+++ /dev/null
-(**************************************************************************)
-(* ___ *)
-(* ||M|| *)
-(* ||A|| A project by Andrea Asperti *)
-(* ||T|| *)
-(* ||I|| Developers: *)
-(* ||T|| The HELM team. *)
-(* ||A|| http://helm.cs.unibo.it *)
-(* \ / *)
-(* \ / This file is distributed under the terms of the *)
-(* v GNU General Public License Version 2 *)
-(* *)
-(**************************************************************************)
-
-include "basic_2/notation/relations/pconv_5.ma".
-include "basic_2/rt_transition/cpm.ma".
-
-(* CONTEXT-SENSITIVE PARALLEL R-CONVERSION FOR TERMS ************************)
-
-definition cpc: sh → relation4 genv lenv term term ≝
- λh,G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ➡[h] T2 ∨ ⦃G, L⦄ ⊢ T2 ➡[h] T1.
-
-interpretation
- "context-sensitive parallel r-conversion (term)"
- 'PConv h G L T1 T2 = (cpc h G L T1 T2).
-
-(* Basic properties *********************************************************)
-
-lemma cpc_refl: ∀h,G,L. reflexive … (cpc h G L).
-/2 width=1 by or_intror/ qed.
-
-lemma cpc_sym: ∀h,G,L. symmetric … (cpc h L G).
-#h #G #L #T1 #T2 * /2 width=1 by or_introl, or_intror/
-qed-.
-
-(* Basic forward lemmas *****************************************************)
-
-lemma cpc_fwd_cpr: ∀h,G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ⬌[h] T2 →
- ∃∃T. ⦃G, L⦄ ⊢ T1 ➡[h] T & ⦃G, L⦄ ⊢ T2 ➡[h] T.
-#h #G #L #T1 #T2 * /2 width=3 by ex2_intro/
-qed-.
+++ /dev/null
-(**************************************************************************)
-(* ___ *)
-(* ||M|| *)
-(* ||A|| A project by Andrea Asperti *)
-(* ||T|| *)
-(* ||I|| Developers: *)
-(* ||T|| The HELM team. *)
-(* ||A|| http://helm.cs.unibo.it *)
-(* \ / *)
-(* \ / This file is distributed under the terms of the *)
-(* v GNU General Public License Version 2 *)
-(* *)
-(**************************************************************************)
-
-include "basic_2/conversion/cpc.ma".
-
-(* CONTEXT-SENSITIVE PARALLEL R-CONVERSION FOR TERMS ************************)
-
-(* Main properties **********************************************************)
-
-theorem cpc_conf: ∀h,G,L,T0,T1,T2. ⦃G, L⦄ ⊢ T0 ⬌[h] T1 → ⦃G, L⦄ ⊢ T0 ⬌[h] T2 →
- ∃∃T. ⦃G, L⦄ ⊢ T1 ⬌[h] T & ⦃G, L⦄ ⊢ T2 ⬌[h] T.
-/3 width=3 by cpc_sym, ex2_intro/ qed-.
--- /dev/null
+(* Advanced properties ******************************************************)
+
+(* Basic_1: was by definition: pr2_free *)
+(* Basic_2A1: includes: tpr_cpr *)
+lemma tpm_cpm: ∀n,h,G,T1,T2. ⦃G, ⋆⦄ ⊢ T1 ➡[n, h] T2 → ∀L. ⦃G, L⦄ ⊢ T1 ➡[n, h] T2.
+#n #h #G #T1 #T2 #HT12 #L lapply (lsubr_cpm_trans … HT12 L ?) //
+qed.
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+include "basic_2/notation/relations/pconv_5.ma".
+include "basic_2/rt_transition/cpm.ma".
+
+(* CONTEXT-SENSITIVE PARALLEL R-CONVERSION FOR TERMS ************************)
+
+definition cpc: sh → relation4 genv lenv term term ≝
+ λh,G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ➡[h] T2 ∨ ⦃G, L⦄ ⊢ T2 ➡[h] T1.
+
+interpretation
+ "context-sensitive parallel r-conversion (term)"
+ 'PConv h G L T1 T2 = (cpc h G L T1 T2).
+
+(* Basic properties *********************************************************)
+
+lemma cpc_refl: ∀h,G,L. reflexive … (cpc h G L).
+/2 width=1 by or_intror/ qed.
+
+lemma cpc_sym: ∀h,G,L. symmetric … (cpc h L G).
+#h #G #L #T1 #T2 * /2 width=1 by or_introl, or_intror/
+qed-.
+
+(* Basic forward lemmas *****************************************************)
+
+lemma cpc_fwd_cpr: ∀h,G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ⬌[h] T2 →
+ ∃∃T. ⦃G, L⦄ ⊢ T1 ➡[h] T & ⦃G, L⦄ ⊢ T2 ➡[h] T.
+#h #G #L #T1 #T2 * /2 width=3 by ex2_intro/
+qed-.
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+include "basic_2/rt_conversion/cpc.ma".
+
+(* CONTEXT-SENSITIVE PARALLEL R-CONVERSION FOR TERMS ************************)
+
+(* Main properties **********************************************************)
+
+theorem cpc_conf: ∀h,G,L,T0,T1,T2. ⦃G, L⦄ ⊢ T0 ⬌[h] T1 → ⦃G, L⦄ ⊢ T0 ⬌[h] T2 →
+ ∃∃T. ⦃G, L⦄ ⊢ T1 ⬌[h] T & ⦃G, L⦄ ⊢ T2 ⬌[h] T.
+/3 width=3 by cpc_sym, ex2_intro/ qed-.
/2 width=3 by cpg_inv_atom1_aux/ qed-.
lemma cpg_inv_sort1: ∀Rt,c,h,G,L,T2,s. ⦃G, L⦄ ⊢ ⋆s ⬈[Rt, c, h] T2 →
- (T2 = ⋆s ∧ c = 𝟘𝟘) ∨ (T2 = ⋆(next h s) ∧ c = 𝟘𝟙).
+ ∨∨ T2 = ⋆s ∧ c = 𝟘𝟘 | T2 = ⋆(next h s) ∧ c = 𝟘𝟙.
#Rt #c #h #G #L #T2 #s #H
elim (cpg_inv_atom1 … H) -H * /3 width=1 by or_introl, conj/
[ #s0 #H destruct /3 width=1 by or_intror, conj/
qed-.
lemma cpg_inv_zero1: ∀Rt,c,h,G,L,T2. ⦃G, L⦄ ⊢ #0 ⬈[Rt, c, h] T2 →
- ∨∨ (T2 = #0 ∧ c = 𝟘𝟘)
+ ∨∨ T2 = #0 ∧ c = 𝟘𝟘
| ∃∃cV,K,V1,V2. ⦃G, K⦄ ⊢ V1 ⬈[Rt, cV, h] V2 & ⬆*[1] V2 ≡ T2 &
L = K.ⓓV1 & c = cV
| ∃∃cV,K,V1,V2. ⦃G, K⦄ ⊢ V1 ⬈[Rt, cV, h] V2 & ⬆*[1] V2 ≡ T2 &
qed-.
lemma cpg_inv_lref1: ∀Rt,c,h,G,L,T2,i. ⦃G, L⦄ ⊢ #⫯i ⬈[Rt, c, h] T2 →
- (T2 = #(⫯i) ∧ c = 𝟘𝟘) ∨
- ∃∃I,K,T. ⦃G, K⦄ ⊢ #i ⬈[Rt, c, h] T & ⬆*[1] T ≡ T2 & L = K.ⓘ{I}.
+ ∨∨ T2 = #(⫯i) ∧ c = 𝟘𝟘
+ | ∃∃I,K,T. ⦃G, K⦄ ⊢ #i ⬈[Rt, c, h] T & ⬆*[1] T ≡ T2 & L = K.ⓘ{I}.
#Rt #c #h #G #L #T2 #i #H
elim (cpg_inv_atom1 … H) -H * /3 width=1 by or_introl, conj/
[ #s #H destruct
qed-.
fact cpg_inv_bind1_aux: ∀Rt,c,h,G,L,U,U2. ⦃G, L⦄ ⊢ U ⬈[Rt, c, h] U2 →
- ∀p,J,V1,U1. U = ⓑ{p,J}V1.U1 → (
- ∃∃cV,cT,V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[Rt, cV, h] V2 & ⦃G, L.ⓑ{J}V1⦄ ⊢ U1 ⬈[Rt, cT, h] T2 &
- U2 = ⓑ{p,J}V2.T2 & c = ((↓cV)∨cT)
- ) ∨
- ∃∃cT,T. ⦃G, L.ⓓV1⦄ ⊢ U1 ⬈[Rt, cT, h] T & ⬆*[1] U2 ≡ T &
- p = true & J = Abbr & c = cT+𝟙𝟘.
+ ∀p,J,V1,U1. U = ⓑ{p,J}V1.U1 →
+ ∨∨ ∃∃cV,cT,V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[Rt, cV, h] V2 & ⦃G, L.ⓑ{J}V1⦄ ⊢ U1 ⬈[Rt, cT, h] T2 &
+ U2 = ⓑ{p,J}V2.T2 & c = ((↓cV)∨cT)
+ | ∃∃cT,T. ⦃G, L.ⓓV1⦄ ⊢ U1 ⬈[Rt, cT, h] T & ⬆*[1] U2 ≡ T &
+ p = true & J = Abbr & c = cT+𝟙𝟘.
#Rt #c #h #G #L #U #U2 * -c -G -L -U -U2
[ #I #G #L #q #J #W #U1 #H destruct
| #G #L #s #q #J #W #U1 #H destruct
]
qed-.
-lemma cpg_inv_bind1: ∀Rt,c,h,p,I,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓑ{p,I}V1.T1 ⬈[Rt, c, h] U2 → (
- ∃∃cV,cT,V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[Rt, cV, h] V2 & ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ⬈[Rt, cT, h] T2 &
- U2 = ⓑ{p,I}V2.T2 & c = ((↓cV)∨cT)
- ) ∨
- ∃∃cT,T. ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[Rt, cT, h] T & ⬆*[1] U2 ≡ T &
- p = true & I = Abbr & c = cT+𝟙𝟘.
+lemma cpg_inv_bind1: ∀Rt,c,h,p,I,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓑ{p,I}V1.T1 ⬈[Rt, c, h] U2 →
+ ∨∨ ∃∃cV,cT,V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[Rt, cV, h] V2 & ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ⬈[Rt, cT, h] T2 &
+ U2 = ⓑ{p,I}V2.T2 & c = ((↓cV)∨cT)
+ | ∃∃cT,T. ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[Rt, cT, h] T & ⬆*[1] U2 ≡ T &
+ p = true & I = Abbr & c = cT+𝟙𝟘.
/2 width=3 by cpg_inv_bind1_aux/ qed-.
-lemma cpg_inv_abbr1: ∀Rt,c,h,p,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓓ{p}V1.T1 ⬈[Rt, c, h] U2 → (
- ∃∃cV,cT,V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[Rt, cV, h] V2 & ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[Rt, cT, h] T2 &
- U2 = ⓓ{p}V2.T2 & c = ((↓cV)∨cT)
- ) ∨
- ∃∃cT,T. ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[Rt, cT, h] T & ⬆*[1] U2 ≡ T &
- p = true & c = cT+𝟙𝟘.
+lemma cpg_inv_abbr1: ∀Rt,c,h,p,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓓ{p}V1.T1 ⬈[Rt, c, h] U2 →
+ ∨∨ ∃∃cV,cT,V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[Rt, cV, h] V2 & ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[Rt, cT, h] T2 &
+ U2 = ⓓ{p}V2.T2 & c = ((↓cV)∨cT)
+ | ∃∃cT,T. ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[Rt, cT, h] T & ⬆*[1] U2 ≡ T &
+ p = true & c = cT+𝟙𝟘.
#Rt #c #h #p #G #L #V1 #T1 #U2 #H elim (cpg_inv_bind1 … H) -H *
/3 width=8 by ex4_4_intro, ex4_2_intro, or_introl, or_intror/
qed-.
(* Advanced inversion lemmas ************************************************)
lemma cpg_inv_zero1_pair: ∀Rt,c,h,I,G,K,V1,T2. ⦃G, K.ⓑ{I}V1⦄ ⊢ #0 ⬈[Rt, c, h] T2 →
- ∨∨ (T2 = #0 ∧ c = 𝟘𝟘)
+ ∨∨ T2 = #0 ∧ c = 𝟘𝟘
| ∃∃cV,V2. ⦃G, K⦄ ⊢ V1 ⬈[Rt, cV, h] V2 & ⬆*[1] V2 ≡ T2 &
I = Abbr & c = cV
| ∃∃cV,V2. ⦃G, K⦄ ⊢ V1 ⬈[Rt, cV, h] V2 & ⬆*[1] V2 ≡ T2 &
qed-.
lemma cpg_inv_lref1_bind: ∀Rt,c,h,I,G,K,T2,i. ⦃G, K.ⓘ{I}⦄ ⊢ #⫯i ⬈[Rt, c, h] T2 →
- (T2 = #(⫯i) ∧ c = 𝟘𝟘) ∨
- ∃∃T. ⦃G, K⦄ ⊢ #i ⬈[Rt, c, h] T & ⬆*[1] T ≡ T2.
+ ∨∨ T2 = #(⫯i) ∧ c = 𝟘𝟘
+ | ∃∃T. ⦃G, K⦄ ⊢ #i ⬈[Rt, c, h] T & ⬆*[1] T ≡ T2.
#Rt #c #h #I #G #L #T2 #i #H elim (cpg_inv_lref1 … H) -H /2 width=1 by or_introl/
* #Z #Y #T #HT #HT2 #H destruct /3 width=3 by ex2_intro, or_intror/
qed-.
/3 width=5 by cpg_ell, ex2_intro, isrt_succ/
qed.
-lemma cpm_lref: ∀n,h,I,G,K,V,T,U,i. ⦃G, K⦄ ⊢ #i ➡[n, h] T →
- â¬\86*[1] T â\89¡ U â\86\92 â¦\83G, K.â\93\91{I}V⦄ ⊢ #⫯i ➡[n, h] U.
-#n #h #I #G #K #V #T #U #i *
+lemma cpm_lref: ∀n,h,I,G,K,T,U,i. ⦃G, K⦄ ⊢ #i ➡[n, h] T →
+ â¬\86*[1] T â\89¡ U â\86\92 â¦\83G, K.â\93\98{I}⦄ ⊢ #⫯i ➡[n, h] U.
+#n #h #I #G #K #T #U #i *
/3 width=5 by cpg_lref, ex2_intro/
qed.
L = K.ⓓV1 & J = LRef 0
| ∃∃k,K,V1,V2. ⦃G, K⦄ ⊢ V1 ➡[k, h] V2 & ⬆*[1] V2 ≡ T2 &
L = K.ⓛV1 & J = LRef 0 & n = ⫯k
- | ∃∃I,K,V,T,i. ⦃G, K⦄ ⊢ #i ➡[n, h] T & ⬆*[1] T ≡ T2 &
- L = K.ⓑ{I}V & J = LRef (⫯i).
+ | ∃∃I,K,T,i. ⦃G, K⦄ ⊢ #i ➡[n, h] T & ⬆*[1] T ≡ T2 &
+ L = K.ⓘ{I} & J = LRef (⫯i).
#n #h #J #G #L #T2 * #c #Hc #H elim (cpg_inv_atom1 … H) -H *
[ #H1 #H2 destruct /4 width=1 by isrt_inv_00, or5_intro0, conj/
| #s #H1 #H2 #H3 destruct /4 width=3 by isrt_inv_01, or5_intro1, ex3_intro/
| #cV #K #V1 #V2 #HV12 #HVT2 #H1 #H2 #H3 destruct
elim (isrt_inv_plus_SO_dx … Hc) -Hc // #k #Hc #H destruct
/4 width=9 by or5_intro3, ex5_4_intro, ex2_intro/
-| #I #K #V1 #V2 #i #HV2 #HVT2 #H1 #H2 destruct
- /4 width=9 by or5_intro4, ex4_5_intro, ex2_intro/
+| #I #K #V2 #i #HV2 #HVT2 #H1 #H2 destruct
+ /4 width=8 by or5_intro4, ex4_4_intro, ex2_intro/
]
qed-.
lemma cpm_inv_sort1: ∀n,h,G,L,T2,s. ⦃G, L⦄ ⊢ ⋆s ➡[n,h] T2 →
- (T2 = ⋆s ∧ n = 0) ∨
- (T2 = ⋆(next h s) ∧ n = 1).
+ ∨∨ T2 = ⋆s ∧ n = 0
+ | T2 = ⋆(next h s) ∧ n = 1.
#n #h #G #L #T2 #s * #c #Hc #H elim (cpg_inv_sort1 … H) -H *
#H1 #H2 destruct
/4 width=1 by isrt_inv_01, isrt_inv_00, or_introl, or_intror, conj/
qed-.
lemma cpm_inv_zero1: ∀n,h,G,L,T2. ⦃G, L⦄ ⊢ #0 ➡[n, h] T2 →
- ∨∨ (T2 = #0 ∧ n = 0)
+ ∨∨ T2 = #0 ∧ n = 0
| ∃∃K,V1,V2. ⦃G, K⦄ ⊢ V1 ➡[n, h] V2 & ⬆*[1] V2 ≡ T2 &
L = K.ⓓV1
| ∃∃k,K,V1,V2. ⦃G, K⦄ ⊢ V1 ➡[k, h] V2 & ⬆*[1] V2 ≡ T2 &
qed-.
lemma cpm_inv_lref1: ∀n,h,G,L,T2,i. ⦃G, L⦄ ⊢ #⫯i ➡[n, h] T2 →
- (T2 = #(⫯i) ∧ n = 0) ∨
- ∃∃I,K,V,T. ⦃G, K⦄ ⊢ #i ➡[n, h] T & ⬆*[1] T ≡ T2 & L = K.ⓑ{I}V.
+ ∨∨ T2 = #(⫯i) ∧ n = 0
+ | ∃∃I,K,T. ⦃G, K⦄ ⊢ #i ➡[n, h] T & ⬆*[1] T ≡ T2 & L = K.ⓘ{I}.
#n #h #G #L #T2 #i * #c #Hc #H elim (cpg_inv_lref1 … H) -H *
[ #H1 #H2 destruct /4 width=1 by isrt_inv_00, or_introl, conj/
-| #I #K #V1 #V2 #HV2 #HVT2 #H1 destruct
- /4 width=7 by ex3_4_intro, ex2_intro, or_intror/
+| #I #K #V2 #HV2 #HVT2 #H destruct
+ /4 width=6 by ex3_3_intro, ex2_intro, or_intror/
]
qed-.
qed-.
(* Basic_2A1: includes: cpr_inv_bind1 *)
-lemma cpm_inv_bind1: ∀n,h,p,I,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓑ{p,I}V1.T1 ➡[n, h] U2 → (
- ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ➡[n, h] T2 &
- U2 = ⓑ{p,I}V2.T2
- ) ∨
- ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ➡[n, h] T & ⬆*[1] U2 ≡ T &
- p = true & I = Abbr.
+lemma cpm_inv_bind1: ∀n,h,p,I,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓑ{p,I}V1.T1 ➡[n, h] U2 →
+ ∨∨ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ➡[n, h] T2 &
+ U2 = ⓑ{p,I}V2.T2
+ | ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ➡[n, h] T & ⬆*[1] U2 ≡ T &
+ p = true & I = Abbr.
#n #h #p #I #G #L #V1 #T1 #U2 * #c #Hc #H elim (cpg_inv_bind1 … H) -H *
[ #cV #cT #V2 #T2 #HV12 #HT12 #H1 #H2 destruct
elim (isrt_inv_max … Hc) -Hc #nV #nT #HcV #HcT #H destruct
(* Basic_1: includes: pr0_gen_abbr pr2_gen_abbr *)
(* Basic_2A1: includes: cpr_inv_abbr1 *)
-lemma cpm_inv_abbr1: ∀n,h,p,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓓ{p}V1.T1 ➡[n, h] U2 → (
- ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L.ⓓV1⦄ ⊢ T1 ➡[n, h] T2 &
- U2 = ⓓ{p}V2.T2
- ) ∨
- ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ➡[n, h] T & ⬆*[1] U2 ≡ T & p = true.
+lemma cpm_inv_abbr1: ∀n,h,p,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓓ{p}V1.T1 ➡[n, h] U2 →
+ ∨∨ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L.ⓓV1⦄ ⊢ T1 ➡[n, h] T2 &
+ U2 = ⓓ{p}V2.T2
+ | ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ➡[n, h] T & ⬆*[1] U2 ≡ T & p = true.
#n #h #p #G #L #V1 #T1 #U2 * #c #Hc #H elim (cpg_inv_abbr1 … H) -H *
[ #cV #cT #V2 #T2 #HV12 #HT12 #H1 #H2 destruct
elim (isrt_inv_max … Hc) -Hc #nV #nT #HcV #HcT #H destruct
| ∃∃s. T2 = ⋆(next h s) & I = Sort s & n = 1
| ∃∃K,V,V2,i. ⬇*[i] L ≡ K.ⓓV & ⦃G, K⦄ ⊢ V ➡[n, h] V2 &
⬆*[⫯i] V2 ≡ T2 & I = LRef i
- | ∃∃k,K,V,V2,i. ⬇*[i] L ≡ K.ⓛV & ⦃G, K⦄ ⊢ V ➡[k, h] V2 &
- ⬆*[⫯i] V2 ≡ T2 & I = LRef i & n = ⫯k.
+ | ∃∃m,K,V,V2,i. ⬇*[i] L ≡ K.ⓛV & ⦃G, K⦄ ⊢ V ➡[m, h] V2 &
+ ⬆*[⫯i] V2 ≡ T2 & I = LRef i & n = ⫯m.
#n #h #I #G #L #T2 * #c #Hc #H elim (cpg_inv_atom1_drops … H) -H *
[ #H1 #H2 destruct lapply (isrt_inv_00 … Hc) -Hc
/3 width=1 by or4_intro0, conj/
lemma cpm_inv_lref1_drops: ∀n,h,G,L,T2,i. ⦃G, L⦄ ⊢ #i ➡[n, h] T2 →
∨∨ T2 = #i ∧ n = 0
- | ∃∃K,V,V2. ⬇*[i] L ≡ K. ⓓV & ⦃G, K⦄ ⊢ V ➡[n, h] V2 &
+ | ∃∃K,V,V2. ⬇*[i] L ≡ K.ⓓV & ⦃G, K⦄ ⊢ V ➡[n, h] V2 &
⬆*[⫯i] V2 ≡ T2
- | ∃∃k,K,V,V2. ⬇*[i] L ≡ K. ⓛV & ⦃G, K⦄ ⊢ V ➡[k, h] V2 &
- ⬆*[⫯i] V2 ≡ T2 & n = ⫯k.
+ | ∃∃m,K,V,V2. ⬇*[i] L ≡ K. ⓛV & ⦃G, K⦄ ⊢ V ➡[m, h] V2 &
+ ⬆*[⫯i] V2 ≡ T2 & n = ⫯m.
#n #h #G #L #T2 #i * #c #Hc #H elim (cpg_inv_lref1_drops … H) -H *
[ #H1 #H2 destruct lapply (isrt_inv_00 … Hc) -Hc
/3 width=1 by or3_intro0, conj/
(* Basic_1: includes: pr0_lift pr2_lift *)
(* Basic_2A1: includes: cpr_lift *)
-lemma cpm_lifts_sn: ∀n,h,G. d_liftable2_sn (cpm n h G).
+lemma cpm_lifts_sn: ∀n,h,G. d_liftable2_sn … lifts (cpm n h G).
#n #h #G #K #T1 #T2 * #c #Hc #HT12 #b #f #L #HLK #U1 #HTU1
elim (cpg_lifts_sn … HT12 … HLK … HTU1) -K -T1
/3 width=5 by ex2_intro/
qed-.
-lemma cpm_lifts_bi: ∀n,h,G. d_liftable2_bi (cpm n h G).
-/3 width=9 by cpm_lifts_sn, d_liftable2_sn_bi/ qed-.
+lemma cpm_lifts_bi: ∀n,h,G. d_liftable2_bi … lifts (cpm n h G).
+#n #h #G #K #T1 #T2 * /3 width=11 by cpg_lifts_bi, ex2_intro/
+qed-.
(* Inversion lemmas with generic slicing for local environments *************)
(* Basic_1: includes: pr0_gen_lift pr2_gen_lift *)
(* Basic_2A1: includes: cpr_inv_lift1 *)
-lemma cpm_inv_lifts_sn: ∀n,h,G. d_deliftable2_sn (cpm n h G).
+lemma cpm_inv_lifts_sn: ∀n,h,G. d_deliftable2_sn … lifts (cpm n h G).
#n #h #G #L #U1 #U2 * #c #Hc #HU12 #b #f #K #HLK #T1 #HTU1
elim (cpg_inv_lifts_sn … HU12 … HLK … HTU1) -L -U1
/3 width=5 by ex2_intro/
qed-.
-lemma cpm_inv_lifts_bi: ∀n,h,G. d_deliftable2_bi (cpm n h G).
-/3 width=9 by cpm_inv_lifts_sn, d_deliftable2_sn_bi/ qed-.
+lemma cpm_inv_lifts_bi: ∀n,h,G. d_deliftable2_bi … lifts (cpm n h G).
+#n #h #G #L #U1 #U2 * /3 width=11 by cpg_inv_lifts_bi, ex2_intro/
+qed-.
lemma lsubr_cpm_trans: ∀n,h,G. lsub_trans … (cpm n h G) lsubr.
#n #h #G #L1 #T1 #T2 * /3 width=5 by lsubr_cpg_trans, ex2_intro/
qed-.
-
-(* Advanced properties ******************************************************)
-
-(* Basic_1: was by definition: pr2_free *)
-(* Basic_2A1: includes: tpr_cpr *)
-lemma tpm_cpm: ∀n,h,G,T1,T2. ⦃G, ⋆⦄ ⊢ T1 ➡[n, h] T2 → ∀L. ⦃G, L⦄ ⊢ T1 ➡[n, h] T2.
-#n #h #G #T1 #T2 #HT12 #L lapply (lsubr_cpm_trans … HT12 L ?) //
-qed.
∨∨ T2 = ⓪{J}
| ∃∃K,V1,V2. ⦃G, K⦄ ⊢ V1 ➡[h] V2 & ⬆*[1] V2 ≡ T2 &
L = K.ⓓV1 & J = LRef 0
- | ∃∃I,K,V,T,i. ⦃G, K⦄ ⊢ #i ➡[h] T & ⬆*[1] T ≡ T2 &
- L = K.ⓑ{I}V & J = LRef (⫯i).
+ | ∃∃I,K,T,i. ⦃G, K⦄ ⊢ #i ➡[h] T & ⬆*[1] T ≡ T2 &
+ L = K.ⓘ{I} & J = LRef (⫯i).
#h #J #G #L #T2 #H elim (cpm_inv_atom1 … H) -H *
-/3 width=9 by or3_intro0, or3_intro1, or3_intro2, ex4_5_intro, ex4_3_intro/
-[ #n #_ #_ #H destruct
-| #n #K #V1 #V2 #_ #_ #_ #_ #H destruct
-]
+/3 width=8 by tri_lt, or3_intro0, or3_intro1, or3_intro2, ex4_4_intro, ex4_3_intro/
+#n #_ #_ #H destruct
qed-.
(* Basic_1: includes: pr0_gen_sort pr2_gen_sort *)
qed-.
lemma cpr_inv_zero1: ∀h,G,L,T2. ⦃G, L⦄ ⊢ #0 ➡[h] T2 →
- T2 = #0 ∨
- ∃∃K,V1,V2. ⦃G, K⦄ ⊢ V1 ➡[h] V2 & ⬆*[1] V2 ≡ T2 &
- L = K.ⓓV1.
+ ∨∨ T2 = #0
+ | ∃∃K,V1,V2. ⦃G, K⦄ ⊢ V1 ➡[h] V2 & ⬆*[1] V2 ≡ T2 &
+ L = K.ⓓV1.
#h #G #L #T2 #H elim (cpm_inv_zero1 … H) -H *
/3 width=6 by ex3_3_intro, or_introl, or_intror/
#n #K #V1 #V2 #_ #_ #_ #H destruct
qed-.
lemma cpr_inv_lref1: ∀h,G,L,T2,i. ⦃G, L⦄ ⊢ #⫯i ➡[h] T2 →
- T2 = #(⫯i) ∨
- ∃∃I,K,V,T. ⦃G, K⦄ ⊢ #i ➡[h] T & ⬆*[1] T ≡ T2 & L = K.ⓑ{I}V.
+ ∨∨ T2 = #(⫯i)
+ | ∃∃I,K,T. ⦃G, K⦄ ⊢ #i ➡[h] T & ⬆*[1] T ≡ T2 & L = K.ⓘ{I}.
#h #G #L #T2 #i #H elim (cpm_inv_lref1 … H) -H *
-/3 width=7 by ex3_4_intro, or_introl, or_intror/
+/3 width=6 by ex3_3_intro, or_introl, or_intror/
qed-.
lemma cpr_inv_gref1: ∀h,G,L,T2,l. ⦃G, L⦄ ⊢ §l ➡[h] T2 → T2 = §l.
qed-.
(* Basic_1: includes: pr0_gen_cast pr2_gen_cast *)
-lemma cpr_inv_cast1: ∀h,G,L,V1,U1,U2. ⦃G, L⦄ ⊢ ⓝ V1. U1 ➡[h] U2 → (
- ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L⦄ ⊢ U1 ➡[h] T2 &
- U2 = ⓝV2.T2
- ) ∨ ⦃G, L⦄ ⊢ U1 ➡[h] U2.
+lemma cpr_inv_cast1: ∀h,G,L,V1,U1,U2. ⦃G, L⦄ ⊢ ⓝ V1.U1 ➡[h] U2 →
+ â\88¨â\88¨ â\88\83â\88\83V2,T2. â¦\83G, Lâ¦\84 â\8a¢ V1 â\9e¡[h] V2 & â¦\83G, Lâ¦\84 â\8a¢ U1 â\9e¡[h] T2 &
+ U2 = ⓝV2.T2
+ | ⦃G, L⦄ ⊢ U1 ➡[h] U2.
#h #G #L #V1 #U1 #U2 #H elim (cpm_inv_cast1 … H) -H
/2 width=1 by or_introl, or_intror/ * #n #_ #H destruct
qed-.
(* Basic_2A1: includes: cpr_inv_atom1 *)
lemma cpr_inv_atom1_drops: ∀h,I,G,L,T2. ⦃G, L⦄ ⊢ ⓪{I} ➡[h] T2 →
- T2 = ⓪{I} ∨
- ∃∃K,V,V2,i. ⬇*[i] L ≡ K.ⓓV & ⦃G, K⦄ ⊢ V ➡[h] V2 &
- ⬆*[⫯i] V2 ≡ T2 & I = LRef i.
+ ∨∨ T2 = ⓪{I}
+ | ∃∃K,V,V2,i. ⬇*[i] L ≡ K.ⓓV & ⦃G, K⦄ ⊢ V ➡[h] V2 &
+ ⬆*[⫯i] V2 ≡ T2 & I = LRef i.
#h #I #G #L #T2 #H elim (cpm_inv_atom1_drops … H) -H *
[ /2 width=1 by or_introl/
| #s #_ #_ #H destruct
| /3 width=8 by ex4_4_intro, or_intror/
-| #k #K #V1 #V2 #i #_ #_ #_ #_ #H destruct
+| #m #K #V1 #V2 #i #_ #_ #_ #_ #H destruct
]
qed-.
(* Basic_1: includes: pr0_gen_lref pr2_gen_lref *)
(* Basic_2A1: includes: cpr_inv_lref1 *)
lemma cpr_inv_lref1_drops: ∀h,G,L,T2,i. ⦃G, L⦄ ⊢ #i ➡[h] T2 →
- T2 = #i ∨
- ∃∃K,V,V2. ⬇*[i] L ≡ K. ⓓV & ⦃G, K⦄ ⊢ V ➡[h] V2 &
- ⬆*[⫯i] V2 ≡ T2.
+ ∨∨ T2 = #i
+ | ∃∃K,V,V2. ⬇*[i] L ≡ K. ⓓV & ⦃G, K⦄ ⊢ V ➡[h] V2 &
+ ⬆*[⫯i] V2 ≡ T2.
#h #G #L #T2 #i #H elim (cpm_inv_lref1_drops … H) -H *
[ /2 width=1 by or_introl/
| /3 width=6 by ex3_3_intro, or_intror/
-| #k #K #V1 #V2 #_ #_ #_ #H destruct
+| #m #K #V1 #V2 #_ #_ #_ #H destruct
]
qed-.
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+include "basic_2/syntax/lenv_ext2.ma".
+include "basic_2/rt_transition/cpm.ma".
+
+(* CONTEXT-SENSITIVE PARALLEL R-TRANSITION FOR BINDERS **********************)
+
+definition cpr_ext (h) (G): relation3 lenv bind bind ≝
+ cext2 (cpm 0 h G).
+
+interpretation
+ "context-sensitive parallel r-transition (binder)"
+ 'PRed h G L I1 I2 = (cpr_ext h G L I1 I2).
qed-.
lemma cpx_inv_sort1: ∀h,G,L,T2,s. ⦃G, L⦄ ⊢ ⋆s ⬈[h] T2 →
- T2 = ⋆s ∨ T2 = ⋆(next h s).
+ ∨∨ T2 = ⋆s | T2 = ⋆(next h s).
#h #G #L #T2 #s * #c #H elim (cpg_inv_sort1 … H) -H *
/2 width=1 by or_introl, or_intror/
qed-.
lemma cpx_inv_zero1: ∀h,G,L,T2. ⦃G, L⦄ ⊢ #0 ⬈[h] T2 →
- T2 = #0 ∨
- ∃∃I,K,V1,V2. ⦃G, K⦄ ⊢ V1 ⬈[h] V2 & ⬆*[1] V2 ≡ T2 &
- L = K.ⓑ{I}V1.
+ ∨∨ T2 = #0
+ | ∃∃I,K,V1,V2. ⦃G, K⦄ ⊢ V1 ⬈[h] V2 & ⬆*[1] V2 ≡ T2 &
+ L = K.ⓑ{I}V1.
#h #G #L #T2 * #c #H elim (cpg_inv_zero1 … H) -H *
/4 width=7 by ex3_4_intro, ex_intro, or_introl, or_intror/
qed-.
lemma cpx_inv_lref1: ∀h,G,L,T2,i. ⦃G, L⦄ ⊢ #⫯i ⬈[h] T2 →
- T2 = #(⫯i) ∨
- ∃∃I,K,T. ⦃G, K⦄ ⊢ #i ⬈[h] T & ⬆*[1] T ≡ T2 & L = K.ⓘ{I}.
+ ∨∨ T2 = #(⫯i)
+ | ∃∃I,K,T. ⦃G, K⦄ ⊢ #i ⬈[h] T & ⬆*[1] T ≡ T2 & L = K.ⓘ{I}.
#h #G #L #T2 #i * #c #H elim (cpg_inv_lref1 … H) -H *
/4 width=6 by ex3_3_intro, ex_intro, or_introl, or_intror/
qed-.
#h #G #L #T2 #l * #c #H elim (cpg_inv_gref1 … H) -H //
qed-.
-lemma cpx_inv_bind1: ∀h,p,I,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓑ{p,I}V1.T1 ⬈[h] U2 → (
- ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 & ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ⬈[h] T2 &
- U2 = ⓑ{p,I}V2.T2
- ) ∨
- ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[h] T & ⬆*[1] U2 ≡ T &
- p = true & I = Abbr.
+lemma cpx_inv_bind1: ∀h,p,I,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓑ{p,I}V1.T1 ⬈[h] U2 →
+ ∨∨ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 & ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ⬈[h] T2 &
+ U2 = ⓑ{p,I}V2.T2
+ | ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[h] T & ⬆*[1] U2 ≡ T &
+ p = true & I = Abbr.
#h #p #I #G #L #V1 #T1 #U2 * #c #H elim (cpg_inv_bind1 … H) -H *
/4 width=5 by ex4_intro, ex3_2_intro, ex_intro, or_introl, or_intror/
qed-.
-lemma cpx_inv_abbr1: ∀h,p,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓓ{p}V1.T1 ⬈[h] U2 → (
- ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 & ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[h] T2 &
- U2 = ⓓ{p}V2.T2
- ) ∨
- ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[h] T & ⬆*[1] U2 ≡ T & p = true.
+lemma cpx_inv_abbr1: ∀h,p,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓓ{p}V1.T1 ⬈[h] U2 →
+ ∨∨ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ⬈[h] V2 & ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[h] T2 &
+ U2 = ⓓ{p}V2.T2
+ | ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ⬈[h] T & ⬆*[1] U2 ≡ T & p = true.
#h #p #G #L #V1 #T1 #U2 * #c #H elim (cpg_inv_abbr1 … H) -H *
/4 width=5 by ex3_2_intro, ex3_intro, ex_intro, or_introl, or_intror/
qed-.
(* Advanced inversion lemmas ************************************************)
lemma cpx_inv_zero1_pair: ∀h,I,G,K,V1,T2. ⦃G, K.ⓑ{I}V1⦄ ⊢ #0 ⬈[h] T2 →
- T2 = #0 ∨
- ∃∃V2. ⦃G, K⦄ ⊢ V1 ⬈[h] V2 & ⬆*[1] V2 ≡ T2.
+ ∨∨ T2 = #0
+ | ∃∃V2. ⦃G, K⦄ ⊢ V1 ⬈[h] V2 & ⬆*[1] V2 ≡ T2.
#h #I #G #L #V1 #T2 * #c #H elim (cpg_inv_zero1_pair … H) -H *
/4 width=3 by ex2_intro, ex_intro, or_intror, or_introl/
qed-.
lemma cpx_inv_lref1_bind: ∀h,I,G,K,T2,i. ⦃G, K.ⓘ{I}⦄ ⊢ #⫯i ⬈[h] T2 →
- T2 = #(⫯i) ∨
- ∃∃T. ⦃G, K⦄ ⊢ #i ⬈[h] T & ⬆*[1] T ≡ T2.
+ ∨∨ T2 = #(⫯i)
+ | ∃∃T. ⦃G, K⦄ ⊢ #i ⬈[h] T & ⬆*[1] T ≡ T2.
#h #I #G #L #T2 #i * #c #H elim (cpg_inv_lref1_bind … H) -H *
/4 width=3 by ex2_intro, ex_intro, or_introl, or_intror/
qed-.
include "basic_2/notation/relations/predsn_5.ma".
include "basic_2/static/lfxs.ma".
-include "basic_2/rt_transition/cpm.ma".
+include "basic_2/rt_transition/cpr_ext.ma".
(* PARALLEL R-TRANSITION FOR LOCAL ENV.S ON REFERRED ENTRIES ****************)
⦃G, L1⦄ ⊢ ➡[h, ⋆s] L2 → ⦃G, L1.ⓑ{I}V1⦄ ⊢ ➡[h, ⋆s] L2.ⓑ{I}V2.
/2 width=1 by lfxs_sort/ qed.
-lemma lfpr_zero: ∀h,I,G,L1,L2,V1,V2. ⦃G, L1⦄ ⊢ ➡[h, V1] L2 →
+lemma lfpr_pair: ∀h,I,G,L1,L2,V1,V2. ⦃G, L1⦄ ⊢ ➡[h, V1] L2 →
⦃G, L1⦄ ⊢ V1 ➡[h] V2 → ⦃G, L1.ⓑ{I}V1⦄ ⊢ ➡[h, #0] L2.ⓑ{I}V2.
-/2 width=1 by lfxs_zero/ qed.
+/2 width=1 by lfxs_pair/ qed.
-lemma lfpr_lref: ∀h,I,G,L1,L2,V1,V2,i.
- â¦\83G, L1â¦\84 â\8a¢ â\9e¡[h, #i] L2 â\86\92 â¦\83G, L1.â\93\91{I}V1â¦\84 â\8a¢ â\9e¡[h, #⫯i] L2.â\93\91{I}V2.
+lemma lfpr_lref: ∀h,I1,I2,G,L1,L2,i.
+ â¦\83G, L1â¦\84 â\8a¢ â\9e¡[h, #i] L2 â\86\92 â¦\83G, L1.â\93\98{I1}â¦\84 â\8a¢ â\9e¡[h, #⫯i] L2.â\93\98{I2}.
/2 width=1 by lfxs_lref/ qed.
-lemma lfpr_gref: ∀h,I,G,L1,L2,V1,V2,l.
- â¦\83G, L1â¦\84 â\8a¢ â\9e¡[h, §l] L2 â\86\92 â¦\83G, L1.â\93\91{I}V1â¦\84 â\8a¢ â\9e¡[h, §l] L2.â\93\91{I}V2.
+lemma lfpr_gref: ∀h,I1,I2,G,L1,L2,l.
+ â¦\83G, L1â¦\84 â\8a¢ â\9e¡[h, §l] L2 â\86\92 â¦\83G, L1.â\93\98{I1}â¦\84 â\8a¢ â\9e¡[h, §l] L2.â\93\98{I2}.
/2 width=1 by lfxs_gref/ qed.
-lemma lfpr_pair_repl_dx: ∀h,I,G,L1,L2,T,V,V1.
- â¦\83G, L1.â\93\91{I}Vâ¦\84 â\8a¢ â\9e¡[h, T] L2.â\93\91{I}V1 →
- ∀V2. ⦃G, L1⦄ ⊢ V ➡[h] V2 →
- â¦\83G, L1.â\93\91{I}Vâ¦\84 â\8a¢ â\9e¡[h, T] L2.â\93\91{I}V2.
-/2 width=2 by lfxs_pair_repl_dx/ qed-.
+lemma lfpr_bind_repl_dx: ∀h,I,I1,G,L1,L2,T.
+ â¦\83G, L1.â\93\98{I}â¦\84 â\8a¢ â\9e¡[h, T] L2.â\93\98{I1} →
+ ∀I2. ⦃G, L1⦄ ⊢ I ➡[h] I2 →
+ â¦\83G, L1.â\93\98{I}â¦\84 â\8a¢ â\9e¡[h, T] L2.â\93\98{I2}.
+/2 width=2 by lfxs_bind_repl_dx/ qed-.
(* Basic inversion lemmas ***************************************************)
/2 width=3 by lfxs_inv_atom_dx/ qed-.
lemma lfpr_inv_sort: ∀h,G,Y1,Y2,s. ⦃G, Y1⦄ ⊢ ➡[h, ⋆s] Y2 →
- (Y1 = ⋆ ∧ Y2 = ⋆) ∨
- ∃∃I,L1,L2,V1,V2. ⦃G, L1⦄ ⊢ ➡[h, ⋆s] L2 &
- Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
+ ∨∨ Y1 = ⋆ ∧ Y2 = ⋆
+ | ∃∃I1,I2,L1,L2. ⦃G, L1⦄ ⊢ ➡[h, ⋆s] L2 &
+ Y1 = L1.ⓘ{I1} & Y2 = L2.ⓘ{I2}.
/2 width=1 by lfxs_inv_sort/ qed-.
-
+(*
lemma lfpr_inv_zero: ∀h,G,Y1,Y2. ⦃G, Y1⦄ ⊢ ➡[h, #0] Y2 →
(Y1 = ⋆ ∧ Y2 = ⋆) ∨
∃∃I,L1,L2,V1,V2. ⦃G, L1⦄ ⊢ ➡[h, V1] L2 &
⦃G, L1⦄ ⊢ V1 ➡[h] V2 &
Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
/2 width=1 by lfxs_inv_zero/ qed-.
-
+*)
lemma lfpr_inv_lref: ∀h,G,Y1,Y2,i. ⦃G, Y1⦄ ⊢ ➡[h, #⫯i] Y2 →
- (Y1 = ⋆ ∧ Y2 = ⋆) ∨
- ∃∃I,L1,L2,V1,V2. ⦃G, L1⦄ ⊢ ➡[h, #i] L2 &
- Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
+ ∨∨ Y1 = ⋆ ∧ Y2 = ⋆
+ | ∃∃I1,I2,L1,L2. ⦃G, L1⦄ ⊢ ➡[h, #i] L2 &
+ Y1 = L1.ⓘ{I1} & Y2 = L2.ⓘ{I2}.
/2 width=1 by lfxs_inv_lref/ qed-.
lemma lfpr_inv_gref: ∀h,G,Y1,Y2,l. ⦃G, Y1⦄ ⊢ ➡[h, §l] Y2 →
- (Y1 = ⋆ ∧ Y2 = ⋆) ∨
- ∃∃I,L1,L2,V1,V2. ⦃G, L1⦄ ⊢ ➡[h, §l] L2 &
- Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
+ ∨∨ Y1 = ⋆ ∧ Y2 = ⋆
+ | ∃∃I1,I2,L1,L2. ⦃G, L1⦄ ⊢ ➡[h, §l] L2 &
+ Y1 = L1.ⓘ{I1} & Y2 = L2.ⓘ{I2}.
/2 width=1 by lfxs_inv_gref/ qed-.
lemma lfpr_inv_bind: ∀h,p,I,G,L1,L2,V,T. ⦃G, L1⦄ ⊢ ➡[h, ⓑ{p,I}V.T] L2 →
- â¦\83G, L1â¦\84 â\8a¢ â\9e¡[h, V] L2 â\88§ ⦃G, L1.ⓑ{I}V⦄ ⊢ ➡[h, T] L2.ⓑ{I}V.
+ â\88§â\88§ â¦\83G, L1â¦\84 â\8a¢ â\9e¡[h, V] L2 & ⦃G, L1.ⓑ{I}V⦄ ⊢ ➡[h, T] L2.ⓑ{I}V.
/2 width=2 by lfxs_inv_bind/ qed-.
lemma lfpr_inv_flat: ∀h,I,G,L1,L2,V,T. ⦃G, L1⦄ ⊢ ➡[h, ⓕ{I}V.T] L2 →
- â¦\83G, L1â¦\84 â\8a¢ â\9e¡[h, V] L2 â\88§ ⦃G, L1⦄ ⊢ ➡[h, T] L2.
+ â\88§â\88§ â¦\83G, L1â¦\84 â\8a¢ â\9e¡[h, V] L2 & ⦃G, L1⦄ ⊢ ➡[h, T] L2.
/2 width=2 by lfxs_inv_flat/ qed-.
(* Advanced inversion lemmas ************************************************)
-lemma lfpr_inv_sort_pair_sn: ∀h,I,G,Y2,L1,V1,s. ⦃G, L1.ⓑ{I}V1⦄ ⊢ ➡[h, ⋆s] Y2 →
- ∃∃L2,V2. ⦃G, L1⦄ ⊢ ➡[h, ⋆s] L2 & Y2 = L2.ⓑ{I}V2.
-/2 width=2 by lfxs_inv_sort_pair_sn/ qed-.
+lemma lfpr_inv_sort_bind_sn: ∀h,I1,G,Y2,L1,s. ⦃G, L1.ⓘ{I1}⦄ ⊢ ➡[h, ⋆s] Y2 →
+ ∃∃I2,L2. ⦃G, L1⦄ ⊢ ➡[h, ⋆s] L2 & Y2 = L2.ⓘ{I2}.
+/2 width=2 by lfxs_inv_sort_bind_sn/ qed-.
-lemma lfpr_inv_sort_pair_dx: ∀h,I,G,Y1,L2,V2,s. ⦃G, Y1⦄ ⊢ ➡[h, ⋆s] L2.ⓑ{I}V2 →
- ∃∃L1,V1. ⦃G, L1⦄ ⊢ ➡[h, ⋆s] L2 & Y1 = L1.ⓑ{I}V1.
-/2 width=2 by lfxs_inv_sort_pair_dx/ qed-.
+lemma lfpr_inv_sort_bind_dx: ∀h,I2,G,Y1,L2,s. ⦃G, Y1⦄ ⊢ ➡[h, ⋆s] L2.ⓘ{I2} →
+ ∃∃I1,L1. ⦃G, L1⦄ ⊢ ➡[h, ⋆s] L2 & Y1 = L1.ⓘ{I1}.
+/2 width=2 by lfxs_inv_sort_bind_dx/ qed-.
lemma lfpr_inv_zero_pair_sn: ∀h,I,G,Y2,L1,V1. ⦃G, L1.ⓑ{I}V1⦄ ⊢ ➡[h, #0] Y2 →
∃∃L2,V2. ⦃G, L1⦄ ⊢ ➡[h, V1] L2 & ⦃G, L1⦄ ⊢ V1 ➡[h] V2 &
Y1 = L1.ⓑ{I}V1.
/2 width=1 by lfxs_inv_zero_pair_dx/ qed-.
-lemma lfpr_inv_lref_pair_sn: ∀h,I,G,Y2,L1,V1,i. ⦃G, L1.ⓑ{I}V1⦄ ⊢ ➡[h, #⫯i] Y2 →
- ∃∃L2,V2. ⦃G, L1⦄ ⊢ ➡[h, #i] L2 & Y2 = L2.ⓑ{I}V2.
-/2 width=2 by lfxs_inv_lref_pair_sn/ qed-.
+lemma lfpr_inv_lref_bind_sn: ∀h,I1,G,Y2,L1,i. ⦃G, L1.ⓘ{I1}⦄ ⊢ ➡[h, #⫯i] Y2 →
+ ∃∃I2,L2. ⦃G, L1⦄ ⊢ ➡[h, #i] L2 & Y2 = L2.ⓘ{I2}.
+/2 width=2 by lfxs_inv_lref_bind_sn/ qed-.
-lemma lfpr_inv_lref_pair_dx: ∀h,I,G,Y1,L2,V2,i. ⦃G, Y1⦄ ⊢ ➡[h, #⫯i] L2.ⓑ{I}V2 →
- ∃∃L1,V1. ⦃G, L1⦄ ⊢ ➡[h, #i] L2 & Y1 = L1.ⓑ{I}V1.
-/2 width=2 by lfxs_inv_lref_pair_dx/ qed-.
+lemma lfpr_inv_lref_bind_dx: ∀h,I2,G,Y1,L2,i. ⦃G, Y1⦄ ⊢ ➡[h, #⫯i] L2.ⓘ{I2} →
+ ∃∃I1,L1. ⦃G, L1⦄ ⊢ ➡[h, #i] L2 & Y1 = L1.ⓘ{I1}.
+/2 width=2 by lfxs_inv_lref_bind_dx/ qed-.
-lemma lfpr_inv_gref_pair_sn: ∀h,I,G,Y2,L1,V1,l. ⦃G, L1.ⓑ{I}V1⦄ ⊢ ➡[h, §l] Y2 →
- ∃∃L2,V2. ⦃G, L1⦄ ⊢ ➡[h, §l] L2 & Y2 = L2.ⓑ{I}V2.
-/2 width=2 by lfxs_inv_gref_pair_sn/ qed-.
+lemma lfpr_inv_gref_bind_sn: ∀h,I1,G,Y2,L1,l. ⦃G, L1.ⓘ{I1}⦄ ⊢ ➡[h, §l] Y2 →
+ ∃∃I2,L2. ⦃G, L1⦄ ⊢ ➡[h, §l] L2 & Y2 = L2.ⓘ{I2}.
+/2 width=2 by lfxs_inv_gref_bind_sn/ qed-.
-lemma lfpr_inv_gref_pair_dx: ∀h,I,G,Y1,L2,V2,l. ⦃G, Y1⦄ ⊢ ➡[h, §l] L2.ⓑ{I}V2 →
- ∃∃L1,V1. ⦃G, L1⦄ ⊢ ➡[h, §l] L2 & Y1 = L1.ⓑ{I}V1.
-/2 width=2 by lfxs_inv_gref_pair_dx/ qed-.
+lemma lfpr_inv_gref_bind_dx: ∀h,I2,G,Y1,L2,l. ⦃G, Y1⦄ ⊢ ➡[h, §l] L2.ⓘ{I2} →
+ ∃∃I1,L1. ⦃G, L1⦄ ⊢ ➡[h, §l] L2 & Y1 = L1.ⓘ{I1}.
+/2 width=2 by lfxs_inv_gref_bind_dx/ qed-.
(* Basic forward lemmas *****************************************************)
lemma lfpr_drops_trans: ∀h,G. dropable_dx (cpm 0 h G).
/2 width=5 by lfxs_dropable_dx/ qed-.
-lemma lfpr_inv_lref_sn: ∀h,G,L1,L2,i. ⦃G, L1⦄ ⊢ ➡[h, #i] L2 → ∀I,K1,V1. ⬇*[i] L1 ≡ K1.ⓑ{I}V1 →
- ∃∃K2,V2. ⬇*[i] L2 ≡ K2.ⓑ{I}V2 & ⦃G, K1⦄ ⊢ ➡[h, V1] K2 & ⦃G, K1⦄ ⊢ V1 ➡[h] V2.
-/2 width=3 by lfxs_inv_lref_sn/ qed-.
+lemma lfpr_inv_lref_pair_sn: ∀h,G,L1,L2,i. ⦃G, L1⦄ ⊢ ➡[h, #i] L2 → ∀I,K1,V1. ⬇*[i] L1 ≡ K1.ⓑ{I}V1 →
+ ∃∃K2,V2. ⬇*[i] L2 ≡ K2.ⓑ{I}V2 & ⦃G, K1⦄ ⊢ ➡[h, V1] K2 & ⦃G, K1⦄ ⊢ V1 ➡[h] V2.
+/2 width=3 by lfxs_inv_lref_pair_sn/ qed-.
-lemma lfpr_inv_lref_dx: ∀h,G,L1,L2,i. ⦃G, L1⦄ ⊢ ➡[h, #i] L2 → ∀I,K2,V2. ⬇*[i] L2 ≡ K2.ⓑ{I}V2 →
- ∃∃K1,V1. ⬇*[i] L1 ≡ K1.ⓑ{I}V1 & ⦃G, K1⦄ ⊢ ➡[h, V1] K2 & ⦃G, K1⦄ ⊢ V1 ➡[h] V2.
-/2 width=3 by lfxs_inv_lref_dx/ qed-.
+lemma lfpr_inv_lref_pair_dx: ∀h,G,L1,L2,i. ⦃G, L1⦄ ⊢ ➡[h, #i] L2 → ∀I,K2,V2. ⬇*[i] L2 ≡ K2.ⓑ{I}V2 →
+ ∃∃K1,V1. ⬇*[i] L1 ≡ K1.ⓑ{I}V1 & ⦃G, K1⦄ ⊢ ➡[h, V1] K2 & ⦃G, K1⦄ ⊢ V1 ➡[h] V2.
+/2 width=3 by lfxs_inv_lref_pair_dx/ qed-.
lemma lfpr_pair: ∀h,G,L,V1,V2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 →
∀I,T. ⦃G, L.ⓑ{I}V1⦄ ⊢ ➡[h, T] L.ⓑ{I}V2.
/2 width=1 by lfxs_pair/ qed.
+
+(* Advanced inversion lemmas ************************************************)
+
+lemma lfpr_inv_bind_void: ∀h,p,I,G,L1,L2,V,T. ⦃G, L1⦄ ⊢ ➡[h, ⓑ{p,I}V.T] L2 →
+ ∧∧ ⦃G, L1⦄ ⊢ ➡[h, V] L2 & ⦃G, L1.ⓧ⦄ ⊢ ➡[h, T] L2.ⓧ.
+/2 width=3 by lfxs_inv_bind_void/ qed-.
+
+(* Advanced forward lemmas **************************************************)
+
+lemma lfpr_fwd_bind_dx_void: ∀h,p,I,G,L1,L2,V,T.
+ ⦃G, L1⦄ ⊢ ➡[h, ⓑ{p,I}V.T] L2 → ⦃G, L1.ⓧ⦄ ⊢ ➡[h, T] L2.ⓧ.
+/2 width=4 by lfxs_fwd_bind_dx_void/ qed-.
include "basic_2/s_transition/fquq.ma".
include "basic_2/rt_transition/cpm_drops.ma".
+include "basic_2/rt_transition/cpm_lsubr.ma".
include "basic_2/rt_transition/cpr.ma".
include "basic_2/rt_transition/lfpr_fqup.ma".
(* Properties with supclosure ***********************************************)
-lemma fqu_cpr_trans_dx: ∀h,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐ ⦃G2, L2, T2⦄ →
+lemma fqu_cpr_trans_dx: ∀h,b,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐[b] ⦃G2, L2, T2⦄ →
∀U2. ⦃G2, L2⦄ ⊢ T2 ➡[h] U2 →
- ∃∃L,U1. ⦃G1, L1⦄ ⊢ ➡[h, T1] L & ⦃G1, L⦄ ⊢ T1 ➡[h] U1 & ⦃G1, L, U1⦄ ⊐ ⦃G2, L2, U2⦄.
-#h #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -G1 -G2 -L1 -L2 -T1 -T2
+ ∃∃L,U1. ⦃G1, L1⦄ ⊢ ➡[h, T1] L & ⦃G1, L⦄ ⊢ T1 ➡[h] U1 & ⦃G1, L, U1⦄ ⊐[b] ⦃G2, L2, U2⦄.
+#h #b #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -G1 -G2 -L1 -L2 -T1 -T2
/3 width=5 by lfpr_pair, cpr_pair_sn, cpr_flat, cpm_bind, fqu_lref_O, fqu_pair_sn, fqu_bind_dx, fqu_flat_dx, ex3_2_intro/
-#I #G #L #V #U #T #HUT #U2 #HU2 elim (cpm_lifts_sn … HU2 (Ⓣ) … HUT) -U
-/3 width=9 by fqu_drop, drops_refl, drops_drop, ex3_2_intro/
+[ /5 width=5 by lsubr_cpm_trans, cpm_bind, lsubr_unit, fqu_clear, ex3_2_intro/
+| #I #G #L #U #T #HUT #U2 #HU2 elim (cpm_lifts_sn … HU2 (Ⓣ) … HUT) -U
+ /3 width=9 by fqu_drop, drops_refl, drops_drop, ex3_2_intro/
+]
qed-.
(* Basic_2A1: uses: fqu_lpr_trans *)
-lemma fqu_cpr_trans_sn: ∀h,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐ ⦃G2, L2, T2⦄ →
+lemma fqu_cpr_trans_sn: ∀h,b,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐[b] ⦃G2, L2, T2⦄ →
∀U2. ⦃G2, L2⦄ ⊢ T2 ➡[h] U2 →
- ∃∃L,U1. ⦃G1, L1⦄ ⊢ ➡[h, T1] L & ⦃G1, L1⦄ ⊢ T1 ➡[h] U1 & ⦃G1, L, U1⦄ ⊐ ⦃G2, L2, U2⦄.
-#h #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -G1 -G2 -L1 -L2 -T1 -T2
+ ∃∃L,U1. ⦃G1, L1⦄ ⊢ ➡[h, T1] L & ⦃G1, L1⦄ ⊢ T1 ➡[h] U1 & ⦃G1, L, U1⦄ ⊐[b] ⦃G2, L2, U2⦄.
+#h #b #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -G1 -G2 -L1 -L2 -T1 -T2
/3 width=5 by lfpr_pair, cpr_pair_sn, cpr_flat, cpm_bind, fqu_lref_O, fqu_pair_sn, fqu_bind_dx, fqu_flat_dx, ex3_2_intro/
-#I #G #L #V #U #T #HUT #U2 #HU2 elim (cpm_lifts_sn … HU2 (Ⓣ) … HUT) -U
-/3 width=9 by fqu_drop, drops_refl, drops_drop, ex3_2_intro/
+[ /5 width=5 by lsubr_cpm_trans, cpm_bind, lsubr_unit, fqu_clear, ex3_2_intro/
+| #I #G #L #U #T #HUT #U2 #HU2 elim (cpm_lifts_sn … HU2 (Ⓣ) … HUT) -U
+ /3 width=9 by fqu_drop, drops_refl, drops_drop, ex3_2_intro/
+]
qed-.
(* Properties with optional supclosure **************************************)
-lemma fquq_cpr_trans_dx: ∀h,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐⸮ ⦃G2, L2, T2⦄ →
+lemma fquq_cpr_trans_dx: ∀h,b,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐⸮[b] ⦃G2, L2, T2⦄ →
∀U2. ⦃G2, L2⦄ ⊢ T2 ➡[h] U2 →
- ∃∃L,U1. ⦃G1, L1⦄ ⊢ ➡[h, T1] L & ⦃G1, L⦄ ⊢ T1 ➡[h] U1 & ⦃G1, L, U1⦄ ⊐⸮ ⦃G2, L2, U2⦄.
-#h #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -H
+ ∃∃L,U1. ⦃G1, L1⦄ ⊢ ➡[h, T1] L & ⦃G1, L⦄ ⊢ T1 ➡[h] U1 & ⦃G1, L, U1⦄ ⊐⸮[b] ⦃G2, L2, U2⦄.
+#h #b #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -H
[ #HT12 #U2 #HTU2 elim (fqu_cpr_trans_dx … HT12 … HTU2) /3 width=5 by fqu_fquq, ex3_2_intro/
| * #H1 #H2 #H3 destruct /2 width=5 by ex3_2_intro/
]
qed-.
(* Basic_2A1: uses: fquq_lpr_trans *)
-lemma fquq_cpr_trans_sn: ∀h,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐⸮ ⦃G2, L2, T2⦄ →
+lemma fquq_cpr_trans_sn: ∀h,b,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐⸮[b] ⦃G2, L2, T2⦄ →
∀U2. ⦃G2, L2⦄ ⊢ T2 ➡[h] U2 →
- ∃∃L,U1. ⦃G1, L1⦄ ⊢ ➡[h, T1] L & ⦃G1, L1⦄ ⊢ T1 ➡[h] U1 & ⦃G1, L, U1⦄ ⊐⸮ ⦃G2, L2, U2⦄.
-#h #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -H
+ ∃∃L,U1. ⦃G1, L1⦄ ⊢ ➡[h, T1] L & ⦃G1, L1⦄ ⊢ T1 ➡[h] U1 & ⦃G1, L, U1⦄ ⊐⸮[b] ⦃G2, L2, U2⦄.
+#h #b #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -H
[ #HT12 #U2 #HTU2 elim (fqu_cpr_trans_sn … HT12 … HTU2) /3 width=5 by fqu_fquq, ex3_2_intro/
| * #H1 #H2 #H3 destruct /2 width=5 by ex3_2_intro/
]
include "basic_2/rt_transition/lfpx_frees.ma".
include "basic_2/rt_transition/cpm_cpx.ma".
+include "basic_2/rt_transition/cpr_ext.ma".
(* PARALLEL R-TRANSITION FOR LOCAL ENV.S ON REFERRED ENTRIES ****************)
lemma cpm_frees_conf: ∀n,h,G. R_frees_confluent (cpm n h G).
/3 width=6 by cpm_fwd_cpx, cpx_frees_conf/ qed-.
-lemma lfpr_frees_conf: ∀h,G. lexs_frees_confluent (cpm 0 h G) cfull.
-/4 width=9 by cpm_fwd_cpx, lfpx_frees_conf, lexs_co/ qed-.
+lemma lfpr_frees_conf: ∀h,G. lexs_frees_confluent (cpr_ext h G) cfull.
+/5 width=9 by cpm_fwd_cpx, lfpx_frees_conf, lexs_co, cext2_co/ qed-.
∀L1. ⦃G, L0⦄ ⊢ ➡[h, #i] L1 → ∀L2. ⦃G, L0⦄ ⊢ ➡[h, #i] L2 →
∃∃T. ⦃G, L1⦄ ⊢ #i ➡[h] T & ⦃G, L2⦄ ⊢ T2 ➡[h] T.
#h #G #L0 #i #IH #K0 #V0 #HLK0 #V2 #HV02 #T2 #HVT2 #L1 #HL01 #L2 #HL02
-elim (lfpr_inv_lref_sn … HL01 … HLK0) -HL01 #K1 #V1 #HLK1 #HK01 #HV01
-elim (lfpr_inv_lref_sn … HL02 … HLK0) -HL02 #K2 #W2 #HLK2 #HK02 #_
+elim (lfpr_inv_lref_pair_sn … HL01 … HLK0) -HL01 #K1 #V1 #HLK1 #HK01 #HV01
+elim (lfpr_inv_lref_pair_sn … HL02 … HLK0) -HL02 #K2 #W2 #HLK2 #HK02 #_
lapply (drops_isuni_fwd_drop2 … HLK2) // -W2 #HLK2
-lapply (fqup_lref … G … HLK0) -HLK0 #HLK0
+lapply (fqup_lref (Ⓣ) … G … HLK0) -HLK0 #HLK0
elim (IH … HLK0 … HV01 … HV02 … HK01 … HK02) -L0 -K0 -V0 #V #HV1 #HV2
elim (cpm_lifts_sn … HV2 … HLK2 … HVT2) -K2 -V2
/3 width=6 by cpm_delta_drops, ex2_intro/
#h #G #L0 #i #IH #K0 #V0 #HLK0 #V1 #HV01 #T1 #HVT1
#KX #VX #H #V2 #HV02 #T2 #HVT2 #L1 #HL01 #L2 #HL02
lapply (drops_mono … H … HLK0) -H #H destruct
-elim (lfpr_inv_lref_sn … HL01 … HLK0) -HL01 #K1 #W1 #HLK1 #HK01 #_
+elim (lfpr_inv_lref_pair_sn … HL01 … HLK0) -HL01 #K1 #W1 #HLK1 #HK01 #_
lapply (drops_isuni_fwd_drop2 … HLK1) -W1 // #HLK1
-elim (lfpr_inv_lref_sn … HL02 … HLK0) -HL02 #K2 #W2 #HLK2 #HK02 #_
+elim (lfpr_inv_lref_pair_sn … HL02 … HLK0) -HL02 #K2 #W2 #HLK2 #HK02 #_
lapply (drops_isuni_fwd_drop2 … HLK2) -W2 // #HLK2
-lapply (fqup_lref … G … HLK0) -HLK0 #HLK0
+lapply (fqup_lref (Ⓣ) … G … HLK0) -HLK0 #HLK0
elim (IH … HLK0 … HV01 … HV02 … HK01 … HK02) -L0 -K0 -V0 #V #HV1 #HV2
elim (cpm_lifts_sn … HV1 … HLK1 … HVT1) -K1 -V1 #T #HVT #HT1
elim (cpm_lifts_sn … HV2 … HLK2 … HVT2) -K2 -V2 #X #HX #HT2
elim (lfpr_inv_bind … HL02) -HL02 #H2V0 #H2T0
elim (IH … HV01 … HV02 … H1V0 … H2V0) //
elim (IH … HT01 … HT02 (L1.ⓑ{I}V1) … (L2.ⓑ{I}V2)) -IH
-/3 width=5 by lfpr_pair_repl_dx, cpm_bind, ex2_intro/
+/3 width=5 by lfpr_bind_repl_dx, cpm_bind, ext2_pair, ex2_intro/
qed-.
fact cpr_conf_lfpr_bind_zeta:
#T2 #HT02 #X2 #HXT2 #L1 #HL01 #L2 #HL02
elim (lfpr_inv_bind … HL01) -HL01 #H1V0 #H1T0
elim (lfpr_inv_bind … HL02) -HL02 #H2V0 #H2T0
-elim (IH … HT01 … HT02 (L1.ⓓV1) … (L2.ⓓV1)) -IH -HT01 -HT02 /2 width=4 by lfpr_pair_repl_dx/ -L0 -V0 -T0 #T #HT1 #HT2
+elim (IH … HT01 … HT02 (L1.ⓓV1) … (L2.ⓓV1)) -IH -HT01 -HT02 /3 width=4 by lfpr_bind_repl_dx, ext2_pair/ -L0 -V0 -T0 #T #HT1 #HT2
elim (cpm_inv_lifts_sn … HT2 … L2 … HXT2) -T2 /3 width=3 by drops_refl, drops_drop, cpm_zeta, ex2_intro/
qed-.
#T2 #HT02 #X2 #HXT2 #L1 #HL01 #L2 #HL02
elim (lfpr_inv_bind … HL01) -HL01 #H1V0 #H1T0
elim (lfpr_inv_bind … HL02) -HL02 #H2V0 #H2T0
-elim (IH … HT01 … HT02 (L1.ⓓV0) … (L2.ⓓV0)) -IH -HT01 -HT02 /2 width=4 by lfpr_pair_repl_dx/ -L0 -T0 #T #HT1 #HT2
+elim (IH … HT01 … HT02 (L1.ⓓV0) … (L2.ⓓV0)) -IH -HT01 -HT02 /3 width=4 by lfpr_bind_repl_dx, ext2_pair/ -L0 -T0 #T #HT1 #HT2
elim (cpm_inv_lifts_sn … HT1 … L1 … HXT1) -T1 /3 width=2 by drops_refl, drops_drop/ #T1 #HT1 #HXT1
elim (cpm_inv_lifts_sn … HT2 … L2 … HXT2) -T2 /3 width=2 by drops_refl, drops_drop/ #T2 #HT2 #HXT2
lapply (lifts_inj … HT2 … HT1) -T #H destruct /2 width=3 by ex2_intro/
elim (lfpr_inv_bind … HL02) -HL02 #H2W0 #H2T0
elim (IH … HV01 … HV02 … H1V0 … H2V0) -HV01 -HV02 /2 width=1 by/ #V #HV1 #HV2
elim (IH … HW01 … HW02 … H1W0 … H2W0) /2 width=1 by/ #W #HW1 #HW2
-elim (IH … HT01 … HT02 (L1.ⓛW1) … (L2.ⓛW2)) /2 width=4 by lfpr_pair_repl_dx/ -L0 -V0 -W0 -T0 #T #HT1 #HT2
+elim (IH … HT01 … HT02 (L1.ⓛW1) … (L2.ⓛW2)) /3 width=4 by lfpr_bind_repl_dx, ext2_pair/ -L0 -V0 -W0 -T0 #T #HT1 #HT2
lapply (lsubr_cpm_trans … HT2 (L2.ⓓⓝW2.V2) ?) -HT2 /2 width=1 by lsubr_beta/ (**) (* full auto not tried *)
/4 width=5 by cpm_bind, cpr_flat, cpm_beta, ex2_intro/
qed-.
elim (cpm_inv_abbr1 … H) -H *
[ #W1 #T1 #HW01 #HT01 #H destruct
elim (IH … HW01 … HW02 … H1W0 … H2W0) /2 width=1 by/
- elim (IH … HT01 … HT02 (L1.ⓓW1) … (L2.ⓓW2)) /2 width=4 by lfpr_pair_repl_dx/ -L0 -V0 -W0 -T0
+ elim (IH … HT01 … HT02 (L1.ⓓW1) … (L2.ⓓW2)) /3 width=4 by lfpr_bind_repl_dx, ext2_pair/ -L0 -V0 -W0 -T0
/4 width=7 by cpm_bind, cpr_flat, cpm_theta, ex2_intro/
| #T1 #HT01 #HXT1 #H destruct
- elim (IH … HT01 … HT02 (L1.ⓓW2) … (L2.ⓓW2)) /2 width=4 by lfpr_pair_repl_dx/ -L0 -V0 -W0 -T0 #T #HT1 #HT2
+ elim (IH … HT01 … HT02 (L1.ⓓW2) … (L2.ⓓW2)) /3 width=4 by lfpr_bind_repl_dx, ext2_pair/ -L0 -V0 -W0 -T0 #T #HT1 #HT2
elim (cpm_inv_lifts_sn … HT1 … L1 … HXT1) -HXT1
/4 width=9 by cpr_flat, cpm_zeta, drops_refl, drops_drop, lifts_flat, ex2_intro/
]
elim (lfpr_inv_bind … HL02) -HL02 #H2W0 #H2T0
elim (IH … HV01 … HV02 … H1V0 … H2V0) -HV01 -HV02 /2 width=1 by/ #V #HV1 #HV2
elim (IH … HW01 … HW02 … H1W0 … H2W0) /2 width=1/ #W #HW1 #HW2
-elim (IH … HT01 … HT02 (L1.ⓛW1) … (L2.ⓛW2)) /2 width=4 by lfpr_pair_repl_dx/ -L0 -V0 -W0 -T0 #T #HT1 #HT2
+elim (IH … HT01 … HT02 (L1.ⓛW1) … (L2.ⓛW2)) /3 width=4 by lfpr_bind_repl_dx, ext2_pair/ -L0 -V0 -W0 -T0 #T #HT1 #HT2
lapply (lsubr_cpm_trans … HT1 (L1.ⓓⓝW1.V1) ?) -HT1 /2 width=1 by lsubr_beta/
lapply (lsubr_cpm_trans … HT2 (L2.ⓓⓝW2.V2) ?) -HT2 /2 width=1 by lsubr_beta/
/4 width=5 by cpm_bind, cpr_flat, ex2_intro/ (**) (* full auto not tried *)
elim (lfpr_inv_bind … HL02) -HL02 #H2W0 #H2T0
elim (IH … HV01 … HV02 … H1V0 … H2V0) -HV01 -HV02 /2 width=1 by/ #V #HV1 #HV2
elim (IH … HW01 … HW02 … H1W0 … H2W0) /2 width=1 by/
-elim (IH … HT01 … HT02 (L1.ⓓW1) … (L2.ⓓW2)) /2 width=4 by lfpr_pair_repl_dx/ -L0 -V0 -W0 -T0
+elim (IH … HT01 … HT02 (L1.ⓓW1) … (L2.ⓓW2)) /3 width=4 by lfpr_bind_repl_dx, ext2_pair/ -L0 -V0 -W0 -T0
elim (cpm_lifts_sn … HV1 … (L1.ⓓW1) … HVU1) -HVU1 /3 width=2 by drops_refl, drops_drop/ #U #HVU
elim (cpm_lifts_sn … HV2 … (L2.ⓓW2) … HVU2) -HVU2 /3 width=2 by drops_refl, drops_drop/ #X #HX
lapply (lifts_mono … HX … HVU) -HX #H destruct
qed-.
theorem cpr_conf_lfpr: ∀h,G. R_confluent2_lfxs (cpm 0 h G) (cpm 0 h G) (cpm 0 h G) (cpm 0 h G).
-#h #G #L0 #T0 @(fqup_wf_ind_eq … G L0 T0) -G -L0 -T0 #G #L #T #IH #G0 #L0 * [| * ]
+#h #G #L0 #T0 @(fqup_wf_ind_eq (Ⓣ) … G L0 T0) -G -L0 -T0 #G #L #T #IH #G0 #L0 * [| * ]
[ #I0 #HG #HL #HT #T1 #H1 #T2 #H2 #L1 #HL01 #L2 #HL02 destruct
elim (cpr_inv_atom1_drops … H1) -H1
elim (cpr_inv_atom1_drops … H2) -H2
theorem lfpr_conf: ∀h,G,T. confluent … (lfpr h G T).
/3 width=6 by cpr_conf_lfpr, lfpr_frees_conf, lfxs_conf/ qed-.
+
+theorem lfpr_bind: ∀h,G,L1,L2,V1. ⦃G, L1⦄ ⊢ ➡[h, V1] L2 →
+ ∀I,V2,T. ⦃G, L1.ⓑ{I}V1⦄ ⊢ ➡[h, T] L2.ⓑ{I}V2 →
+ ∀p. ⦃G, L1⦄ ⊢ ➡[h, ⓑ{p,I}V1.T] L2.
+/2 width=2 by lfxs_bind/ qed.
+
+theorem lfpr_flat: ∀h,G,L1,L2,V. ⦃G, L1⦄ ⊢ ➡[h, V] L2 →
+ ∀I,T. ⦃G, L1⦄ ⊢ ➡[h, T] L2 → ⦃G, L1⦄ ⊢ ➡[h, ⓕ{I}V.T] L2.
+/2 width=1 by lfxs_flat/ qed.
+
+theorem lfpr_bind_void: ∀h,G,L1,L2,V. ⦃G, L1⦄ ⊢ ➡[h, V] L2 →
+ ∀T. ⦃G, L1.ⓧ⦄ ⊢ ➡[h, T] L2.ⓧ →
+ ∀p,I. ⦃G, L1⦄ ⊢ ➡[h, ⓑ{p,I}V.T] L2.
+/2 width=1 by lfxs_bind_void/ qed.
/2 width=1 by lfxs_inv_gref/ qed-.
lemma lfpx_inv_bind: ∀h,p,I,G,L1,L2,V,T. ⦃G, L1⦄ ⊢ ⬈[h, ⓑ{p,I}V.T] L2 →
- â¦\83G, L1â¦\84 â\8a¢ â¬\88[h, V] L2 â\88§ ⦃G, L1.ⓑ{I}V⦄ ⊢ ⬈[h, T] L2.ⓑ{I}V.
+ â\88§â\88§ â¦\83G, L1â¦\84 â\8a¢ â¬\88[h, V] L2 & ⦃G, L1.ⓑ{I}V⦄ ⊢ ⬈[h, T] L2.ⓑ{I}V.
/2 width=2 by lfxs_inv_bind/ qed-.
lemma lfpx_inv_flat: ∀h,I,G,L1,L2,V,T. ⦃G, L1⦄ ⊢ ⬈[h, ⓕ{I}V.T] L2 →
- â¦\83G, L1â¦\84 â\8a¢ â¬\88[h, V] L2 â\88§ ⦃G, L1⦄ ⊢ ⬈[h, T] L2.
+ â\88§â\88§ â¦\83G, L1â¦\84 â\8a¢ â¬\88[h, V] L2 & ⦃G, L1⦄ ⊢ ⬈[h, T] L2.
/2 width=2 by lfxs_inv_flat/ qed-.
(* Advanced inversion lemmas ************************************************)
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+include "basic_2/rt_transition/cpx_lfxs.ma".
+include "basic_2/rt_transition/lfpx.ma".
+
+(* UNCOUNTED PARALLEL RT-TRANSITION FOR LOCAL ENV.S ON REFERRED ENTRIES *****)
+
+(* Advanced properties ******************************************************)
+
+lemma lfpx_cpx_conf: ∀h,G. s_r_confluent1 … (cpx h G) (lfpx h G).
+/2 width=5 by cpx_lfxs_conf/ qed-.
(* Advanced inversion lemmas ************************************************)
lemma lfpx_inv_bind_void: ∀h,p,I,G,L1,L2,V,T. ⦃G, L1⦄ ⊢ ⬈[h, ⓑ{p,I}V.T] L2 →
- â¦\83G, L1â¦\84 â\8a¢ â¬\88[h, V] L2 â\88§ ⦃G, L1.ⓧ⦄ ⊢ ⬈[h, T] L2.ⓧ.
+ â\88§â\88§ â¦\83G, L1â¦\84 â\8a¢ â¬\88[h, V] L2 & ⦃G, L1.ⓧ⦄ ⊢ ⬈[h, T] L2.ⓧ.
/2 width=3 by lfxs_inv_bind_void/ qed-.
(* Advanced forward lemmas **************************************************)
(* *)
(**************************************************************************)
-include "basic_2/rt_transition/cpx_lfxs.ma".
+include "basic_2/static/lfxs_lfxs.ma".
include "basic_2/rt_transition/lfpx.ma".
(* UNCOUNTED PARALLEL RT-TRANSITION FOR LOCAL ENV.S ON REFERRED ENTRIES *****)
-(* Advanced properties ******************************************************)
+(* Main properties **********************************************************)
-lemma lfpx_cpx_conf: ∀h,G. s_r_confluent1 … (cpx h G) (lfpx h G).
-/2 width=5 by cpx_lfxs_conf/ qed-.
+theorem lfpx_bind: ∀h,G,L1,L2,V1. ⦃G, L1⦄ ⊢ ⬈[h, V1] L2 →
+ ∀I,V2,T. ⦃G, L1.ⓑ{I}V1⦄ ⊢ ⬈[h, T] L2.ⓑ{I}V2 →
+ ∀p. ⦃G, L1⦄ ⊢ ⬈[h, ⓑ{p,I}V1.T] L2.
+/2 width=2 by lfxs_bind/ qed.
+
+theorem lfpx_flat: ∀h,G,L1,L2,V. ⦃G, L1⦄ ⊢ ⬈[h, V] L2 →
+ ∀I,T. ⦃G, L1⦄ ⊢ ⬈[h, T] L2 → ⦃G, L1⦄ ⊢ ⬈[h, ⓕ{I}V.T] L2.
+/2 width=1 by lfxs_flat/ qed.
+
+theorem lfpx_bind_void: ∀h,G,L1,L2,V. ⦃G, L1⦄ ⊢ ⬈[h, V] L2 →
+ ∀T. ⦃G, L1.ⓧ⦄ ⊢ ⬈[h, T] L2.ⓧ →
+ ∀p,I. ⦃G, L1⦄ ⊢ ⬈[h, ⓑ{p,I}V.T] L2.
+/2 width=1 by lfxs_bind_void/ qed.
}
]
*)
-(*
class "blue"
- [ { "conversion" * } {
+ [ { "rt-conversion" * } {
[ { "context-sensitive r-conversion" * } {
[ "cpc ( ⦃?,?⦄ ⊢ ? ⬌[?] ? )" "cpc_cpc" * ]
}
]
}
]
+(*
class "sky"
[ { "rt-computation" * } {
(*
[ "fpb ( ⦃?,?,?⦄ ≻[?,?] ⦃?,?,?⦄ )" "fpb_lfdeq" * ]
}
]
+*)
[ { "t-bound context-sensitive rt-transition" * } {
[ "lfpr ( ⦃?,?⦄ ⊢ ➡[?,?] ? )" "lfpr_length" + "lfpr_drops" + "lfpr_fquq" + "lfpr_fqup" + "lfpr_frees" + "lfpr_aaa" + "lfpr_lfpx" + "lfpr_lfpr" * ]
+ [ "cpr_ext ( ⦃?,?⦄ ⊢ ? ➡[?] ? )" * ]
[ "cpr ( ⦃?,?⦄ ⊢ ? ➡[?] ? )" "cpr_drops" * ]
[ "cpm ( ⦃?,?⦄ ⊢ ? ➡[?,?] ? )" "cpm_simple" + "cpm_drops" + "cpm_lsubr" + "cpm_lfxs" + "cpm_cpx" * ]
}
]
-*)
[ { "uncounted context-sensitive rt-transition" * } {
[ "cnx ( ⦃?,?⦄ ⊢ ⬈[?,?] 𝐍⦃?⦄ )" "cnx_simple" + "cnx_drops" + "cnx_cnx" * ]
- [ "lfpx ( ⦃?,?⦄ ⊢ ⬈[?,?] ? )" "lfpx_length" + "lfpx_drops" + "lfpx_fqup" + "lfpx_frees" + "lfpx_lfdeq" + "lfpx_aaa" + "lfpx_lfpx" * ]
+ [ "lfpx ( ⦃?,?⦄ ⊢ ⬈[?,?] ? )" "lfpx_length" + "lfpx_drops" + "lfpx_fqup" + "lfpx_frees" + "lfpx_lfdeq" + "lfpx_aaa" + "lfpx_cpx" + "lfpx_lfpx" * ]
[ "cpx_ext ( ⦃?,?⦄ ⊢ ? ⬈[?] ? )" * ]
[ "cpx ( ⦃?,?⦄ ⊢ ? ⬈[?] ? )" "cpx_simple" + "cpx_drops" + "cpx_fqus" + "cpx_lsubr" + "cpx_lfxs" * ]
}
}
]
[ { "degree-based equivalence" * } {
- [ "tdeq_ext ( ? ≡[?,?] ? )" * ]
+ [ "tdeq_ext ( ? ≡[?,?] ? ) ( ? ⊢ ? ≡[?,?] ? )" * ]
[ "tdeq ( ? ≡[?,?] ? )" "tdeq_tdeq" * ]
}
]
basic_2/static
basic_2/i_static
basic_2/rt_transition
-basic_2/conversion
+basic_2/rt_conversion
apps_2/examples/ex_cpr_omega.ma