λC:REL.λJ:unary_morphism (Ω \sup C) (Ω \sup C).
∀U,V. (J U ⊆ V) = (J U ⊆ J V).
+theorem subseteq_refl: ∀A.∀S:Ω \sup A.S ⊆ S.
+ intros 4; assumption.
+qed.
+
+theorem subseteq_trans: ∀A.∀S1,S2,S3: Ω \sup A. S1 ⊆ S2 → S2 ⊆ S3 → S1 ⊆ S3.
+ intros; apply transitive_subseteq_operator; [apply S2] assumption.
+qed.
+
+theorem saturation_expansive: ∀C,A. is_saturation C A → ∀U. U ⊆ A U.
+ intros; apply (fi ?? (H ??)); apply subseteq_refl.
+qed.
+
+theorem saturation_monotone:
+ ∀C,A. is_saturation C A →
+ ∀U,V. U ⊆ V → A U ⊆ A V.
+ intros; apply (if ?? (H ??)); apply subseteq_trans; [apply V|3: apply saturation_expansive ]
+ assumption.
+qed.
+
+theorem saturation_idempotent: ∀C,A. is_saturation C A → ∀U. A (A U) = A U.
+ intros; split;
+ [ apply (if ?? (H ??)); apply subseteq_refl
+ | apply saturation_expansive; assumption]
+qed.
+
record basic_topology: Type ≝
{ carrbt:> REL;
A: unary_morphism (Ω \sup carrbt) (Ω \sup carrbt);
coercion cont_rel'.
+definition cont_rel'': ∀S,T: basic_topology. continuous_relation_setoid S T → binary_relation S T ≝ cont_rel.
+
+coercion cont_rel''.
+
+theorem ext_comp:
+ ∀o1,o2,o3: REL.
+ ∀a: arrows1 ? o1 o2.
+ ∀b: arrows1 ? o2 o3.
+ ∀x. ext ?? (b∘a) x = extS ?? a (ext ?? b x).
+ intros;
+ unfold ext; unfold extS; simplify; split; intro; simplify; intros;
+ cases f; clear f; split; try assumption;
+ [ cases f2; clear f2; cases x1; clear x1; exists; [apply w] split;
+ [1: split] assumption;
+ | cases H; clear H; cases x1; clear x1; exists [apply w]; split;
+ [2: cases f] assumption]
+qed.
+
(*
+(* this proof is more logic-oriented than set/lattice oriented *)
+theorem continuous_relation_eqS:
+ ∀o1,o2:basic_topology.∀a,a': continuous_relation_setoid o1 o2.
+ a = a' → ∀X. A ? (extS ?? a X) = A ? (extS ?? a' X).
+ intros;
+ cut (∀a: arrows1 ? o1 ?.∀x. x ∈ extS ?? a X → ∃y:o2.y ∈ X ∧ x ∈ ext ?? a y);
+ [2: intros; cases f; clear f; cases H1; exists [apply w] cases x1; split;
+ try assumption; split; assumption]
+ cut (∀a,a':continuous_relation_setoid o1 o2.eq1 ? a a' → ∀x. x ∈ extS ?? a X → ∃y:o2. y ∈ X ∧ x ∈ A ? (ext ?? a' y));
+ [2: intros; cases (Hcut ?? f); exists; [apply w] cases x1; split; try assumption;
+ apply (. #‡(H1 ?));
+ apply (saturation_expansive ?? (A_is_saturation o1) (ext ?? a1 w) x);
+ assumption;] clear Hcut;
+ split; apply (if ?? (A_is_saturation ???)); intros 2;
+ [lapply (Hcut1 a a' H a1 f) | lapply (Hcut1 a' a (H \sup -1) a1 f)]
+ cases Hletin; clear Hletin; cases x; clear x;
+ cut (∀a: arrows1 ? o1 ?. ext ?? a w ⊆ extS ?? a X);
+ [2,4: intros 3; cases f3; clear f3; simplify in f5; split; try assumption;
+ exists [1,3: apply w] split; assumption;]
+ cut (∀a. A ? (ext o1 o2 a w) ⊆ A ? (extS o1 o2 a X));
+ [2,4: intros; apply saturation_monotone; try (apply A_is_saturation); apply Hcut;]
+ apply Hcut2; assumption.
+qed.
+*)
+
+theorem continuous_relation_eq':
+ ∀o1,o2.∀a,a': continuous_relation_setoid o1 o2.
+ a = a' → ∀X.minus_star_image ?? a (A o1 X) = minus_star_image ?? a' (A o1 X).
+ intros; split; intro; unfold minus_star_image; simplify; intros;
+ [ cut (ext ?? a a1 ⊆ A ? X); [2: intros 2; apply (H1 a2); cases f1; assumption;]
+ lapply (if ?? (A_is_saturation ???) Hcut); clear Hcut;
+ cut (A ? (ext ?? a' a1) ⊆ A ? X); [2: apply (. (H ?)‡#); assumption]
+ lapply (fi ?? (A_is_saturation ???) Hcut);
+ apply (Hletin1 x); change with (x ∈ ext ?? a' a1); split; simplify;
+ [ apply I | assumption ]
+ | cut (ext ?? a' a1 ⊆ A ? X); [2: intros 2; apply (H1 a2); cases f1; assumption;]
+ lapply (if ?? (A_is_saturation ???) Hcut); clear Hcut;
+ cut (A ? (ext ?? a a1) ⊆ A ? X); [2: apply (. (H ?)\sup -1‡#); assumption]
+ lapply (fi ?? (A_is_saturation ???) Hcut);
+ apply (Hletin1 x); change with (x ∈ ext ?? a a1); split; simplify;
+ [ apply I | assumption ]]
+qed.
+
+theorem extS_singleton:
+ ∀o1,o2.∀a:arrows1 ? o1 o2.∀x.extS o1 o2 a (singleton o2 x) = ext o1 o2 a x.
+ intros; unfold extS; unfold ext; unfold singleton; simplify;
+ split; intros 2; simplify; cases f; split; try assumption;
+ [ cases H; cases x1; change in f2 with (eq1 ? x w); apply (. #‡f2 \sup -1);
+ assumption
+ | exists; try assumption; split; try assumption; change with (x = x); apply refl]
+qed.
+
+theorem continuous_relation_eq_inv':
+ ∀o1,o2.∀a,a': continuous_relation_setoid o1 o2.
+ (∀X.minus_star_image ?? a (A o1 X) = minus_star_image ?? a' (A o1 X)) → a=a'.
+ intros 6;
+ cut (∀a,a': continuous_relation_setoid o1 o2.
+ (∀X.minus_star_image ?? a (A o1 X) = minus_star_image ?? a' (A o1 X)) →
+ ∀V:o2. A ? (ext ?? a' V) ⊆ A ? (ext ?? a V));
+ [2: clear b H a' a; intros;
+ lapply depth=0 (λV.saturation_expansive ??? (extS ?? a V)); [2: apply A_is_saturation;|skip]
+ (* fundamental adjunction here! to be taken out *)
+ cut (∀V:Ω \sup o2.V ⊆ minus_star_image ?? a (A ? (extS ?? a V)));
+ [2: intro; intros 2; unfold minus_star_image; simplify; intros;
+ apply (Hletin V1 x); whd; split; [ exact I | exists; [apply a1] split; assumption]]
+ clear Hletin;
+ cut (∀V:Ω \sup o2.V ⊆ minus_star_image ?? a' (A ? (extS ?? a V)));
+ [2: intro; apply (. #‡(H ?)); apply Hcut] clear H Hcut;
+ (* second half of the fundamental adjunction here! to be taken out too *)
+ intro; lapply (Hcut1 (singleton ? V)); clear Hcut1;
+ unfold minus_star_image in Hletin; unfold singleton in Hletin; simplify in Hletin;
+ whd in Hletin; whd in Hletin:(?→?→%); simplify in Hletin;
+ apply (if ?? (A_is_saturation ???));
+ intros 2 (x H); lapply (Hletin V ? x ?);
+ [ apply refl | cases H; assumption; ]
+ change with (x ∈ A ? (ext ?? a V));
+ apply (. #‡(†(extS_singleton ????)));
+ assumption;]
+ split; apply Hcut; [2: assumption | intro; apply sym1; apply H]
+qed.
+
+definition continuous_relation_comp:
+ ∀o1,o2,o3.
+ continuous_relation_setoid o1 o2 →
+ continuous_relation_setoid o2 o3 →
+ continuous_relation_setoid o1 o3.
+ intros (o1 o2 o3 r s); constructor 1;
+ [ apply (s ∘ r)
+ | intros;
+ apply sym1;
+ apply (.= †(image_comp ??????));
+ apply (.= (reduced ?????)\sup -1);
+ [ apply (.= (reduced ?????)); [ assumption | apply refl1 ]
+ | apply (.= (image_comp ??????)\sup -1);
+ apply refl1]
+ | intros;
+ apply sym1;
+ apply (.= †(minus_star_image_comp ??????));
+ apply (.= (saturated ?????)\sup -1);
+ [ apply (.= (saturated ?????)); [ assumption | apply refl1 ]
+ | apply (.= (minus_star_image_comp ??????)\sup -1);
+ apply refl1]]
+qed.
+
definition BTop: category1.
constructor 1;
[ apply basic_topology
apply sym1;
assumption]
| intros; constructor 1;
- [ intros (r s); constructor 1;
- [ apply (s ∘ r)
- | intros;
- apply sym1;
- apply (.= †(image_comp ??????));
- apply (.= (reduced ?????)\sup -1);
- [ apply (.= (reduced ?????)); [ assumption | apply refl1 ]
- | apply (.= (image_comp ??????)\sup -1);
- apply refl1]
- | intros;
- apply sym1;
- apply (.= †(minus_star_image_comp ??????));
- apply (.= (saturated ?????)\sup -1);
- [ apply (.= (saturated ?????)); [ assumption | apply refl1 ]
- | apply (.= (minus_star_image_comp ??????)\sup -1);
- apply refl1]]
- | intros; simplify; intro; simplify; whd in H H1;
- apply (.= †(ext_comp ???));
- ]
- | intros; simplify; intro; simplify;
+ [ apply continuous_relation_comp;
+ | intros; simplify; intro x; simplify;
+ lapply depth=0 (continuous_relation_eq' ???? H) as H';
+ lapply depth=0 (continuous_relation_eq' ???? H1) as H1';
+ letin K ≝ (λX.H1' (minus_star_image ?? a (A ? X))); clearbody K;
+ cut (∀X:Ω \sup o1.
+ minus_star_image o2 o3 b (A o2 (minus_star_image o1 o2 a (A o1 X)))
+ = minus_star_image o2 o3 b' (A o2 (minus_star_image o1 o2 a' (A o1 X))));
+ [2: intro; apply sym1; apply (.= #‡(†((H' ?)\sup -1))); apply sym1; apply (K X);]
+ clear K H' H1';
+ cut (∀X:Ω \sup o1.
+ minus_star_image o1 o3 (b ∘ a) (A o1 X) = minus_star_image o1 o3 (b'∘a') (A o1 X));
+ [2: intro;
+ apply (.= (minus_star_image_comp ??????));
+ apply (.= #‡(saturated ?????));
+ [ apply ((saturation_idempotent ????) \sup -1); apply A_is_saturation ]
+ apply sym1;
+ apply (.= (minus_star_image_comp ??????));
+ apply (.= #‡(saturated ?????));
+ [ apply ((saturation_idempotent ????) \sup -1); apply A_is_saturation ]
+ apply ((Hcut X) \sup -1)]
+ clear Hcut; generalize in match x; clear x;
+ apply (continuous_relation_eq_inv');
+ apply Hcut1;]
+ | intros; simplify; intro; do 2 (unfold continuous_relation_comp); simplify;
apply (.= †(ASSOC1‡#));
apply refl1
- | intros; simplify; intro; simplify;
+ | intros; simplify; intro; unfold continuous_relation_comp; simplify;
apply (.= †((id_neutral_right1 ????)‡#));
apply refl1
| intros; simplify; intro; simplify;
apply (.= †((id_neutral_left1 ????)‡#));
apply refl1]
-qed.*)
\ No newline at end of file
+qed.
\ No newline at end of file