| Con.Term t ->
if is_first then
(term2pres t)::row
- else (B.b_object (P.Mi([],"_")))::row
+ else (B.b_object (P.Mi([],"?")))::row
| Con.ArgProof _
| Con.ArgMethod _ ->
- (B.b_object (P.Mi([],"_")))::row
+ (B.b_object (P.Mi([],"?")))::row
in
if is_first then res else B.skip::res
in
(B.b_kw "by")::B.b_space::
B.Text([],"(")::pres_args@[B.Text([],")")]), None
else (B.b_kw "by"),
- Some (B.b_toggle [B.b_kw "proof";proof2pres term2pres p])
+ Some (B.b_toggle [B.b_kw "proof";proof2pres true term2pres p])
-and proof2pres term2pres p =
- let rec proof2pres p =
+and proof2pres is_top_down term2pres p =
+ let rec proof2pres is_top_down p omit_dot =
let indent =
let is_decl e =
(match e with
| Some t -> Some (term2pres t)) in
let body =
let presconclude =
- conclude2pres p.Con.proof_conclude indent omit_conclusion in
+ conclude2pres is_top_down p.Con.proof_conclude indent omit_conclusion
+ omit_dot in
let presacontext =
- acontext2pres p.Con.proof_apply_context presconclude indent in
- context2pres p.Con.proof_context presacontext in
+ acontext2pres
+ (p.Con.proof_conclude.Con.conclude_method = "BU_Conversion")
+ p.Con.proof_apply_context presconclude indent
+ (p.Con.proof_conclude.Con.conclude_method = "BU_Conversion")
+ in
+ context2pres p.Con.proof_context presacontext
+ in
match p.Con.proof_name with
None -> body
| Some name ->
"proof of" ac in
B.b_toggle [ concl; body ]
in
- B.V ([],
- [B.Text ([],"(" ^ name ^ ")");
- B.indent action])
+ B.indent action
and context2pres c continuation =
(* we generate a subtable for each context element, for selection
and ce2pres_in_proof_context_element = function
| `Joint ho ->
B.H ([],(List.map ce2pres_in_joint_context_element ho.Content.joint_defs))
- | (`Declaration _) as x -> ce2pres x
- | (`Hypothesis _) as x -> ce2pres x
+ | (`Declaration _) as x -> ce2pres x
+ | (`Hypothesis _) as x -> ce2pres x
| (`Proof _) as x -> ce2pres x
- | (`Definition _) as x -> ce2pres x
+ | (`Definition _) as x -> ce2pres x
- and ce2pres =
+ and ce2pres =
function
`Declaration d ->
let ty = term2pres d.Con.dec_type in
B.H ([],
- [(B.b_kw "Assume");
+ [(B.b_kw "assume");
B.b_space;
B.Object ([], P.Mi([],get_name d.Con.dec_name));
B.Text([],":");
- ty])
+ ty;
+ B.Text([],".")])
| `Hypothesis h ->
let ty = term2pres h.Con.dec_type in
B.H ([],
- [(B.b_kw "Suppose");
+ [(B.b_kw "suppose");
+ B.b_space;
+ ty;
B.b_space;
B.Text([],"(");
B.Object ([], P.Mi ([],get_name h.Con.dec_name));
B.Text([],")");
- B.b_space;
- ty])
+ B.Text([],".")])
| `Proof p ->
- proof2pres p
+ proof2pres false p false
| `Definition d ->
let term = term2pres d.Con.def_term in
B.H ([],
- [ B.b_kw "Let"; B.b_space;
+ [ B.b_kw "let"; B.b_space;
B.Object ([], P.Mi([],get_name d.Con.def_name));
- B.Text([]," = ");
+ B.Text([],Utf8Macro.unicode_of_tex "\\def");
term])
- and acontext2pres ac continuation indent =
+ and acontext2pres is_top_down ac continuation indent in_bu_conversion =
List.fold_right
(fun p continuation ->
- let hd =
- if indent then
- B.indent (proof2pres p)
- else
- proof2pres p in
+ let hd =
+ if indent then
+ B.indent (proof2pres is_top_down p in_bu_conversion)
+ else
+ proof2pres is_top_down p in_bu_conversion
+ in
B.V([Some "helm","xref",p.Con.proof_id],
[B.H([Some "helm","xref","ace_"^p.Con.proof_id],[hd]);
continuation])) ac continuation
- and conclude2pres conclude indent omit_conclusion =
+ and conclude2pres is_top_down conclude indent omit_conclusion omit_dot =
let tconclude_body =
match conclude.Con.conclude_conclusion with
- Some t when
- not omit_conclusion or
+ Some t (*when not omit_conclusion or
(* CSC: I ignore the omit_conclusion flag in this case. *)
(* CSC: Is this the correct behaviour? In the stylesheets *)
(* CSC: we simply generated nothing (i.e. the output type *)
(* CSC: of the function should become an option. *)
- conclude.Con.conclude_method = "BU_Conversion" ->
- let concl = (term2pres t) in
+ conclude.Con.conclude_method = "BU_Conversion" *) ->
+ let concl = term2pres t in
if conclude.Con.conclude_method = "BU_Conversion" then
- make_concl "that is equivalent to" concl
+ B.b_hv []
+ (make_concl "that is equivalent to" concl ::
+ if is_top_down then [B.b_space ; B.Text([],"done.")] else [])
else if conclude.Con.conclude_method = "FalseInd" then
(* false ind is in charge to add the conclusion *)
falseind conclude
else
let conclude_body = conclude_aux conclude in
let ann_concl =
- if conclude.Con.conclude_method = "TD_Conversion" then
- make_concl "that is equivalent to" concl
- else make_concl "we conclude" concl in
- B.V ([], [conclude_body; ann_concl])
- | _ -> conclude_aux conclude in
- if indent then
- B.indent (B.H ([Some "helm", "xref", conclude.Con.conclude_id],
- [tconclude_body]))
- else
- B.H ([Some "helm", "xref", conclude.Con.conclude_id],[tconclude_body])
+ if conclude.Con.conclude_method = "Intros+LetTac"
+ || conclude.Con.conclude_method = "ByInduction"
+ || conclude.Con.conclude_method = "TD_Conversion"
+ then
+ B.Text([],"")
+ else if omit_conclusion then B.Text([],"done.")
+ else B.b_hv []
+ ((if not is_top_down || omit_dot then [make_concl "we proved" concl; B.Text([],if not is_top_down then "(previous)" else "")] else [B.Text([],"done")]) @ if not omit_dot then [B.Text([],".")] else [])
+ in
+ B.V ([], [conclude_body; ann_concl])
+ | _ -> conclude_aux conclude
+ in
+ if indent then
+ B.indent (B.H ([Some "helm", "xref", conclude.Con.conclude_id],
+ [tconclude_body]))
+ else
+ B.H ([Some "helm", "xref", conclude.Con.conclude_id],[tconclude_body])
and conclude_aux conclude =
if conclude.Con.conclude_method = "TD_Conversion" then
| Some c -> (term2pres c)) in
B.V
([],
- [make_concl "we must prove" expected;
+ [make_concl "we need to prove" expected;
make_concl "or equivalently" synth;
- proof2pres subproof])
+ B.Text([],".");
+ proof2pres true subproof false])
else if conclude.Con.conclude_method = "BU_Conversion" then
assert false
else if conclude.Con.conclude_method = "Exact" then
| err -> assert false) in
(match conclude.Con.conclude_conclusion with
None ->
- B.b_h [] [B.b_kw "Consider"; B.b_space; arg]
+ B.b_h [] [B.b_kw "by"; B.b_space; arg]
| Some c -> let conclusion = term2pres c in
- make_row
- [arg; B.b_space; B.b_kw "proves"]
- conclusion
+ B.b_h [] [B.b_kw "by"; B.b_space; arg]
)
else if conclude.Con.conclude_method = "Intros+LetTac" then
(match conclude.Con.conclude_args with
- [Con.ArgProof p] -> proof2pres p
+ [Con.ArgProof p] -> proof2pres true p false
| _ -> assert false)
(* OLD CODE
let conclusion =
B.V
([None,"align","baseline 1"; None,"equalrows","false";
None,"columnalign","left"],
- [B.H([],[B.Object([],proof2pres p)]);
+ [B.H([],[B.Object([],proof2pres p false)]);
B.H([],[B.Object([],
(make_concl "we proved 1" conclusion))])]);
| _ -> assert false)
(match List.nth conclude.Con.conclude_args 5 with
Con.Term t -> term2pres t
| _ -> assert false) in
+(*
B.V ([],
B.H ([],[
(B.b_kw "rewrite");
B.b_space; term2;
B.b_space; justif1])::
match justif2 with None -> [] | Some j -> [B.indent j])
+*) B.V([], [justif1 ; B.H([],[B.b_kw "we proved (" ; term2 ; B.b_kw "=" ; term1; B.b_kw ") (previous)."]); B.b_kw "by _"])
else if conclude.Con.conclude_method = "Eq_chain" then
let justification p =
let j1,j2 = justification term2pres p in
| Con.Premise prem -> B.b_kw "premise"
| Con.Lemma lemma -> B.b_kw "lemma"
| Con.Term t -> term2pres t
- | Con.ArgProof p -> proof2pres p
+ | Con.ArgProof p -> proof2pres true p false
| Con.ArgMethod s -> B.b_kw "method"
and case conclude =
(make_concl "we proceed by induction on" arg) in
let to_prove =
(make_concl "to prove" proof_conclusion) in
- B.V ([], induction_on::to_prove:: (make_cases args_for_cases))
+ B.V ([], induction_on::to_prove:: B.Text([],".")::(make_cases args_for_cases))
and make_cases l = List.map make_case l
| `Hypothesis h ->
let name = get_name h.Con.dec_name in
[B.b_space;
+ B.Text([],"(");
B.Object ([], P.Mi ([],name));
B.Text([],":");
- (term2pres h.Con.dec_type)]
- | _ -> [B.Text ([],"???")]) in
+ (term2pres h.Con.dec_type);
+ B.Text([],")")]
+ | _ -> assert false (*[B.Text ([],"???")]*)) in
dec@p) args [] in
let pattern =
B.H ([],
- (B.b_kw "Case"::B.b_space::name::pattern_aux)@
+ (B.b_kw "case"::B.b_space::name::pattern_aux)@
[B.b_space;
- B.Text([], Utf8Macro.unicode_of_tex "\\Rightarrow")]) in
+ B.Text([], ".")]) in
let subconcl =
(match p.Con.proof_conclude.Con.conclude_conclusion with
None -> B.b_kw "No conclusion!!!"
`Hypothesis h ->
let name =
(match h.Con.dec_name with
- None -> "no name"
+ None -> "useless"
| Some s -> s) in
B.indent (B.H ([],
- [B.Text([],"(");
+ [term2pres h.Con.dec_type;
+ B.b_space;
+ B.Text([],"(");
B.Object ([], P.Mi ([],name));
B.Text([],")");
- B.b_space;
- term2pres h.Con.dec_type]))
+ B.Text([],".")]))
| _ -> assert false in
let hyps = List.map make_hyp indhyps in
text::hyps) in
(* let acontext =
acontext2pres_old p.Con.proof_apply_context true in *)
- let body = conclude2pres p.Con.proof_conclude true false in
+ let body =
+ conclude2pres true p.Con.proof_conclude true true false in
let presacontext =
let acontext_id =
match p.Con.proof_apply_context with
in
B.Action([None,"type","toggle"],
[ B.indent (add_xref acontext_id (B.b_kw "Proof"));
- acontext2pres p.Con.proof_apply_context body true]) in
- B.V ([], pattern::asubconcl::induction_hypothesis@[presacontext])
+ acontext2pres
+ (p.Con.proof_conclude.Con.conclude_method = "BU_Conversion")
+ p.Con.proof_apply_context body true
+ (p.Con.proof_conclude.Con.conclude_method = "BU_Conversion")
+ ]) in
+ B.V ([], pattern::induction_hypothesis@[asubconcl;B.Text([],".");presacontext])
| _ -> assert false
and falseind conclude =
[ B.Object ([], P.Mi([],lemma.Con.lemma_name)); B.skip;
B.b_kw "is contradictory, hence" ]
| _ -> assert false) in
- (* let body = proof2pres {proof with Con.proof_context = tl} in *)
+ (* let body = proof2pres {proof with Con.proof_context = tl} false in *)
make_row arg proof_conclusion
and andind conclude =
B.Text([],")");
B.skip;
term2pres hyp2.Con.dec_type]) in
- (* let body = proof2pres {proof with Con.proof_context = tl} in *)
- let body = conclude2pres proof.Con.proof_conclude false true in
+ (* let body = proof2pres {proof with Con.proof_context = tl} false in *)
+ let body= conclude2pres false proof.Con.proof_conclude false true false in
let presacontext =
- acontext2pres proof.Con.proof_apply_context body false in
+ acontext2pres false proof.Con.proof_apply_context body false false
+ in
B.V
([],
[B.H ([],arg@[B.skip; B.b_kw "we have"]);
B.Text([],")");
B.skip;
term2pres hyp.Con.dec_type]) in
- (* let body = proof2pres {proof with Con.proof_context = tl} in *)
- let body = conclude2pres proof.Con.proof_conclude false true in
+ (* let body = proof2pres {proof with Con.proof_context = tl} false in *)
+ let body= conclude2pres false proof.Con.proof_conclude false true false in
let presacontext =
- acontext2pres proof.Con.proof_apply_context body false in
+ acontext2pres false proof.Con.proof_apply_context body false false
+ in
B.V
([],
[presdecl;
| _ -> assert false
in
- proof2pres p
+ proof2pres is_top_down p false
exception ToDo
None -> "_"
| Some n -> n)) ;
B.b_text [] (Utf8Macro.unicode_of_tex "\\Assign");
- proof2pres term2pres p])
+ proof2pres true term2pres p])
(List.rev context)) ] ::
[ B.b_h []
[ B.b_text [] (Utf8Macro.unicode_of_tex "\\vdash");
let name = get_name p.Content.proof_name in
B.b_v
[Some "helm","xref","id"]
- ([ B.b_h [] (B.b_kw ("Proof " ^ name) :: params2pres params);
- B.b_kw "Thesis:";
- B.indent (term2pres thesis) ] @
+ ([ B.b_h [] (B.b_kw ("theorem " ^ name) :: params2pres params @ [B.b_kw ":"]);
+ B.indent (term2pres thesis) ; B.b_kw "." ] @
metasenv2pres term2pres metasenv @
- [proof2pres term2pres p])
+ [proof2pres true term2pres p ; B.b_kw "qed."])
| `Def (_, ty, `Definition body) ->
let name = get_name body.Content.def_name in
B.b_v
[Some "helm","xref","id"]
- ([B.b_h [] (B.b_kw ("Definition " ^ name) :: params2pres params);
- B.b_kw "Type:";
+ ([B.b_h []
+ (B.b_kw ("definition " ^ name) :: params2pres params @ [B.b_kw ":"]);
B.indent (term2pres ty)] @
metasenv2pres term2pres metasenv @
- [B.b_kw "Body:"; term2pres body.Content.def_term])
+ [B.b_kw ":=";
+ B.indent (term2pres body.Content.def_term);
+ B.b_kw "."])
| `Decl (_, `Declaration decl)
| `Decl (_, `Hypothesis decl) ->
let name = get_name decl.Content.dec_name in
let content2pres ~ids_to_inner_sorts =
content2pres
- (fun annterm ->
+ (fun ?(prec=90) annterm ->
let ast, ids_to_uris =
TermAcicContent.ast_of_acic ids_to_inner_sorts annterm
in
- CicNotationPres.box_of_mpres
- (CicNotationPres.render ids_to_uris
+ CicNotationPres.box_of_mpres
+ (CicNotationPres.render ids_to_uris ~prec
(TermContentPres.pp_ast ast)))
-