coercion cr''.
-(*
-theorem C1':
+definition cr''': ∀FT1,FT2.formal_map_setoid FT1 FT2 → arrows1 REL FT1 FT2 ≝
+ λFT1,FT2:formal_topology.λc:formal_map_setoid FT1 FT2.cont_rel FT1 FT2 (cr' ?? c).
+
+coercion cr'''.
+
+axiom C1':
∀S,T: formal_topology.∀f:formal_map_setoid S T.∀U,V: Ω \sup T.
extS ?? f (U ↓ V) = extS ?? f U ↓ extS ?? f V.
- intros;
-qed.
definition formal_map_composition:
∀o1,o2,o3: formal_topology.
| intros;
apply (.= (extS_com ??? c c1 ?));
apply (.= †(C1 ?????));
- apply (.= (C1 ?????));
-*)
\ No newline at end of file
+ apply (.= (C1' ?????));
+ apply (.= ((†((extS_singleton ????) \sup -1))‡(†((extS_singleton ????) \sup -1))));
+ apply (.= (extS_com ??????)\sup -1 ‡ (extS_com ??????) \sup -1);
+ apply (.= (extS_singleton ????)‡(extS_singleton ????));
+ apply refl1;
+ | apply (.= (extS_com ??? c c1 ?));
+ apply (.= (†(C2 ???)));
+ apply (.= (C2 ???));
+ apply refl1;]
+ | intros; simplify;
+ change with (comp1 BTop ??? a b = comp1 BTop ??? a' b');
+ apply prop1; assumption]
+qed.
+