lambda (H4: (le d0 i)).(eq_ind_r T (TLRef (plus i
-h)) (\lambda (t: T).(sty0 g c0 t (lift h d0 (lift (S i) O w)))) (eq_ind nat
-(S i) (\lambda (_: nat).(sty0 g c0 (TLRef (plus i h)) (lift h d0 (lift (S i)
-O w)))) (eq_ind_r T (lift (plus h (S i)) O w) (\lambda (t: T).(sty0 g c0
-(TLRef (plus i h)) t)) (eq_ind_r nat (plus (S i) h) (\lambda (n: nat).(sty0 g
-c0 (TLRef (plus i h)) (lift n O w))) (sty0_abbr g c0 d v (plus i h)
-(drop_getl_trans_ge i c0 c d0 h H3 (CHead d (Bind Abbr) v) H0 H4) w H1) (plus
-h (S i)) (plus_sym h (S i))) (lift h d0 (lift (S i) O w)) (lift_free w (S i)
-h O d0 (le_S d0 i H4) (le_O_n d0))) (plus i (S O)) (eq_ind_r nat (plus (S O)
-i) (\lambda (n: nat).(eq nat (S i) n)) (refl_equal nat (plus (S O) i)) (plus
-i (S O)) (plus_sym i (S O)))) (lift h d0 (TLRef i)) (lift_lref_ge i h d0
-H4)))))))))))))))) (\lambda (c: C).(\lambda (d: C).(\lambda (v: T).(\lambda
-(i: nat).(\lambda (H0: (getl i c (CHead d (Bind Abst) v))).(\lambda (w:
-T).(\lambda (H1: (sty0 g d v w)).(\lambda (H2: ((\forall (c0: C).(\forall (h:
-nat).(\forall (d0: nat).((drop h d0 c0 d) \to (sty0 g c0 (lift h d0 v) (lift
-h d0 w)))))))).(\lambda (c0: C).(\lambda (h: nat).(\lambda (d0: nat).(\lambda
-(H3: (drop h d0 c0 c)).(lt_le_e i d0 (sty0 g c0 (lift h d0 (TLRef i)) (lift h
-d0 (lift (S i) O v))) (\lambda (H4: (lt i d0)).(let H5 \def
-(drop_getl_trans_le i d0 (le_S_n i d0 (le_S (S i) d0 H4)) c0 c h H3 (CHead d
-(Bind Abst) v) H0) in (ex3_2_ind C C (\lambda (e0: C).(\lambda (_: C).(drop i
-O c0 e0))) (\lambda (e0: C).(\lambda (e1: C).(drop h (minus d0 i) e0 e1)))
-(\lambda (_: C).(\lambda (e1: C).(clear e1 (CHead d (Bind Abst) v)))) (sty0 g
-c0 (lift h d0 (TLRef i)) (lift h d0 (lift (S i) O v))) (\lambda (x0:
-C).(\lambda (x1: C).(\lambda (H6: (drop i O c0 x0)).(\lambda (H7: (drop h
-(minus d0 i) x0 x1)).(\lambda (H8: (clear x1 (CHead d (Bind Abst) v))).(let
-H9 \def (eq_ind nat (minus d0 i) (\lambda (n: nat).(drop h n x0 x1)) H7 (S
-(minus d0 (S i))) (minus_x_Sy d0 i H4)) in (let H10 \def (drop_clear_S x1 x0
-h (minus d0 (S i)) H9 Abst d v H8) in (ex2_ind C (\lambda (c1: C).(clear x0
-(CHead c1 (Bind Abst) (lift h (minus d0 (S i)) v)))) (\lambda (c1: C).(drop h
-(minus d0 (S i)) c1 d)) (sty0 g c0 (lift h d0 (TLRef i)) (lift h d0 (lift (S
-i) O v))) (\lambda (x: C).(\lambda (H11: (clear x0 (CHead x (Bind Abst) (lift
-h (minus d0 (S i)) v)))).(\lambda (H12: (drop h (minus d0 (S i)) x
-d)).(eq_ind_r T (TLRef i) (\lambda (t: T).(sty0 g c0 t (lift h d0 (lift (S i)
-O v)))) (eq_ind nat (plus (S i) (minus d0 (S i))) (\lambda (n: nat).(sty0 g
-c0 (TLRef i) (lift h n (lift (S i) O v)))) (eq_ind_r T (lift (S i) O (lift h
-(minus d0 (S i)) v)) (\lambda (t: T).(sty0 g c0 (TLRef i) t)) (eq_ind nat d0
-(\lambda (_: nat).(sty0 g c0 (TLRef i) (lift (S i) O (lift h (minus d0 (S i))
-v)))) (sty0_abst g c0 x (lift h (minus d0 (S i)) v) i (getl_intro i c0 (CHead
-x (Bind Abst) (lift h (minus d0 (S i)) v)) x0 H6 H11) (lift h (minus d0 (S
-i)) w) (H2 x h (minus d0 (S i)) H12)) (plus (S i) (minus d0 (S i)))
-(le_plus_minus (S i) d0 H4)) (lift h (plus (S i) (minus d0 (S i))) (lift (S
i) O v)) (lift_d v h (S i) (minus d0 (S i)) O (le_O_n (minus d0 (S i))))) d0
(le_plus_minus_r (S i) d0 H4)) (lift h d0 (TLRef i)) (lift_lref_lt i h d0
H4))))) H10)))))))) H5))) (\lambda (H4: (le d0 i)).(eq_ind_r T (TLRef (plus i
c0 (TLRef (plus i h)) (lift n O v))) (sty0_abst g c0 d v (plus i h)
(drop_getl_trans_ge i c0 c d0 h H3 (CHead d (Bind Abst) v) H0 H4) w H1) (plus
h (S i)) (plus_sym h (S i))) (lift h d0 (lift (S i) O v)) (lift_free v (S i)
-h O d0 (le_S d0 i H4) (le_O_n d0))) (plus i (S O)) (eq_ind_r nat (plus (S O)
-i) (\lambda (n: nat).(eq nat (S i) n)) (refl_equal nat (plus (S O) i)) (plus
-i (S O)) (plus_sym i (S O)))) (lift h d0 (TLRef i)) (lift_lref_ge i h d0
-H4)))))))))))))))) (\lambda (b: B).(\lambda (c: C).(\lambda (v: T).(\lambda
-(t3: T).(\lambda (t4: T).(\lambda (_: (sty0 g (CHead c (Bind b) v) t3
-t4)).(\lambda (H1: ((\forall (c0: C).(\forall (h: nat).(\forall (d:
+h O d0 (le_S_n d0 (S i) (le_S (S d0) (S i) (le_n_S d0 i H4))) (le_O_n d0)))
+(plus i (S O)) (eq_ind_r nat (plus (S O) i) (\lambda (n: nat).(eq nat (S i)
+n)) (le_antisym (S i) (plus (S O) i) (le_n (plus (S O) i)) (le_n (S i)))
+(plus i (S O)) (plus_sym i (S O)))) (lift h d0 (TLRef i)) (lift_lref_ge i h
+d0 H4)))))))))))))))) (\lambda (b: B).(\lambda (c: C).(\lambda (v:
+T).(\lambda (t3: T).(\lambda (t4: T).(\lambda (_: (sty0 g (CHead c (Bind b)
+v) t3 t4)).(\lambda (H1: ((\forall (c0: C).(\forall (h: nat).(\forall (d:
nat).((drop h d c0 (CHead c (Bind b) v)) \to (sty0 g c0 (lift h d t3) (lift h
d t4)))))))).(\lambda (c0: C).(\lambda (h: nat).(\lambda (d: nat).(\lambda
(H2: (drop h d c0 c)).(eq_ind_r T (THead (Bind b) (lift h d v) (lift h (s
(s (Flat Cast) d) H4)) (lift h d (THead (Flat Cast) v2 t4)) (lift_head (Flat
Cast) v2 t4 h d)) (lift h d (THead (Flat Cast) v1 t3)) (lift_head (Flat Cast)
v1 t3 h d))))))))))))))) e t1 t2 H))))).
-(* COMMENTS
-Initial nodes: 3677
-END *)
theorem sty0_correct:
\forall (g: G).(\forall (c: C).(\forall (t1: T).(\forall (t: T).((sty0 g c
(sty0 g c0 t3 x0)).(ex_intro T (\lambda (t4: T).(sty0 g c0 (THead (Flat Cast)
v2 t3) t4)) (THead (Flat Cast) x x0) (sty0_cast g c0 v2 x H5 t3 x0 H7))))
H6)))) H4))))))))))) c t1 t H))))).
-(* COMMENTS
-Initial nodes: 991
-END *)
(* This file was automatically generated: do not edit *********************)
-include "Basic-1/sty1/props.ma".
+include "basic_1/sty1/props.ma".
-include "Basic-1/cnt/props.ma".
+include "basic_1/cnt/props.ma".
theorem sty1_cnt:
\forall (g: G).(\forall (c: C).(\forall (t1: T).(\forall (t: T).((sty0 g c
t2)))))))
\def
\lambda (g: G).(\lambda (c: C).(\lambda (t1: T).(\lambda (t: T).(\lambda (H:
-(sty0 g c t1 t)).(sty0_ind g (\lambda (c0: C).(\lambda (t0: T).(\lambda (_:
-T).(ex2 T (\lambda (t3: T).(sty1 g c0 t0 t3)) (\lambda (t3: T).(cnt t3))))))
-(\lambda (c0: C).(\lambda (n: nat).(ex_intro2 T (\lambda (t2: T).(sty1 g c0
-(TSort n) t2)) (\lambda (t2: T).(cnt t2)) (TSort (next g n)) (sty1_sty0 g c0
-(TSort n) (TSort (next g n)) (sty0_sort g c0 n)) (cnt_sort (next g n)))))
-(\lambda (c0: C).(\lambda (d: C).(\lambda (v: T).(\lambda (i: nat).(\lambda
-(H0: (getl i c0 (CHead d (Bind Abbr) v))).(\lambda (w: T).(\lambda (_: (sty0
-g d v w)).(\lambda (H2: (ex2 T (\lambda (t2: T).(sty1 g d v t2)) (\lambda
-(t2: T).(cnt t2)))).(let H3 \def H2 in (ex2_ind T (\lambda (t2: T).(sty1 g d
-v t2)) (\lambda (t2: T).(cnt t2)) (ex2 T (\lambda (t2: T).(sty1 g c0 (TLRef
-i) t2)) (\lambda (t2: T).(cnt t2))) (\lambda (x: T).(\lambda (H4: (sty1 g d v
-x)).(\lambda (H5: (cnt x)).(ex_intro2 T (\lambda (t2: T).(sty1 g c0 (TLRef i)
-t2)) (\lambda (t2: T).(cnt t2)) (lift (S i) O x) (sty1_abbr g c0 d v i H0 x
-H4) (cnt_lift x H5 (S i) O))))) H3)))))))))) (\lambda (c0: C).(\lambda (d:
+(sty0 g c t1 t)).(let TMP_3 \def (\lambda (c0: C).(\lambda (t0: T).(\lambda
+(_: T).(let TMP_1 \def (\lambda (t3: T).(sty1 g c0 t0 t3)) in (let TMP_2 \def
+(\lambda (t3: T).(cnt t3)) in (ex2 T TMP_1 TMP_2)))))) in (let TMP_16 \def
+(\lambda (c0: C).(\lambda (n: nat).(let TMP_5 \def (\lambda (t2: T).(let
+TMP_4 \def (TSort n) in (sty1 g c0 TMP_4 t2))) in (let TMP_6 \def (\lambda
+(t2: T).(cnt t2)) in (let TMP_7 \def (next g n) in (let TMP_8 \def (TSort
+TMP_7) in (let TMP_9 \def (TSort n) in (let TMP_10 \def (next g n) in (let
+TMP_11 \def (TSort TMP_10) in (let TMP_12 \def (sty0_sort g c0 n) in (let
+TMP_13 \def (sty1_sty0 g c0 TMP_9 TMP_11 TMP_12) in (let TMP_14 \def (next g
+n) in (let TMP_15 \def (cnt_sort TMP_14) in (ex_intro2 T TMP_5 TMP_6 TMP_8
+TMP_13 TMP_15)))))))))))))) in (let TMP_32 \def (\lambda (c0: C).(\lambda (d:
C).(\lambda (v: T).(\lambda (i: nat).(\lambda (H0: (getl i c0 (CHead d (Bind
-Abst) v))).(\lambda (w: T).(\lambda (H1: (sty0 g d v w)).(\lambda (H2: (ex2 T
+Abbr) v))).(\lambda (w: T).(\lambda (_: (sty0 g d v w)).(\lambda (H2: (ex2 T
(\lambda (t2: T).(sty1 g d v t2)) (\lambda (t2: T).(cnt t2)))).(let H3 \def
-H2 in (ex2_ind T (\lambda (t2: T).(sty1 g d v t2)) (\lambda (t2: T).(cnt t2))
-(ex2 T (\lambda (t2: T).(sty1 g c0 (TLRef i) t2)) (\lambda (t2: T).(cnt t2)))
-(\lambda (x: T).(\lambda (H4: (sty1 g d v x)).(\lambda (H5: (cnt
-x)).(ex_intro2 T (\lambda (t2: T).(sty1 g c0 (TLRef i) t2)) (\lambda (t2:
-T).(cnt t2)) (lift (S i) O x) (sty1_trans g c0 (TLRef i) (lift (S i) O v)
-(sty1_sty0 g c0 (TLRef i) (lift (S i) O v) (sty0_abst g c0 d v i H0 w H1))
-(lift (S i) O x) (sty1_lift g d v x H4 c0 (S i) O (getl_drop Abst c0 d v i
-H0))) (cnt_lift x H5 (S i) O))))) H3)))))))))) (\lambda (b: B).(\lambda (c0:
+H2 in (let TMP_17 \def (\lambda (t2: T).(sty1 g d v t2)) in (let TMP_18 \def
+(\lambda (t2: T).(cnt t2)) in (let TMP_20 \def (\lambda (t2: T).(let TMP_19
+\def (TLRef i) in (sty1 g c0 TMP_19 t2))) in (let TMP_21 \def (\lambda (t2:
+T).(cnt t2)) in (let TMP_22 \def (ex2 T TMP_20 TMP_21) in (let TMP_31 \def
+(\lambda (x: T).(\lambda (H4: (sty1 g d v x)).(\lambda (H5: (cnt x)).(let
+TMP_24 \def (\lambda (t2: T).(let TMP_23 \def (TLRef i) in (sty1 g c0 TMP_23
+t2))) in (let TMP_25 \def (\lambda (t2: T).(cnt t2)) in (let TMP_26 \def (S
+i) in (let TMP_27 \def (lift TMP_26 O x) in (let TMP_28 \def (sty1_abbr g c0
+d v i H0 x H4) in (let TMP_29 \def (S i) in (let TMP_30 \def (cnt_lift x H5
+TMP_29 O) in (ex_intro2 T TMP_24 TMP_25 TMP_27 TMP_28 TMP_30))))))))))) in
+(ex2_ind T TMP_17 TMP_18 TMP_22 TMP_31 H3)))))))))))))))) in (let TMP_61 \def
+(\lambda (c0: C).(\lambda (d: C).(\lambda (v: T).(\lambda (i: nat).(\lambda
+(H0: (getl i c0 (CHead d (Bind Abst) v))).(\lambda (w: T).(\lambda (H1: (sty0
+g d v w)).(\lambda (H2: (ex2 T (\lambda (t2: T).(sty1 g d v t2)) (\lambda
+(t2: T).(cnt t2)))).(let H3 \def H2 in (let TMP_33 \def (\lambda (t2:
+T).(sty1 g d v t2)) in (let TMP_34 \def (\lambda (t2: T).(cnt t2)) in (let
+TMP_36 \def (\lambda (t2: T).(let TMP_35 \def (TLRef i) in (sty1 g c0 TMP_35
+t2))) in (let TMP_37 \def (\lambda (t2: T).(cnt t2)) in (let TMP_38 \def (ex2
+T TMP_36 TMP_37) in (let TMP_60 \def (\lambda (x: T).(\lambda (H4: (sty1 g d
+v x)).(\lambda (H5: (cnt x)).(let TMP_40 \def (\lambda (t2: T).(let TMP_39
+\def (TLRef i) in (sty1 g c0 TMP_39 t2))) in (let TMP_41 \def (\lambda (t2:
+T).(cnt t2)) in (let TMP_42 \def (S i) in (let TMP_43 \def (lift TMP_42 O x)
+in (let TMP_44 \def (TLRef i) in (let TMP_45 \def (S i) in (let TMP_46 \def
+(lift TMP_45 O v) in (let TMP_47 \def (TLRef i) in (let TMP_48 \def (S i) in
+(let TMP_49 \def (lift TMP_48 O v) in (let TMP_50 \def (sty0_abst g c0 d v i
+H0 w H1) in (let TMP_51 \def (sty1_sty0 g c0 TMP_47 TMP_49 TMP_50) in (let
+TMP_52 \def (S i) in (let TMP_53 \def (lift TMP_52 O x) in (let TMP_54 \def
+(S i) in (let TMP_55 \def (getl_drop Abst c0 d v i H0) in (let TMP_56 \def
+(sty1_lift g d v x H4 c0 TMP_54 O TMP_55) in (let TMP_57 \def (sty1_trans g
+c0 TMP_44 TMP_46 TMP_51 TMP_53 TMP_56) in (let TMP_58 \def (S i) in (let
+TMP_59 \def (cnt_lift x H5 TMP_58 O) in (ex_intro2 T TMP_40 TMP_41 TMP_43
+TMP_57 TMP_59)))))))))))))))))))))))) in (ex2_ind T TMP_33 TMP_34 TMP_38
+TMP_60 H3)))))))))))))))) in (let TMP_81 \def (\lambda (b: B).(\lambda (c0:
C).(\lambda (v: T).(\lambda (t2: T).(\lambda (t3: T).(\lambda (_: (sty0 g
(CHead c0 (Bind b) v) t2 t3)).(\lambda (H1: (ex2 T (\lambda (t4: T).(sty1 g
(CHead c0 (Bind b) v) t2 t4)) (\lambda (t4: T).(cnt t4)))).(let H2 \def H1 in
-(ex2_ind T (\lambda (t4: T).(sty1 g (CHead c0 (Bind b) v) t2 t4)) (\lambda
-(t4: T).(cnt t4)) (ex2 T (\lambda (t4: T).(sty1 g c0 (THead (Bind b) v t2)
-t4)) (\lambda (t4: T).(cnt t4))) (\lambda (x: T).(\lambda (H3: (sty1 g (CHead
-c0 (Bind b) v) t2 x)).(\lambda (H4: (cnt x)).(ex_intro2 T (\lambda (t4:
-T).(sty1 g c0 (THead (Bind b) v t2) t4)) (\lambda (t4: T).(cnt t4)) (THead
-(Bind b) v x) (sty1_bind g b c0 v t2 x H3) (cnt_head x H4 (Bind b) v)))))
-H2))))))))) (\lambda (c0: C).(\lambda (v: T).(\lambda (t2: T).(\lambda (t3:
-T).(\lambda (_: (sty0 g c0 t2 t3)).(\lambda (H1: (ex2 T (\lambda (t4:
-T).(sty1 g c0 t2 t4)) (\lambda (t4: T).(cnt t4)))).(let H2 \def H1 in
-(ex2_ind T (\lambda (t4: T).(sty1 g c0 t2 t4)) (\lambda (t4: T).(cnt t4))
-(ex2 T (\lambda (t4: T).(sty1 g c0 (THead (Flat Appl) v t2) t4)) (\lambda
-(t4: T).(cnt t4))) (\lambda (x: T).(\lambda (H3: (sty1 g c0 t2 x)).(\lambda
-(H4: (cnt x)).(ex_intro2 T (\lambda (t4: T).(sty1 g c0 (THead (Flat Appl) v
-t2) t4)) (\lambda (t4: T).(cnt t4)) (THead (Flat Appl) v x) (sty1_appl g c0 v
-t2 x H3) (cnt_head x H4 (Flat Appl) v))))) H2)))))))) (\lambda (c0:
-C).(\lambda (v1: T).(\lambda (v2: T).(\lambda (H0: (sty0 g c0 v1
-v2)).(\lambda (_: (ex2 T (\lambda (t2: T).(sty1 g c0 v1 t2)) (\lambda (t2:
-T).(cnt t2)))).(\lambda (t2: T).(\lambda (t3: T).(\lambda (_: (sty0 g c0 t2
-t3)).(\lambda (H3: (ex2 T (\lambda (t4: T).(sty1 g c0 t2 t4)) (\lambda (t4:
-T).(cnt t4)))).(let H4 \def H3 in (ex2_ind T (\lambda (t4: T).(sty1 g c0 t2
-t4)) (\lambda (t4: T).(cnt t4)) (ex2 T (\lambda (t4: T).(sty1 g c0 (THead
-(Flat Cast) v1 t2) t4)) (\lambda (t4: T).(cnt t4))) (\lambda (x: T).(\lambda
-(H5: (sty1 g c0 t2 x)).(\lambda (H6: (cnt x)).(let H_x \def (sty1_cast2 g c0
-t2 x H5 v1 v2 H0) in (let H7 \def H_x in (ex2_ind T (\lambda (v3: T).(sty1 g
-c0 v1 v3)) (\lambda (v3: T).(sty1 g c0 (THead (Flat Cast) v1 t2) (THead (Flat
-Cast) v3 x))) (ex2 T (\lambda (t4: T).(sty1 g c0 (THead (Flat Cast) v1 t2)
-t4)) (\lambda (t4: T).(cnt t4))) (\lambda (x0: T).(\lambda (_: (sty1 g c0 v1
-x0)).(\lambda (H9: (sty1 g c0 (THead (Flat Cast) v1 t2) (THead (Flat Cast) x0
-x))).(ex_intro2 T (\lambda (t4: T).(sty1 g c0 (THead (Flat Cast) v1 t2) t4))
-(\lambda (t4: T).(cnt t4)) (THead (Flat Cast) x0 x) H9 (cnt_head x H6 (Flat
-Cast) x0))))) H7)))))) H4))))))))))) c t1 t H))))).
-(* COMMENTS
-Initial nodes: 1313
-END *)
+(let TMP_64 \def (\lambda (t4: T).(let TMP_62 \def (Bind b) in (let TMP_63
+\def (CHead c0 TMP_62 v) in (sty1 g TMP_63 t2 t4)))) in (let TMP_65 \def
+(\lambda (t4: T).(cnt t4)) in (let TMP_68 \def (\lambda (t4: T).(let TMP_66
+\def (Bind b) in (let TMP_67 \def (THead TMP_66 v t2) in (sty1 g c0 TMP_67
+t4)))) in (let TMP_69 \def (\lambda (t4: T).(cnt t4)) in (let TMP_70 \def
+(ex2 T TMP_68 TMP_69) in (let TMP_80 \def (\lambda (x: T).(\lambda (H3: (sty1
+g (CHead c0 (Bind b) v) t2 x)).(\lambda (H4: (cnt x)).(let TMP_73 \def
+(\lambda (t4: T).(let TMP_71 \def (Bind b) in (let TMP_72 \def (THead TMP_71
+v t2) in (sty1 g c0 TMP_72 t4)))) in (let TMP_74 \def (\lambda (t4: T).(cnt
+t4)) in (let TMP_75 \def (Bind b) in (let TMP_76 \def (THead TMP_75 v x) in
+(let TMP_77 \def (sty1_bind g b c0 v t2 x H3) in (let TMP_78 \def (Bind b) in
+(let TMP_79 \def (cnt_head x H4 TMP_78 v) in (ex_intro2 T TMP_73 TMP_74
+TMP_76 TMP_77 TMP_79))))))))))) in (ex2_ind T TMP_64 TMP_65 TMP_70 TMP_80
+H2))))))))))))))) in (let TMP_99 \def (\lambda (c0: C).(\lambda (v:
+T).(\lambda (t2: T).(\lambda (t3: T).(\lambda (_: (sty0 g c0 t2 t3)).(\lambda
+(H1: (ex2 T (\lambda (t4: T).(sty1 g c0 t2 t4)) (\lambda (t4: T).(cnt
+t4)))).(let H2 \def H1 in (let TMP_82 \def (\lambda (t4: T).(sty1 g c0 t2
+t4)) in (let TMP_83 \def (\lambda (t4: T).(cnt t4)) in (let TMP_86 \def
+(\lambda (t4: T).(let TMP_84 \def (Flat Appl) in (let TMP_85 \def (THead
+TMP_84 v t2) in (sty1 g c0 TMP_85 t4)))) in (let TMP_87 \def (\lambda (t4:
+T).(cnt t4)) in (let TMP_88 \def (ex2 T TMP_86 TMP_87) in (let TMP_98 \def
+(\lambda (x: T).(\lambda (H3: (sty1 g c0 t2 x)).(\lambda (H4: (cnt x)).(let
+TMP_91 \def (\lambda (t4: T).(let TMP_89 \def (Flat Appl) in (let TMP_90 \def
+(THead TMP_89 v t2) in (sty1 g c0 TMP_90 t4)))) in (let TMP_92 \def (\lambda
+(t4: T).(cnt t4)) in (let TMP_93 \def (Flat Appl) in (let TMP_94 \def (THead
+TMP_93 v x) in (let TMP_95 \def (sty1_appl g c0 v t2 x H3) in (let TMP_96
+\def (Flat Appl) in (let TMP_97 \def (cnt_head x H4 TMP_96 v) in (ex_intro2 T
+TMP_91 TMP_92 TMP_94 TMP_95 TMP_97))))))))))) in (ex2_ind T TMP_82 TMP_83
+TMP_88 TMP_98 H2)))))))))))))) in (let TMP_128 \def (\lambda (c0: C).(\lambda
+(v1: T).(\lambda (v2: T).(\lambda (H0: (sty0 g c0 v1 v2)).(\lambda (_: (ex2 T
+(\lambda (t2: T).(sty1 g c0 v1 t2)) (\lambda (t2: T).(cnt t2)))).(\lambda
+(t2: T).(\lambda (t3: T).(\lambda (_: (sty0 g c0 t2 t3)).(\lambda (H3: (ex2 T
+(\lambda (t4: T).(sty1 g c0 t2 t4)) (\lambda (t4: T).(cnt t4)))).(let H4 \def
+H3 in (let TMP_100 \def (\lambda (t4: T).(sty1 g c0 t2 t4)) in (let TMP_101
+\def (\lambda (t4: T).(cnt t4)) in (let TMP_104 \def (\lambda (t4: T).(let
+TMP_102 \def (Flat Cast) in (let TMP_103 \def (THead TMP_102 v1 t2) in (sty1
+g c0 TMP_103 t4)))) in (let TMP_105 \def (\lambda (t4: T).(cnt t4)) in (let
+TMP_106 \def (ex2 T TMP_104 TMP_105) in (let TMP_127 \def (\lambda (x:
+T).(\lambda (H5: (sty1 g c0 t2 x)).(\lambda (H6: (cnt x)).(let H_x \def
+(sty1_cast2 g c0 t2 x H5 v1 v2 H0) in (let H7 \def H_x in (let TMP_107 \def
+(\lambda (v3: T).(sty1 g c0 v1 v3)) in (let TMP_112 \def (\lambda (v3:
+T).(let TMP_108 \def (Flat Cast) in (let TMP_109 \def (THead TMP_108 v1 t2)
+in (let TMP_110 \def (Flat Cast) in (let TMP_111 \def (THead TMP_110 v3 x) in
+(sty1 g c0 TMP_109 TMP_111)))))) in (let TMP_115 \def (\lambda (t4: T).(let
+TMP_113 \def (Flat Cast) in (let TMP_114 \def (THead TMP_113 v1 t2) in (sty1
+g c0 TMP_114 t4)))) in (let TMP_116 \def (\lambda (t4: T).(cnt t4)) in (let
+TMP_117 \def (ex2 T TMP_115 TMP_116) in (let TMP_126 \def (\lambda (x0:
+T).(\lambda (_: (sty1 g c0 v1 x0)).(\lambda (H9: (sty1 g c0 (THead (Flat
+Cast) v1 t2) (THead (Flat Cast) x0 x))).(let TMP_120 \def (\lambda (t4:
+T).(let TMP_118 \def (Flat Cast) in (let TMP_119 \def (THead TMP_118 v1 t2)
+in (sty1 g c0 TMP_119 t4)))) in (let TMP_121 \def (\lambda (t4: T).(cnt t4))
+in (let TMP_122 \def (Flat Cast) in (let TMP_123 \def (THead TMP_122 x0 x) in
+(let TMP_124 \def (Flat Cast) in (let TMP_125 \def (cnt_head x H6 TMP_124 x0)
+in (ex_intro2 T TMP_120 TMP_121 TMP_123 H9 TMP_125)))))))))) in (ex2_ind T
+TMP_107 TMP_112 TMP_117 TMP_126 H7)))))))))))) in (ex2_ind T TMP_100 TMP_101
+TMP_106 TMP_127 H4))))))))))))))))) in (sty0_ind g TMP_3 TMP_16 TMP_32 TMP_61
+TMP_81 TMP_99 TMP_128 c t1 t H)))))))))))).