--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+include "degree.ma".
+
+(* TO BE PUT ELSEWERE *)
+lemma cons_append_assoc: ∀A,a. ∀l1,l2:list A. (a::l1) @ l2 = a :: (l1 @ l2).
+// qed.
+
+(* λPω → λω MAPPING ***********************************************************)
+(* The idea [1] is to map a λPω-type T to a λω-type J(T) representing the
+ * structure of the saturated subset (s.s.) of the λPω-terms for the type T.
+ * To this aim, we encode:
+ * 1) SAT (the collection of the (dependent) families of s.s.) as □
+ * 2) Sat (the union of the families in SAT) as ∗
+ [ sat (the family of s.s.) does not need to be distinguisched from Sat ]
+ * 3) sn (the full saturated subset) as a constant 0 of type ∗
+ * [1] H. H.P. Barendregt (1993) Lambda Calculi with Types,
+ * Osborne Handbooks of Logic in Computer Science (2) pp. 117-309
+ *)
+
+(* The K interpretation *******************************************************)
+
+(* the interpretation in the λPω-context G of t (should be λPω-kind or □)
+ * as a member of SAT
+ *)
+let rec KI G t on t ≝ match t with
+[ Sort _ ⇒ Sort 0
+| Prod n m ⇒
+ let im ≝ KI (n::G) m in
+ if_then_else ? (eqb (║n║_[║G║]) 3) (Prod (KI G n) im) im[0≝Sort 0]
+(* this is correct if we want dummy kinds *)
+| D _ ⇒ Sort 0
+(* this is for the substitution lemma *)
+| Rel i ⇒ Rel i
+(* this is useless but nice: see [1] Definition 5.3.3 *)
+| Lambda n m ⇒ (KI (n::G) m)[0≝Sort 0]
+| App m n ⇒ KI G m
+].
+
+interpretation "CC2FO: K interpretation (term)" 'IK1 t L = (KI L t).
+
+lemma ki_prod_3: ∀n,G. ║n║_[║G║] = 3 →
+ ∀m. 𝕂{Prod n m}_[G] = (Prod (KI G n) (𝕂{m}_[n::G])).
+#n #G #H #m normalize >H -H //
+qed.
+
+lemma ki_prod_not_3: ∀n,G. ║n║_[║G║] ≠ 3 →
+ ∀m. 𝕂{Prod n m}_[G] = 𝕂{m}_[n::G][0≝Sort 0].
+#n #G #H #m normalize >(not_eq_to_eqb_false … H) -H //
+qed.
+
+(* replacement for the K interpretation *)
+lemma ki_repl: ∀t,G1,G2. ║G1║ = ║G2║ → 𝕂{t}_[G1] = 𝕂{t}_[G2].
+#t elim t -t //
+[ #m #n #IHm #_ #G1 #G2 #HG12 >(IHm … HG12) //
+| #n #m #_ #IHm #G1 #G2 #HG12 normalize >(IHm ? (n::G2)) //
+| #n #m #IHn #IHm #G1 #G2 #HG12 @(eqb_elim (║n║_[║G1║]) 3) #Hdeg
+ [ >(ki_prod_3 … Hdeg) >HG12 in Hdeg #Hdeg >(ki_prod_3 … Hdeg) /3/
+ | >(ki_prod_not_3 … Hdeg) >HG12 in Hdeg #Hdeg >(ki_prod_not_3 … Hdeg) /3/
+ ]
+]
+qed.
+
+(* weakeing and thinning lemma for the K interpretation *)
+(* NOTE: >commutative_plus comes from |a::b| ↦ S |b| rather than |b| + 1 *)
+lemma ki_lift: ∀p,G,Gp. p = |Gp| → ∀t,k,Gk. k = |Gk| →
+ 𝕂{lift t k p}_[(Lift Gk p) @ Gp @ G] = lift (𝕂{t}_[Gk @ G]) k p.
+#p #G #Gp #HGp #t elim t -t //
+[ #i #k #Gk #HGk @(leb_elim (S i) k) #Hik
+ [ >(lift_rel_lt … Hik) // | >(lift_rel_not_le … Hik) // ]
+| #m #n #IHm #_ #k #Gk #HGk >IHm //
+| #n #m #_ #IHm #k #Gk #HGk normalize <cons_append_assoc <Lift_cons //
+ >(IHm … (? :: ?)) // >commutative_plus /2/
+| #n #m #IHn #IHm #k #Gk #HGk >lift_prod
+ @(eqb_elim (║lift n k p║_[║Lift Gk p @Gp@G║]) 3) #Hdeg
+ [ >(ki_prod_3 … Hdeg) <cons_append_assoc <Lift_cons //
+ >append_Deg in Hdeg >append_Deg >deg_lift /2/ >DegHd_Lift /2/
+ <append_Deg #Hdeg >(ki_prod_3 … Hdeg)
+ >IHn // >(IHm … (? :: ?)) // >commutative_plus /2/
+ | >(ki_prod_not_3 … Hdeg) <cons_append_assoc <Lift_cons //
+ >append_Deg in Hdeg >append_Deg >deg_lift /2/ >DegHd_Lift /2/
+ <append_Deg #Hdeg >(ki_prod_not_3 … Hdeg)
+ >(IHm … (? :: ?)) // >commutative_plus /2/
+ ]
+]
+qed.
+
+(* substitution lemma for the K interpretation *)
+(* NOTE: >commutative_plus comes from |a::b| ↦ S |b| rather than |b| + 1 *)
+lemma ki_subst: ∀v,w,G. [║v║_[║G║]] = ║[w]║*_[║G║] →
+ ∀t,k,Gk. k = |Gk| →
+ 𝕂{t[k≝v]}_[Gk @ G] = 𝕂{t}_[Lift Gk 1 @ [w] @ G][k≝𝕂{v}_[G]].
+#v #w #G #Hvw #t elim t -t //
+[ #i #k #Gk #HGk @(leb_elim (S i) k) #H1ik
+ [ >(subst_rel1 … H1ik) >(subst_rel1 … H1ik) //
+ | @(eqb_elim i k) #H2ik
+ [ >H2ik in H1ik -H2ik i #H1ik >subst_rel2 >subst_rel2
+ >(ki_lift ? ? ? ? ? ? ([])) //
+ | lapply (arith4 … H1ik H2ik) -H1ik H2ik #Hik
+ >(subst_rel3 … Hik) >(subst_rel3 … Hik) //
+ ]
+ ]
+| #m #n #IHm #_ #k #Gk #HGk >IHm //
+| #n #m #_ #IHm #k #Gk #HGk normalize >(IHm … (? :: ?));
+ [ >subst_lemma_comm >(Lift_cons … HGk) >ki_repl /2 by Deg_lift_subst/
+ | >commutative_plus /2/
+ ]
+| #n #m #IHn #IHm #k #Gk #HGk >subst_prod
+ @(eqb_elim (║n║_[║Lift Gk 1@[w]@G║]) 3) #Hdeg
+ [ >(ki_prod_3 … Hdeg) >append_Deg in Hdeg >append_Deg >DegHd_Lift //
+ <Hvw <(deg_subst … k); [2: /2/ ] <append_Deg #Hdeg
+ >(ki_prod_3 … Hdeg) >IHn // >(IHm … (? :: ?));
+ [ >(Lift_cons … HGk) >(ki_repl … m); /2 by Deg_lift_subst/
+ | >commutative_plus /2/
+ ]
+ | >(ki_prod_not_3 … Hdeg) >append_Deg in Hdeg >append_Deg >DegHd_Lift //
+ <Hvw <(deg_subst … k); [2: /2/ ] <append_Deg #Hdeg
+ >(ki_prod_not_3 … Hdeg) >(IHm … (? :: ?));
+ [ >subst_lemma_comm >(Lift_cons … HGk) >ki_repl /2 by Deg_lift_subst/
+ | >commutative_plus /2/
+ ]
+ ]
+]
+qed.
+
+lemma ki_subst_0: ∀v,w,G. [║v║_[║G║]] = ║[w]║*_[║G║] →
+ ∀t. 𝕂{t[0≝v]}_[G] = 𝕂{t}_[w::G][0≝𝕂{v}_[G]].
+#v #w #G #Hvw #t @(ki_subst ?????? ([])) //
+qed.
.
*)
-inductive conv : T →T → Prop ≝
- | cbeta: ∀P,M,N. conv (App (Lambda P M) N) (M[0 ≝ N])
- | cappl: ∀M,M1,N. conv M M1 → conv (App M N) (App M1 N)
- | cappr: ∀M,N,N1. conv N N1 → conv (App M N) (App M N1)
- | claml: ∀M,M1,N. conv M M1 → conv (Lambda M N) (Lambda M1 N)
- | clamr: ∀M,N,N1. conv N N1 → conv (Lambda M N) (Lambda M N1)
- | cprodl: ∀M,M1,N. conv M M1 → conv (Prod M N) (Prod M1 N)
- | cprodr: ∀M,N,N1. conv N N1 → conv (Prod M N) (Prod M N1)
- | cd: ∀M,M1. conv (D M) (D M1).
+inductive conv1 : T →T → Prop ≝
+ | cbeta: ∀P,M,N. conv1 (App (Lambda P M) N) (M[0 ≝ N])
+ | cappl: ∀M,M1,N. conv1 M M1 → conv1 (App M N) (App M1 N)
+ | cappr: ∀M,N,N1. conv1 N N1 → conv1 (App M N) (App M N1)
+ | claml: ∀M,M1,N. conv1 M M1 → conv1 (Lambda M N) (Lambda M1 N)
+ | clamr: ∀M,N,N1. conv1 N N1 → conv1 (Lambda M N) (Lambda M N1)
+ | cprodl: ∀M,M1,N. conv1 M M1 → conv1 (Prod M N) (Prod M1 N)
+ | cprodr: ∀M,N,N1. conv1 N N1 → conv1 (Prod M N) (Prod M N1)
+ | cd: ∀M,M1. conv1 (D M) (D M1).
-definition CO ≝ star … conv.
+definition conv ≝ star … conv1.
-lemma red_to_conv: ∀M,N. red M N → conv M N.
+lemma red_to_conv1: ∀M,N. red M N → conv1 M N.
#M #N #redMN (elim redMN) /2/
qed.
| eprod: ∀M1,M2,N1,N2. d_eq M1 M2 → d_eq N1 N2 →
d_eq (Prod M1 N1) (Prod M2 N2).
-lemma conv_to_deq: ∀M,N. conv M N → red M N ∨ d_eq M N.
+lemma conv1_to_deq: ∀M,N. conv1 M N → red M N ∨ d_eq M N.
#M #N #coMN (elim coMN)
[#P #B #C %1 //
|#P #M1 #N1 #coPM1 * [#redP %1 /2/ | #eqPM1 %2 /3/]
]
qed.
-(* FG: THIS IN NOT COMPLETE
-theorem main1: ∀M,N. CO M N →
+(* FG: THIS IS NOT COMPLETE
+theorem main1: ∀M,N. conv M N →
∃P,Q. star … red M P ∧ star … red N Q ∧ d_eq P Q.
#M #N #coMN (elim coMN)
[#B #C #rMB #convBC * #P1 * #Q1 * * #redMP1 #redBQ1