interpretation "refl2" 'refl = (refl2 ???).
interpretation "refl3" 'refl = (refl3 ???).
+notation > "A × term 74 B ⇒ term 19 C" non associative with precedence 72 for @{'binary_morphism0 $A $B $C}.
+notation > "A × term 74 B ⇒_1 term 19 C" non associative with precedence 72 for @{'binary_morphism1 $A $B $C}.
+notation > "A × term 74 B ⇒_2 term 19 C" non associative with precedence 72 for @{'binary_morphism2 $A $B $C}.
+notation > "A × term 74 B ⇒_3 term 19 C" non associative with precedence 72 for @{'binary_morphism3 $A $B $C}.
+notation > "B ⇒_1 C" right associative with precedence 72 for @{'arrows1_SET $B $C}.
+notation > "B ⇒_1. C" right associative with precedence 72 for @{'arrows1_SETlow $B $C}.
+notation > "B ⇒_2 C" right associative with precedence 72 for @{'arrows2_SET1 $B $C}.
+notation > "B ⇒_2. C" right associative with precedence 72 for @{'arrows2_SET1low $B $C}.
+
+notation "A × term 74 B ⇒ term 19 C" non associative with precedence 72 for @{'binary_morphism0 $A $B $C}.
+notation "A × term 74 B ⇒\sub 1 term 19 C" non associative with precedence 72 for @{'binary_morphism1 $A $B $C}.
+notation "A × term 74 B ⇒\sub 2 term 19 C" non associative with precedence 72 for @{'binary_morphism2 $A $B $C}.
+notation "A × term 74 B ⇒\sub 3 term 19 C" non associative with precedence 72 for @{'binary_morphism3 $A $B $C}.
+notation "B ⇒\sub 1 C" right associative with precedence 72 for @{'arrows1_SET $B $C}.
+notation "B ⇒\sub 2 C" right associative with precedence 72 for @{'arrows2_SET1 $B $C}.
+notation "B ⇒\sub 1. C" right associative with precedence 72 for @{'arrows1_SETlow $B $C}.
+notation "B ⇒\sub 2. C" right associative with precedence 72 for @{'arrows2_SET1low $B $C}.
+
+interpretation "'binary_morphism0" 'binary_morphism0 A B C = (binary_morphism A B C).
+interpretation "'arrows2_SET1 low" 'arrows2_SET1 A B = (unary_morphism2 A B).
+interpretation "'arrows2_SET1low" 'arrows2_SET1low A B = (unary_morphism2 A B).
+interpretation "'binary_morphism1" 'binary_morphism1 A B C = (binary_morphism1 A B C).
+interpretation "'binary_morphism2" 'binary_morphism2 A B C = (binary_morphism2 A B C).
+interpretation "'binary_morphism3" 'binary_morphism3 A B C = (binary_morphism3 A B C).
+interpretation "'arrows1_SET low" 'arrows1_SET A B = (unary_morphism1 A B).
+interpretation "'arrows1_SETlow" 'arrows1_SETlow A B = (unary_morphism1 A B).
+
+
definition unary_morphism2_of_unary_morphism1:
∀S,T:setoid1.unary_morphism1 S T → unary_morphism2 (setoid2_of_setoid1 S) T.
intros;
| apply (fi ?? e1); apply f; apply (if ?? e); assumption]]
qed.
-
-record category : Type1 ≝
- { objs:> Type0;
+notation > "hvbox(a break ∘ b)" left associative with precedence 55 for @{ comp ??? $a $b }.
+record category : Type1 ≝ {
+ objs:> Type0;
arrows: objs → objs → setoid;
id: ∀o:objs. arrows o o;
- comp: ∀o1,o2,o3. binary_morphism (arrows o1 o2) (arrows o2 o3) (arrows o1 o3);
- comp_assoc: ∀o1,o2,o3,o4. ∀a12,a23,a34.
- comp o1 o3 o4 (comp o1 o2 o3 a12 a23) a34 = comp o1 o2 o4 a12 (comp o2 o3 o4 a23 a34);
- id_neutral_left: ∀o1,o2. ∀a: arrows o1 o2. comp ??? (id o1) a = a;
- id_neutral_right: ∀o1,o2. ∀a: arrows o1 o2. comp ??? a (id o2) = a
- }.
+ comp: ∀o1,o2,o3. (arrows o1 o2) × (arrows o2 o3) ⇒ (arrows o1 o3);
+ comp_assoc: ∀o1,o2,o3,o4.∀a12:arrows o1 ?.∀a23:arrows o2 ?.∀a34:arrows o3 o4.
+ (a12 ∘ a23) ∘ a34 =_0 a12 ∘ (a23 ∘ a34);
+ id_neutral_left : ∀o1,o2. ∀a: arrows o1 o2. (id o1) ∘ a =_0 a;
+ id_neutral_right: ∀o1,o2. ∀a: arrows o1 o2. a ∘ (id o2) =_0 a
+}.
+notation "hvbox(a break ∘ b)" left associative with precedence 55 for @{ 'compose $a $b }.
record category1 : Type2 ≝
{ objs1:> Type1;
id1: ∀o:objs1. arrows1 o o;
comp1: ∀o1,o2,o3. binary_morphism1 (arrows1 o1 o2) (arrows1 o2 o3) (arrows1 o1 o3);
comp_assoc1: ∀o1,o2,o3,o4. ∀a12,a23,a34.
- comp1 o1 o3 o4 (comp1 o1 o2 o3 a12 a23) a34 = comp1 o1 o2 o4 a12 (comp1 o2 o3 o4 a23 a34);
- id_neutral_right1: ∀o1,o2. ∀a: arrows1 o1 o2. comp1 ??? (id1 o1) a = a;
- id_neutral_left1: ∀o1,o2. ∀a: arrows1 o1 o2. comp1 ??? a (id1 o2) = a
+ comp1 o1 o3 o4 (comp1 o1 o2 o3 a12 a23) a34 =_1 comp1 o1 o2 o4 a12 (comp1 o2 o3 o4 a23 a34);
+ id_neutral_right1: ∀o1,o2. ∀a: arrows1 o1 o2. comp1 ??? (id1 o1) a =_1 a;
+ id_neutral_left1: ∀o1,o2. ∀a: arrows1 o1 o2. comp1 ??? a (id1 o2) =_1 a
}.
record category2 : Type3 ≝
id2: ∀o:objs2. arrows2 o o;
comp2: ∀o1,o2,o3. binary_morphism2 (arrows2 o1 o2) (arrows2 o2 o3) (arrows2 o1 o3);
comp_assoc2: ∀o1,o2,o3,o4. ∀a12,a23,a34.
- comp2 o1 o3 o4 (comp2 o1 o2 o3 a12 a23) a34 = comp2 o1 o2 o4 a12 (comp2 o2 o3 o4 a23 a34);
- id_neutral_right2: ∀o1,o2. ∀a: arrows2 o1 o2. comp2 ??? (id2 o1) a = a;
- id_neutral_left2: ∀o1,o2. ∀a: arrows2 o1 o2. comp2 ??? a (id2 o2) = a
+ comp2 o1 o3 o4 (comp2 o1 o2 o3 a12 a23) a34 =_2 comp2 o1 o2 o4 a12 (comp2 o2 o3 o4 a23 a34);
+ id_neutral_right2: ∀o1,o2. ∀a: arrows2 o1 o2. comp2 ??? (id2 o1) a =_2 a;
+ id_neutral_left2: ∀o1,o2. ∀a: arrows2 o1 o2. comp2 ??? a (id2 o2) =_2 a
}.
record category3 : Type4 ≝
id3: ∀o:objs3. arrows3 o o;
comp3: ∀o1,o2,o3. binary_morphism3 (arrows3 o1 o2) (arrows3 o2 o3) (arrows3 o1 o3);
comp_assoc3: ∀o1,o2,o3,o4. ∀a12,a23,a34.
- comp3 o1 o3 o4 (comp3 o1 o2 o3 a12 a23) a34 = comp3 o1 o2 o4 a12 (comp3 o2 o3 o4 a23 a34);
- id_neutral_right3: ∀o1,o2. ∀a: arrows3 o1 o2. comp3 ??? (id3 o1) a = a;
- id_neutral_left3: ∀o1,o2. ∀a: arrows3 o1 o2. comp3 ??? a (id3 o2) = a
+ comp3 o1 o3 o4 (comp3 o1 o2 o3 a12 a23) a34 =_3 comp3 o1 o2 o4 a12 (comp3 o2 o3 o4 a23 a34);
+ id_neutral_right3: ∀o1,o2. ∀a: arrows3 o1 o2. comp3 ??? (id3 o1) a =_3 a;
+ id_neutral_left3: ∀o1,o2. ∀a: arrows3 o1 o2. comp3 ??? a (id3 o2) =_3 a
}.
notation "'ASSOC'" with precedence 90 for @{'assoc}.
| intros;
constructor 1;
[ intros; apply (comp1 c o1 o2 o3 c1 c2);
- | intros; whd in e e1 a a' b b'; change with (eq1 ? (b∘a) (b'∘a')); apply (e‡e1); ]
+ | intros; unfold setoid2_of_setoid1 in e e1 a a' b b'; simplify in e e1 a a' b b';
+ change with ((b∘a) =_1 (b'∘a')); apply (e‡e1); ]
| intros; simplify; whd in a12 a23 a34; whd; apply rule (ASSOC);
| intros; simplify; whd in a; whd; apply id_neutral_right1;
| intros; simplify; whd in a; whd; apply id_neutral_left1; ]
∀P,Q.arrows1 SET P Q → unary_morphism_setoid P Q ≝ λP,Q,x.x.
coercion unary_morphism_setoid_of_arrows1_SET.
-notation > "A × term 74 B ⇒_1 term 19 C" non associative with precedence 72 for @{'binary_morphism1 $A $B $C}.
-notation > "A × term 74 B ⇒_2 term 19 C" non associative with precedence 72 for @{'binary_morphism2 $A $B $C}.
-notation > "A × term 74 B ⇒_3 term 19 C" non associative with precedence 72 for @{'binary_morphism3 $A $B $C}.
-notation > "B ⇒_1 C" right associative with precedence 72 for @{'arrows1_SET $B $C}.
-notation > "B ⇒_1. C" right associative with precedence 72 for @{'arrows1_SETlow $B $C}.
-notation > "B ⇒_2 C" right associative with precedence 72 for @{'arrows2_SET1 $B $C}.
-notation > "B ⇒_2. C" right associative with precedence 72 for @{'arrows2_SET1low $B $C}.
-
-notation "A × term 74 B ⇒\sub 1 term 19 C" non associative with precedence 72 for @{'binary_morphism1 $A $B $C}.
-notation "A × term 74 B ⇒\sub 2 term 19 C" non associative with precedence 72 for @{'binary_morphism2 $A $B $C}.
-notation "A × term 74 B ⇒\sub 3 term 19 C" non associative with precedence 72 for @{'binary_morphism3 $A $B $C}.
-notation "B ⇒\sub 1 C" right associative with precedence 72 for @{'arrows1_SET $B $C}.
-notation "B ⇒\sub 2 C" right associative with precedence 72 for @{'arrows2_SET1 $B $C}.
-notation "B ⇒\sub 1. C" right associative with precedence 72 for @{'arrows1_SETlow $B $C}.
-notation "B ⇒\sub 2. C" right associative with precedence 72 for @{'arrows2_SET1low $B $C}.
-
-interpretation "'binary_morphism1" 'binary_morphism1 A B C = (binary_morphism1 A B C).
-interpretation "'binary_morphism2" 'binary_morphism2 A B C = (binary_morphism2 A B C).
-interpretation "'binary_morphism3" 'binary_morphism3 A B C = (binary_morphism3 A B C).
-interpretation "'arrows1_SET low" 'arrows1_SET A B = (unary_morphism1 A B).
-interpretation "'arrows1_SETlow" 'arrows1_SETlow A B = (unary_morphism1 A B).
interpretation "'arrows1_SET" 'arrows1_SET A B = (arrows1 SET A B).
definition unary_morphism1_setoid1: setoid1 → setoid1 → setoid1.
]
qed.
-interpretation "'arrows2_SET1 low" 'arrows2_SET1 A B = (unary_morphism2 A B).
-interpretation "'arrows2_SET1low" 'arrows2_SET1low A B = (unary_morphism2 A B).
interpretation "'arrows2_SET1" 'arrows2_SET1 A B = (arrows2 SET1 A B).
definition setoid1_of_SET1: objs2 SET1 → setoid1 ≝ λx.x.