inductive bool : Type := true : bool | false : bool.
-<<<<<<< .mine
-lemma BOOL : setoid.
-=======
lemma BOOL : objs1 SET.
->>>>>>> .r9407
constructor 1; [apply bool] constructor 1;
[ intros (x y); apply (match x with [ true ⇒ match y with [ true ⇒ True | _ ⇒ False] | false ⇒ match y with [ true ⇒ False | false ⇒ True ]]);
| whd; simplify; intros; cases x; apply I;
intros; cases x in H; cases y; simplify; intros; try apply refl; whd in H; cases H;
qed.
-<<<<<<< .mine
-interpretation "unary morphism comprehension with no proof" 'comprehension T P =
-=======
-lemma if_then_else : ∀T:SET. ∀a,b:T. arrows1 SET BOOL T.
-intros; constructor 1; intros;
-[ apply (match c with [ true ⇒ t | false ⇒ t1 ]);
-| apply (IF_THEN_ELSE_p T t t1 a a' H);]
-qed.
-interpretation "mk " 'comprehension T P =
->>>>>>> .r9407
+interpretation "unary morphism comprehension with no proof" 'comprehension T P =
(mk_unary_morphism T _ P _).
notation > "hvbox({ ident i ∈ s | term 19 p | by })" with precedence 90
interpretation "unary morphism comprehension with proof" 'comprehension_by s \eta.f p =
(mk_unary_morphism s _ f p).
-<<<<<<< .mine
-=======
-definition A : ∀S:SET.∀a,b:S.arrows1 SET BOOL S.
-apply (λS,a,b.{ x ∈ BOOL | match x with [ true ⇒ a | false ⇒ b] | IF_THEN_ELSE_p S a b}).
-qed.
->>>>>>> .r9407
record OAlgebra : Type := {
oa_P :> SET;
oa_leq : binary_morphism1 oa_P oa_P CPROP; (* CPROP is setoid1 *)
oa_overlap: binary_morphism1 oa_P oa_P CPROP;
-<<<<<<< .mine
- oa_meet: ∀I:setoid.unary_morphism (unary_morphism_setoid I oa_P) oa_P;
- oa_join: ∀I:setoid.unary_morphism (unary_morphism_setoid I oa_P) oa_P;
-=======
oa_meet: ∀I:SET.unary_morphism (arrows1 SET I oa_P) oa_P;
oa_join: ∀I:SET.unary_morphism (arrows1 SET I oa_P) oa_P;
->>>>>>> .r9407
oa_one: oa_P;
oa_zero: oa_P;
oa_leq_refl: ∀a:oa_P. oa_leq a a;
oa_overlap_preservers_meet:
∀p,q.oa_overlap p q → oa_overlap p
(oa_meet ? { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p oa_P p q });
-<<<<<<< .mine
- oa_join_split:
- ∀I:setoid.∀p.∀q:I ⇒ oa_P.oa_overlap p (oa_join I q) ⇔ ∃i:I.oa_overlap p (q i);
- (*
- oa_base : setoid;
-=======
(*(oa_meet BOOL (if_then_else oa_P p q));*)
oa_join_split: (* ha I → oa_P da castare a funX (ums A oa_P) *)
∀I:SET.∀p.∀q:arrows1 SET I oa_P.oa_overlap p (oa_join I q) ⇔ ∃i:I.oa_overlap p (q i);
(*oa_base : setoid;
->>>>>>> .r9407
oa_enum : ums oa_base oa_P;
oa_density: ∀p,q.(∀i.oa_overlap p (oa_enum i) → oa_overlap q (oa_enum i)) → oa_leq p q
*)
constructor 1;
[ apply (ORelation P Q);
| constructor 1;
-<<<<<<< .mine
- [ alias symbol "and" = "constructive and".
- apply (λp,q. And4 (∀a.p⎻* a = q⎻* a) (∀a.p⎻ a = q⎻ a)
- (∀a.p a = q a) (∀a.p* a = q* a));
- | whd; simplify; intros; repeat split; intros; apply refl;
-=======
- [ apply (λp,q. eq1 ? p⎻* q⎻* ∧ eq1 ? p⎻ q⎻ ∧ eq1 ? p q ∧ eq1 ? p* q* );
+ [ apply (λp,q. And4 (eq1 ? p⎻* q⎻* ) (eq1 ? p⎻ q⎻) (eq1 ? p q) (eq1 ? p* q* ));
| whd; simplify; intros; repeat split; intros; apply refl1;
->>>>>>> .r9407
-<<<<<<< .mine
| whd; simplify; intros; cases H; clear H; split;
intro a; apply sym; generalize in match a;assumption;
| whd; simplify; intros; cases H; cases H1; clear H H1; split; intro a;
| apply (.= (H4 a)); apply H8;
| apply (.= (H5 a)); apply H9;]]]
qed.
-=======
- | whd; simplify; intros; cases H; cases H1; cases H3; clear H H3 H1;
- repeat split; intros; apply sym1; assumption;
- | whd; simplify; intros; cases H; cases H1; cases H2; cases H4; cases H6; cases H8;
- repeat split; intros; clear H H1 H2 H4 H6 H8; apply trans1;
- [2: apply H10;
- |5: apply H11;
- |8: apply H7;
- |11: apply H3;
- |1,4,7,10: skip
- |*: assumption
- ]]]
-qed.
->>>>>>> .r9407
-<<<<<<< .mine
-definition ORelation_composition : ∀P,Q,R.
-=======
lemma hint1 : ∀P,Q. ORelation_setoid P Q → arrows1 SET P Q. intros; apply (or_f ?? c);qed.
coercion hint1.
lemma hint2: OAlgebra → setoid. intros; apply (oa_P o). qed.
coercion hint2.
-definition composition : ∀P,Q,R.
->>>>>>> .r9407
+definition ORelation_composition : ∀P,Q,R.
binary_morphism1 (ORelation_setoid P Q) (ORelation_setoid Q R) (ORelation_setoid P R).
intros;
constructor 1;
[ intros (F G);
constructor 1;
-<<<<<<< .mine
- [ apply {x ∈ P | G (F x)}; intros; simplify; apply (†(†H));
- | apply {x ∈ P | G⎻* (F⎻* x)}; intros; simplify; apply (†(†H));
- | apply {x ∈ R | F* (G* x)}; intros; simplify; apply (†(†H));
- | apply {x ∈ R | F⎻ (G⎻ x)}; intros; simplify; apply (†(†H));
- | intros; simplify;
- lapply (or_prop1 ?? G (F p) q) as H1; lapply (or_prop1 ?? F p (G* q)) as H2;
- split; intro H;
- [ apply (if1 ?? H2); apply (if1 ?? H1); apply H;
- | apply (fi1 ?? H1); apply (fi1 ?? H2); apply H;]
- | intros; simplify;
- lapply (or_prop2 ?? G p (F⎻* q)) as H1; lapply (or_prop2 ?? F (G⎻ p) q) as H2;
- split; intro H;
- [ apply (if1 ?? H1); apply (if1 ?? H2); apply H;
- | apply (fi1 ?? H2); apply (fi1 ?? H1); apply H;]
- | intros; simplify;
- lapply (or_prop3 ?? F p (G⎻ q)) as H1; lapply (or_prop3 ?? G (F p) q) as H2;
- split; intro H;
- [ apply (if1 ?? H1); apply (if1 ?? H2); apply H;
- | apply (fi1 ?? H2); apply (fi1 ?? H1); apply H;]]
-| intros; simplify; split; simplify; intros; elim DAEMON;]
-=======
[ apply (G ∘ F);
| apply (G⎻* ∘ F⎻* );
| apply (F* ∘ G* );
lapply (.= ((†H1)‡#)); [8: apply Hletin;
[ apply trans1; [2: lapply (prop1); [apply Hletin;
*)]
->>>>>>> .r9407
qed.
definition OA : category1.
[ apply (OAlgebra);
| intros; apply (ORelation_setoid o o1);
| intro O; split;
-<<<<<<< .mine
- [1,2,3,4: constructor 1; [1,3,5,7:apply (λx.x);|*:intros;assumption]
- |5,6,7:intros;split;intros; assumption;]
-|4: apply ORelation_composition;
-|*: elim DAEMON;]
-qed.
-
-
-
-=======
[1,2,3,4: apply id1;
|5,6,7:intros; apply refl1;]
-| apply composition;
-| intros; repeat split; unfold composition; simplify;
- [1,3: apply (comp_assoc1); | 2,4: apply ((comp_assoc1 ????????) \sup -1);]
-| intros; repeat split; unfold composition; simplify; apply id_neutral_left1;
-| intros; repeat split; unfold composition; simplify; apply id_neutral_right1;]
-qed.>>>>>>> .r9407
+| apply ORelation_composition;
+| intros; repeat split; unfold ORelation_composition; simplify;
+ [1,3: apply (comp_assoc1); | 2,4: apply ((comp_assoc1 :?) ^ -1);]
+| intros; repeat split; unfold ORelation_composition; simplify; apply id_neutral_left1;
+| intros; repeat split; unfold ORelation_composition; simplify; apply id_neutral_right1;]
+qed.