auto.
qed.
-theorem nle_gen_succ_zero: \forall (P:Prop). \forall x. x < zero \to P.
+theorem nle_gen_succ_zero: \forall x. x < zero \to False.
intros.
lapply linear nle_gen_succ_1 to H. decompose.
- apply (eq_gen_zero_succ ? ? H1).
+ lapply linear eq_gen_zero_succ to H1. decompose.
qed.
theorem nle_gen_zero_2: \forall x. x <= zero \to x = zero.
intros 1. elim x; clear x; intros;
[ auto new timeout=30
- | apply (nle_gen_succ_zero ? ? H1)
+ | lapply linear nle_gen_succ_zero to H1. decompose.
].
qed.
intros. inversion H; clear H; intros;
[ auto new timeout=30
| clear H H1.
- lapply eq_gen_zero_succ to H2 as H0. apply H0
+ lapply eq_gen_zero_succ to H2 as H0. decompose.
].
qed.
theorem nplus_gen_succ_2: \forall p,q,r. (p + (succ q) == r) \to
\exists s. r = (succ s) \land p + q == s.
intros. inversion H; clear H; intros;
- [ lapply eq_gen_succ_zero to H as H0. apply H0
+ [ lapply eq_gen_succ_zero to H as H0. decompose.
| clear H1 H3 r.
lapply linear eq_gen_succ_succ to H2 as H0.
subst.
intros. inversion H; clear H; intros;
[ subst. auto new timeout=30
| clear H H1.
- lapply eq_gen_zero_succ to H3 as H0. apply H0
+ lapply eq_gen_zero_succ to H3 as H0. decompose.
].
qed.
include "Nat/defs.ma".
-theorem eq_gen_zero_succ: \forall (P:Prop). \forall m2. zero = succ m2 \to P.
+theorem eq_gen_zero_succ: \forall m2. zero = succ m2 \to False.
intros. destruct H.
qed.
-theorem eq_gen_succ_zero: \forall (P:Prop). \forall m1. succ m1 = zero \to P.
+theorem eq_gen_succ_zero: \forall m1. succ m1 = zero \to False.
intros. destruct H.
qed.