]> matita.cs.unibo.it Git - helm.git/commitdiff
- exclusion binder in local environments
authorFerruccio Guidi <ferruccio.guidi@unibo.it>
Wed, 25 Oct 2017 13:22:29 +0000 (13:22 +0000)
committerFerruccio Guidi <ferruccio.guidi@unibo.it>
Wed, 25 Oct 2017 13:22:29 +0000 (13:22 +0000)
  updated: cpm, cpr, lfpr, cpc
- some refactoeing and minor corrections

25 files changed:
matita/matita/contribs/lambdadelta/basic_2/conversion/cpc.ma [deleted file]
matita/matita/contribs/lambdadelta/basic_2/conversion/cpc_cpc.ma [deleted file]
matita/matita/contribs/lambdadelta/basic_2/etc/cpm_lsubr.etc [new file with mode: 0644]
matita/matita/contribs/lambdadelta/basic_2/rt_conversion/cpc.ma [new file with mode: 0644]
matita/matita/contribs/lambdadelta/basic_2/rt_conversion/cpc_cpc.ma [new file with mode: 0644]
matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpg.ma
matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpm.ma
matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpm_drops.ma
matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpm_lsubr.ma
matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpr.ma
matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpr_drops.ma
matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpr_ext.ma [new file with mode: 0644]
matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpx.ma
matita/matita/contribs/lambdadelta/basic_2/rt_transition/lfpr.ma
matita/matita/contribs/lambdadelta/basic_2/rt_transition/lfpr_drops.ma
matita/matita/contribs/lambdadelta/basic_2/rt_transition/lfpr_fqup.ma
matita/matita/contribs/lambdadelta/basic_2/rt_transition/lfpr_fquq.ma
matita/matita/contribs/lambdadelta/basic_2/rt_transition/lfpr_frees.ma
matita/matita/contribs/lambdadelta/basic_2/rt_transition/lfpr_lfpr.ma
matita/matita/contribs/lambdadelta/basic_2/rt_transition/lfpx.ma
matita/matita/contribs/lambdadelta/basic_2/rt_transition/lfpx_cpx.ma [new file with mode: 0644]
matita/matita/contribs/lambdadelta/basic_2/rt_transition/lfpx_fqup.ma
matita/matita/contribs/lambdadelta/basic_2/rt_transition/lfpx_lfpx.ma
matita/matita/contribs/lambdadelta/basic_2/web/basic_2_src.tbl
matita/matita/contribs/lambdadelta/partial.txt

diff --git a/matita/matita/contribs/lambdadelta/basic_2/conversion/cpc.ma b/matita/matita/contribs/lambdadelta/basic_2/conversion/cpc.ma
deleted file mode 100644 (file)
index 156374e..0000000
+++ /dev/null
@@ -1,41 +0,0 @@
-(**************************************************************************)
-(*       ___                                                              *)
-(*      ||M||                                                             *)
-(*      ||A||       A project by Andrea Asperti                           *)
-(*      ||T||                                                             *)
-(*      ||I||       Developers:                                           *)
-(*      ||T||         The HELM team.                                      *)
-(*      ||A||         http://helm.cs.unibo.it                             *)
-(*      \   /                                                             *)
-(*       \ /        This file is distributed under the terms of the       *)
-(*        v         GNU General Public License Version 2                  *)
-(*                                                                        *)
-(**************************************************************************)
-
-include "basic_2/notation/relations/pconv_5.ma".
-include "basic_2/rt_transition/cpm.ma".
-
-(* CONTEXT-SENSITIVE PARALLEL R-CONVERSION FOR TERMS ************************)
-
-definition cpc: sh → relation4 genv lenv term term ≝
-                λh,G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ➡[h] T2 ∨ ⦃G, L⦄ ⊢ T2 ➡[h] T1.
-
-interpretation
-   "context-sensitive parallel r-conversion (term)"
-   'PConv h G L T1 T2 = (cpc h G L T1 T2).
-
-(* Basic properties *********************************************************)
-
-lemma cpc_refl: ∀h,G,L. reflexive … (cpc h G L).
-/2 width=1 by or_intror/ qed.
-
-lemma cpc_sym: ∀h,G,L. symmetric … (cpc h L G).
-#h #G #L #T1 #T2 * /2 width=1 by or_introl, or_intror/
-qed-.
-
-(* Basic forward lemmas *****************************************************)
-
-lemma cpc_fwd_cpr: ∀h,G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ⬌[h] T2 →
-                   ∃∃T. ⦃G, L⦄ ⊢ T1 ➡[h] T & ⦃G, L⦄ ⊢ T2 ➡[h] T.
-#h #G #L #T1 #T2 * /2 width=3 by ex2_intro/
-qed-.
diff --git a/matita/matita/contribs/lambdadelta/basic_2/conversion/cpc_cpc.ma b/matita/matita/contribs/lambdadelta/basic_2/conversion/cpc_cpc.ma
deleted file mode 100644 (file)
index 92ce08e..0000000
+++ /dev/null
@@ -1,23 +0,0 @@
-(**************************************************************************)
-(*       ___                                                              *)
-(*      ||M||                                                             *)
-(*      ||A||       A project by Andrea Asperti                           *)
-(*      ||T||                                                             *)
-(*      ||I||       Developers:                                           *)
-(*      ||T||         The HELM team.                                      *)
-(*      ||A||         http://helm.cs.unibo.it                             *)
-(*      \   /                                                             *)
-(*       \ /        This file is distributed under the terms of the       *)
-(*        v         GNU General Public License Version 2                  *)
-(*                                                                        *)
-(**************************************************************************)
-
-include "basic_2/conversion/cpc.ma".
-
-(* CONTEXT-SENSITIVE PARALLEL R-CONVERSION FOR TERMS ************************)
-
-(* Main properties **********************************************************)
-
-theorem cpc_conf: ∀h,G,L,T0,T1,T2. ⦃G, L⦄ ⊢ T0 ⬌[h] T1 → ⦃G, L⦄ ⊢ T0 ⬌[h] T2 →
-                  ∃∃T. ⦃G, L⦄ ⊢ T1 ⬌[h] T & ⦃G, L⦄ ⊢ T2 ⬌[h] T.
-/3 width=3 by cpc_sym, ex2_intro/ qed-.
diff --git a/matita/matita/contribs/lambdadelta/basic_2/etc/cpm_lsubr.etc b/matita/matita/contribs/lambdadelta/basic_2/etc/cpm_lsubr.etc
new file mode 100644 (file)
index 0000000..0bc981d
--- /dev/null
@@ -0,0 +1,7 @@
+(* Advanced properties ******************************************************)
+
+(* Basic_1: was by definition: pr2_free *)
+(* Basic_2A1: includes: tpr_cpr *)
+lemma tpm_cpm: ∀n,h,G,T1,T2. ⦃G, ⋆⦄ ⊢ T1 ➡[n, h] T2 → ∀L. ⦃G, L⦄ ⊢ T1 ➡[n, h] T2.
+#n #h #G #T1 #T2 #HT12 #L lapply (lsubr_cpm_trans … HT12 L ?) //
+qed.
diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_conversion/cpc.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_conversion/cpc.ma
new file mode 100644 (file)
index 0000000..156374e
--- /dev/null
@@ -0,0 +1,41 @@
+(**************************************************************************)
+(*       ___                                                              *)
+(*      ||M||                                                             *)
+(*      ||A||       A project by Andrea Asperti                           *)
+(*      ||T||                                                             *)
+(*      ||I||       Developers:                                           *)
+(*      ||T||         The HELM team.                                      *)
+(*      ||A||         http://helm.cs.unibo.it                             *)
+(*      \   /                                                             *)
+(*       \ /        This file is distributed under the terms of the       *)
+(*        v         GNU General Public License Version 2                  *)
+(*                                                                        *)
+(**************************************************************************)
+
+include "basic_2/notation/relations/pconv_5.ma".
+include "basic_2/rt_transition/cpm.ma".
+
+(* CONTEXT-SENSITIVE PARALLEL R-CONVERSION FOR TERMS ************************)
+
+definition cpc: sh → relation4 genv lenv term term ≝
+                λh,G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ➡[h] T2 ∨ ⦃G, L⦄ ⊢ T2 ➡[h] T1.
+
+interpretation
+   "context-sensitive parallel r-conversion (term)"
+   'PConv h G L T1 T2 = (cpc h G L T1 T2).
+
+(* Basic properties *********************************************************)
+
+lemma cpc_refl: ∀h,G,L. reflexive … (cpc h G L).
+/2 width=1 by or_intror/ qed.
+
+lemma cpc_sym: ∀h,G,L. symmetric … (cpc h L G).
+#h #G #L #T1 #T2 * /2 width=1 by or_introl, or_intror/
+qed-.
+
+(* Basic forward lemmas *****************************************************)
+
+lemma cpc_fwd_cpr: ∀h,G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ⬌[h] T2 →
+                   ∃∃T. ⦃G, L⦄ ⊢ T1 ➡[h] T & ⦃G, L⦄ ⊢ T2 ➡[h] T.
+#h #G #L #T1 #T2 * /2 width=3 by ex2_intro/
+qed-.
diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_conversion/cpc_cpc.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_conversion/cpc_cpc.ma
new file mode 100644 (file)
index 0000000..b5b9ac8
--- /dev/null
@@ -0,0 +1,23 @@
+(**************************************************************************)
+(*       ___                                                              *)
+(*      ||M||                                                             *)
+(*      ||A||       A project by Andrea Asperti                           *)
+(*      ||T||                                                             *)
+(*      ||I||       Developers:                                           *)
+(*      ||T||         The HELM team.                                      *)
+(*      ||A||         http://helm.cs.unibo.it                             *)
+(*      \   /                                                             *)
+(*       \ /        This file is distributed under the terms of the       *)
+(*        v         GNU General Public License Version 2                  *)
+(*                                                                        *)
+(**************************************************************************)
+
+include "basic_2/rt_conversion/cpc.ma".
+
+(* CONTEXT-SENSITIVE PARALLEL R-CONVERSION FOR TERMS ************************)
+
+(* Main properties **********************************************************)
+
+theorem cpc_conf: ∀h,G,L,T0,T1,T2. ⦃G, L⦄ ⊢ T0 ⬌[h] T1 → ⦃G, L⦄ ⊢ T0 ⬌[h] T2 →
+                  ∃∃T. ⦃G, L⦄ ⊢ T1 ⬌[h] T & ⦃G, L⦄ ⊢ T2 ⬌[h] T.
+/3 width=3 by cpc_sym, ex2_intro/ qed-.
index 260cd45a49c60dc3e56cf5f4fa9c7e8503cd3ff6..95af51e0bcbce458b0523af72e9425439c89eb34 100644 (file)
@@ -106,7 +106,7 @@ lemma cpg_inv_atom1: ∀Rt,c,h,J,G,L,T2. ⦃G, L⦄ ⊢ ⓪{J} ⬈[Rt, c, h] T2
 /2 width=3 by cpg_inv_atom1_aux/ qed-.
 
 lemma cpg_inv_sort1: ∀Rt,c,h,G,L,T2,s. ⦃G, L⦄ ⊢ ⋆s ⬈[Rt, c, h] T2 →
-                     (T2 = ⋆s ∧ c = 𝟘𝟘) ∨ (T2 = ⋆(next h s) ∧ c = 𝟘𝟙).
+                     ∨∨ T2 = ⋆s ∧ c = 𝟘𝟘 | T2 = ⋆(next h s) ∧ c = 𝟘𝟙.
 #Rt #c #h #G #L #T2 #s #H
 elim (cpg_inv_atom1 … H) -H * /3 width=1 by or_introl, conj/
 [ #s0 #H destruct /3 width=1 by or_intror, conj/
@@ -116,7 +116,7 @@ elim (cpg_inv_atom1 … H) -H * /3 width=1 by or_introl, conj/
 qed-.
 
 lemma cpg_inv_zero1: ∀Rt,c,h,G,L,T2. ⦃G, L⦄ ⊢ #0 ⬈[Rt, c, h] T2 →
-                     ∨∨ (T2 = #0 ∧ c = 𝟘𝟘)
+                     ∨∨ T2 = #0 ∧ c = 𝟘𝟘
                       | ∃∃cV,K,V1,V2. ⦃G, K⦄ ⊢ V1 ⬈[Rt, cV, h] V2 & ⬆*[1] V2 ≡ T2 &
                                       L = K.ⓓV1 & c = cV
                       | ∃∃cV,K,V1,V2. ⦃G, K⦄ ⊢ V1 ⬈[Rt, cV, h] V2 & ⬆*[1] V2 ≡ T2 &
@@ -130,8 +130,8 @@ elim (cpg_inv_atom1 … H) -H * /3 width=1 by or3_intro0, conj/
 qed-.
 
 lemma cpg_inv_lref1: ∀Rt,c,h,G,L,T2,i. ⦃G, L⦄ ⊢ #⫯i ⬈[Rt, c, h] T2 →
-                     (T2 = #(⫯i) ∧ c = 𝟘𝟘) ∨
-                     ∃∃I,K,T. ⦃G, K⦄ ⊢ #i ⬈[Rt, c, h] T & ⬆*[1] T ≡ T2 & L = K.ⓘ{I}.
+                     ∨∨ T2 = #(⫯i) ∧ c = 𝟘𝟘
+                      | ∃∃I,K,T. ⦃G, K⦄ ⊢ #i ⬈[Rt, c, h] T & ⬆*[1] T ≡ T2 & L = K.ⓘ{I}.
 #Rt #c #h #G #L #T2 #i #H
 elim (cpg_inv_atom1 … H) -H * /3 width=1 by or_introl, conj/
 [ #s #H destruct
@@ -150,12 +150,11 @@ elim (cpg_inv_atom1 … H) -H * /2 width=1 by conj/
 qed-.
 
 fact cpg_inv_bind1_aux: ∀Rt,c,h,G,L,U,U2. ⦃G, L⦄ ⊢ U ⬈[Rt, c, h] U2 →
-                        ∀p,J,V1,U1. U = ⓑ{p,J}V1.U1 → (
-                        ∃∃cV,cT,V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[Rt, cV, h] V2 & ⦃G, L.ⓑ{J}V1⦄ ⊢ U1 ⬈[Rt, cT, h] T2 &
-                                       U2 = ⓑ{p,J}V2.T2 & c = ((↓cV)∨cT)
-                        ) ∨
-                        ∃∃cT,T. ⦃G, L.ⓓV1⦄ ⊢ U1 ⬈[Rt, cT, h] T & ⬆*[1] U2 ≡ T &
-                                p = true & J = Abbr & c = cT+𝟙𝟘.
+                        ∀p,J,V1,U1. U = ⓑ{p,J}V1.U1 →
+                        ∨∨ ∃∃cV,cT,V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[Rt, cV, h] V2 & ⦃G, L.ⓑ{J}V1⦄ ⊢ U1 ⬈[Rt, cT, h] T2 &
+                                          U2 = ⓑ{p,J}V2.T2 & c = ((↓cV)∨cT)
+                         | ∃∃cT,T. ⦃G, L.ⓓV1⦄ ⊢ U1 ⬈[Rt, cT, h] T & ⬆*[1] U2 ≡ T &
+                                   p = true & J = Abbr & c = cT+𝟙𝟘.
 #Rt #c #h #G #L #U #U2 * -c -G -L -U -U2
 [ #I #G #L #q #J #W #U1 #H destruct
 | #G #L #s #q #J #W #U1 #H destruct
@@ -173,20 +172,18 @@ fact cpg_inv_bind1_aux: ∀Rt,c,h,G,L,U,U2. ⦃G, L⦄ ⊢ U ⬈[Rt, c, h] U2 
 ]
 qed-.
 
-lemma cpg_inv_bind1: ∀Rt,c,h,p,I,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓑ{p,I}V1.T1 ⬈[Rt, c, h] U2 → (
-                     ∃∃cV,cT,V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[Rt, cV, h] V2 & ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ⬈[Rt, cT, h] T2 &
-                                    U2 = ⓑ{p,I}V2.T2 & c = ((↓cV)∨cT)
-                     ) ∨
-                     ∃∃cT,T. ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[Rt, cT, h] T & ⬆*[1] U2 ≡ T &
-                             p = true & I = Abbr & c = cT+𝟙𝟘.
+lemma cpg_inv_bind1: ∀Rt,c,h,p,I,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓑ{p,I}V1.T1 ⬈[Rt, c, h] U2 →
+                     ∨∨ ∃∃cV,cT,V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[Rt, cV, h] V2 & ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ⬈[Rt, cT, h] T2 &
+                                       U2 = ⓑ{p,I}V2.T2 & c = ((↓cV)∨cT)
+                      | ∃∃cT,T. ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[Rt, cT, h] T & ⬆*[1] U2 ≡ T &
+                                p = true & I = Abbr & c = cT+𝟙𝟘.
 /2 width=3 by cpg_inv_bind1_aux/ qed-.
 
-lemma cpg_inv_abbr1: ∀Rt,c,h,p,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓓ{p}V1.T1 ⬈[Rt, c, h] U2 → (
-                     ∃∃cV,cT,V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[Rt, cV, h] V2 & ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[Rt, cT, h] T2 &
-                                    U2 = ⓓ{p}V2.T2 & c = ((↓cV)∨cT)
-                     ) ∨
-                     ∃∃cT,T. ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[Rt, cT, h] T & ⬆*[1] U2 ≡ T &
-                             p = true & c = cT+𝟙𝟘.
+lemma cpg_inv_abbr1: ∀Rt,c,h,p,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓓ{p}V1.T1 ⬈[Rt, c, h] U2 →
+                     ∨∨ ∃∃cV,cT,V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[Rt, cV, h] V2 & ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[Rt, cT, h] T2 &
+                                       U2 = ⓓ{p}V2.T2 & c = ((↓cV)∨cT)
+                      | ∃∃cT,T. ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[Rt, cT, h] T & ⬆*[1] U2 ≡ T &
+                                p = true & c = cT+𝟙𝟘.
 #Rt #c #h #p #G #L #V1 #T1 #U2 #H elim (cpg_inv_bind1 … H) -H *
 /3 width=8 by ex4_4_intro, ex4_2_intro, or_introl, or_intror/
 qed-.
@@ -267,7 +264,7 @@ lemma cpg_inv_cast1: ∀Rt,c,h,G,L,V1,U1,U2. ⦃G, L⦄ ⊢ ⓝV1.U1 ⬈[Rt, c,
 (* Advanced inversion lemmas ************************************************)
 
 lemma cpg_inv_zero1_pair: ∀Rt,c,h,I,G,K,V1,T2. ⦃G, K.ⓑ{I}V1⦄ ⊢ #0 ⬈[Rt, c, h] T2 →
-                          ∨∨ (T2 = #0 ∧ c = 𝟘𝟘)
+                          ∨∨ T2 = #0 ∧ c = 𝟘𝟘
                            | ∃∃cV,V2. ⦃G, K⦄ ⊢ V1 ⬈[Rt, cV, h] V2 & ⬆*[1] V2 ≡ T2 &
                                       I = Abbr & c = cV
                            | ∃∃cV,V2. ⦃G, K⦄ ⊢ V1 ⬈[Rt, cV, h] V2 & ⬆*[1] V2 ≡ T2 &
@@ -277,8 +274,8 @@ lemma cpg_inv_zero1_pair: ∀Rt,c,h,I,G,K,V1,T2. ⦃G, K.ⓑ{I}V1⦄ ⊢ #0 ⬈[
 qed-.
 
 lemma cpg_inv_lref1_bind: ∀Rt,c,h,I,G,K,T2,i. ⦃G, K.ⓘ{I}⦄ ⊢ #⫯i ⬈[Rt, c, h] T2 →
-                          (T2 = #(⫯i) ∧ c = 𝟘𝟘) ∨
-                          ∃∃T. ⦃G, K⦄ ⊢ #i ⬈[Rt, c, h] T & ⬆*[1] T ≡ T2.
+                          ∨∨ T2 = #(⫯i) ∧ c = 𝟘𝟘
+                           | ∃∃T. ⦃G, K⦄ ⊢ #i ⬈[Rt, c, h] T & ⬆*[1] T ≡ T2.
 #Rt #c #h #I #G #L #T2 #i #H elim (cpg_inv_lref1 … H) -H /2 width=1 by or_introl/
 * #Z #Y #T #HT #HT2 #H destruct /3 width=3 by ex2_intro, or_intror/
 qed-.
index c207e05c10d2eb047276fb7faa1ea29e311fe06b..7af9a5730843248e9d722c97b796c2f3acb698e8 100644 (file)
@@ -47,9 +47,9 @@ lemma cpm_ell: ∀n,h,G,K,V1,V2,W2. ⦃G, K⦄ ⊢ V1 ➡[n, h] V2 →
 /3 width=5 by cpg_ell, ex2_intro, isrt_succ/
 qed.
 
-lemma cpm_lref: ∀n,h,I,G,K,V,T,U,i. ⦃G, K⦄ ⊢ #i ➡[n, h] T →
-                â¬\86*[1] T â\89¡ U â\86\92 â¦\83G, K.â\93\91{I}V⦄ ⊢ #⫯i ➡[n, h] U.
-#n #h #I #G #K #V #T #U #i *
+lemma cpm_lref: ∀n,h,I,G,K,T,U,i. ⦃G, K⦄ ⊢ #i ➡[n, h] T →
+                â¬\86*[1] T â\89¡ U â\86\92 â¦\83G, K.â\93\98{I}⦄ ⊢ #⫯i ➡[n, h] U.
+#n #h #I #G #K #T #U #i *
 /3 width=5 by cpg_lref, ex2_intro/
 qed.
 
@@ -126,8 +126,8 @@ lemma cpm_inv_atom1: ∀n,h,J,G,L,T2. ⦃G, L⦄ ⊢ ⓪{J} ➡[n, h] T2 →
                                    L = K.ⓓV1 & J = LRef 0
                       | ∃∃k,K,V1,V2. ⦃G, K⦄ ⊢ V1 ➡[k, h] V2 & ⬆*[1] V2 ≡ T2 &
                                      L = K.ⓛV1 & J = LRef 0 & n = ⫯k
-                      | ∃∃I,K,V,T,i. ⦃G, K⦄ ⊢ #i ➡[n, h] T & ⬆*[1] T ≡ T2 &
-                                     L = K.ⓑ{I}V & J = LRef (⫯i).
+                      | ∃∃I,K,T,i. ⦃G, K⦄ ⊢ #i ➡[n, h] T & ⬆*[1] T ≡ T2 &
+                                   L = K.ⓘ{I} & J = LRef (⫯i).
 #n #h #J #G #L #T2 * #c #Hc #H elim (cpg_inv_atom1 … H) -H *
 [ #H1 #H2 destruct /4 width=1 by isrt_inv_00, or5_intro0, conj/
 | #s #H1 #H2 #H3 destruct /4 width=3 by isrt_inv_01, or5_intro1, ex3_intro/
@@ -136,21 +136,21 @@ lemma cpm_inv_atom1: ∀n,h,J,G,L,T2. ⦃G, L⦄ ⊢ ⓪{J} ➡[n, h] T2 →
 | #cV #K #V1 #V2 #HV12 #HVT2 #H1 #H2 #H3 destruct
   elim (isrt_inv_plus_SO_dx … Hc) -Hc // #k #Hc #H destruct
   /4 width=9 by or5_intro3, ex5_4_intro, ex2_intro/
-| #I #K #V1 #V2 #i #HV2 #HVT2 #H1 #H2 destruct
-  /4 width=9 by or5_intro4, ex4_5_intro, ex2_intro/
+| #I #K #V2 #i #HV2 #HVT2 #H1 #H2 destruct
+  /4 width=8 by or5_intro4, ex4_4_intro, ex2_intro/
 ]
 qed-.
 
 lemma cpm_inv_sort1: ∀n,h,G,L,T2,s. ⦃G, L⦄ ⊢ ⋆s ➡[n,h] T2 →
-                     (T2 = ⋆s ∧ n = 0) ∨
-                     (T2 = ⋆(next h s) ∧ n = 1).
+                     ∨∨ T2 = ⋆s ∧ n = 0
+                      | T2 = ⋆(next h s) ∧ n = 1.
 #n #h #G #L #T2 #s * #c #Hc #H elim (cpg_inv_sort1 … H) -H *
 #H1 #H2 destruct
 /4 width=1 by isrt_inv_01, isrt_inv_00, or_introl, or_intror, conj/
 qed-.
 
 lemma cpm_inv_zero1: ∀n,h,G,L,T2. ⦃G, L⦄ ⊢ #0 ➡[n, h] T2 →
-                     ∨∨ (T2 = #0 ∧ n = 0)
+                     ∨∨ T2 = #0 ∧ n = 0
                       | ∃∃K,V1,V2. ⦃G, K⦄ ⊢ V1 ➡[n, h] V2 & ⬆*[1] V2 ≡ T2 &
                                    L = K.ⓓV1
                       | ∃∃k,K,V1,V2. ⦃G, K⦄ ⊢ V1 ➡[k, h] V2 & ⬆*[1] V2 ≡ T2 &
@@ -166,12 +166,12 @@ lemma cpm_inv_zero1: ∀n,h,G,L,T2. ⦃G, L⦄ ⊢ #0 ➡[n, h] T2 →
 qed-.
 
 lemma cpm_inv_lref1: ∀n,h,G,L,T2,i. ⦃G, L⦄ ⊢ #⫯i ➡[n, h] T2 →
-                     (T2 = #(⫯i) ∧ n = 0) ∨
-                     ∃∃I,K,V,T. ⦃G, K⦄ ⊢ #i ➡[n, h] T & ⬆*[1] T ≡ T2 & L = K.ⓑ{I}V.
+                     ∨∨ T2 = #(⫯i) ∧ n = 0
+                      | ∃∃I,K,T. ⦃G, K⦄ ⊢ #i ➡[n, h] T & ⬆*[1] T ≡ T2 & L = K.ⓘ{I}.
 #n #h #G #L #T2 #i * #c #Hc #H elim (cpg_inv_lref1 … H) -H *
 [ #H1 #H2 destruct /4 width=1 by isrt_inv_00, or_introl, conj/
-| #I #K #V1 #V2 #HV2 #HVT2 #H1 destruct
- /4 width=7 by ex3_4_intro, ex2_intro, or_intror/
+| #I #K #V2 #HV2 #HVT2 #H destruct
+ /4 width=6 by ex3_3_intro, ex2_intro, or_intror/
 ]
 qed-.
 
@@ -181,12 +181,11 @@ lemma cpm_inv_gref1: ∀n,h,G,L,T2,l. ⦃G, L⦄ ⊢ §l ➡[n, h] T2 → T2 = 
 qed-.
 
 (* Basic_2A1: includes: cpr_inv_bind1 *)
-lemma cpm_inv_bind1: ∀n,h,p,I,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓑ{p,I}V1.T1 ➡[n, h] U2 → (
-                     ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ➡[n, h] T2 &
-                              U2 = ⓑ{p,I}V2.T2
-                     ) ∨
-                     ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ➡[n, h] T & ⬆*[1] U2 ≡ T &
-                          p = true & I = Abbr.
+lemma cpm_inv_bind1: ∀n,h,p,I,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓑ{p,I}V1.T1 ➡[n, h] U2 →
+                     ∨∨ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ➡[n, h] T2 &
+                                 U2 = ⓑ{p,I}V2.T2
+                      | ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ➡[n, h] T & ⬆*[1] U2 ≡ T &
+                             p = true & I = Abbr.
 #n #h #p #I #G #L #V1 #T1 #U2 * #c #Hc #H elim (cpg_inv_bind1 … H) -H *
 [ #cV #cT #V2 #T2 #HV12 #HT12 #H1 #H2 destruct
   elim (isrt_inv_max … Hc) -Hc #nV #nT #HcV #HcT #H destruct
@@ -199,11 +198,10 @@ qed-.
 
 (* Basic_1: includes: pr0_gen_abbr pr2_gen_abbr *)
 (* Basic_2A1: includes: cpr_inv_abbr1 *)
-lemma cpm_inv_abbr1: ∀n,h,p,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓓ{p}V1.T1 ➡[n, h] U2 → (
-                     ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L.ⓓV1⦄ ⊢ T1 ➡[n, h] T2 &
-                              U2 = ⓓ{p}V2.T2
-                     ) ∨
-                     ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ➡[n, h] T & ⬆*[1] U2 ≡ T & p = true.
+lemma cpm_inv_abbr1: ∀n,h,p,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓓ{p}V1.T1 ➡[n, h] U2 →
+                     ∨∨ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L.ⓓV1⦄ ⊢ T1 ➡[n, h] T2 &
+                                 U2 = ⓓ{p}V2.T2
+                      | ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ➡[n, h] T & ⬆*[1] U2 ≡ T & p = true.
 #n #h #p #G #L #V1 #T1 #U2 * #c #Hc #H elim (cpg_inv_abbr1 … H) -H *
 [ #cV #cT #V2 #T2 #HV12 #HT12 #H1 #H2 destruct
   elim (isrt_inv_max … Hc) -Hc #nV #nT #HcV #HcT #H destruct
index 790970db3cb5cec03c3e9debc49fb24f4219eda7..03e5a9440432ab0a2166bb4e99ade9dfd85c5f26 100644 (file)
@@ -42,8 +42,8 @@ lemma cpm_inv_atom1_drops: ∀n,h,I,G,L,T2. ⦃G, L⦄ ⊢ ⓪{I} ➡[n, h] T2 
                             | ∃∃s. T2 = ⋆(next h s) & I = Sort s & n = 1
                             | ∃∃K,V,V2,i. ⬇*[i] L ≡ K.ⓓV & ⦃G, K⦄ ⊢ V ➡[n, h] V2 &
                                           ⬆*[⫯i] V2 ≡ T2 & I = LRef i
-                            | ∃∃k,K,V,V2,i. ⬇*[i] L ≡ K.ⓛV & ⦃G, K⦄ ⊢ V ➡[k, h] V2 &
-                                            ⬆*[⫯i] V2 ≡ T2 & I = LRef i & n = ⫯k.
+                            | ∃∃m,K,V,V2,i. ⬇*[i] L ≡ K.ⓛV & ⦃G, K⦄ ⊢ V ➡[m, h] V2 &
+                                            ⬆*[⫯i] V2 ≡ T2 & I = LRef i & n = ⫯m.
 #n #h #I #G #L #T2 * #c #Hc #H elim (cpg_inv_atom1_drops … H) -H *
 [ #H1 #H2 destruct lapply (isrt_inv_00 … Hc) -Hc
   /3 width=1 by or4_intro0, conj/
@@ -59,10 +59,10 @@ qed-.
 
 lemma cpm_inv_lref1_drops: ∀n,h,G,L,T2,i. ⦃G, L⦄ ⊢ #i ➡[n, h] T2 →
                            ∨∨ T2 = #i ∧ n = 0
-                            | ∃∃K,V,V2. ⬇*[i] L ≡ K. ⓓV & ⦃G, K⦄ ⊢ V ➡[n, h] V2 &
+                            | ∃∃K,V,V2. ⬇*[i] L ≡ K.ⓓV & ⦃G, K⦄ ⊢ V ➡[n, h] V2 &
                                         ⬆*[⫯i] V2 ≡ T2
-                            | ∃∃k,K,V,V2. ⬇*[i] L ≡ K. ⓛV & ⦃G, K⦄ ⊢ V ➡[k, h] V2 &
-                                          ⬆*[⫯i] V2 ≡ T2 & n = ⫯k.
+                            | ∃∃m,K,V,V2. ⬇*[i] L ≡ K. ⓛV & ⦃G, K⦄ ⊢ V ➡[m, h] V2 &
+                                          ⬆*[⫯i] V2 ≡ T2 & n = ⫯m.
 #n #h #G #L #T2 #i * #c #Hc #H elim (cpg_inv_lref1_drops … H) -H *
 [ #H1 #H2 destruct lapply (isrt_inv_00 … Hc) -Hc
   /3 width=1 by or3_intro0, conj/
@@ -78,24 +78,26 @@ qed-.
 
 (* Basic_1: includes: pr0_lift pr2_lift *)
 (* Basic_2A1: includes: cpr_lift *)
-lemma cpm_lifts_sn: ∀n,h,G. d_liftable2_sn (cpm n h G).
+lemma cpm_lifts_sn: ∀n,h,G. d_liftable2_sn … lifts (cpm n h G).
 #n #h #G #K #T1 #T2 * #c #Hc #HT12 #b #f #L #HLK #U1 #HTU1
 elim (cpg_lifts_sn … HT12 … HLK … HTU1) -K -T1
 /3 width=5 by ex2_intro/
 qed-.
 
-lemma cpm_lifts_bi: ∀n,h,G. d_liftable2_bi (cpm n h G).
-/3 width=9 by cpm_lifts_sn, d_liftable2_sn_bi/ qed-.
+lemma cpm_lifts_bi: ∀n,h,G. d_liftable2_bi … lifts (cpm n h G).
+#n #h #G #K #T1 #T2 * /3 width=11 by cpg_lifts_bi, ex2_intro/
+qed-.
 
 (* Inversion lemmas with generic slicing for local environments *************)
 
 (* Basic_1: includes: pr0_gen_lift pr2_gen_lift *)
 (* Basic_2A1: includes: cpr_inv_lift1 *)
-lemma cpm_inv_lifts_sn: ∀n,h,G. d_deliftable2_sn (cpm n h G).
+lemma cpm_inv_lifts_sn: ∀n,h,G. d_deliftable2_sn … lifts (cpm n h G).
 #n #h #G #L #U1 #U2 * #c #Hc #HU12 #b #f #K #HLK #T1 #HTU1
 elim (cpg_inv_lifts_sn … HU12 … HLK … HTU1) -L -U1
 /3 width=5 by ex2_intro/
 qed-.
 
-lemma cpm_inv_lifts_bi: ∀n,h,G. d_deliftable2_bi (cpm n h G).
-/3 width=9 by cpm_inv_lifts_sn, d_deliftable2_sn_bi/ qed-.
+lemma cpm_inv_lifts_bi: ∀n,h,G. d_deliftable2_bi … lifts (cpm n h G).
+#n #h #G #L #U1 #U2 * /3 width=11 by cpg_inv_lifts_bi, ex2_intro/
+qed-.
index ac03ed30cabea02715faf9b02f6ee5516a9dba8d..4b246a2832792eaeb14e03a1e47f285de6ba0ce4 100644 (file)
@@ -23,11 +23,3 @@ include "basic_2/rt_transition/cpm.ma".
 lemma lsubr_cpm_trans: ∀n,h,G. lsub_trans … (cpm n h G) lsubr.
 #n #h #G #L1 #T1 #T2 * /3 width=5 by lsubr_cpg_trans, ex2_intro/
 qed-.
-
-(* Advanced properties ******************************************************)
-
-(* Basic_1: was by definition: pr2_free *)
-(* Basic_2A1: includes: tpr_cpr *)
-lemma tpm_cpm: ∀n,h,G,T1,T2. ⦃G, ⋆⦄ ⊢ T1 ➡[n, h] T2 → ∀L. ⦃G, L⦄ ⊢ T1 ➡[n, h] T2.
-#n #h #G #T1 #T2 #HT12 #L lapply (lsubr_cpm_trans … HT12 L ?) //
-qed.
index 6bcfa173e8ec96dfc351c475a5820c71c14026ed..fd5163073baa4891db4e5c0d4a6adca55f699335 100644 (file)
@@ -38,13 +38,11 @@ lemma cpr_inv_atom1: ∀h,J,G,L,T2. ⦃G, L⦄ ⊢ ⓪{J} ➡[h] T2 →
                      ∨∨ T2 = ⓪{J}
                       | ∃∃K,V1,V2. ⦃G, K⦄ ⊢ V1 ➡[h] V2 & ⬆*[1] V2 ≡ T2 &
                                    L = K.ⓓV1 & J = LRef 0
-                      | ∃∃I,K,V,T,i. ⦃G, K⦄ ⊢ #i ➡[h] T & ⬆*[1] T ≡ T2 &
-                                     L = K.ⓑ{I}V & J = LRef (⫯i).
+                      | ∃∃I,K,T,i. ⦃G, K⦄ ⊢ #i ➡[h] T & ⬆*[1] T ≡ T2 &
+                                   L = K.ⓘ{I} & J = LRef (⫯i).
 #h #J #G #L #T2 #H elim (cpm_inv_atom1 … H) -H *
-/3 width=9 by or3_intro0, or3_intro1, or3_intro2, ex4_5_intro, ex4_3_intro/
-[ #n #_ #_ #H destruct
-| #n #K #V1 #V2 #_ #_ #_ #_ #H destruct
-]
+/3 width=8 by tri_lt, or3_intro0, or3_intro1, or3_intro2, ex4_4_intro, ex4_3_intro/
+#n #_ #_ #H destruct
 qed-.
 
 (* Basic_1: includes: pr0_gen_sort pr2_gen_sort *)
@@ -53,19 +51,19 @@ lemma cpr_inv_sort1: ∀h,G,L,T2,s. ⦃G, L⦄ ⊢ ⋆s ➡[h] T2 → T2 = ⋆s.
 qed-.
 
 lemma cpr_inv_zero1: ∀h,G,L,T2. ⦃G, L⦄ ⊢ #0 ➡[h] T2 →
-                     T2 = #0 ∨
-                     ∃∃K,V1,V2. ⦃G, K⦄ ⊢ V1 ➡[h] V2 & ⬆*[1] V2 ≡ T2 &
-                                L = K.ⓓV1.
+                     ∨∨ T2 = #0
+                      | ∃∃K,V1,V2. ⦃G, K⦄ ⊢ V1 ➡[h] V2 & ⬆*[1] V2 ≡ T2 &
+                                   L = K.ⓓV1.
 #h #G #L #T2 #H elim (cpm_inv_zero1 … H) -H *
 /3 width=6 by ex3_3_intro, or_introl, or_intror/
 #n #K #V1 #V2 #_ #_ #_ #H destruct
 qed-.
 
 lemma cpr_inv_lref1: ∀h,G,L,T2,i. ⦃G, L⦄ ⊢ #⫯i ➡[h] T2 →
-                     T2 = #(⫯i) ∨
-                     ∃∃I,K,V,T. ⦃G, K⦄ ⊢ #i ➡[h] T & ⬆*[1] T ≡ T2 & L = K.ⓑ{I}V.
+                     ∨∨ T2 = #(⫯i)
+                      | ∃∃I,K,T. ⦃G, K⦄ ⊢ #i ➡[h] T & ⬆*[1] T ≡ T2 & L = K.ⓘ{I}.
 #h #G #L #T2 #i #H elim (cpm_inv_lref1 … H) -H *
-/3 width=7 by ex3_4_intro, or_introl, or_intror/
+/3 width=6 by ex3_3_intro, or_introl, or_intror/
 qed-.
 
 lemma cpr_inv_gref1: ∀h,G,L,T2,l. ⦃G, L⦄ ⊢ §l ➡[h] T2 → T2 = §l.
@@ -73,10 +71,10 @@ lemma cpr_inv_gref1: ∀h,G,L,T2,l. ⦃G, L⦄ ⊢ §l ➡[h] T2 → T2 = §l.
 qed-.
 
 (* Basic_1: includes: pr0_gen_cast pr2_gen_cast *)
-lemma cpr_inv_cast1: ∀h,G,L,V1,U1,U2. ⦃G, L⦄ ⊢ ⓝ V1. U1 ➡[h] U2 → (
-                     ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L⦄ ⊢ U1 ➡[h] T2 &
-                              U2 = ⓝV2.T2
-                     ) ∨ ⦃G, L⦄ ⊢ U1 ➡[h] U2.
+lemma cpr_inv_cast1: ∀h,G,L,V1,U1,U2. ⦃G, L⦄ ⊢ ⓝ V1.U1 ➡[h] U2 →
+                     â\88¨â\88¨ â\88\83â\88\83V2,T2. â¦\83G, Lâ¦\84 â\8a¢ V1 â\9e¡[h] V2 & â¦\83G, Lâ¦\84 â\8a¢ U1 â\9e¡[h] T2 &
+                                 U2 = ⓝV2.T2
+                      | ⦃G, L⦄ ⊢ U1 ➡[h] U2.
 #h #G #L #V1 #U1 #U2 #H elim (cpm_inv_cast1 … H) -H
 /2 width=1 by or_introl, or_intror/ * #n #_ #H destruct
 qed-.
index c7c28703669fb4fde68ed1cc7cdde314bcef77ab..714ce2f458f4b5325faf3952d21e3dbbb8f28fde 100644 (file)
@@ -20,26 +20,26 @@ include "basic_2/rt_transition/cpm_drops.ma".
 
 (* Basic_2A1: includes: cpr_inv_atom1 *)
 lemma cpr_inv_atom1_drops: ∀h,I,G,L,T2. ⦃G, L⦄ ⊢ ⓪{I} ➡[h] T2 →
-                           T2 = ⓪{I} ∨
-                           ∃∃K,V,V2,i. ⬇*[i] L ≡ K.ⓓV & ⦃G, K⦄ ⊢ V ➡[h] V2 &
-                                       ⬆*[⫯i] V2 ≡ T2 & I = LRef i.
+                           ∨∨ T2 = ⓪{I}
+                            | ∃∃K,V,V2,i. ⬇*[i] L ≡ K.ⓓV & ⦃G, K⦄ ⊢ V ➡[h] V2 &
+                                          ⬆*[⫯i] V2 ≡ T2 & I = LRef i.
 #h #I #G #L #T2 #H elim (cpm_inv_atom1_drops … H) -H *
 [ /2 width=1 by or_introl/
 | #s #_ #_ #H destruct
 | /3 width=8 by ex4_4_intro, or_intror/
-| #k #K #V1 #V2 #i #_ #_ #_ #_ #H destruct
+| #m #K #V1 #V2 #i #_ #_ #_ #_ #H destruct
 ]
 qed-.
 
 (* Basic_1: includes: pr0_gen_lref pr2_gen_lref *)
 (* Basic_2A1: includes: cpr_inv_lref1 *)
 lemma cpr_inv_lref1_drops: ∀h,G,L,T2,i. ⦃G, L⦄ ⊢ #i ➡[h] T2 →
-                           T2 = #i ∨
-                           ∃∃K,V,V2. ⬇*[i] L ≡ K. ⓓV & ⦃G, K⦄ ⊢ V ➡[h] V2 &
-                                     ⬆*[⫯i] V2 ≡ T2.
+                           ∨∨ T2 = #i
+                            | ∃∃K,V,V2. ⬇*[i] L ≡ K. ⓓV & ⦃G, K⦄ ⊢ V ➡[h] V2 &
+                                        ⬆*[⫯i] V2 ≡ T2.
 #h #G #L #T2 #i #H elim (cpm_inv_lref1_drops … H) -H *
 [ /2 width=1 by or_introl/
 | /3 width=6 by ex3_3_intro, or_intror/
-| #k #K #V1 #V2 #_ #_ #_ #H destruct
+| #m #K #V1 #V2 #_ #_ #_ #H destruct
 ]
 qed-.
diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpr_ext.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpr_ext.ma
new file mode 100644 (file)
index 0000000..434efb1
--- /dev/null
@@ -0,0 +1,25 @@
+(**************************************************************************)
+(*       ___                                                              *)
+(*      ||M||                                                             *)
+(*      ||A||       A project by Andrea Asperti                           *)
+(*      ||T||                                                             *)
+(*      ||I||       Developers:                                           *)
+(*      ||T||         The HELM team.                                      *)
+(*      ||A||         http://helm.cs.unibo.it                             *)
+(*      \   /                                                             *)
+(*       \ /        This file is distributed under the terms of the       *)
+(*        v         GNU General Public License Version 2                  *)
+(*                                                                        *)
+(**************************************************************************)
+
+include "basic_2/syntax/lenv_ext2.ma".
+include "basic_2/rt_transition/cpm.ma".
+
+(* CONTEXT-SENSITIVE PARALLEL R-TRANSITION FOR BINDERS **********************)
+
+definition cpr_ext (h) (G): relation3 lenv bind bind ≝
+                            cext2 (cpm 0 h G).
+
+interpretation
+   "context-sensitive parallel r-transition (binder)"
+   'PRed h G L I1 I2 = (cpr_ext h G L I1 I2).
index 1517ab3404fc4bbe8342470339e70007de0d5c3e..c0bb4856e58298cd5181aaa72c86041f8c2121e7 100644 (file)
@@ -113,22 +113,22 @@ lemma cpx_inv_atom1: ∀h,J,G,L,T2. ⦃G, L⦄ ⊢ ⓪{J} ⬈[h] T2 →
 qed-.
 
 lemma cpx_inv_sort1: ∀h,G,L,T2,s. ⦃G, L⦄ ⊢ ⋆s ⬈[h] T2 →
-                     T2 = ⋆s ∨ T2 = ⋆(next h s).
+                     ∨∨ T2 = ⋆s | T2 = ⋆(next h s).
 #h #G #L #T2 #s * #c #H elim (cpg_inv_sort1 … H) -H *
 /2 width=1 by or_introl, or_intror/
 qed-.
 
 lemma cpx_inv_zero1: ∀h,G,L,T2. ⦃G, L⦄ ⊢ #0 ⬈[h] T2 →
-                     T2 = #0 ∨
-                     ∃∃I,K,V1,V2. ⦃G, K⦄ ⊢ V1 ⬈[h] V2 & ⬆*[1] V2 ≡ T2 &
-                                  L = K.ⓑ{I}V1.
+                     ∨∨ T2 = #0
+                      | ∃∃I,K,V1,V2. ⦃G, K⦄ ⊢ V1 ⬈[h] V2 & ⬆*[1] V2 ≡ T2 &
+                                     L = K.ⓑ{I}V1.
 #h #G #L #T2 * #c #H elim (cpg_inv_zero1 … H) -H *
 /4 width=7 by ex3_4_intro, ex_intro, or_introl, or_intror/
 qed-.
 
 lemma cpx_inv_lref1: ∀h,G,L,T2,i. ⦃G, L⦄ ⊢ #⫯i ⬈[h] T2 →
-                     T2 = #(⫯i) ∨
-                     ∃∃I,K,T. ⦃G, K⦄ ⊢ #i ⬈[h] T & ⬆*[1] T ≡ T2 & L = K.ⓘ{I}.
+                     ∨∨ T2 = #(⫯i)
+                      | ∃∃I,K,T. ⦃G, K⦄ ⊢ #i ⬈[h] T & ⬆*[1] T ≡ T2 & L = K.ⓘ{I}.
 #h #G #L #T2 #i * #c #H elim (cpg_inv_lref1 … H) -H *
 /4 width=6 by ex3_3_intro, ex_intro, or_introl, or_intror/
 qed-.
@@ -137,21 +137,19 @@ lemma cpx_inv_gref1: ∀h,G,L,T2,l. ⦃G, L⦄ ⊢ §l ⬈[h] T2 → T2 = §l.
 #h #G #L #T2 #l * #c #H elim (cpg_inv_gref1 … H) -H //
 qed-.
 
-lemma cpx_inv_bind1: ∀h,p,I,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓑ{p,I}V1.T1 ⬈[h] U2 → (
-                     ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 & ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ⬈[h] T2 &
-                              U2 = ⓑ{p,I}V2.T2
-                     ) ∨
-                     ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[h] T & ⬆*[1] U2 ≡ T &
-                          p = true & I = Abbr.
+lemma cpx_inv_bind1: ∀h,p,I,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓑ{p,I}V1.T1 ⬈[h] U2 →
+                     ∨∨ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 & ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ⬈[h] T2 &
+                                 U2 = ⓑ{p,I}V2.T2
+                      | ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[h] T & ⬆*[1] U2 ≡ T &
+                             p = true & I = Abbr.
 #h #p #I #G #L #V1 #T1 #U2 * #c #H elim (cpg_inv_bind1 … H) -H *
 /4 width=5 by ex4_intro, ex3_2_intro, ex_intro, or_introl, or_intror/
 qed-.
 
-lemma cpx_inv_abbr1: ∀h,p,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓓ{p}V1.T1 ⬈[h] U2 → (
-                     ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 & ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[h] T2 &
-                              U2 = ⓓ{p}V2.T2
-                     ) ∨
-                     ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[h] T & ⬆*[1] U2 ≡ T & p = true.
+lemma cpx_inv_abbr1: ∀h,p,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓓ{p}V1.T1 ⬈[h] U2 →
+                     ∨∨ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 & ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[h] T2 &
+                                 U2 = ⓓ{p}V2.T2
+                      | ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[h] T & ⬆*[1] U2 ≡ T & p = true.
 #h #p #G #L #V1 #T1 #U2 * #c #H elim (cpg_inv_abbr1 … H) -H *
 /4 width=5 by ex3_2_intro, ex3_intro, ex_intro, or_introl, or_intror/
 qed-.
@@ -188,15 +186,15 @@ qed-.
 (* Advanced inversion lemmas ************************************************)
 
 lemma cpx_inv_zero1_pair: ∀h,I,G,K,V1,T2. ⦃G, K.ⓑ{I}V1⦄ ⊢ #0 ⬈[h] T2 →
-                          T2 = #0 ∨
-                          ∃∃V2. ⦃G, K⦄ ⊢ V1 ⬈[h] V2 & ⬆*[1] V2 ≡ T2.
+                          ∨∨ T2 = #0
+                           | ∃∃V2. ⦃G, K⦄ ⊢ V1 ⬈[h] V2 & ⬆*[1] V2 ≡ T2.
 #h #I #G #L #V1 #T2 * #c #H elim (cpg_inv_zero1_pair … H) -H *
 /4 width=3 by ex2_intro, ex_intro, or_intror, or_introl/
 qed-.
 
 lemma cpx_inv_lref1_bind: ∀h,I,G,K,T2,i. ⦃G, K.ⓘ{I}⦄ ⊢ #⫯i ⬈[h] T2 →
-                          T2 = #(⫯i) ∨
-                          ∃∃T. ⦃G, K⦄ ⊢ #i ⬈[h] T & ⬆*[1] T ≡ T2.
+                          ∨∨ T2 = #(⫯i)
+                           | ∃∃T. ⦃G, K⦄ ⊢ #i ⬈[h] T & ⬆*[1] T ≡ T2.
 #h #I #G #L #T2 #i * #c #H elim (cpg_inv_lref1_bind … H) -H *
 /4 width=3 by ex2_intro, ex_intro, or_introl, or_intror/
 qed-.
index cc8550d219d380124adb4d6f135b371d52408fff..92ff748bd22b4f09308dd05c10611b542e5682c2 100644 (file)
@@ -14,7 +14,7 @@
 
 include "basic_2/notation/relations/predsn_5.ma".
 include "basic_2/static/lfxs.ma".
-include "basic_2/rt_transition/cpm.ma".
+include "basic_2/rt_transition/cpr_ext.ma".
 
 (* PARALLEL R-TRANSITION FOR LOCAL ENV.S ON REFERRED ENTRIES ****************)
 
@@ -34,23 +34,23 @@ lemma lfpr_sort: ∀h,I,G,L1,L2,V1,V2,s.
                  ⦃G, L1⦄ ⊢ ➡[h, ⋆s] L2 → ⦃G, L1.ⓑ{I}V1⦄ ⊢ ➡[h, ⋆s] L2.ⓑ{I}V2.
 /2 width=1 by lfxs_sort/ qed.
 
-lemma lfpr_zero: ∀h,I,G,L1,L2,V1,V2. ⦃G, L1⦄ ⊢ ➡[h, V1] L2 →
+lemma lfpr_pair: ∀h,I,G,L1,L2,V1,V2. ⦃G, L1⦄ ⊢ ➡[h, V1] L2 →
                  ⦃G, L1⦄ ⊢ V1 ➡[h] V2 → ⦃G, L1.ⓑ{I}V1⦄ ⊢ ➡[h, #0] L2.ⓑ{I}V2.
-/2 width=1 by lfxs_zero/ qed.
+/2 width=1 by lfxs_pair/ qed.
 
-lemma lfpr_lref: ∀h,I,G,L1,L2,V1,V2,i.
-                 â¦\83G, L1â¦\84 â\8a¢ â\9e¡[h, #i] L2 â\86\92 â¦\83G, L1.â\93\91{I}V1â¦\84 â\8a¢ â\9e¡[h, #⫯i] L2.â\93\91{I}V2.
+lemma lfpr_lref: ∀h,I1,I2,G,L1,L2,i.
+                 â¦\83G, L1â¦\84 â\8a¢ â\9e¡[h, #i] L2 â\86\92 â¦\83G, L1.â\93\98{I1}â¦\84 â\8a¢ â\9e¡[h, #⫯i] L2.â\93\98{I2}.
 /2 width=1 by lfxs_lref/ qed.
 
-lemma lfpr_gref: ∀h,I,G,L1,L2,V1,V2,l.
-                 â¦\83G, L1â¦\84 â\8a¢ â\9e¡[h, Â§l] L2 â\86\92 â¦\83G, L1.â\93\91{I}V1â¦\84 â\8a¢ â\9e¡[h, Â§l] L2.â\93\91{I}V2.
+lemma lfpr_gref: ∀h,I1,I2,G,L1,L2,l.
+                 â¦\83G, L1â¦\84 â\8a¢ â\9e¡[h, Â§l] L2 â\86\92 â¦\83G, L1.â\93\98{I1}â¦\84 â\8a¢ â\9e¡[h, Â§l] L2.â\93\98{I2}.
 /2 width=1 by lfxs_gref/ qed.
 
-lemma lfpr_pair_repl_dx: ∀h,I,G,L1,L2,T,V,V1.
-                         â¦\83G, L1.â\93\91{I}Vâ¦\84 â\8a¢ â\9e¡[h, T] L2.â\93\91{I}V1 →
-                         ∀V2. ⦃G, L1⦄ ⊢ V ➡[h] V2 →
-                         â¦\83G, L1.â\93\91{I}Vâ¦\84 â\8a¢ â\9e¡[h, T] L2.â\93\91{I}V2.
-/2 width=2 by lfxs_pair_repl_dx/ qed-.
+lemma lfpr_bind_repl_dx: ∀h,I,I1,G,L1,L2,T.
+                         â¦\83G, L1.â\93\98{I}â¦\84 â\8a¢ â\9e¡[h, T] L2.â\93\98{I1} →
+                         ∀I2. ⦃G, L1⦄ ⊢ I ➡[h] I2 →
+                         â¦\83G, L1.â\93\98{I}â¦\84 â\8a¢ â\9e¡[h, T] L2.â\93\98{I2}.
+/2 width=2 by lfxs_bind_repl_dx/ qed-.
 
 (* Basic inversion lemmas ***************************************************)
 
@@ -63,47 +63,47 @@ lemma lfpr_inv_atom_dx: ∀h,I,G,Y1. ⦃G, Y1⦄ ⊢ ➡[h, ⓪{I}] ⋆ → Y1 =
 /2 width=3 by lfxs_inv_atom_dx/ qed-.
 
 lemma lfpr_inv_sort: ∀h,G,Y1,Y2,s. ⦃G, Y1⦄ ⊢ ➡[h, ⋆s] Y2 →
-                     (Y1 = ⋆ ∧ Y2 = ⋆) ∨
-                     ∃∃I,L1,L2,V1,V2. ⦃G, L1⦄ ⊢ ➡[h, ⋆s] L2 &
-                                      Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
+                     ∨∨ Y1 = ⋆ ∧ Y2 = ⋆
+                      | ∃∃I1,I2,L1,L2. ⦃G, L1⦄ ⊢ ➡[h, ⋆s] L2 &
+                                       Y1 = L1.ⓘ{I1} & Y2 = L2.ⓘ{I2}.
 /2 width=1 by lfxs_inv_sort/ qed-.
-
+(*
 lemma lfpr_inv_zero: ∀h,G,Y1,Y2. ⦃G, Y1⦄ ⊢ ➡[h, #0] Y2 →
                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨
                      ∃∃I,L1,L2,V1,V2. ⦃G, L1⦄ ⊢ ➡[h, V1] L2 &
                                       ⦃G, L1⦄ ⊢ V1 ➡[h] V2 &
                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
 /2 width=1 by lfxs_inv_zero/ qed-.
-
+*)
 lemma lfpr_inv_lref: ∀h,G,Y1,Y2,i. ⦃G, Y1⦄ ⊢ ➡[h, #⫯i] Y2 →
-                     (Y1 = ⋆ ∧ Y2 = ⋆) ∨
-                     ∃∃I,L1,L2,V1,V2. ⦃G, L1⦄ ⊢ ➡[h, #i] L2 &
-                                      Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
+                     ∨∨ Y1 = ⋆ ∧ Y2 = ⋆
+                      | ∃∃I1,I2,L1,L2. ⦃G, L1⦄ ⊢ ➡[h, #i] L2 &
+                                       Y1 = L1.ⓘ{I1} & Y2 = L2.ⓘ{I2}.
 /2 width=1 by lfxs_inv_lref/ qed-.
 
 lemma lfpr_inv_gref: ∀h,G,Y1,Y2,l. ⦃G, Y1⦄ ⊢ ➡[h, §l] Y2 →
-                     (Y1 = ⋆ ∧ Y2 = ⋆) ∨
-                     ∃∃I,L1,L2,V1,V2. ⦃G, L1⦄ ⊢ ➡[h, §l] L2 &
-                                      Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
+                     ∨∨ Y1 = ⋆ ∧ Y2 = ⋆
+                      | ∃∃I1,I2,L1,L2. ⦃G, L1⦄ ⊢ ➡[h, §l] L2 &
+                                       Y1 = L1.ⓘ{I1} & Y2 = L2.ⓘ{I2}.
 /2 width=1 by lfxs_inv_gref/ qed-.
 
 lemma lfpr_inv_bind: ∀h,p,I,G,L1,L2,V,T. ⦃G, L1⦄ ⊢ ➡[h, ⓑ{p,I}V.T] L2 →
-                     â¦\83G, L1â¦\84 â\8a¢ â\9e¡[h, V] L2 â\88§ ⦃G, L1.ⓑ{I}V⦄ ⊢ ➡[h, T] L2.ⓑ{I}V.
+                     â\88§â\88§ â¦\83G, L1â¦\84 â\8a¢ â\9e¡[h, V] L2 & ⦃G, L1.ⓑ{I}V⦄ ⊢ ➡[h, T] L2.ⓑ{I}V.
 /2 width=2 by lfxs_inv_bind/ qed-.
 
 lemma lfpr_inv_flat: ∀h,I,G,L1,L2,V,T. ⦃G, L1⦄ ⊢ ➡[h, ⓕ{I}V.T] L2 →
-                     â¦\83G, L1â¦\84 â\8a¢ â\9e¡[h, V] L2 â\88§ ⦃G, L1⦄ ⊢ ➡[h, T] L2.
+                     â\88§â\88§ â¦\83G, L1â¦\84 â\8a¢ â\9e¡[h, V] L2 & ⦃G, L1⦄ ⊢ ➡[h, T] L2.
 /2 width=2 by lfxs_inv_flat/ qed-.
 
 (* Advanced inversion lemmas ************************************************)
 
-lemma lfpr_inv_sort_pair_sn: ∀h,I,G,Y2,L1,V1,s. ⦃G, L1.ⓑ{I}V1⦄ ⊢ ➡[h, ⋆s] Y2 →
-                             ∃∃L2,V2. ⦃G, L1⦄ ⊢ ➡[h, ⋆s] L2 & Y2 = L2.ⓑ{I}V2.
-/2 width=2 by lfxs_inv_sort_pair_sn/ qed-.
+lemma lfpr_inv_sort_bind_sn: ∀h,I1,G,Y2,L1,s. ⦃G, L1.ⓘ{I1}⦄ ⊢ ➡[h, ⋆s] Y2 →
+                             ∃∃I2,L2. ⦃G, L1⦄ ⊢ ➡[h, ⋆s] L2 & Y2 = L2.ⓘ{I2}.
+/2 width=2 by lfxs_inv_sort_bind_sn/ qed-.
 
-lemma lfpr_inv_sort_pair_dx: ∀h,I,G,Y1,L2,V2,s. ⦃G, Y1⦄ ⊢ ➡[h, ⋆s] L2.ⓑ{I}V2 →
-                             ∃∃L1,V1. ⦃G, L1⦄ ⊢ ➡[h, ⋆s] L2 & Y1 = L1.ⓑ{I}V1.
-/2 width=2 by lfxs_inv_sort_pair_dx/ qed-.
+lemma lfpr_inv_sort_bind_dx: ∀h,I2,G,Y1,L2,s. ⦃G, Y1⦄ ⊢ ➡[h, ⋆s] L2.ⓘ{I2} →
+                             ∃∃I1,L1. ⦃G, L1⦄ ⊢ ➡[h, ⋆s] L2 & Y1 = L1.ⓘ{I1}.
+/2 width=2 by lfxs_inv_sort_bind_dx/ qed-.
 
 lemma lfpr_inv_zero_pair_sn: ∀h,I,G,Y2,L1,V1. ⦃G, L1.ⓑ{I}V1⦄ ⊢ ➡[h, #0] Y2 →
                              ∃∃L2,V2. ⦃G, L1⦄ ⊢ ➡[h, V1] L2 & ⦃G, L1⦄ ⊢ V1 ➡[h] V2 &
@@ -115,21 +115,21 @@ lemma lfpr_inv_zero_pair_dx: ∀h,I,G,Y1,L2,V2. ⦃G, Y1⦄ ⊢ ➡[h, #0] L2.
                                       Y1 = L1.ⓑ{I}V1.
 /2 width=1 by lfxs_inv_zero_pair_dx/ qed-.
 
-lemma lfpr_inv_lref_pair_sn: ∀h,I,G,Y2,L1,V1,i. ⦃G, L1.ⓑ{I}V1⦄ ⊢ ➡[h, #⫯i] Y2 →
-                             ∃∃L2,V2. ⦃G, L1⦄ ⊢ ➡[h, #i] L2 & Y2 = L2.ⓑ{I}V2.
-/2 width=2 by lfxs_inv_lref_pair_sn/ qed-.
+lemma lfpr_inv_lref_bind_sn: ∀h,I1,G,Y2,L1,i. ⦃G, L1.ⓘ{I1}⦄ ⊢ ➡[h, #⫯i] Y2 →
+                             ∃∃I2,L2. ⦃G, L1⦄ ⊢ ➡[h, #i] L2 & Y2 = L2.ⓘ{I2}.
+/2 width=2 by lfxs_inv_lref_bind_sn/ qed-.
 
-lemma lfpr_inv_lref_pair_dx: ∀h,I,G,Y1,L2,V2,i. ⦃G, Y1⦄ ⊢ ➡[h, #⫯i] L2.ⓑ{I}V2 →
-                             ∃∃L1,V1. ⦃G, L1⦄ ⊢ ➡[h, #i] L2 & Y1 = L1.ⓑ{I}V1.
-/2 width=2 by lfxs_inv_lref_pair_dx/ qed-.
+lemma lfpr_inv_lref_bind_dx: ∀h,I2,G,Y1,L2,i. ⦃G, Y1⦄ ⊢ ➡[h, #⫯i] L2.ⓘ{I2} →
+                             ∃∃I1,L1. ⦃G, L1⦄ ⊢ ➡[h, #i] L2 & Y1 = L1.ⓘ{I1}.
+/2 width=2 by lfxs_inv_lref_bind_dx/ qed-.
 
-lemma lfpr_inv_gref_pair_sn: ∀h,I,G,Y2,L1,V1,l. ⦃G, L1.ⓑ{I}V1⦄ ⊢ ➡[h, §l] Y2 →
-                             ∃∃L2,V2. ⦃G, L1⦄ ⊢ ➡[h, §l] L2 & Y2 = L2.ⓑ{I}V2.
-/2 width=2 by lfxs_inv_gref_pair_sn/ qed-.
+lemma lfpr_inv_gref_bind_sn: ∀h,I1,G,Y2,L1,l. ⦃G, L1.ⓘ{I1}⦄ ⊢ ➡[h, §l] Y2 →
+                             ∃∃I2,L2. ⦃G, L1⦄ ⊢ ➡[h, §l] L2 & Y2 = L2.ⓘ{I2}.
+/2 width=2 by lfxs_inv_gref_bind_sn/ qed-.
 
-lemma lfpr_inv_gref_pair_dx: ∀h,I,G,Y1,L2,V2,l. ⦃G, Y1⦄ ⊢ ➡[h, §l] L2.ⓑ{I}V2 →
-                             ∃∃L1,V1. ⦃G, L1⦄ ⊢ ➡[h, §l] L2 & Y1 = L1.ⓑ{I}V1.
-/2 width=2 by lfxs_inv_gref_pair_dx/ qed-.
+lemma lfpr_inv_gref_bind_dx: ∀h,I2,G,Y1,L2,l. ⦃G, Y1⦄ ⊢ ➡[h, §l] L2.ⓘ{I2} →
+                             ∃∃I1,L1. ⦃G, L1⦄ ⊢ ➡[h, §l] L2 & Y1 = L1.ⓘ{I1}.
+/2 width=2 by lfxs_inv_gref_bind_dx/ qed-.
 
 (* Basic forward lemmas *****************************************************)
 
index 7c630638c2b3f61fbf70b9ced2673c03dd1e008f..4b531bf74c86e1841f7756a29753be6f2d1fb1e2 100644 (file)
@@ -34,10 +34,10 @@ lemma lfpr_drops_conf: ∀h,G. dropable_sn (cpm 0 h G).
 lemma lfpr_drops_trans: ∀h,G. dropable_dx (cpm 0 h G).
 /2 width=5 by lfxs_dropable_dx/ qed-.
 
-lemma lfpr_inv_lref_sn: ∀h,G,L1,L2,i. ⦃G, L1⦄ ⊢ ➡[h, #i] L2 → ∀I,K1,V1. ⬇*[i] L1 ≡ K1.ⓑ{I}V1 →
-                        ∃∃K2,V2. ⬇*[i] L2 ≡ K2.ⓑ{I}V2 & ⦃G, K1⦄ ⊢ ➡[h, V1] K2 & ⦃G, K1⦄ ⊢ V1 ➡[h] V2.
-/2 width=3 by lfxs_inv_lref_sn/ qed-.
+lemma lfpr_inv_lref_pair_sn: ∀h,G,L1,L2,i. ⦃G, L1⦄ ⊢ ➡[h, #i] L2 → ∀I,K1,V1. ⬇*[i] L1 ≡ K1.ⓑ{I}V1 →
+                             ∃∃K2,V2. ⬇*[i] L2 ≡ K2.ⓑ{I}V2 & ⦃G, K1⦄ ⊢ ➡[h, V1] K2 & ⦃G, K1⦄ ⊢ V1 ➡[h] V2.
+/2 width=3 by lfxs_inv_lref_pair_sn/ qed-.
 
-lemma lfpr_inv_lref_dx: ∀h,G,L1,L2,i. ⦃G, L1⦄ ⊢ ➡[h, #i] L2 → ∀I,K2,V2. ⬇*[i] L2 ≡ K2.ⓑ{I}V2 →
-                        ∃∃K1,V1. ⬇*[i] L1 ≡ K1.ⓑ{I}V1 & ⦃G, K1⦄ ⊢ ➡[h, V1] K2 & ⦃G, K1⦄ ⊢ V1 ➡[h] V2.
-/2 width=3 by lfxs_inv_lref_dx/ qed-.
+lemma lfpr_inv_lref_pair_dx: ∀h,G,L1,L2,i. ⦃G, L1⦄ ⊢ ➡[h, #i] L2 → ∀I,K2,V2. ⬇*[i] L2 ≡ K2.ⓑ{I}V2 →
+                             ∃∃K1,V1. ⬇*[i] L1 ≡ K1.ⓑ{I}V1 & ⦃G, K1⦄ ⊢ ➡[h, V1] K2 & ⦃G, K1⦄ ⊢ V1 ➡[h] V2.
+/2 width=3 by lfxs_inv_lref_pair_dx/ qed-.
index a0f5b490d72f0c9a3f650d10b7515fd16dcf9209..8de2443e0a8fa5f2039a4852de426e1fa95ed634 100644 (file)
@@ -28,3 +28,15 @@ lemma lfpr_refl: ∀h,G,T. reflexive … (lfpr h G T).
 lemma lfpr_pair: ∀h,G,L,V1,V2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 →
                  ∀I,T. ⦃G, L.ⓑ{I}V1⦄ ⊢ ➡[h, T] L.ⓑ{I}V2.
 /2 width=1 by lfxs_pair/ qed.
+
+(* Advanced inversion lemmas ************************************************)
+
+lemma lfpr_inv_bind_void: ∀h,p,I,G,L1,L2,V,T. ⦃G, L1⦄ ⊢ ➡[h, ⓑ{p,I}V.T] L2 →
+                          ∧∧ ⦃G, L1⦄ ⊢ ➡[h, V] L2 & ⦃G, L1.ⓧ⦄ ⊢ ➡[h, T] L2.ⓧ.
+/2 width=3 by lfxs_inv_bind_void/ qed-.
+
+(* Advanced forward lemmas **************************************************)
+
+lemma lfpr_fwd_bind_dx_void: ∀h,p,I,G,L1,L2,V,T.
+                             ⦃G, L1⦄ ⊢ ➡[h, ⓑ{p,I}V.T] L2 → ⦃G, L1.ⓧ⦄ ⊢ ➡[h, T] L2.ⓧ.
+/2 width=4 by lfxs_fwd_bind_dx_void/ qed-.
index 72c313796c5f9e544c1dbe9fd89754cd05f6e0ae..79208e25ff69039fc3c728d19a876ae7e90b6539 100644 (file)
@@ -14,6 +14,7 @@
 
 include "basic_2/s_transition/fquq.ma".
 include "basic_2/rt_transition/cpm_drops.ma".
+include "basic_2/rt_transition/cpm_lsubr.ma".
 include "basic_2/rt_transition/cpr.ma".
 include "basic_2/rt_transition/lfpr_fqup.ma".
 
@@ -21,41 +22,45 @@ include "basic_2/rt_transition/lfpr_fqup.ma".
 
 (* Properties with supclosure ***********************************************)
 
-lemma fqu_cpr_trans_dx: ∀h,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐ ⦃G2, L2, T2⦄ →
+lemma fqu_cpr_trans_dx: ∀h,b,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐[b] ⦃G2, L2, T2⦄ →
                         ∀U2. ⦃G2, L2⦄ ⊢ T2 ➡[h] U2 →
-                        ∃∃L,U1. ⦃G1, L1⦄ ⊢ ➡[h, T1] L & ⦃G1, L⦄ ⊢ T1 ➡[h] U1 & ⦃G1, L, U1⦄ ⊐ ⦃G2, L2, U2⦄.
-#h #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -G1 -G2 -L1 -L2 -T1 -T2
+                        ∃∃L,U1. ⦃G1, L1⦄ ⊢ ➡[h, T1] L & ⦃G1, L⦄ ⊢ T1 ➡[h] U1 & ⦃G1, L, U1⦄ ⊐[b] ⦃G2, L2, U2⦄.
+#h #b #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -G1 -G2 -L1 -L2 -T1 -T2
 /3 width=5 by lfpr_pair, cpr_pair_sn, cpr_flat, cpm_bind, fqu_lref_O, fqu_pair_sn, fqu_bind_dx, fqu_flat_dx, ex3_2_intro/
-#I #G #L #V #U #T #HUT #U2 #HU2 elim (cpm_lifts_sn … HU2 (Ⓣ) … HUT) -U
-/3 width=9 by fqu_drop, drops_refl, drops_drop, ex3_2_intro/
+[ /5 width=5 by lsubr_cpm_trans, cpm_bind, lsubr_unit, fqu_clear, ex3_2_intro/
+| #I #G #L #U #T #HUT #U2 #HU2 elim (cpm_lifts_sn … HU2 (Ⓣ) … HUT) -U
+  /3 width=9 by fqu_drop, drops_refl, drops_drop, ex3_2_intro/
+]
 qed-.
 
 (* Basic_2A1: uses: fqu_lpr_trans *)
-lemma fqu_cpr_trans_sn: ∀h,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐ ⦃G2, L2, T2⦄ →
+lemma fqu_cpr_trans_sn: ∀h,b,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐[b] ⦃G2, L2, T2⦄ →
                         ∀U2. ⦃G2, L2⦄ ⊢ T2 ➡[h] U2 →
-                        ∃∃L,U1. ⦃G1, L1⦄ ⊢ ➡[h, T1] L & ⦃G1, L1⦄ ⊢ T1 ➡[h] U1 & ⦃G1, L, U1⦄ ⊐ ⦃G2, L2, U2⦄.
-#h #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -G1 -G2 -L1 -L2 -T1 -T2
+                        ∃∃L,U1. ⦃G1, L1⦄ ⊢ ➡[h, T1] L & ⦃G1, L1⦄ ⊢ T1 ➡[h] U1 & ⦃G1, L, U1⦄ ⊐[b] ⦃G2, L2, U2⦄.
+#h #b #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -G1 -G2 -L1 -L2 -T1 -T2
 /3 width=5 by lfpr_pair, cpr_pair_sn, cpr_flat, cpm_bind, fqu_lref_O, fqu_pair_sn, fqu_bind_dx, fqu_flat_dx, ex3_2_intro/
-#I #G #L #V #U #T #HUT #U2 #HU2 elim (cpm_lifts_sn … HU2 (Ⓣ) … HUT) -U
-/3 width=9 by fqu_drop, drops_refl, drops_drop, ex3_2_intro/
+[ /5 width=5 by lsubr_cpm_trans, cpm_bind, lsubr_unit, fqu_clear, ex3_2_intro/
+| #I #G #L #U #T #HUT #U2 #HU2 elim (cpm_lifts_sn … HU2 (Ⓣ) … HUT) -U
+  /3 width=9 by fqu_drop, drops_refl, drops_drop, ex3_2_intro/
+]
 qed-.
 
 (* Properties with optional supclosure **************************************)
 
-lemma fquq_cpr_trans_dx: ∀h,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐⸮ ⦃G2, L2, T2⦄ →
+lemma fquq_cpr_trans_dx: ∀h,b,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐⸮[b] ⦃G2, L2, T2⦄ →
                          ∀U2. ⦃G2, L2⦄ ⊢ T2 ➡[h] U2 →
-                         ∃∃L,U1. ⦃G1, L1⦄ ⊢ ➡[h, T1] L & ⦃G1, L⦄ ⊢ T1 ➡[h] U1 & ⦃G1, L, U1⦄ ⊐⸮ ⦃G2, L2, U2⦄.
-#h #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -H
+                         ∃∃L,U1. ⦃G1, L1⦄ ⊢ ➡[h, T1] L & ⦃G1, L⦄ ⊢ T1 ➡[h] U1 & ⦃G1, L, U1⦄ ⊐⸮[b] ⦃G2, L2, U2⦄.
+#h #b #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -H
 [ #HT12 #U2 #HTU2 elim (fqu_cpr_trans_dx … HT12 … HTU2) /3 width=5 by fqu_fquq, ex3_2_intro/
 | * #H1 #H2 #H3 destruct /2 width=5 by ex3_2_intro/
 ]
 qed-.
 
 (* Basic_2A1: uses: fquq_lpr_trans *)
-lemma fquq_cpr_trans_sn: ∀h,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐⸮ ⦃G2, L2, T2⦄ →
+lemma fquq_cpr_trans_sn: ∀h,b,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐⸮[b] ⦃G2, L2, T2⦄ →
                          ∀U2. ⦃G2, L2⦄ ⊢ T2 ➡[h] U2 →
-                         ∃∃L,U1. ⦃G1, L1⦄ ⊢ ➡[h, T1] L & ⦃G1, L1⦄ ⊢ T1 ➡[h] U1 & ⦃G1, L, U1⦄ ⊐⸮ ⦃G2, L2, U2⦄.
-#h #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -H
+                         ∃∃L,U1. ⦃G1, L1⦄ ⊢ ➡[h, T1] L & ⦃G1, L1⦄ ⊢ T1 ➡[h] U1 & ⦃G1, L, U1⦄ ⊐⸮[b] ⦃G2, L2, U2⦄.
+#h #b #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -H
 [ #HT12 #U2 #HTU2 elim (fqu_cpr_trans_sn … HT12 … HTU2) /3 width=5 by fqu_fquq, ex3_2_intro/
 | * #H1 #H2 #H3 destruct /2 width=5 by ex3_2_intro/
 ]
index 3c204dcd1971718ff346d75244212e38760d6b50..b79a65745998a33db73aea1a75cc1c419969cc24 100644 (file)
@@ -14,6 +14,7 @@
 
 include "basic_2/rt_transition/lfpx_frees.ma".
 include "basic_2/rt_transition/cpm_cpx.ma".
+include "basic_2/rt_transition/cpr_ext.ma".
 
 (* PARALLEL R-TRANSITION FOR LOCAL ENV.S ON REFERRED ENTRIES ****************)
 
@@ -22,5 +23,5 @@ include "basic_2/rt_transition/cpm_cpx.ma".
 lemma cpm_frees_conf: ∀n,h,G. R_frees_confluent (cpm n h G).
 /3 width=6 by cpm_fwd_cpx, cpx_frees_conf/ qed-.
 
-lemma lfpr_frees_conf: ∀h,G. lexs_frees_confluent (cpm 0 h G) cfull.
-/4 width=9 by cpm_fwd_cpx, lfpx_frees_conf, lexs_co/ qed-.
+lemma lfpr_frees_conf: ∀h,G. lexs_frees_confluent (cpr_ext h G) cfull.
+/5 width=9 by cpm_fwd_cpx, lfpx_frees_conf, lexs_co, cext2_co/ qed-.
index 7c6c22237058b6f64d9af569300d6e044f9fb72f..9f18311417f69cb0a391dbc87ae0874ea1f8c02f 100644 (file)
@@ -40,10 +40,10 @@ fact cpr_conf_lfpr_atom_delta:
    ∀L1. ⦃G, L0⦄ ⊢ ➡[h, #i] L1 → ∀L2. ⦃G, L0⦄ ⊢ ➡[h, #i] L2 →
    ∃∃T. ⦃G, L1⦄ ⊢ #i ➡[h] T & ⦃G, L2⦄ ⊢ T2 ➡[h] T.
 #h #G #L0 #i #IH #K0 #V0 #HLK0 #V2 #HV02 #T2 #HVT2 #L1 #HL01 #L2 #HL02
-elim (lfpr_inv_lref_sn … HL01 … HLK0) -HL01 #K1 #V1 #HLK1 #HK01 #HV01
-elim (lfpr_inv_lref_sn … HL02 … HLK0) -HL02 #K2 #W2 #HLK2 #HK02 #_
+elim (lfpr_inv_lref_pair_sn … HL01 … HLK0) -HL01 #K1 #V1 #HLK1 #HK01 #HV01
+elim (lfpr_inv_lref_pair_sn … HL02 … HLK0) -HL02 #K2 #W2 #HLK2 #HK02 #_
 lapply (drops_isuni_fwd_drop2 … HLK2) // -W2 #HLK2
-lapply (fqup_lref … G … HLK0) -HLK0 #HLK0
+lapply (fqup_lref (Ⓣ) … G … HLK0) -HLK0 #HLK0
 elim (IH … HLK0 … HV01 … HV02 … HK01 … HK02) -L0 -K0 -V0 #V #HV1 #HV2
 elim (cpm_lifts_sn … HV2 … HLK2 … HVT2) -K2 -V2
 /3 width=6 by cpm_delta_drops, ex2_intro/
@@ -66,11 +66,11 @@ fact cpr_conf_lfpr_delta_delta:
 #h #G #L0 #i #IH #K0 #V0 #HLK0 #V1 #HV01 #T1 #HVT1
 #KX #VX #H #V2 #HV02 #T2 #HVT2 #L1 #HL01 #L2 #HL02
 lapply (drops_mono … H … HLK0) -H #H destruct
-elim (lfpr_inv_lref_sn … HL01 … HLK0) -HL01 #K1 #W1 #HLK1 #HK01 #_
+elim (lfpr_inv_lref_pair_sn … HL01 … HLK0) -HL01 #K1 #W1 #HLK1 #HK01 #_
 lapply (drops_isuni_fwd_drop2 … HLK1) -W1 // #HLK1
-elim (lfpr_inv_lref_sn … HL02 … HLK0) -HL02 #K2 #W2 #HLK2 #HK02 #_
+elim (lfpr_inv_lref_pair_sn … HL02 … HLK0) -HL02 #K2 #W2 #HLK2 #HK02 #_
 lapply (drops_isuni_fwd_drop2 … HLK2) -W2 // #HLK2
-lapply (fqup_lref … G … HLK0) -HLK0 #HLK0
+lapply (fqup_lref (Ⓣ) … G … HLK0) -HLK0 #HLK0
 elim (IH … HLK0 … HV01 … HV02 … HK01 … HK02) -L0 -K0 -V0 #V #HV1 #HV2
 elim (cpm_lifts_sn … HV1 … HLK1 … HVT1) -K1 -V1 #T #HVT #HT1
 elim (cpm_lifts_sn … HV2 … HLK2 … HVT2) -K2 -V2 #X #HX #HT2
@@ -95,7 +95,7 @@ elim (lfpr_inv_bind … HL01) -HL01 #H1V0 #H1T0
 elim (lfpr_inv_bind … HL02) -HL02 #H2V0 #H2T0
 elim (IH … HV01 … HV02 … H1V0 … H2V0) //
 elim (IH … HT01 … HT02 (L1.ⓑ{I}V1) … (L2.ⓑ{I}V2)) -IH
-/3 width=5 by lfpr_pair_repl_dx, cpm_bind, ex2_intro/
+/3 width=5 by lfpr_bind_repl_dx, cpm_bind, ext2_pair, ex2_intro/
 qed-.
 
 fact cpr_conf_lfpr_bind_zeta:
@@ -113,7 +113,7 @@ fact cpr_conf_lfpr_bind_zeta:
 #T2 #HT02 #X2 #HXT2 #L1 #HL01 #L2 #HL02
 elim (lfpr_inv_bind … HL01) -HL01 #H1V0 #H1T0
 elim (lfpr_inv_bind … HL02) -HL02 #H2V0 #H2T0
-elim (IH … HT01 … HT02 (L1.ⓓV1) … (L2.ⓓV1)) -IH -HT01 -HT02 /2 width=4 by lfpr_pair_repl_dx/ -L0 -V0 -T0 #T #HT1 #HT2
+elim (IH … HT01 … HT02 (L1.ⓓV1) … (L2.ⓓV1)) -IH -HT01 -HT02 /3 width=4 by lfpr_bind_repl_dx, ext2_pair/ -L0 -V0 -T0 #T #HT1 #HT2
 elim (cpm_inv_lifts_sn … HT2 … L2 … HXT2) -T2 /3 width=3 by drops_refl, drops_drop, cpm_zeta, ex2_intro/
 qed-.
 
@@ -133,7 +133,7 @@ fact cpr_conf_lfpr_zeta_zeta:
 #T2 #HT02 #X2 #HXT2 #L1 #HL01 #L2 #HL02
 elim (lfpr_inv_bind … HL01) -HL01 #H1V0 #H1T0
 elim (lfpr_inv_bind … HL02) -HL02 #H2V0 #H2T0
-elim (IH … HT01 … HT02 (L1.ⓓV0) … (L2.ⓓV0)) -IH -HT01 -HT02 /2 width=4 by lfpr_pair_repl_dx/ -L0 -T0 #T #HT1 #HT2
+elim (IH … HT01 … HT02 (L1.ⓓV0) … (L2.ⓓV0)) -IH -HT01 -HT02 /3 width=4 by lfpr_bind_repl_dx, ext2_pair/ -L0 -T0 #T #HT1 #HT2
 elim (cpm_inv_lifts_sn … HT1 … L1 … HXT1) -T1 /3 width=2 by drops_refl, drops_drop/ #T1 #HT1 #HXT1
 elim (cpm_inv_lifts_sn … HT2 … L2 … HXT2) -T2 /3 width=2 by drops_refl, drops_drop/ #T2 #HT2 #HXT2
 lapply (lifts_inj … HT2 … HT1) -T #H destruct /2 width=3 by ex2_intro/
@@ -212,7 +212,7 @@ elim (lfpr_inv_flat … HL02) -HL02 #H2V0 #HL02
 elim (lfpr_inv_bind … HL02) -HL02 #H2W0 #H2T0
 elim (IH … HV01 … HV02 … H1V0 … H2V0) -HV01 -HV02 /2 width=1 by/ #V #HV1 #HV2
 elim (IH … HW01 … HW02 … H1W0 … H2W0) /2 width=1 by/ #W #HW1 #HW2
-elim (IH … HT01 … HT02 (L1.ⓛW1) … (L2.ⓛW2)) /2 width=4 by lfpr_pair_repl_dx/ -L0 -V0 -W0 -T0 #T #HT1 #HT2
+elim (IH … HT01 … HT02 (L1.ⓛW1) … (L2.ⓛW2)) /3 width=4 by lfpr_bind_repl_dx, ext2_pair/ -L0 -V0 -W0 -T0 #T #HT1 #HT2
 lapply (lsubr_cpm_trans … HT2 (L2.ⓓⓝW2.V2) ?) -HT2 /2 width=1 by lsubr_beta/ (**) (* full auto not tried *)
 /4 width=5 by cpm_bind, cpr_flat, cpm_beta, ex2_intro/
 qed-.
@@ -240,10 +240,10 @@ elim (cpm_lifts_sn … HV2 … (L2.ⓓW2) … HVU2) -HVU2 /3 width=2 by drops_re
 elim (cpm_inv_abbr1 … H) -H *
 [ #W1 #T1 #HW01 #HT01 #H destruct
   elim (IH … HW01 … HW02 … H1W0 … H2W0) /2 width=1 by/
-  elim (IH … HT01 … HT02 (L1.ⓓW1) … (L2.ⓓW2)) /2 width=4 by lfpr_pair_repl_dx/ -L0 -V0 -W0 -T0
+  elim (IH … HT01 … HT02 (L1.ⓓW1) … (L2.ⓓW2)) /3 width=4 by lfpr_bind_repl_dx, ext2_pair/ -L0 -V0 -W0 -T0
   /4 width=7 by cpm_bind, cpr_flat, cpm_theta, ex2_intro/
 | #T1 #HT01 #HXT1 #H destruct
-  elim (IH … HT01 … HT02 (L1.ⓓW2) … (L2.ⓓW2)) /2 width=4 by lfpr_pair_repl_dx/ -L0 -V0 -W0 -T0 #T #HT1 #HT2
+  elim (IH … HT01 … HT02 (L1.ⓓW2) … (L2.ⓓW2)) /3 width=4 by lfpr_bind_repl_dx, ext2_pair/ -L0 -V0 -W0 -T0 #T #HT1 #HT2
   elim (cpm_inv_lifts_sn … HT1 … L1 … HXT1) -HXT1
   /4 width=9 by cpr_flat, cpm_zeta, drops_refl, drops_drop, lifts_flat, ex2_intro/
 ]
@@ -268,7 +268,7 @@ elim (lfpr_inv_flat … HL02) -HL02 #H2V0 #HL02
 elim (lfpr_inv_bind … HL02) -HL02 #H2W0 #H2T0
 elim (IH … HV01 … HV02 … H1V0 … H2V0) -HV01 -HV02 /2 width=1 by/ #V #HV1 #HV2
 elim (IH … HW01 … HW02 … H1W0 … H2W0) /2 width=1/ #W #HW1 #HW2
-elim (IH … HT01 … HT02 (L1.ⓛW1) … (L2.ⓛW2)) /2 width=4 by lfpr_pair_repl_dx/ -L0 -V0 -W0 -T0 #T #HT1 #HT2
+elim (IH … HT01 … HT02 (L1.ⓛW1) … (L2.ⓛW2)) /3 width=4 by lfpr_bind_repl_dx, ext2_pair/ -L0 -V0 -W0 -T0 #T #HT1 #HT2
 lapply (lsubr_cpm_trans … HT1 (L1.ⓓⓝW1.V1) ?) -HT1 /2 width=1 by lsubr_beta/
 lapply (lsubr_cpm_trans … HT2 (L2.ⓓⓝW2.V2) ?) -HT2 /2 width=1 by lsubr_beta/
 /4 width=5 by cpm_bind, cpr_flat, ex2_intro/ (**) (* full auto not tried *)
@@ -296,7 +296,7 @@ elim (lfpr_inv_flat … HL02) -HL02 #H2V0 #HL02
 elim (lfpr_inv_bind … HL02) -HL02 #H2W0 #H2T0
 elim (IH … HV01 … HV02 … H1V0 … H2V0) -HV01 -HV02 /2 width=1 by/ #V #HV1 #HV2
 elim (IH … HW01 … HW02 … H1W0 … H2W0) /2 width=1 by/
-elim (IH … HT01 … HT02 (L1.ⓓW1) … (L2.ⓓW2)) /2 width=4 by lfpr_pair_repl_dx/ -L0 -V0 -W0 -T0
+elim (IH … HT01 … HT02 (L1.ⓓW1) … (L2.ⓓW2)) /3 width=4 by lfpr_bind_repl_dx, ext2_pair/ -L0 -V0 -W0 -T0
 elim (cpm_lifts_sn … HV1 … (L1.ⓓW1) … HVU1) -HVU1 /3 width=2 by drops_refl, drops_drop/ #U #HVU
 elim (cpm_lifts_sn … HV2 … (L2.ⓓW2) … HVU2) -HVU2 /3 width=2 by drops_refl, drops_drop/ #X #HX
 lapply (lifts_mono … HX … HVU) -HX #H destruct
@@ -304,7 +304,7 @@ lapply (lifts_mono … HX … HVU) -HX #H destruct
 qed-.
 
 theorem cpr_conf_lfpr: ∀h,G. R_confluent2_lfxs (cpm 0 h G) (cpm 0 h G) (cpm 0 h G) (cpm 0 h G).
-#h #G #L0 #T0 @(fqup_wf_ind_eq … G L0 T0) -G -L0 -T0 #G #L #T #IH #G0 #L0 * [| * ]
+#h #G #L0 #T0 @(fqup_wf_ind_eq (Ⓣ) … G L0 T0) -G -L0 -T0 #G #L #T #IH #G0 #L0 * [| * ]
 [ #I0 #HG #HL #HT #T1 #H1 #T2 #H2 #L1 #HL01 #L2 #HL02 destruct
   elim (cpr_inv_atom1_drops … H1) -H1
   elim (cpr_inv_atom1_drops … H2) -H2
@@ -381,3 +381,17 @@ qed-.
 
 theorem lfpr_conf: ∀h,G,T. confluent … (lfpr h G T).
 /3 width=6 by cpr_conf_lfpr, lfpr_frees_conf, lfxs_conf/ qed-.
+
+theorem lfpr_bind: ∀h,G,L1,L2,V1. ⦃G, L1⦄ ⊢ ➡[h, V1] L2 →
+                   ∀I,V2,T. ⦃G, L1.ⓑ{I}V1⦄ ⊢ ➡[h, T] L2.ⓑ{I}V2 →
+                   ∀p. ⦃G, L1⦄ ⊢ ➡[h, ⓑ{p,I}V1.T] L2.
+/2 width=2 by lfxs_bind/ qed.
+
+theorem lfpr_flat: ∀h,G,L1,L2,V. ⦃G, L1⦄ ⊢ ➡[h, V] L2 →
+                   ∀I,T. ⦃G, L1⦄ ⊢ ➡[h, T] L2 → ⦃G, L1⦄ ⊢ ➡[h, ⓕ{I}V.T] L2.
+/2 width=1 by lfxs_flat/ qed.
+
+theorem lfpr_bind_void: ∀h,G,L1,L2,V. ⦃G, L1⦄ ⊢ ➡[h, V] L2 →
+                        ∀T. ⦃G, L1.ⓧ⦄ ⊢ ➡[h, T] L2.ⓧ →
+                        ∀p,I. ⦃G, L1⦄ ⊢ ➡[h, ⓑ{p,I}V.T] L2.
+/2 width=1 by lfxs_bind_void/ qed.
index ac9ac42aa00af1045ccd2cb90f7c644cbd0ea90d..537bb8bc87ecdffae0556804809fe88ff874a9c2 100644 (file)
@@ -88,11 +88,11 @@ lemma lfpx_inv_gref: ∀h,G,Y1,Y2,l. ⦃G, Y1⦄ ⊢ ⬈[h, §l] Y2 →
 /2 width=1 by lfxs_inv_gref/ qed-.
 
 lemma lfpx_inv_bind: ∀h,p,I,G,L1,L2,V,T. ⦃G, L1⦄ ⊢ ⬈[h, ⓑ{p,I}V.T] L2 →
-                     â¦\83G, L1â¦\84 â\8a¢ â¬\88[h, V] L2 â\88§ ⦃G, L1.ⓑ{I}V⦄ ⊢ ⬈[h, T] L2.ⓑ{I}V.
+                     â\88§â\88§ â¦\83G, L1â¦\84 â\8a¢ â¬\88[h, V] L2 & ⦃G, L1.ⓑ{I}V⦄ ⊢ ⬈[h, T] L2.ⓑ{I}V.
 /2 width=2 by lfxs_inv_bind/ qed-.
 
 lemma lfpx_inv_flat: ∀h,I,G,L1,L2,V,T. ⦃G, L1⦄ ⊢ ⬈[h, ⓕ{I}V.T] L2 →
-                     â¦\83G, L1â¦\84 â\8a¢ â¬\88[h, V] L2 â\88§ ⦃G, L1⦄ ⊢ ⬈[h, T] L2.
+                     â\88§â\88§ â¦\83G, L1â¦\84 â\8a¢ â¬\88[h, V] L2 & ⦃G, L1⦄ ⊢ ⬈[h, T] L2.
 /2 width=2 by lfxs_inv_flat/ qed-.
 
 (* Advanced inversion lemmas ************************************************)
diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/lfpx_cpx.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/lfpx_cpx.ma
new file mode 100644 (file)
index 0000000..bf7dda1
--- /dev/null
@@ -0,0 +1,23 @@
+(**************************************************************************)
+(*       ___                                                              *)
+(*      ||M||                                                             *)
+(*      ||A||       A project by Andrea Asperti                           *)
+(*      ||T||                                                             *)
+(*      ||I||       Developers:                                           *)
+(*      ||T||         The HELM team.                                      *)
+(*      ||A||         http://helm.cs.unibo.it                             *)
+(*      \   /                                                             *)
+(*       \ /        This file is distributed under the terms of the       *)
+(*        v         GNU General Public License Version 2                  *)
+(*                                                                        *)
+(**************************************************************************)
+
+include "basic_2/rt_transition/cpx_lfxs.ma".
+include "basic_2/rt_transition/lfpx.ma".
+
+(* UNCOUNTED PARALLEL RT-TRANSITION FOR LOCAL ENV.S ON REFERRED ENTRIES *****)
+
+(* Advanced properties ******************************************************)
+
+lemma lfpx_cpx_conf: ∀h,G. s_r_confluent1 … (cpx h G) (lfpx h G).
+/2 width=5 by cpx_lfxs_conf/ qed-.
index 608907d5c3d8417e579eb9f23c5039fd3fbad3cc..1ad389cd4261d58b3d8f90910764f089646c80c5 100644 (file)
@@ -31,7 +31,7 @@ lemma lfpx_pair: ∀h,G,L,V1,V2. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 →
 (* Advanced inversion lemmas ************************************************)
 
 lemma lfpx_inv_bind_void: ∀h,p,I,G,L1,L2,V,T. ⦃G, L1⦄ ⊢ ⬈[h, ⓑ{p,I}V.T] L2 →
-                          â¦\83G, L1â¦\84 â\8a¢ â¬\88[h, V] L2 â\88§ ⦃G, L1.ⓧ⦄ ⊢ ⬈[h, T] L2.ⓧ.
+                          â\88§â\88§ â¦\83G, L1â¦\84 â\8a¢ â¬\88[h, V] L2 & ⦃G, L1.ⓧ⦄ ⊢ ⬈[h, T] L2.ⓧ.
 /2 width=3 by lfxs_inv_bind_void/ qed-.
 
 (* Advanced forward lemmas **************************************************)
index bf7dda13cbccddd972203551bad391254a5f0fe6..c63d7120e11ddb05b092b9fd0815d1e8965126ae 100644 (file)
 (*                                                                        *)
 (**************************************************************************)
 
-include "basic_2/rt_transition/cpx_lfxs.ma".
+include "basic_2/static/lfxs_lfxs.ma".
 include "basic_2/rt_transition/lfpx.ma".
 
 (* UNCOUNTED PARALLEL RT-TRANSITION FOR LOCAL ENV.S ON REFERRED ENTRIES *****)
 
-(* Advanced properties ******************************************************)
+(* Main properties **********************************************************)
 
-lemma lfpx_cpx_conf: ∀h,G. s_r_confluent1 … (cpx h G) (lfpx h G).
-/2 width=5 by cpx_lfxs_conf/ qed-.
+theorem lfpx_bind: ∀h,G,L1,L2,V1. ⦃G, L1⦄ ⊢ ⬈[h, V1] L2 →
+                   ∀I,V2,T. ⦃G, L1.ⓑ{I}V1⦄ ⊢ ⬈[h, T] L2.ⓑ{I}V2 →
+                   ∀p. ⦃G, L1⦄ ⊢ ⬈[h, ⓑ{p,I}V1.T] L2.
+/2 width=2 by lfxs_bind/ qed.
+
+theorem lfpx_flat: ∀h,G,L1,L2,V. ⦃G, L1⦄ ⊢ ⬈[h, V] L2 →
+                   ∀I,T. ⦃G, L1⦄ ⊢ ⬈[h, T] L2 → ⦃G, L1⦄ ⊢ ⬈[h, ⓕ{I}V.T] L2.
+/2 width=1 by lfxs_flat/ qed.
+
+theorem lfpx_bind_void: ∀h,G,L1,L2,V. ⦃G, L1⦄ ⊢ ⬈[h, V] L2 →
+                        ∀T. ⦃G, L1.ⓧ⦄ ⊢ ⬈[h, T] L2.ⓧ →
+                        ∀p,I. ⦃G, L1⦄ ⊢ ⬈[h, ⓑ{p,I}V.T] L2.
+/2 width=1 by lfxs_bind_void/ qed.
index 0fd7f15f7ad5a565b87c80b7332e952b6f6de914..20aead46a0389a1a16e6ea1af414c05c0d078403 100644 (file)
@@ -63,15 +63,15 @@ table {
      }
    ]
 *)
-(*
    class "blue"
-   [ { "conversion" * } {
+   [ { "rt-conversion" * } {
         [ { "context-sensitive r-conversion" * } {
              [ "cpc ( ⦃?,?⦄ ⊢ ? ⬌[?] ? )" "cpc_cpc" * ]
           }
         ]
      }
    ]
+(*
    class "sky"
    [ { "rt-computation" * } {
 (*
@@ -132,16 +132,17 @@ table {
              [ "fpb ( ⦃?,?,?⦄ ≻[?,?] ⦃?,?,?⦄ )" "fpb_lfdeq" * ]
           }
         ]
+*)
         [ { "t-bound context-sensitive rt-transition" * } {
              [ "lfpr ( ⦃?,?⦄ ⊢ ➡[?,?] ? )" "lfpr_length" + "lfpr_drops" + "lfpr_fquq" + "lfpr_fqup" + "lfpr_frees" + "lfpr_aaa" + "lfpr_lfpx" + "lfpr_lfpr" * ]
+             [ "cpr_ext ( ⦃?,?⦄ ⊢ ? ➡[?] ? )" * ]
              [ "cpr ( ⦃?,?⦄ ⊢ ? ➡[?] ? )" "cpr_drops" * ]
              [ "cpm ( ⦃?,?⦄ ⊢ ? ➡[?,?] ? )" "cpm_simple" + "cpm_drops" + "cpm_lsubr" + "cpm_lfxs" + "cpm_cpx" * ]
           }
         ]
-*)
         [ { "uncounted context-sensitive rt-transition" * } {
              [ "cnx ( ⦃?,?⦄ ⊢ ⬈[?,?] 𝐍⦃?⦄ )" "cnx_simple" + "cnx_drops" + "cnx_cnx" * ]
-             [ "lfpx ( ⦃?,?⦄ ⊢ ⬈[?,?] ? )" "lfpx_length" + "lfpx_drops" + "lfpx_fqup" + "lfpx_frees" + "lfpx_lfdeq" + "lfpx_aaa" + "lfpx_lfpx" * ]
+             [ "lfpx ( ⦃?,?⦄ ⊢ ⬈[?,?] ? )" "lfpx_length" + "lfpx_drops" + "lfpx_fqup" + "lfpx_frees" + "lfpx_lfdeq" + "lfpx_aaa" + "lfpx_cpx" + "lfpx_lfpx" * ]
              [ "cpx_ext ( ⦃?,?⦄ ⊢ ? ⬈[?] ? )" * ]
              [ "cpx ( ⦃?,?⦄ ⊢ ? ⬈[?] ? )" "cpx_simple" + "cpx_drops" + "cpx_fqus" + "cpx_lsubr" + "cpx_lfxs" * ]
           }
@@ -245,7 +246,7 @@ table {
           }
         ]
         [ { "degree-based equivalence" * } {
-             [ "tdeq_ext ( ? ≡[?,?] ? )" * ]
+             [ "tdeq_ext ( ? ≡[?,?] ? ) ( ? ⊢ ? ≡[?,?] ? )" * ]
              [ "tdeq ( ? ≡[?,?] ? )" "tdeq_tdeq" * ]
           }
         ]
index 909355c6022c6829a21a7b4e366bee2fc1170663..1661bc1f1f2e2c6b8fb25e374f765369a34e5dd2 100644 (file)
@@ -6,5 +6,5 @@ basic_2/s_computation
 basic_2/static
 basic_2/i_static
 basic_2/rt_transition
-basic_2/conversion
+basic_2/rt_conversion
 apps_2/examples/ex_cpr_omega.ma