}
-class "component" { 0 }
+class "capitalize italic" { 0 }
-class "text" { 1 }
-
-class "number" { 2 * }
+class "right italic" { 2 * }
$$(SUM_$(1)): $$(MAS_$(1)) $(1)/$(1)_probe.txt $(1)/$(1)_mac.txt
@printf ' SUMMARY $(1)\n'
- @printf 'name "$$(basename $$(@F))"\n\n' > $$@
- @printf 'table {\n' >> $$@
- @printf ' class "gray" [ "category"\n' >> $$@
- @printf ' [ "objects" * ]\n' >> $$@
- @printf ' ]\n' >> $$@
- @printf ' class "cyan" [ "sizes"\n' >> $$@
- @printf ' [ "files" "$$(S4)" ]\n' >> $$@
- @printf ' [ "characters" "$$(word 1, $$(S1))" ]\n' >> $$@
- @printf ' [ "nodes" "$$(word 3, $$(S0))" ]\n' >> $$@
- @printf ' ]\n' >> $$@
- @printf ' class "green" [ "propositions"\n' >> $$@
- @printf ' [ "theorems" "$$(P1)" ]\n' >> $$@
- @printf ' [ "lemmas" "$$(P2)" ]\n' >> $$@
- @printf ' [ "total" "$$(P3)" ]\n' >> $$@
- @printf ' ]\n' >> $$@
- @printf ' class "yellow" [ "concepts"\n' >> $$@
- @printf ' [ "declared" "$$(C1)" ]\n' >> $$@
- @printf ' [ "defined" "$$(C2)" ]\n' >> $$@
- @printf ' [ "total" "$$(C3)" ]\n' >> $$@
- @printf ' ]\n' >> $$@
- @printf '}\n\n' >> $$@
- @printf 'class "component" { 0 }\n\n' >> $$@
- @printf 'class "plane" { 1 } { 3 } { 5 }\n\n' >> $$@
- @printf 'class "number" { 2 } { 4 } { 6 }\n' >> $$@
+ @printf 'name "$$(basename $$(@F))"\n\n' > $$@
+ @printf 'table {\n' >> $$@
+ @printf ' class "gray" [ "category"\n' >> $$@
+ @printf ' [ "objects" * ]\n' >> $$@
+ @printf ' ]\n' >> $$@
+ @printf ' class "cyan" [ "sizes"\n' >> $$@
+ @printf ' [ "files" "$$(S4)" ]\n' >> $$@
+ @printf ' [ "characters" "$$(word 1, $$(S1))" ]\n' >> $$@
+ @printf ' [ "nodes" "$$(word 3, $$(S0))" ]\n' >> $$@
+ @printf ' ]\n' >> $$@
+ @printf ' class "green" [ "propositions"\n' >> $$@
+ @printf ' [ "theorems" "$$(P1)" ]\n' >> $$@
+ @printf ' [ "lemmas" "$$(P2)" ]\n' >> $$@
+ @printf ' [ "total" "$$(P3)" ]\n' >> $$@
+ @printf ' ]\n' >> $$@
+ @printf ' class "yellow" [ "concepts"\n' >> $$@
+ @printf ' [ "declared" "$$(C1)" ]\n' >> $$@
+ @printf ' [ "defined" "$$(C2)" ]\n' >> $$@
+ @printf ' [ "total" "$$(C3)" ]\n' >> $$@
+ @printf ' ]\n' >> $$@
+ @printf '}\n\n' >> $$@
+ @printf 'class "capitalize italic" { 0 }\n\n' >> $$@
+ @printf 'class "italic" { 1 } { 3 } { 5 }\n\n' >> $$@
+ @printf 'class "right italic" { 2 } { 4 } { 6 }\n' >> $$@
.PHONY: $$(SUM_$(1))
endef
]
}
-class "component" { 0 }
+class "top" { * }
-class "plane" { 1 }
+class "capitalize italic" { 0 }
-class "file" { 2 * }
+class "italic" { 1 }
(* ABSTRACT COMPUTATION PROPERTIES ******************************************)
+definition candidate: Type[0] ≝ relation3 genv lenv term.
+
definition CP0 ≝ λRR:relation4 genv lenv term term. λRS:relation term.
∀G,L0,L,T,T0,s,d,e. NF … (RR G L) RS T →
⇩[s, d, e] L0 ≡ L → ⇧[d, e] T ≡ T0 → NF … (RR G L0) RS T0.
definition CP1 ≝ λRR:relation4 genv lenv term term. λRS:relation term.
∀G,L. ∃k. NF … (RR G L) RS (⋆k).
-definition CP2 ≝ λRP:relation3 genv lenv term.
+definition CP2 ≝ λRP:candidate.
∀G,L,T,k. RP G L (ⓐ⋆k.T) → RP G L T.
(* requirements for abstract computation properties *)
-record acp (RR:relation4 genv lenv term term) (RS:relation term) (RP:relation3 genv lenv term) : Prop ≝
+record acp (RR:relation4 genv lenv term term) (RS:relation term) (RP:candidate) : Prop ≝
{ cp0: CP0 RR RS;
cp1: CP1 RR RS;
cp2: CP2 RP
(* Basic_1: was: sc3_arity_csubc *)
theorem aacr_aaa_csubc_lifts: ∀RR,RS,RP.
- acp RR RS RP → acr RR RS RP (λG,L,T. RP G L T) →
+ acp RR RS RP → acr RR RS RP RP →
∀G,L1,T,A. ⦃G, L1⦄ ⊢ T ⁝ A → ∀L0,des. ⇩*[Ⓕ, des] L0 ≡ L1 →
∀T0. ⇧*[des] T ≡ T0 → ∀L2. G ⊢ L2 ⫃[RP] L0 →
⦃G, L2, T0⦄ ϵ[RP] 〚A〛.
qed.
(* Basic_1: was: sc3_arity *)
-lemma aacr_aaa: ∀RR,RS,RP. acp RR RS RP → acr RR RS RP (λG,L,T. RP G L T) →
+lemma aacr_aaa: ∀RR,RS,RP. acp RR RS RP → acr RR RS RP RP →
∀G,L,T,A. ⦃G, L⦄ ⊢ T ⁝ A → ⦃G, L, T⦄ ϵ[RP] 〚A〛.
/2 width=8 by drops_nil, lifts_nil, aacr_aaa_csubc_lifts/ qed.
-lemma acp_aaa: ∀RR,RS,RP. acp RR RS RP → acr RR RS RP (λG,L,T. RP G L T) →
+lemma acp_aaa: ∀RR,RS,RP. acp RR RS RP → acr RR RS RP RP →
∀G,L,T,A. ⦃G, L⦄ ⊢ T ⁝ A → RP G L T.
#RR #RS #RP #H1RP #H2RP #G #L #T #A #HT
lapply (aacr_acr … H1RP H2RP A) #HA
(* ABSTRACT COMPUTATION PROPERTIES ******************************************)
-definition S0 ≝ λC:relation3 genv lenv term. ∀G,L2,L1,T1,d,e.
+definition S0 ≝ λC:candidate. ∀G,L2,L1,T1,d,e.
C G L1 T1 → ∀T2. ⇩[Ⓕ, d, e] L2 ≡ L1 → ⇧[d, e] T1 ≡ T2 → C G L2 T2.
-definition S0s ≝ λC:relation3 genv lenv term.
+definition S0s ≝ λC:candidate.
∀G,L1,L2,des. ⇩*[Ⓕ, des] L2 ≡ L1 →
∀T1,T2. ⇧*[des] T1 ≡ T2 → C G L1 T1 → C G L2 T2.
(* Note: this is Girard's CR1 *)
-definition S1 ≝ λRP,C:relation3 genv lenv term.
+definition S1 ≝ λRP,C:candidate.
∀G,L,T. C G L T → RP G L T.
(* Note: this is Tait's iii, or Girard's CR4 *)
-definition S2 ≝ λRR:relation4 genv lenv term term. λRS:relation term. λRP,C:relation3 genv lenv term.
+definition S2 ≝ λRR:relation4 genv lenv term term. λRS:relation term. λRP,C:candidate.
∀G,L,Vs. all … (RP G L) Vs →
∀T. 𝐒⦃T⦄ → NF … (RR G L) RS T → C G L (ⒶVs.T).
(* Note: this generalizes Tait's ii *)
-definition S3 ≝ λC:relation3 genv lenv term.
+definition S3 ≝ λC:candidate.
∀a,G,L,Vs,V,T,W.
C G L (ⒶVs.ⓓ{a}ⓝW.V.T) → C G L (ⒶVs.ⓐV.ⓛ{a}W.T).
-definition S4 ≝ λRP,C:relation3 genv lenv term.
+definition S4 ≝ λRP,C:candidate.
∀G,L,Vs. all … (RP G L) Vs → ∀k. C G L (ⒶVs.⋆k).
-definition S5 ≝ λC:relation3 genv lenv term. ∀I,G,L,K,Vs,V1,V2,i.
+definition S5 ≝ λC:candidate. ∀I,G,L,K,Vs,V1,V2,i.
C G L (ⒶVs.V2) → ⇧[0, i+1] V1 ≡ V2 →
⇩[i] L ≡ K.ⓑ{I}V1 → C G L (ⒶVs.#i).
-definition S6 ≝ λRP,C:relation3 genv lenv term.
+definition S6 ≝ λRP,C:candidate.
∀G,L,V1s,V2s. ⇧[0, 1] V1s ≡ V2s →
∀a,V,T. C G (L.ⓓV) (ⒶV2s.T) → RP G L V → C G L (ⒶV1s.ⓓ{a}V.T).
-definition S7 ≝ λC:relation3 genv lenv term.
+definition S7 ≝ λC:candidate.
∀G,L,Vs,T,W. C G L (ⒶVs.T) → C G L (ⒶVs.W) → C G L (ⒶVs.ⓝW.T).
(* properties of the abstract candidate of reducibility *)
-record acr (RR:relation4 genv lenv term term) (RS:relation term) (RP,C:relation3 genv lenv term) : Prop ≝
+record acr (RR:relation4 genv lenv term term) (RS:relation term) (RP,C:candidate) : Prop ≝
{ s0: S0 C;
s1: S1 RP C;
s2: S2 RR RS RP C;
s7: S7 C
}.
-(* the abstract candidate of reducibility associated to an atomic arity *)
-let rec aacr (RP:relation3 genv lenv term) (A:aarity) (G:genv) (L:lenv) on A: predicate term ≝
-λT. match A with
-[ AAtom ⇒ RP G L T
-| APair B A ⇒ ∀L0,V0,T0,des.
- aacr RP B G L0 V0 → ⇩*[Ⓕ, des] L0 ≡ L → ⇧*[des] T ≡ T0 →
- aacr RP A G L0 (ⓐV0.T0)
+(* the functional construction for candidates *)
+definition cfun: candidate → candidate → candidate ≝
+ λC1,C2,G,K,T. ∀L,V,U,des.
+ ⇩*[Ⓕ, des] L ≡ K → ⇧*[des] T ≡ U → C1 G L V → C2 G L (ⓐV.U).
+
+(* the candidate associated to an atomic arity *)
+let rec aacr (RP:candidate) (A:aarity) on A: candidate ≝
+match A with
+[ AAtom ⇒ RP
+| APair B A ⇒ cfun (aacr RP B) (aacr RP A)
].
interpretation
]
qed.
-lemma rp_lifts: ∀RR,RS,RP. acr RR RS RP (λG,L,T. RP G L T) →
+lemma rp_lifts: ∀RR,RS,RP. acr RR RS RP RP →
∀des,G,L0,L,V,V0. ⇩*[Ⓕ, des] L0 ≡ L → ⇧*[des] V ≡ V0 →
RP G L V → RP G L0 V0.
#RR #RS #RP #HRP #des #G #L0 #L #V #V0 #HL0 #HV0 #HV
qed.
(* Basic_1: was only: sns3_lifts1 *)
-lemma rp_liftsv_all: ∀RR,RS,RP. acr RR RS RP (λG,L,T. RP G L T) →
+lemma rp_liftsv_all: ∀RR,RS,RP. acr RR RS RP RP →
∀des,G,L0,L,Vs,V0s. ⇩*[Ⓕ, des] L0 ≡ L → ⇧*[des] Vs ≡ V0s →
all … (RP G L) Vs → all … (RP G L0) V0s.
#RR #RS #RP #HRP #des #G #L0 #L #Vs #V0s #HL0 #H elim H -Vs -V0s normalize //
(* Basic_1: was:
sc3_sn3 sc3_abst sc3_appl sc3_abbr sc3_bind sc3_cast sc3_lift
*)
-lemma aacr_acr: ∀RR,RS,RP. acp RR RS RP → acr RR RS RP (λG,L,T. RP G L T) →
+lemma aacr_acr: ∀RR,RS,RP. acp RR RS RP → acr RR RS RP RP →
∀A. acr RR RS RP (aacr RP A).
#RR #RS #RP #H1RP #H2RP #A elim A -A normalize //
#B #A #IHB #IHA @mk_acr normalize
| #G #L #T #H
elim (cp1 … H1RP G L) #k #HK
lapply (H ? (⋆k) ? (⟠) ? ? ?) -H
- [1,3: // |2,4: skip
+ [3,5: // |2,4: skip
| @(s2 … IHB … (◊)) //
| #H @(cp2 … H1RP … k) @(s1 … IHA) //
]
-| #G #L #Vs #HVs #T #H1T #H2T #L0 #V0 #X #des #HB #HL0 #H
+| #G #L #Vs #HVs #T #H1T #H2T #L0 #V0 #X #des #HL0 #H #HB
elim (lifts_inv_applv1 … H) -H #V0s #T0 #HV0s #HT0 #H destruct
lapply (s1 … IHB … HB) #HV0
@(s2 … IHA … (V0 @ V0s))
/3 width=14 by rp_liftsv_all, acp_lifts, cp0, lifts_simple_dx, conj/
-| #a #G #L #Vs #U #T #W #HA #L0 #V0 #X #des #HB #HL0 #H
+| #a #G #L #Vs #U #T #W #HA #L0 #V0 #X #des #HL0 #H #HB
elim (lifts_inv_applv1 … H) -H #V0s #Y #HV0s #HY #H destruct
elim (lifts_inv_flat1 … HY) -HY #U0 #X #HU0 #HX #H destruct
elim (lifts_inv_bind1 … HX) -HX #W0 #T0 #HW0 #HT0 #H destruct
@(s3 … IHA … (V0 @ V0s)) /5 width=6 by lifts_applv, lifts_flat, lifts_bind/
-| #G #L #Vs #HVs #k #L0 #V0 #X #des #HB #HL0 #H
+| #G #L #Vs #HVs #k #L0 #V0 #X #des #HL0 #H #HB
elim (lifts_inv_applv1 … H) -H #V0s #Y #HV0s #HY #H destruct
>(lifts_inv_sort1 … HY) -Y
lapply (s1 … IHB … HB) #HV0
@(s4 … IHA … (V0 @ V0s)) /3 width=7 by rp_liftsv_all, conj/
-| #I #G #L #K #Vs #V1 #V2 #i #HA #HV12 #HLK #L0 #V0 #X #des #HB #HL0 #H
+| #I #G #L #K #Vs #V1 #V2 #i #HA #HV12 #HLK #L0 #V0 #X #des #HL0 #H #HB
elim (lifts_inv_applv1 … H) -H #V0s #Y #HV0s #HY #H destruct
elim (lifts_inv_lref1 … HY) -HY #i0 #Hi0 #H destruct
elim (drops_drop_trans … HL0 … HLK) #X #des0 #i1 #HL02 #H #Hi1 #Hdes0
elim (lifts_lift_trans … Hdes0 … HVW1 … HW12) // -Hdes0 -Hi0 #V3 #HV13 #HVW2
>(lift_mono … HV13 … HV12) in HVW2; -V3 #HVW2
@(s5 … IHA … (V0 @ V0s) … HW12 HL02) /3 width=5 by lifts_applv/
-| #G #L #V1s #V2s #HV12s #a #V #T #HA #HV #L0 #V10 #X #des #HB #HL0 #H
+| #G #L #V1s #V2s #HV12s #a #V #T #HA #HV #L0 #V10 #X #des #HL0 #H #HB
elim (lifts_inv_applv1 … H) -H #V10s #Y #HV10s #HY #H destruct
elim (lifts_inv_bind1 … HY) -HY #V0 #T0 #HV0 #HT0 #H destruct
elim (lift_total V10 0 1) #V20 #HV120
elim (liftv_total 0 1 V10s) #V20s #HV120s
@(s6 … IHA … (V10 @ V10s) (V20 @ V20s)) /3 width=7 by rp_lifts, liftv_cons/
@(HA … (des + 1)) /2 width=2 by drops_skip/
- [ @(s0 … IHB … HB … HV120) /2 width=2 by drop_drop/
- | @lifts_applv //
+ [ @lifts_applv //
elim (liftsv_liftv_trans_le … HV10s … HV120s) -V10s #V10s #HV10s #HV120s
>(liftv_mono … HV12s … HV10s) -V1s //
+ | @(s0 … IHB … HB … HV120) /2 width=2 by drop_drop/
]
-| #G #L #Vs #T #W #HA #HW #L0 #V0 #X #des #HB #HL0 #H
+| #G #L #Vs #T #W #HA #HW #L0 #V0 #X #des #HL0 #H #HB
elim (lifts_inv_applv1 … H) -H #V0s #Y #HV0s #HY #H destruct
elim (lifts_inv_flat1 … HY) -HY #W0 #T0 #HW0 #HT0 #H destruct
@(s7 … IHA … (V0 @ V0s)) /3 width=5 by lifts_applv/
]
qed.
-lemma aacr_abst: ∀RR,RS,RP. acp RR RS RP → acr RR RS RP (λG,L,T. RP G L T) →
+lemma aacr_abst: ∀RR,RS,RP. acp RR RS RP → acr RR RS RP RP →
∀a,G,L,W,T,A,B. ⦃G, L, W⦄ ϵ[RP] 〚B〛 → (
- ∀L0,V0,W0,T0,des. ⇩*[Ⓕ, des] L0 ≡ L → ⇧*[des ] W ≡ W0 → ⇧*[des + 1] T ≡ T0 →
+ ∀L0,V0,W0,T0,des. ⇩*[Ⓕ, des] L0 ≡ L → ⇧*[des] W ≡ W0 → ⇧*[des + 1] T ≡ T0 →
⦃G, L0, V0⦄ ϵ[RP] 〚B〛 → ⦃G, L0, W0⦄ ϵ[RP] 〚B〛 → ⦃G, L0.ⓓⓝW0.V0, T0⦄ ϵ[RP] 〚A〛
) →
⦃G, L, ⓛ{a}W.T⦄ ϵ[RP] 〚②B.A〛.
-#RR #RS #RP #H1RP #H2RP #a #G #L #W #T #A #B #HW #HA #L0 #V0 #X #des #HB #HL0 #H
+#RR #RS #RP #H1RP #H2RP #a #G #L #W #T #A #B #HW #HA #L0 #V0 #X #des #HL0 #H #HB
lapply (aacr_acr … H1RP H2RP A) #HCA
lapply (aacr_acr … H1RP H2RP B) #HCB
elim (lifts_inv_bind1 … H) -H #W0 #T0 #HW0 #HT0 #H destruct
pr1_head_1 pr1_head_2 pr1_comp
clear_pr3_trans pr3_cflat pr3_gen_bind
pr3_head_1 pr3_head_2 pr3_head_21 pr3_head_12
- pr3_iso_appl_bind pr3_iso_applv_appl_bind pr3_iso_applv_bind
+ pr3_iso_appl_bind pr3_iso_appls_appl_bind pr3_iso_appls_bind
*)
(* Vector form of forward lemmas involving same top term constructor ********)
-(* Basic_1: was just: nf2_iso_applv_lref *)
+(* Basic_1: was just: nf2_iso_appls_lref *)
lemma cpxs_fwd_cnx_vector: ∀h,g,G,L,T. 𝐒⦃T⦄ → ⦃G, L⦄ ⊢ ➡[h, g] 𝐍⦃T⦄ →
∀Vs,U. ⦃G, L⦄ ⊢ ⒶVs.T ➡*[h, g] U → ⒶVs.T ≂ U.
#h #g #G #L #T #H1T #H2T #Vs elim Vs -Vs [ @(cpxs_fwd_cnx … H2T) ] (**) (* /2 width=3 by cpxs_fwd_cnx/ does not work *)
qed-.
-(* Basic_1: was just: pr3_iso_applv_beta *)
+(* Basic_1: was just: pr3_iso_appls_beta *)
lemma cpxs_fwd_beta_vector: ∀h,g,a,G,L,Vs,V,W,T,U. ⦃G, L⦄ ⊢ ⒶVs.ⓐV.ⓛ{a}W.T ➡*[h, g] U →
ⒶVs. ⓐV. ⓛ{a}W. T ≂ U ∨ ⦃G, L⦄ ⊢ ⒶVs.ⓓ{a}ⓝW.V.T ➡*[h, g] U.
#h #g #a #G #L #Vs elim Vs -Vs /2 width=1 by cpxs_fwd_beta/
]
qed-.
-(* Basic_1: was just: pr3_iso_applv_abbr *)
+(* Basic_1: was just: pr3_iso_appls_abbr *)
lemma cpxs_fwd_theta_vector: ∀h,g,G,L,V1s,V2s. ⇧[0, 1] V1s ≡ V2s →
∀a,V,T,U. ⦃G, L⦄ ⊢ ⒶV1s.ⓓ{a}V.T ➡*[h, g] U →
ⒶV1s. ⓓ{a}V. T ≂ U ∨ ⦃G, L⦄ ⊢ ⓓ{a}V.ⒶV2s.T ➡*[h, g] U.
]
qed-.
-(* Basic_1: was just: pr3_iso_applv_cast *)
+(* Basic_1: was just: pr3_iso_appls_cast *)
lemma cpxs_fwd_cast_vector: ∀h,g,G,L,Vs,W,T,U. ⦃G, L⦄ ⊢ ⒶVs.ⓝW.T ➡*[h, g] U →
∨∨ ⒶVs. ⓝW. T ≂ U
| ⦃G, L⦄ ⊢ ⒶVs.T ➡*[h, g] U
sn3_cdelta
sn3_gen_cflat sn3_cflat sn3_cpr3_trans sn3_shift sn3_change
sn3_appl_cast sn3_appl_beta sn3_appl_lref sn3_appl_abbr
- sn3_appl_applv sn3_bind sn3_appl_bind sn3_applv_bind
+ sn3_appl_appls sn3_bind sn3_appl_bind sn3_appls_bind
*)
(* Advanced properties ******************************************************)
-(* Basic_1: was just: sn3_applv_lref *)
+(* Basic_1: was just: sn3_appls_lref *)
lemma csx_applv_cnx: ∀h,g,G,L,T. 𝐒⦃T⦄ → ⦃G, L⦄ ⊢ ➡[h, g] 𝐍⦃T⦄ →
∀Vs. ⦃G, L⦄ ⊢ ⬊*[h, g] Vs → ⦃G, L⦄ ⊢ ⬊*[h, g] ⒶVs.T.
#h #g #G #L #T #H1T #H2T #Vs elim Vs -Vs [ #_ @(cnx_csx … H2T) ] (**) (* /2 width=1/ does not work *)
]
qed.
-(* Basic_1: was just: sn3_applv_beta *)
+(* Basic_1: was just: sn3_appls_beta *)
lemma csx_applv_beta: ∀h,g,a,G,L,Vs,V,W,T. ⦃G, L⦄ ⊢ ⬊*[h, g] ⒶVs.ⓓ{a}ⓝW.V.T →
⦃G, L⦄ ⊢ ⬊*[h, g] ⒶVs. ⓐV.ⓛ{a}W.T.
#h #g #a #G #L #Vs elim Vs -Vs /2 width=1 by csx_appl_beta/
]
qed.
-(* Basic_1: was just: sn3_applv_abbr *)
+(* Basic_1: was just: sn3_appls_abbr *)
lemma csx_applv_theta: ∀h,g,a,G,L,V1s,V2s. ⇧[0, 1] V1s ≡ V2s →
∀V,T. ⦃G, L⦄ ⊢ ⬊*[h, g] ⓓ{a}V.ⒶV2s.T →
⦃G, L⦄ ⊢ ⬊*[h, g] ⒶV1s.ⓓ{a}V.T.
]
qed.
-(* Basic_1: was just: sn3_applv_cast *)
+(* Basic_1: was just: sn3_appls_cast *)
lemma csx_applv_cast: ∀h,g,G,L,Vs,W,T. ⦃G, L⦄ ⊢ ⬊*[h, g] ⒶVs.W → ⦃G, L⦄ ⊢ ⬊*[h, g] ⒶVs.T →
⦃G, L⦄ ⊢ ⬊*[h, g] ⒶVs.ⓝW.T.
#h #g #G #L #Vs elim Vs -Vs /2 width=1 by csx_cast/
]
qed.
-theorem csx_acr: ∀h,g. acr (cpx h g) (eq …) (csx h g) (λG,L,T. ⦃G, L⦄ ⊢ ⬊*[h, g] T).
+theorem csx_acr: ∀h,g. acr (cpx h g) (eq …) (csx h g) (csx h g).
#h #g @mk_acr //
[ /2 width=8 by csx_lift/
| /3 width=1 by csx_applv_cnx/
L2 = K2. ⓛW & X = ⓝW.V & I = Abbr.
#RP #G #L1 #L2 * -L1 -L2
[ #I #K1 #V #H destruct
-| #J #L1 #L2 #V #HL12 #I #K1 #W #H destruct /3 width=3/
-| #L1 #L2 #V1 #W2 #A #HV1 #H1W2 #H2W2 #HL12 #I #K1 #V #H destruct /3 width=10/
+| #J #L1 #L2 #V #HL12 #I #K1 #W #H destruct /3 width=3 by ex2_intro, or_introl/
+| #L1 #L2 #V1 #W2 #A #HV1 #H1W2 #H2W2 #HL12 #I #K1 #V #H destruct /3 width=10 by ex7_4_intro, or_intror/
]
qed-.
L1 = K1.ⓓⓝW.V & I = Abst.
#RP #G #L1 #L2 * -L1 -L2
[ #I #K2 #W #H destruct
-| #J #L1 #L2 #V #HL12 #I #K2 #W #H destruct /3 width=3/
-| #L1 #L2 #V1 #W2 #A #HV1 #H1W2 #H2W2 #HL12 #I #K2 #W #H destruct /3 width=8/
+| #J #L1 #L2 #V #HL12 #I #K2 #W #H destruct /3 width=3 by ex2_intro, or_introl/
+| #L1 #L2 #V1 #W2 #A #HV1 #H1W2 #H2W2 #HL12 #I #K2 #W #H destruct /3 width=8 by ex6_3_intro, or_intror/
]
qed-.
(* Basic_1: was just: csubc_refl *)
lemma lsubc_refl: ∀RP,G,L. G ⊢ L ⫃[RP] L.
-#RP #G #L elim L -L // /2 width=1/
+#RP #G #L elim L -L /2 width=1 by lsubc_pair/
qed.
(* Basic_1: removed theorems 3:
(* Basic_1: was: csubc_drop_conf_rev *)
lemma drop_lsubc_trans: ∀RR,RS,RP.
- acp RR RS RP → acr RR RS RP (λG,L,T. RP G L T) →
+ acp RR RS RP → acr RR RS RP RP →
∀G,L1,K1,d,e. ⇩[Ⓕ, d, e] L1 ≡ K1 → ∀K2. G ⊢ K1 ⫃[RP] K2 →
∃∃L2. G ⊢ L1 ⫃[RP] L2 & ⇩[Ⓕ, d, e] L2 ≡ K2.
#RR #RS #RP #Hacp #Hacr #G #L1 #K1 #d #e #H elim H -L1 -K1 -d -e
(* Basic_1: was: csubc_drop1_conf_rev *)
lemma drops_lsubc_trans: ∀RR,RS,RP.
- acp RR RS RP → acr RR RS RP (λG,L,T. RP G L T) →
+ acp RR RS RP → acr RR RS RP RP →
∀G,L1,K1,des. ⇩*[Ⓕ, des] L1 ≡ K1 → ∀K2. G ⊢ K1 ⫃[RP] K2 →
∃∃L2. G ⊢ L1 ⫃[RP] L2 & ⇩*[Ⓕ, des] L2 ≡ K2.
#RR #RS #RP #Hacp #Hacr #G #L1 #K1 #des #H elim H -L1 -K1 -des
(* properties concerning lenv refinement for atomic arity assignment ********)
-lemma lsuba_lsubc: ∀RR,RS,RP. acp RR RS RP → acr RR RS RP (λG,L,T. RP G L T) →
+lemma lsuba_lsubc: ∀RR,RS,RP. acp RR RS RP → acr RR RS RP RP →
∀G,L1,L2. G ⊢ L1 ⫃⁝ L2 → G ⊢ L1 ⫃[RP] L2.
-#RR #RS #RP #H1RP #H2RP #G #L1 #L2 #H elim H -L1 -L2 // /2 width=1/
-#L1 #L2 #W #V #A #H elim (aaa_inv_cast … H) -H /3 width=4/
+#RR #RS #RP #H1RP #H2RP #G #L1 #L2 #H elim H -L1 -L2 /2 width=1 by lsubc_pair/
+#L1 #L2 #W #V #A #H elim (aaa_inv_cast … H) -H /3 width=4 by aacr_aaa, lsubc_beta/
qed.
NAMING CONVENTIONS FOR TRANSFORMATIONS AND RELATED FORMS
-- first letter
+- prefix and first letter
b: bi contex-sensitive for local environments
c: contex-sensitive for terms
f: context-freee for closures
l: sn contex-sensitive for local environments
r: dx contex-sensitive for local environments
+s: stratified (prefix)
t: context-free for terms
- second letter
} ]
}
-class "text" { 0 } { 2 * }
+class "top" { * }
-class "plane" { 1 }
+class "italic" { 1 }
[ { "\"big tree\" parallel computation" * } {
[ "fpbg ( ⦃?,?,?⦄ >≡[?,?] ⦃?,?,?⦄ )" "fpbg_lift" + "fpbg_fleq" + "fpbg_fpbg" * ]
[ "fpbc ( ⦃?,?,?⦄ ≻≡[?,?] ⦃?,?,?⦄ )" "fpbc_fleq" + "fpbc_fpbs" * ]
- [ "fpbu ( ⦃?,?,?⦄ ≻[?,?] ⦃?,?,?⦄ )" "fpbu_lift" + "fpbu_lleq" "fpbu_fleq" * ]
+ [ "fpbu ( ⦃?,?,?⦄ ≻[?,?] ⦃?,?,?⦄ )" "fpbu_lift" + "fpbu_lleq" + "fpbu_fleq" * ]
[ "fpbs ( ⦃?,?,?⦄ ≥[?,?] ⦃?,?,?⦄ )" "fpbs_alt ( ⦃?,?,?⦄ ≥≥[?,?] ⦃?,?,?⦄ )" "fpbs_lift" + "fpbs_fleq" + "fpbs_aaa" + "fpbs_fpbs" + "fpbs_ext" * ]
}
]
}
]
[ { "context-sensitive extended reduction" * } {
- [ "lpx ( ⦃?,?⦄ ⊢ ➡[?,?] ? )" "lpx_drop" + "lpx_frees" "lpx_lleq" + "lpx_aaa" * ]
+ [ "lpx ( ⦃?,?⦄ ⊢ ➡[?,?] ? )" "lpx_drop" + "lpx_frees" + "lpx_lleq" + "lpx_aaa" * ]
[ "cpx ( ⦃?,?⦄ ⊢ ? ➡[?,?] ? )" "cpx_leq" + "cpx_lift" + "cpx_llpx_sn" + "cpx_lleq" + "cpx_cix" * ]
}
]
]
}
-class "component" { 0 }
+class "top" { * }
-class "plane" { 1 }
+class "capitalize italic" { 0 }
-class "file" { 2 * }
+class "italic" { 1 }
]
}
-class "plane" { 0 }
+class "top" { * }
-class "file" { 1 * }
+class "italic" { 0 }