record continuous_relation (S,T: basic_topology) : Type ≝
{ cont_rel:> arrows1 ? S T;
+ (* reduces uses eq1, saturated uses eq!!! *)
reduced: ∀U. U = J ? U → cont_rel U = J ? (cont_rel U);
saturated: ∀U. U = A ? U → cont_rel⎻* U = A ? (cont_rel⎻* U)
}.
qed.
coercion cont_rel''.
-
+(*
theorem continuous_relation_eq':
∀o1,o2.∀a,a': continuous_relation_setoid o1 o2.
a = a' → ∀X.a⎻* (A o1 X) = a'⎻* (A o1 X).
- intros;
- lapply (prop_1_SET ??? H);
-
- split; intro; unfold minus_star_image; simplify; intros;
+ intros; apply oa_leq_antisym; intro; unfold minus_star_image; simplify; intros;
[ cut (ext ?? a a1 ⊆ A ? X); [2: intros 2; apply (H1 a2); cases f1; assumption;]
lapply (if ?? (A_is_saturation ???) Hcut); clear Hcut;
cut (A ? (ext ?? a' a1) ⊆ A ? X); [2: apply (. (H ?)‡#); assumption]
theorem continuous_relation_eq_inv':
∀o1,o2.∀a,a': continuous_relation_setoid o1 o2.
- (∀X.minus_star_image ?? a (A o1 X) = minus_star_image ?? a' (A o1 X)) → a=a'.
+ (∀X.a⎻* (A o1 X) = a'⎻* (A o1 X)) → a=a'.
intros 6;
cut (∀a,a': continuous_relation_setoid o1 o2.
- (∀X.minus_star_image ?? a (A o1 X) = minus_star_image ?? a' (A o1 X)) →
- ∀V:o2. A ? (ext ?? a' V) ⊆ A ? (ext ?? a V));
+ (∀X.a⎻* (A o1 X) = a'⎻* (A o1 X)) →
+ ∀V:(oa_P (carrbt o2)). A o1 (a'⎻ V) ≤ A o1 (a⎻ V));
[2: clear b H a' a; intros;
lapply depth=0 (λV.saturation_expansive ??? (extS ?? a V)); [2: apply A_is_saturation;|skip]
(* fundamental adjunction here! to be taken out *)
assumption;]
split; apply Hcut; [2: assumption | intro; apply sym1; apply H]
qed.
-
+*)
definition continuous_relation_comp:
∀o1,o2,o3.
continuous_relation_setoid o1 o2 →
[ apply (s ∘ r)
| intros;
apply sym1;
- apply (.= †(image_comp ??????));
- apply (.= (reduced ?????)\sup -1);
- [ apply (.= (reduced ?????)); [ assumption | apply refl1 ]
- | apply (.= (image_comp ??????)\sup -1);
- apply refl1]
- | intros;
- apply sym1;
- apply (.= †(minus_star_image_comp ??????));
- apply (.= (saturated ?????)\sup -1);
- [ apply (.= (saturated ?????)); [ assumption | apply refl1 ]
- | apply (.= (minus_star_image_comp ??????)\sup -1);
- apply refl1]]
+ change in match ((s ∘ r) U) with (s (r U));
+ (*BAD*) unfold FunClass_1_OF_carr1;
+ apply (.= ((reduced : ?)\sup -1));
+ [ (*BAD*) change with (eq1 ? (r U) (J ? (r U)));
+ (* BAD U *) apply (.= (reduced ??? U ?)); [ assumption | apply refl1 ]
+ | apply refl1]
+ | intros;
+ apply sym;
+ change in match ((s ∘ r)⎻* U) with (s⎻* (r⎻* U));
+ apply (.= (saturated : ?)\sup -1);
+ [ apply (.= (saturated : ?)); [ assumption | apply refl ]
+ | apply refl]]
qed.
definition BTop: category1.
| apply continuous_relation_setoid
| intro; constructor 1;
[ apply id1
- | intros;
- apply (.= (image_id ??));
- apply sym1;
- apply (.= †(image_id ??));
- apply sym1;
- assumption
- | intros;
- apply (.= (minus_star_image_id ??));
- apply sym1;
- apply (.= †(minus_star_image_id ??));
- apply sym1;
- assumption]
+ | intros; apply H;
+ | intros; apply H;]
| intros; constructor 1;
[ apply continuous_relation_comp;
- | intros; simplify; intro x; simplify;
+ | intros; simplify; intro x; simplify; (*
lapply depth=0 (continuous_relation_eq' ???? H) as H';
lapply depth=0 (continuous_relation_eq' ???? H1) as H1';
letin K ≝ (λX.H1' (minus_star_image ?? a (A ? X))); clearbody K;
apply ((Hcut X) \sup -1)]
clear Hcut; generalize in match x; clear x;
apply (continuous_relation_eq_inv');
- apply Hcut1;]
+ apply Hcut1;*)]
| intros; simplify; intro; do 2 (unfold continuous_relation_comp); simplify;
- apply (.= †(ASSOC1‡#));
- apply refl1
+ (*apply (.= †(ASSOC1‡#));
+ apply refl1*)
| intros; simplify; intro; unfold continuous_relation_comp; simplify;
- apply (.= †((id_neutral_right1 ????)‡#));
- apply refl1
+ (*apply (.= †((id_neutral_right1 ????)‡#));
+ apply refl1*)
| intros; simplify; intro; simplify;
apply (.= †((id_neutral_left1 ????)‡#));
apply refl1]
qed.
+(*
(*CSC: unused! *)
(* this proof is more logic-oriented than set/lattice oriented *)
theorem continuous_relation_eqS:
[2,4: intros; apply saturation_monotone; try (apply A_is_saturation); apply Hcut;]
apply Hcut2; assumption.
qed.
+*)
\ No newline at end of file