\PSEM{c_1\mid c_2} &=& \FUN{x}{(\PSEM{c_1}\;x)\vee(\PSEM{c_2}\;x)}\\
\PSEM{c+} &=& \PSEM{c}\\
\PSEM{c?} &=& \FUN{\_}{\TRUE}\\
- \PSEM{c*} &=& \FUN{\_}{\TRUE}\\
- \PSEM{!c} &=& \FUN{x}{\neg(\PSEM{c}\;x)}\\[3ex]
+ \PSEM{c*} &=& \FUN{\_}{\TRUE}\\[3ex]
\FSEM{q}{l} &=& \FUN{x}{\IFH{(\PSEM{q}\;x)}{(l\;x)}{\FALSE}}\\
\FSEM{..}{l} &=& \FUN{x}{\IFH{\PARENT{x}=\{y\}}{(l\;y)}{\FALSE}}\\
\FSEM{/}{l} &=& \FUN{x}{\vee_{p\in\CHILDREN{x}} (l\;p)}\\
- \FSEM{c_1\;c_2}{l} &=& \FUN{x}{(\FSEM{c_1}{\FSEM{c_2}{l}}\;x)}\\
- \FSEM{c_1\&c_2}{l} &=& \FUN{x}{(\FSEM{c_1}{\FUN{y}{\IFH{(l\;y)}{(\FSEM{c_2}{\FUN{z}{z=y}}\;x)}{\FALSE}}}\;x)}\\
+ \FSEM{(c)}{l} &=& \FSEM{c}{l}\\
+ \FSEM{c_1\;c_2}{l} &=& \FSEM{c_1}{\FSEM{c_2}{l}}\\
+ \FSEM{c_1\&c_2}{l} &=& \FUN{x}{(\FSEM{c_1}{\FUN{y}{(l\;y)\wedge(\FSEM{c_2}{\FUN{z}{z=y}}\;x)}}\;x)}\\
\FSEM{c_1\mid c_2}{l} &=& \FUN{x}{(\FSEM{c_1}{l}\;x)\vee(\FSEM{c_2}{l}\;x)}\\
- \FSEM{c+}{l} &=& \FUN{x}{(\FSEM{c}{\FUN{y}{(l\;y)\vee(\FSEM{c+}{l}\;y)}}\;x)}\\
+ \FSEM{c+}{l} &=& \FSEM{c}{\FUN{y}{(l\;y)\vee(\FSEM{c+}{l}\;y)}}\\
\FSEM{c?}{l} &=& \FUN{x}{(l\;x)\vee(\FSEM{c}{l}\;x)}\\
\FSEM{c*}{l} &=& \FSEM{{c+}?}{l}\\
\end{array}