--- /dev/null
+(* Copyright (C) 2006, HELM Team.
+ *
+ * This file is part of HELM, an Hypertextual, Electronic
+ * Library of Mathematics, developed at the Computer Science
+ * Department, University of Bologna, Italy.
+ *
+ * HELM is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * HELM is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with HELM; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
+ * MA 02111-1307, USA.
+ *
+ * For details, see the HELM World-Wide-Web page,
+ * http://helm.cs.unibo.it/
+ *)
+
+let raw_preamble buri = "
+inductive eq (A:Type) (x:A) : A \\to Prop \\def refl_eq : eq A x x.
+
+theorem sym_eq : \\forall A:Type.\\forall x,y:A. eq A x y \\to eq A y x.
+intros.elim H. apply refl_eq.
+qed.
+
+theorem eq_elim_r:
+ \\forall A:Type.\\forall x:A. \\forall P: A \\to Prop.
+ P x \\to \\forall y:A. eq A y x \\to P y.
+intros. elim (sym_eq ? ? ? H1).assumption.
+qed.
+
+theorem trans_eq :
+ \\forall A:Type.\\forall x,y,z:A. eq A x y \\to eq A y z \\to eq A x z.
+intros.elim H1.assumption.
+qed.
+
+theorem eq_f: \\forall A,B:Type.\\forall f:A\\to B.
+ \\forall x,y:A. eq A x y \\to eq B (f x) (f y).
+intros.elim H.reflexivity.
+qed.
+
+theorem eq_f1: \\forall A,B:Type.\\forall f:A\\to B.
+ \\forall x,y:A. eq A x y \\to eq B (f y) (f x).
+intros.elim H.reflexivity.
+qed.
+
+default \"equality\"
+ " ^ buri ^ "/eq.ind
+ " ^ buri ^ "/sym_eq.con
+ " ^ buri ^ "/trans_eq.con
+ " ^ buri ^ "/eq_ind.con
+ " ^ buri ^ "/eq_elim_r.con
+ " ^ buri ^ "/eq_f.con
+ " ^ buri ^ "/eq_f1.con.
+
+inductive ex (A:Type) (P:A \\to Prop) : Prop \\def
+ ex_intro: \\forall x:A. P x \\to ex A P.
+interpretation \"exists\" 'exists \\eta.x =
+ (" ^ buri ^ "/ex.ind#xpointer(1/1) _ x).
+
+notation < \"hvbox(\\exists ident i opt (: ty) break . p)\"
+ right associative with precedence 20
+for @{ 'exists ${default
+ @{\\lambda ${ident i} : $ty. $p)}
+ @{\\lambda ${ident i} . $p}}}.
+
+"
+;;
+
+let main () =
+ MatitaInit.fill_registry ();
+ let tptppath = ref "./" in
+ MatitaInit.add_cmdline_spec
+ ["-tptppath",Arg.String (fun s -> tptppath:= s),
+ "Where to find the Axioms/ and Problems/ directory"];
+ MatitaInit.parse_cmdline ();
+ MatitaInit.load_configuration_file ();
+ Helm_registry.set_bool "db.nodb" true;
+ Helm_registry.set_bool "matita.nodisk" true;
+ HLog.set_log_callback (fun _ _ -> ());
+ let args = Helm_registry.get_list Helm_registry.string "matita.args" in
+ let inputfile =
+ match args with
+ | [file] -> file
+ | _ -> prerr_endline "You must specify exactly one .p file."; exit 1
+ in
+ let data =
+ Tptp2grafite.tptp2grafite ~filename:inputfile ~tptppath:!tptppath
+ ~raw_preamble ()
+ in
+(* prerr_endline data; *)
+ let is = Ulexing.from_utf8_string data in
+ let gs = GrafiteSync.init () in
+ let ls =
+ CicNotation2.load_notation ~include_paths:[]
+ BuildTimeConf.core_notation_script
+ in
+ Sys.catch_break true;
+ try
+ let _ =
+ MatitaEngine.eval_from_stream
+ ~first_statement_only:false
+ ~include_paths:[]
+ ~clean_baseuri:true
+ ~do_heavy_checks:false
+ ~prompt:false
+ ls gs is
+ (fun _ _ -> ())
+(*
+ (fun _ s ->
+ let pp_ast_statement =
+ GrafiteAstPp.pp_statement ~term_pp:CicNotationPp.pp_term
+ ~lazy_term_pp:CicNotationPp.pp_term ~obj_pp:CicNotationPp.pp_obj
+ in
+ prerr_endline (pp_ast_statement s))
+*)
+ in
+ exit 0
+ with exn ->
+ prerr_endline (snd (MatitaExcPp.to_string exn));
+ exit 1
+;;