alias symbol "exists" (instance 2) = "exists".
lemma tl : ∀l:list nat. l ≠ [] → ∃l1.∃a.a :: l1 = l.
-letin program ≝
- (λl:list nat. λH:l ≠ [].match l with [ nil ⇒ λH.[] | cons x l1 ⇒ λH.l1] H);
-letin program_spec ≝ (program : ∀l:list nat. l ≠ [] → ∃l1.∃a.a :: l1 = l);
- [ generalize in match H; cases l; [intros (h1); cases (h1 ?); reflexivity]
- intros; apply (ex_intro ? ? n); apply eq_f; reflexivity; ]
-exact program_spec;
+ apply rule (λl:list nat. λ_.match l with [ nil ⇒ [] | cons x l1 ⇒ l1]);
+ [ exists; [2: reflexivity | skip]
+ | destruct; elim H; reflexivity]
qed.
alias symbol "exists" (instance 3) = "exists".
lemma tl2 : ∀l:∃l:list nat. l ≠ []. ∃l1.∃a.a :: l1 = l.
-apply
- (λl:list nat. match l with [ nil ⇒ [] | cons x l1 ⇒ l1]
- :
- ∀l:∃l:list nat. l ≠ []. ∃l1.∃a.a :: l1 = l);
+apply rule (λl:list nat. match l with [ nil ⇒ [] | cons x l1 ⇒ l1]);
[ autobatch;
-| generalize in match H; clear H; cases s; simplify;
- intros; cases (H H1);]
+| cases s in H; simplify; intros; cases (H H1); ]
qed.
definition nat_return := λn:nat. Some ? n.
notation > "'If' b 'Then' t 'Else' f" non associative
with precedence 90 for @{ match $b with [ true ⇒ $t | _ ⇒ $f ] }.
-definition sigma_find_spec : ∀p,l. sigma ? (λres.find_spec l p res).
-(* define the find function *)
-apply (λp.
+alias symbol "exists" = "sigma".
+definition sigma_find_spec : ∀p,l. ∃res.find_spec l p res.
+apply rule (λp.
let rec aux l ≝
match l with
[ nil ⇒ raise_exn
| cons x l ⇒ If p x Then nat_return x Else aux l]
- in aux
- :
- ∀p.∀l.sigma ? (λres.find_spec l p res));
+ in aux);
(* l = x::tl ∧ p x = false *)
[1: cases (aux l1); clear aux;
- generalize in match H2; clear H2; cases a; clear a; simplify;
- [1: intros 2; apply (eqb_elim y n); intros (Eyn); [rewrite > Eyn; assumption]
- apply H3; simplify in H2; assumption;
+ cases a in H2; simplify;
+ [1: intros 2; apply (eqb_elim y n); intros (Eyn); autobatch;
|2: intros; decompose; repeat split; [2: assumption]; intros;
[1: cases (eqb n1 n); simplify; autobatch;
- |2: generalize in match (refl_eq ? (eqb y n)); generalize in ⊢ (? ? ? %→?);
+ |2: generalize in match (refl_eq ? (eqb y n));
+ generalize in ⊢ (? ? ? %→?);
intro; cases b; clear b; intro Eyn; rewrite > Eyn in H3; simplify in H3;
[1: rewrite > (eqb_true_to_eq ? ? Eyn) in H6; rewrite > H1 in H6; destruct H6;
|2: lapply H4; try assumption; decompose; clear H4; rewrite > H8;
|2: intro; generalize in match (refl_eq ? (eqb y n)); generalize in ⊢ (? ? ? %→?);
intro; cases b; clear b; intro Eyn; rewrite > Eyn;
[1: rewrite > (eqb_true_to_eq ? ? Eyn);] clear Eyn; simplify; intros;
- [1: cases H4; reflexivity
- |2: lapply (mem_x_to_ex_l1_l2 ? ? H2); decompose; rewrite > H6;
- apply (ex_intro ? ? []); simplify; autobatch;]]
+ [1: cases H4; reflexivity
+ |2: lapply (mem_x_to_ex_l1_l2 ? ? H2); decompose; rewrite > H6;
+ apply (ex_intro ? ? []); simplify; autobatch;]]
(* l = [] *)
|3: unfold raise_exn; simplify; intros; destruct H1;]
-qed.
+qed.
\ No newline at end of file