∀t,i,outc.
loop ? i (step sig M) (λc.halt sig M (cstate ?? c)) (initc sig M t) = Some ? outc →
R t (ctape ?? outc).
-
+
+definition Terminate ≝ λsig.λM:TM sig.λt. ∃i,outc.
+ loop ? i (step sig M) (λc.halt sig M (cstate ?? c)) (initc sig M t) = Some ? outc.
+
+lemma WRealize_to_Realize : ∀sig.∀M: TM sig.∀R.
+ (∀t.Terminate sig M t) → WRealize sig M R → Realize sig M R.
+#sig #M #R #HT #HW #t cases (HT … t) #i * #outc #Hloop
+@(ex_intro … i) @(ex_intro … outc) % // @(HW … i) //
+qed.
+
lemma loop_eq : ∀sig,f,q,i,j,a,x,y.
loop sig i f q a = Some ? x → loop sig j f q a = Some ? y → x = y.
#sig #f #q #i #j @(nat_elim2 … i j)
>reverse_cons >associative_append @IH //
]
]
+qed.
+
+lemma terminate_move_char_c :
+ ∀alpha,sep.∀t,b,a,ls,rs. t = midtape alpha (a::ls) b rs →
+ (b = sep ∨ memb ? sep rs = true) → Terminate alpha (move_char_c alpha sep) t.
+#alpha #sep #t #b #a #ls #rs #Ht #Hsep
+@(terminate_while … (sem_mcc_step alpha sep))
+ [%
+ |generalize in match Hsep; -Hsep
+ generalize in match Ht; -Ht
+ generalize in match ls; -ls
+ generalize in match a; -a
+ generalize in match b; -b
+ generalize in match t; -t
+ elim rs
+ [#t #b #a #ls #Ht #Hsep % #tinit
+ whd in ⊢ (%→?); #H @False_ind
+ cases (H … Ht) #Hb #_ cases Hb #eqb @eqb
+ cases Hsep // whd in ⊢ ((??%?)→?); #abs destruct
+ |#r0 #rs0 #Hind #t #b #a #ls #Ht #Hsep % #tinit
+ whd in ⊢ (%→?); #H
+ cases (H … Ht) #Hbsep #Htinit
+ @(Hind … Htinit) cases Hsep
+ [#Hb @False_ind /2/ | #Hmemb cases (orb_true_l … Hmemb)
+ [#eqsep %1 >(\P eqsep) // | #H %2 //]
+ ]
qed.
\ No newline at end of file
cases (halt sig M acc) %
qed.
+lemma halt_while_not_acc :
+ ∀sig,M,acc,s.s == acc = false → halt sig (whileTM sig M acc) s = halt sig M s.
+#sig #M #acc #s #neqs normalize >neqs
+cases (halt sig M s) %
+qed.
+
lemma step_while_acc :
∀sig,M,acc,c.cstate ?? c = acc →
step sig (whileTM sig M acc) c = initc … (ctape ?? c).
]
qed.
+theorem terminate_while: ∀sig,M,acc,Rtrue,Rfalse,t.
+ halt sig M acc = true →
+ accRealize sig M acc Rtrue Rfalse →
+ WF ? (inv … Rtrue) t → Terminate sig (whileTM sig M acc) t.
+#sig #M #acc #Rtrue #Rfalse #t #Hacctrue #HM #HWF elim HWF
+#t1 #H #Hind cases (HM … t1) #i * #outc * * #Hloop
+#Htrue #Hfalse cases (true_or_false (cstate … outc == acc)) #Hcase
+ [cases (Hind ? (Htrue … (\P Hcase))) #iwhile * #outcfinal
+ #Hloopwhile @(ex_intro … (i+iwhile))
+ @(ex_intro … outcfinal) @(loop_merge … outc … Hloopwhile)
+ [@(λc.halt sig M (cstate … c))
+ |* #s0 #t0 normalize cases (s0 == acc) normalize
+ [ cases (halt sig M s0) //
+ | cases (halt sig M s0) normalize //
+ ]
+ |@(loop_lift ?? i (λc.c) ?
+ (step ? (whileTM ? M acc)) ?
+ (λc.halt sig M (cstate ?? c)) ??
+ ?? Hloop)
+ [ #x %
+ | * #s #t #Hx whd in ⊢ (??%%); >while_trans_false
+ [%
+ |% #Hfalse <Hfalse in Hacctrue; >Hx #H0 destruct ]
+ ]
+ |@step_while_acc @(\P Hcase)
+ |>(\P Hcase) @halt_while_acc
+ ]
+ |@(ex_intro … i) @(ex_intro … outc)
+ @(loop_lift_acc ?? i (λc.c) ?????? (λc.cstate ?? c == acc) ???? Hloop)
+ [#x #Hx >(\P Hx) //
+ |#x @halt_while_not_acc
+ |#x #H whd in ⊢ (??%%); >while_trans_false [%]
+ % #eqx >eqx in H; >Hacctrue #H destruct
+ |@Hcase
+ ]
+ ]
+qed.
+
+(*
+axiom terminate_while: ∀sig,M,acc,Rtrue,Rfalse,t.
+ halt sig M acc = true →
+ accRealize sig M acc Rtrue Rfalse →
+ ∃t1. Rfalse t t1 → Terminate sig (whileTM sig M acc) t.
+*)
(* (*