include "basic_pairs_to_o-basic_pairs.ma".
include "apply_functor.ma".
-definition rOBP ≝ Apply ?? BP_to_OBP.
+definition rOBP ≝ Apply (category2_of_category1 BP) OBP BP_to_OBP.
include "o-basic_pairs_to_o-basic_topologies.ma".
∀s,t:rOBP.∀f:arrows2 OBTop (OR (ℱ_2 s)) (OR (ℱ_2 t)).
exT22 ? (λg:arrows2 rOBP s t.
map_arrows2 ?? OR ?? (ℳ_2 g) = f).
-intro; cases s (s_2 s_1 s_eq); clear s; cases s_eq; clear s_eq s_2;
+intro; cases s (s_2 s_1 s_eq); clear s;
+whd in ⊢ (?→? (? ? (? ?? ? %) ?)→?);
+whd in ⊢ (?→?→? ? (λ_:?.? ? ? (? ? ? (? ? ? (? ? ? ? % ?) ?)) ?));;
+include "logic/equality.ma".
+lapply (
+match s_eq in eq return
+ (λright_1:?.(λmatched:(eq (objs2 OBP) (map_objs2 (category2_of_category1 BP) OBP BP_to_OBP s_1) right_1).
+ (∀t:(objs2 rOBP).
+ (∀f:(carr2 (arrows2 OBTop (map_objs2 OBP OBTop OR right_1) (map_objs2 OBP OBTop OR (F2 (category2_of_category1 BP) OBP BP_to_OBP t)))).
+ (exT22 (carr2 (arrows2 rOBP (mk_Fo (category2_of_category1 BP) OBP BP_to_OBP right_1 s_1 matched) t))
+ (λg:(carr2 (arrows2 rOBP (mk_Fo (category2_of_category1 BP) OBP BP_to_OBP right_1 s_1 matched) t)).
+ (eq_rel1 (carr1 (unary_morphism1_setoid1 (objs2_OF_Obasic_topology (map_objs2 OBP OBTop OR (F2 (category2_of_category1 BP) OBP BP_to_OBP (mk_Fo (category2_of_category1 BP) OBP BP_to_OBP right_1 s_1 matched)))) (objs2_OF_Obasic_topology (map_objs2 OBP OBTop OR (F2 (category2_of_category1 BP) OBP BP_to_OBP t)))))
+ (eq1 (unary_morphism1_setoid1 (objs2_OF_Obasic_topology (map_objs2 OBP OBTop OR (F2 (category2_of_category1 BP) OBP BP_to_OBP (mk_Fo (category2_of_category1 BP) OBP BP_to_OBP right_1 s_1 matched)))) (objs2_OF_Obasic_topology (map_objs2 OBP OBTop OR (F2 (category2_of_category1 BP) OBP BP_to_OBP t)))))
+ (carr1_OF_Ocontinuous_relation
+ (map_objs2 OBP OBTop OR (F2 (category2_of_category1 BP) OBP BP_to_OBP (mk_Fo (category2_of_category1 BP) OBP BP_to_OBP (*XXX*)right_1 s_1 matched)))
+ (map_objs2 OBP OBTop OR (F2 (category2_of_category1 BP) OBP BP_to_OBP t))
+ (fun12
+ (arrows2 OBP (F2 (category2_of_category1 BP) OBP BP_to_OBP (mk_Fo (category2_of_category1 BP) OBP BP_to_OBP right_1 s_1 matched)) (F2 (category2_of_category1 BP) OBP BP_to_OBP t))
+ (arrows2 OBTop (map_objs2 OBP OBTop OR (F2 (category2_of_category1 BP) OBP BP_to_OBP (mk_Fo (category2_of_category1 BP) OBP BP_to_OBP right_1 s_1 matched))) (map_objs2 OBP OBTop OR (F2 (category2_of_category1 BP) OBP BP_to_OBP t)))
+ (map_arrows2 OBP OBTop OR right_1 (F2 (category2_of_category1 BP) OBP BP_to_OBP t))
+ (Fm2 (category2_of_category1 BP) OBP BP_to_OBP (mk_Fo (category2_of_category1 BP) OBP BP_to_OBP right_1 s_1 matched) t g)))
+ ?)))))))
+ with
+ [ refl_eq ⇒ ?
+]);
+ STOP.
+ (eq_rel1 (carr1 (unary_morphism1_setoid1 (objs2_OF_Obasic_topology (map_objs2 OBP OBTop OR (F2 (category2_of_category1 BP) OBP BP_to_OBP (mk_Fo (category2_of_category1 BP) OBP BP_to_OBP ? s_1 matched)))) (objs2_OF_Obasic_topology (map_objs2 OBP OBTop OR (F2 (category2_of_category1 BP) OBP BP_to_OBP t)))))
+ (eq1 (unary_morphism1_setoid1 (objs2_OF_Obasic_topology (map_objs2 OBP OBTop OR (F2 (category2_of_category1 BP) OBP BP_to_OBP (mk_Fo (category2_of_category1 BP) OBP BP_to_OBP ? s_1 matched)))) (objs2_OF_Obasic_topology (map_objs2 OBP OBTop OR (F2 (category2_of_category1 BP) OBP BP_to_OBP t)))))
+ (carr1_OF_Ocontinuous_relation (map_objs2 OBP OBTop OR (F2 (category2_of_category1 BP) OBP BP_to_OBP (mk_Fo (category2_of_category1 BP) OBP BP_to_OBP ? s_1 matched))) (map_objs2 OBP OBTop OR (F2 (category2_of_category1 BP) OBP BP_to_OBP t)) (fun12 (arrows2 OBP (F2 (category2_of_category1 BP) OBP BP_to_OBP (mk_Fo (category2_of_category1 BP) OBP BP_to_OBP ? s_1 matched)) (F2 (category2_of_category1 BP) OBP BP_to_OBP t)) (arrows2 OBTop (map_objs2 OBP OBTop OR (F2 (category2_of_category1 BP) OBP BP_to_OBP (mk_Fo (category2_of_category1 BP) OBP BP_to_OBP ? s_1 matched))) (map_objs2 OBP OBTop OR (F2 (category2_of_category1 BP) OBP BP_to_OBP t))) (map_arrows2 OBP OBTop OR ? (F2 (category2_of_category1 BP) OBP BP_to_OBP t)) (Fm2 (category2_of_category1 BP) OBP BP_to_OBP (mk_Fo (category2_of_category1 BP) OBP BP_to_OBP ? s_1 matched) t g)))
+ (carr1_OF_Ocontinuous_relation (map_objs2 OBP OBTop OR (F2 (category2_of_category1 BP) OBP BP_to_OBP (mk_Fo (category2_of_category1 BP) OBP BP_to_OBP ? s_1 matched))) (map_objs2 OBP OBTop OR (F2 (category2_of_category1 BP) OBP BP_to_OBP t)) f)))))))) with
+ [ refl_eq ⇒ ?
+]);
+cases s_eq; clear s_eq s_2;
intro; cases t (t_2 t_1 t_eq); clear t; cases t_eq; clear t_eq t_2;
whd in ⊢ (%→?); whd in ⊢ (? (? ? ? ? %) (? ? ? ? %)→?);
intro; whd in s_1 t_1;
3. Definire la funzione
Apply:
- \forall C1,C2: CAT2. F: arrows3 CAT2 C1 C2 -> CAT2
- :=
+ ∀C1,C2: CAT2. F: arrows3 CAT2 C1 C2 → CAT2
+ ≝
constructor 1;
[ gli oggetti sono gli oggetti di C1 mappati da F
| i morfismi i morfismi di C1 mappati da F
al punto 5)
4. Definire rOBP (le OBP rappresentabili) come (BP_to_OBP BP)
- [Si puo' fare lo stesso per le OA: rOA := Rel_to_OA REL ]
+ [Si puo' fare lo stesso per le OA: rOA ≝ Rel_to_OA REL ]
5. Dimostrare che OR (il funtore faithful da OBP a OBTop) e' full
quando applicato a rOBP.
6. Definire rOBTop come (OBP_to_OBTop rOBP).
7. Per composizione si ha un funtore full and faithful da BP a rOBTop:
- basta prendere (OR \circ BP_to_OBP).
+ basta prendere (OR ∘ BP_to_OBP).
8. Dimostrare (banale: quasi tutti i campi sono per conversione) che
esiste un funtore da rOBTop a BTop. Dimostrare che tale funtore e'