interpretation "unary morphism comprehension with proof" 'comprehension_by s \eta.f p =
(mk_unary_morphism s _ f p).
+(* per il set-indexing vedere capitolo BPTools (foundational tools), Sect. 0.3.4 complete
+ lattices, Definizione 0.9 *)
+(* USARE L'ESISTENZIALE DEBOLE *)
+(* Far salire SET usando setoidi1 *)
record OAlgebra : Type := {
oa_P :> SET;
- oa_leq : binary_morphism1 oa_P oa_P CPROP; (* CPROP is setoid1 *)
+ oa_leq : binary_morphism1 oa_P oa_P CPROP; (* CPROP is setoid1, CPROP importante che sia small *)
oa_overlap: binary_morphism1 oa_P oa_P CPROP;
oa_meet: ∀I:SET.unary_morphism (arrows1 SET I oa_P) oa_P;
oa_join: ∀I:SET.unary_morphism (arrows1 SET I oa_P) oa_P;
oa_leq_antisym: ∀a,b:oa_P.oa_leq a b → oa_leq b a → a = b;
oa_leq_trans: ∀a,b,c:oa_P.oa_leq a b → oa_leq b c → oa_leq a c;
oa_overlap_sym: ∀a,b:oa_P.oa_overlap a b → oa_overlap b a;
+ (* Errore: = in oa_meet_inf e oa_join_sup *)
oa_meet_inf: ∀I.∀p_i.∀p:oa_P.oa_leq p (oa_meet I p_i) → ∀i:I.oa_leq p (p_i i);
oa_join_sup: ∀I.∀p_i.∀p:oa_P.oa_leq (oa_join I p_i) p → ∀i:I.oa_leq (p_i i) p;
oa_zero_bot: ∀p:oa_P.oa_leq oa_zero p;
oa_one_top: ∀p:oa_P.oa_leq p oa_one;
+ (* preservers!! (typo) *)
oa_overlap_preservers_meet_:
∀p,q.oa_overlap p q → oa_overlap p
(oa_meet ? { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p oa_P p q });
+ (* ⇔ deve essere =, l'esiste debole *)
oa_join_split:
∀I:SET.∀p.∀q:arrows1 SET I oa_P.oa_overlap p (oa_join I q) ⇔ ∃i:I.oa_overlap p (q i);
(*oa_base : setoid;
+ 1) enum non e' il nome giusto perche' non e' suriettiva
+ 2) manca (vedere altro capitolo) la "suriettivita'" come immagine di insiemi di oa_base
oa_enum : ums oa_base oa_P;
oa_density: ∀p,q.(∀i.oa_overlap p (oa_enum i) → oa_overlap q (oa_enum i)) → oa_leq p q
*)
constructor 1;
[ apply (ORelation P Q);
| constructor 1;
+ (* tenere solo una uguaglianza e usare la proposizione 9.9 per
+ le altre (unicita' degli aggiunti e del simmetrico) *)
[ apply (λp,q. And4 (eq1 ? (or_f_minus_star_ ?? p) (or_f_minus_star_ ?? q))
(eq1 ? (or_f_minus_ ?? p) (or_f_minus_ ?? q))
(eq1 ? (or_f_ ?? p) (or_f_ ?? q))
constructor 1;
[ intros (F G);
constructor 1;
- [ lapply (G ∘ F);
- apply (G ∘ F);
+ [ apply (G ∘ F);
| apply (G⎻* ∘ F⎻* );
| apply (F* ∘ G* );
| apply (F⎻ ∘ G⎻);