]
qed.
+theorem le_fact_10: fact (2*5) \le (exp 2 ((2*5)-2))*(fact 5)*(fact 5).
+simplify in \vdash (? (? %) ?).
+rewrite > factS in \vdash (? % ?).
+rewrite > factS in \vdash (? % ?).rewrite < assoc_times in \vdash(? % ?).
+rewrite > factS in \vdash (? % ?).rewrite < assoc_times in \vdash (? % ?).
+rewrite > factS in \vdash (? % ?).rewrite < assoc_times in \vdash (? % ?).
+rewrite > factS in \vdash (? % ?).rewrite < assoc_times in \vdash (? % ?).
+apply le_times_l.
+apply leb_true_to_le.reflexivity.
+qed.
+
+theorem ab_times_cd: \forall a,b,c,d.(a*b)*(c*d)=(a*c)*(b*d).
+intros.
+rewrite > assoc_times.
+rewrite > assoc_times.
+apply eq_f.
+rewrite < assoc_times.
+rewrite < assoc_times.
+rewrite > sym_times in \vdash (? ? (? % ?) ?).
+reflexivity.
+qed.
+
+(* an even better result *)
+theorem lt_SSSSO_to_fact: \forall n.4<n \to
+fact (2*n) \le (exp 2 ((2*n)-2))*(fact n)*(fact n).
+intros.elim H
+ [apply le_fact_10
+ |rewrite > times_SSO.
+ change in \vdash (? ? (? (? (? ? %) ?) ?)) with (2*n1 - O);
+ rewrite < minus_n_O.
+ rewrite > factS.
+ rewrite > factS.
+ rewrite < assoc_times.
+ rewrite > factS.
+ apply (trans_le ? ((2*(S n1))*(2*(S n1))*(fact (2*n1))))
+ [apply le_times_l.
+ rewrite > times_SSO.
+ apply le_times_r.
+ apply le_n_Sn
+ |apply (trans_le ? (2*S n1*(2*S n1)*(2\sup(2*n1-2)*n1!*n1!)))
+ [apply le_times_r.assumption
+ |rewrite > assoc_times.
+ rewrite > ab_times_cd in \vdash (? (? ? %) ?).
+ rewrite < assoc_times.
+ apply le_times_l.
+ rewrite < assoc_times in \vdash (? (? ? %) ?).
+ rewrite > ab_times_cd.
+ apply le_times_l.
+ rewrite < exp_S.
+ rewrite < exp_S.
+ apply le_exp
+ [apply lt_O_S
+ |rewrite > eq_minus_S_pred.
+ rewrite < S_pred
+ [rewrite > eq_minus_S_pred.
+ rewrite < S_pred
+ [rewrite < minus_n_O.
+ apply le_n
+ |elim H1;simplify
+ [apply lt_O_S
+ |apply lt_O_S
+ ]
+ ]
+ |elim H1;simplify
+ [apply lt_O_S
+ |rewrite < plus_n_Sm.
+ rewrite < minus_n_O.
+ apply lt_O_S
+ ]
+ ]
+ ]
+ ]
+ ]
+ ]
+qed.
+
+
(*
theorem stirling: \forall n,k.k \le n \to
log (fact n) < n*log n - n + k*log n.