#RN #RP #HN #HP #b #f #L1 #K1 #H elim H -f -L1 -K1
[ #f #Hf #X #f2 #H #f1 #Hf2 >(lexs_inv_atom1 … H) -X
/4 width=3 by lexs_atom, drops_atom, ex2_intro/
-| #f #I #L1 #K1 #V1 #_ #IH #X #f2 #H #f1 #Hf2 elim (after_inv_nxx … Hf2) -Hf2 [2,3: // ]
- #g2 #Hg2 #H2 destruct elim (lexs_inv_next1 … H) -H
+| #f #I #L1 #K1 #V1 #_ #IH #X #f2 #H #f1 #Hf2 elim (coafter_inv_nxx … Hf2) -Hf2 [2,3: // ]
+ #g2 #Hg2 #H2 destruct elim (lexs_inv_push1 … H) -H
#L2 #V2 #HL12 #HV12 #H destruct elim (IH … HL12 … Hg2) -g2
/3 width=3 by drops_drop, ex2_intro/
-| #f #I #L1 #K1 #V1 #W1 #HLK #HWV #IH #X #f2 #H #f1 #Hf2 elim (after_inv_pxx … Hf2) -Hf2 [1,3:* |*: // ]
+| #f #I #L1 #K1 #V1 #W1 #HLK #HWV #IH #X #f2 #H #f1 #Hf2 elim (coafter_inv_pxx … Hf2) -Hf2 [1,3:* |*: // ]
#g1 #g2 #Hg2 #H1 #H2 destruct
[ elim (lexs_inv_push1 … H) | elim (lexs_inv_next1 … H) ] -H
#L2 #V2 #HL12 #HV12 #H destruct elim (IH … HL12 … Hg2) -g2
[ #f #Hf #X #f1 #H #f2 #Hf2 >(lexs_inv_atom1 … H) -X
/4 width=4 by drops_atom, lexs_atom, ex3_intro/
| #f #I #L1 #K1 #V1 #_ #IHLK1 #K2 #f1 #HK12 #f2 #Hf2
- elim (after_inv_nxx … Hf2) -Hf2 [2,3: // ] #g2 #Hg2 #H destruct
+ elim (coafter_inv_nxx … Hf2) -Hf2 [2,3: // ] #g2 #Hg2 #H destruct
elim (IHLK1 … HK12 … Hg2) -K1
- /3 width=6 by drops_drop, lexs_next, ex3_intro/
+ /3 width=6 by drops_drop, lexs_next, lexs_push, ex3_intro/
| #f #I #L1 #K1 #V1 #W1 #HLK1 #HWV1 #IHLK1 #X #f1 #H #f2 #Hf2
- elim (after_inv_pxx … Hf2) -Hf2 [1,3: * |*: // ] #g1 #g2 #Hg2 #H1 #H2 destruct
+ elim (coafter_inv_pxx … Hf2) -Hf2 [1,3: * |*: // ] #g1 #g2 #Hg2 #H1 #H2 destruct
[ elim (lexs_inv_push1 … H) | elim (lexs_inv_next1 … H) ] -H #K2 #W2 #HK12 #HW12 #H destruct
[ elim (H2RP … HW12 … HLK1 … HWV1) | elim (H2RN … HW12 … HLK1 … HWV1) ] -W1
elim (IHLK1 … HK12 … Hg2) -K1
qed-.
fact lexs_dropable_aux: ∀RN,RP,b,f,L2,K2. ⬇*[b, f] L2 ≡ K2 → 𝐔⦃f⦄ →
- ∀f2,L1. L1 ⦻*[RN, RP, f2] L2 → ∀f1. f ⊚ f1 ≡ f2 →
+ ∀f2,L1. L1 ⦻*[RN, RP, f2] L2 → ∀f1. f ~⊚ f1 ≡ f2 →
∃∃K1. ⬇*[b, f] L1 ≡ K1 & K1 ⦻*[RN, RP, f1] K2.
#RN #RP #b #f #L2 #K2 #H elim H -f -L2 -K2
[ #f #Hf #_ #f2 #X #H #f1 #Hf2 lapply (lexs_inv_atom2 … H) -H
#H destruct /4 width=3 by lexs_atom, drops_atom, ex2_intro/
| #f #I #L2 #K2 #V2 #_ #IH #Hf #f2 #X #HX #f1 #Hf2
- elim (after_inv_nxx … Hf2) -Hf2 [2,3: // ] #g2 #Hg2 #H destruct
- elim (lexs_inv_next2 … HX) -HX #L1 #V1 #HL12 #HV12 #H destruct
+ elim (coafter_inv_nxx … Hf2) -Hf2 [2,3: // ] #g2 #Hg2 #H destruct
+ elim (lexs_inv_push2 … HX) -HX #L1 #V1 #HL12 #HV12 #H destruct
elim (IH … HL12 … Hg2) -L2 -V2 -g2
/3 width=3 by drops_drop, isuni_inv_next, ex2_intro/
| #f #I #L2 #K2 #V2 #W2 #_ #HWV2 #IH #Hf #f2 #X #HX #f1 #Hf2
- elim (after_inv_pxx … Hf2) -Hf2 [1,3: * |*: // ] #g1 #g2 #Hg2 #H1 #H2 destruct
+ elim (coafter_inv_pxx … Hf2) -Hf2 [1,3: * |*: // ] #g1 #g2 #Hg2 #H1 #H2 destruct
[ elim (lexs_inv_push2 … HX) | elim (lexs_inv_next2 … HX) ] -HX #L1 #V1 #HL12 #HV12 #H destruct
elim (IH … HL12 … Hg2) -L2 -g2 /2 width=3 by isuni_fwd_push/ #K1 #HLK1 #HK12
lapply (isuni_inv_push … Hf ??) -Hf [3,6: |*: // ] #Hf
lemma lexs_drops_conf_next: ∀RN,RP. d_deliftable2_sn RN → d_deliftable2_sn RP →
∀f2,L1,L2. L1 ⦻*[RN, RP, f2] L2 →
∀b,f,I,K1,V1. ⬇*[b,f] L1 ≡ K1.ⓑ{I}V1 →
- ∀f1. f ⊚ ⫯f1 ≡ f2 →
+ ∀f1. f ~⊚ ⫯f1 ≡ f2 →
∃∃K2,V2. ⬇*[b,f] L2 ≡ K2.ⓑ{I}V2 & K1 ⦻*[RN, RP, f1] K2 & RN K1 V1 V2.
#RN #RP #HRN #HRP #f2 #L1 #L2 #HL12 #b #f #I #K1 #V1 #HLK1 #f1 #Hf2
elim (lexs_deliftable_dropable … HRN HRP … HLK1 … HL12 … Hf2) -L1 -f2 -HRN -HRP
lemma lexs_drops_conf_push: ∀RN,RP. d_deliftable2_sn RN → d_deliftable2_sn RP →
∀f2,L1,L2. L1 ⦻*[RN, RP, f2] L2 →
∀b,f,I,K1,V1. ⬇*[b,f] L1 ≡ K1.ⓑ{I}V1 →
- ∀f1. f ⊚ ↑f1 ≡ f2 →
+ ∀f1. f ~⊚ ↑f1 ≡ f2 →
∃∃K2,V2. ⬇*[b,f] L2 ≡ K2.ⓑ{I}V2 & K1 ⦻*[RN, RP, f1] K2 & RP K1 V1 V2.
#RN #RP #HRN #HRP #f2 #L1 #L2 #HL12 #b #f #I #K1 #V1 #HLK1 #f1 #Hf2
elim (lexs_deliftable_dropable … HRN HRP … HLK1 … HL12 … Hf2) -L1 -f2 -HRN -HRP
(* Basic_2A1: includes: lpx_sn_drop_trans *)
lemma lexs_drops_trans_next: ∀RN,RP,f2,L1,L2. L1 ⦻*[RN, RP, f2] L2 →
∀b,f,I,K2,V2. ⬇*[b,f] L2 ≡ K2.ⓑ{I}V2 → 𝐔⦃f⦄ →
- ∀f1. f ⊚ ⫯f1 ≡ f2 →
+ ∀f1. f ~⊚ ⫯f1 ≡ f2 →
∃∃K1,V1. ⬇*[b,f] L1 ≡ K1.ⓑ{I}V1 & K1 ⦻*[RN, RP, f1] K2 & RN K1 V1 V2.
#RN #RP #f2 #L1 #L2 #HL12 #b #f #I #K1 #V1 #HLK1 #Hf #f1 #Hf2
elim (lexs_dropable … HL12 … HLK1 … Hf … Hf2) -L2 -f2 -Hf
lemma lexs_drops_trans_push: ∀RN,RP,f2,L1,L2. L1 ⦻*[RN, RP, f2] L2 →
∀b,f,I,K2,V2. ⬇*[b,f] L2 ≡ K2.ⓑ{I}V2 → 𝐔⦃f⦄ →
- ∀f1. f ⊚ ↑f1 ≡ f2 →
+ ∀f1. f ~⊚ ↑f1 ≡ f2 →
∃∃K1,V1. ⬇*[b,f] L1 ≡ K1.ⓑ{I}V1 & K1 ⦻*[RN, RP, f1] K2 & RP K1 V1 V2.
#RN #RP #f2 #L1 #L2 #HL12 #b #f #I #K1 #V1 #HLK1 #Hf #f1 #Hf2
elim (lexs_dropable … HL12 … HLK1 … Hf … Hf2) -L2 -f2 -Hf
d_liftable2 RN → d_liftable2 RP →
∀f1,K1,K2. K1 ⦻*[RN, RP, f1] K2 →
∀b,f,I,L1,V1. ⬇*[b,f] L1.ⓑ{I}V1 ≡ K1 →
- ∀f2. f ⊚ f1 ≡ ⫯f2 →
+ ∀f2. f ~⊚ f1 ≡ ⫯f2 →
∃∃L2,V2. ⬇*[b,f] L2.ⓑ{I}V2 ≡ K2 & L1 ⦻*[RN, RP, f2] L2 & RN L1 V1 V2 & L1.ⓑ{I}V1≡[f]L2.ⓑ{I}V2.
#RN #RP #H1RN #H1RP #H2RN #H2RP #f1 #K1 #K2 #HK12 #b #f #I #L1 #V1 #HLK1 #f2 #Hf2
elim (lexs_liftable_dedropable … H1RN H1RP H2RN H2RP … HLK1 … HK12 … Hf2) -K1 -f1 -H1RN -H1RP -H2RN -H2RP
d_liftable2 RN → d_liftable2 RP →
∀f1,K1,K2. K1 ⦻*[RN, RP, f1] K2 →
∀b,f,I,L1,V1. ⬇*[b,f] L1.ⓑ{I}V1 ≡ K1 →
- ∀f2. f ⊚ f1 ≡ ↑f2 →
+ ∀f2. f ~⊚ f1 ≡ ↑f2 →
∃∃L2,V2. ⬇*[b,f] L2.ⓑ{I}V2 ≡ K2 & L1 ⦻*[RN, RP, f2] L2 & RP L1 V1 V2 & L1.ⓑ{I}V1≡[f]L2.ⓑ{I}V2.
#RN #RP #H1RN #H1RP #H2RN #H2RP #f1 #K1 #K2 #HK12 #b #f #I #L1 #V1 #HLK1 #f2 #Hf2
elim (lexs_liftable_dedropable … H1RN H1RP H2RN H2RP … HLK1 … HK12 … Hf2) -K1 -f1 -H1RN -H1RP -H2RN -H2RP
include "ground_2/notation/relations/rcoafter_3.ma".
include "ground_2/relocation/rtmap_sor.ma".
-include "ground_2/relocation/rtmap_istot.ma".
+include "ground_2/relocation/rtmap_after.ma".
(* RELOCATION MAP ***********************************************************)
#f2 #f1 @eq_repl_sym /2 width=3 by coafter_eq_repl_back0/
qed-.
-(* Main properties **********************************************************)
-(*
-corec theorem coafter_trans1: ∀f0,f3,f4. f0 ~⊚ f3 ≡ f4 →
- ∀f1,f2. f1 ~⊚ f2 ≡ f0 →
- ∀f. f2 ~⊚ f3 ≡ f → f1 ~⊚ f ≡ f4.
-#f0 #f3 #f4 * -f0 -f3 -f4 #f0 #f3 #f4 #g0 [1,2: #g3 ] #g4
-[ #Hf4 #H0 #H3 #H4 #g1 #g2 #Hg0 #g #Hg
- cases (coafter_inv_xxp … Hg0 … H0) -g0
- #f1 #f2 #Hf0 #H1 #H2
- cases (coafter_inv_ppx … Hg … H2 H3) -g2 -g3
- #f #Hf #H /3 width=7 by coafter_refl/
-| #Hf4 #H0 #H3 #H4 #g1 #g2 #Hg0 #g #Hg
- cases (coafter_inv_xxp … Hg0 … H0) -g0
- #f1 #f2 #Hf0 #H1 #H2
- cases (coafter_inv_pnx … Hg … H2 H3) -g2 -g3
- #f #Hf #H /3 width=7 by coafter_push/
-| #Hf4 #H0 #H4 #g1 #g2 #Hg0 #g #Hg
- cases (coafter_inv_xxn … Hg0 … H0) -g0 *
- [ #f1 #f2 #Hf0 #H1 #H2
- cases (coafter_inv_nxx … Hg … H2) -g2
- #f #Hf #H /3 width=7 by coafter_push/
- | #f1 #Hf0 #H1 /3 width=6 by coafter_next/
- ]
-]
-qed-.
-
-corec theorem coafter_trans2: ∀f1,f0,f4. f1 ~⊚ f0 ≡ f4 →
- ∀f2, f3. f2 ~⊚ f3 ≡ f0 →
- ∀f. f1 ~⊚ f2 ≡ f → f ~⊚ f3 ≡ f4.
-#f1 #f0 #f4 * -f1 -f0 -f4 #f1 #f0 #f4 #g1 [1,2: #g0 ] #g4
-[ #Hf4 #H1 #H0 #H4 #g2 #g3 #Hg0 #g #Hg
- cases (coafter_inv_xxp … Hg0 … H0) -g0
- #f2 #f3 #Hf0 #H2 #H3
- cases (coafter_inv_ppx … Hg … H1 H2) -g1 -g2
- #f #Hf #H /3 width=7 by coafter_refl/
-| #Hf4 #H1 #H0 #H4 #g2 #g3 #Hg0 #g #Hg
- cases (coafter_inv_xxn … Hg0 … H0) -g0 *
- [ #f2 #f3 #Hf0 #H2 #H3
- cases (coafter_inv_ppx … Hg … H1 H2) -g1 -g2
- #f #Hf #H /3 width=7 by coafter_push/
- | #f2 #Hf0 #H2
- cases (coafter_inv_pnx … Hg … H1 H2) -g1 -g2
- #f #Hf #H /3 width=6 by coafter_next/
- ]
-| #Hf4 #H1 #H4 #f2 #f3 #Hf0 #g #Hg
- cases (coafter_inv_nxx … Hg … H1) -g1
- #f #Hg #H /3 width=6 by coafter_next/
-]
-qed-.
-*)
(* Main inversion lemmas ****************************************************)
corec theorem coafter_mono: ∀f1,f2,x,y. f1 ~⊚ f2 ≡ x → f1 ~⊚ f2 ≡ y → x ≗ y.
/3 width=11 by coafter_refl, coafter_push, sor_np, sor_pn, sor_nn, ex3_2_intro/
]
qed-.
+
+(* Properties with after ****************************************************)
+(*
+corec theorem coafter_trans1: ∀f0,f3,f4. f0 ~⊚ f3 ≡ f4 →
+ ∀f1,f2. f1 ~⊚ f2 ≡ f0 →
+ ∀f. f2 ~⊚ f3 ≡ f → f1 ~⊚ f ≡ f4.
+#f0 #f3 #f4 * -f0 -f3 -f4 #f0 #f3 #f4 #g0 [1,2: #g3 ] #g4
+[ #Hf4 #H0 #H3 #H4 #g1 #g2 #Hg0 #g #Hg
+ cases (coafter_inv_xxp … Hg0 … H0) -g0
+ #f1 #f2 #Hf0 #H1 #H2
+ cases (coafter_inv_ppx … Hg … H2 H3) -g2 -g3
+ #f #Hf #H /3 width=7 by coafter_refl/
+| #Hf4 #H0 #H3 #H4 #g1 #g2 #Hg0 #g #Hg
+ cases (coafter_inv_xxp … Hg0 … H0) -g0
+ #f1 #f2 #Hf0 #H1 #H2
+ cases (coafter_inv_pnx … Hg … H2 H3) -g2 -g3
+ #f #Hf #H /3 width=7 by coafter_push/
+| #Hf4 #H0 #H4 #g1 #g2 #Hg0 #g #Hg
+ cases (coafter_inv_xxn … Hg0 … H0) -g0 *
+ [ #f1 #f2 #Hf0 #H1 #H2
+ cases (coafter_inv_nxx … Hg … H2) -g2
+ #f #Hf #H /3 width=7 by coafter_push/
+ | #f1 #Hf0 #H1 /3 width=6 by coafter_next/
+ ]
+]
+qed-.
+
+corec theorem coafter_trans2: ∀f1,f0,f4. f1 ~⊚ f0 ≡ f4 →
+ ∀f2, f3. f2 ~⊚ f3 ≡ f0 →
+ ∀f. f1 ~⊚ f2 ≡ f → f ~⊚ f3 ≡ f4.
+#f1 #f0 #f4 * -f1 -f0 -f4 #f1 #f0 #f4 #g1 [1,2: #g0 ] #g4
+[ #Hf4 #H1 #H0 #H4 #g2 #g3 #Hg0 #g #Hg
+ cases (coafter_inv_xxp … Hg0 … H0) -g0
+ #f2 #f3 #Hf0 #H2 #H3
+ cases (coafter_inv_ppx … Hg … H1 H2) -g1 -g2
+ #f #Hf #H /3 width=7 by coafter_refl/
+| #Hf4 #H1 #H0 #H4 #g2 #g3 #Hg0 #g #Hg
+ cases (coafter_inv_xxn … Hg0 … H0) -g0 *
+ [ #f2 #f3 #Hf0 #H2 #H3
+ cases (coafter_inv_ppx … Hg … H1 H2) -g1 -g2
+ #f #Hf #H /3 width=7 by coafter_push/
+ | #f2 #Hf0 #H2
+ cases (coafter_inv_pnx … Hg … H1 H2) -g1 -g2
+ #f #Hf #H /3 width=6 by coafter_next/
+ ]
+| #Hf4 #H1 #H4 #f2 #f3 #Hf0 #g #Hg
+ cases (coafter_inv_nxx … Hg … H1) -g1
+ #f #Hg #H /3 width=6 by coafter_next/
+]
+qed-.
+*)