--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+include "basic_2/reduction/cix.ma".
+include "basic_2/reduction/cpx.ma".
+
+(* CONTEXT-SENSITIVE EXTENDED PARALLEL REDUCTION FOR TERMS ******************)
+
+(* Advanced forward lemmas on irreducibility ********************************)
+
+lemma cpx_fwd_cix: ∀h,o,G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ➡[h, o] T2 → ⦃G, L⦄ ⊢ ➡[h, o] 𝐈⦃T1⦄ → T2 = T1.
+#h #o #G #L #T1 #T2 #H elim H -G -L -T1 -T2
+[ //
+| #G #L #s #d #Hkd #H elim (cix_inv_sort … Hkd H)
+| #I #G #L #K #V1 #V2 #W2 #i #HLK #_ #HVW2 #IHV12 #H
+ elim (cix_inv_delta … HLK) //
+| #a * #G #L #V1 #V2 #T1 #T2 #_ #_ #IHV1 #IHT1 #H
+ [ elim (cix_inv_bind … H) -H #HV1 #HT1 * #H destruct
+ lapply (IHV1 … HV1) -IHV1 -HV1 #H destruct
+ lapply (IHT1 … HT1) -IHT1 #H destruct //
+ | elim (cix_inv_ib2 … H) -H /3 width=2 by or_introl, eq_f2/
+ ]
+| * #G #L #V1 #V2 #T1 #T2 #_ #_ #IHV1 #IHT1 #H
+ [ elim (cix_inv_appl … H) -H #HV1 #HT1 #_
+ >IHV1 -IHV1 // -HV1 >IHT1 -IHT1 //
+ | elim (cix_inv_ri2 … H) /2 width=1 by/
+ ]
+| #G #L #V1 #T1 #T #T2 #_ #_ #_ #H
+ elim (cix_inv_ri2 … H) /2 width=1 by or_introl/
+| #G #L #V1 #T1 #T2 #_ #_ #H
+ elim (cix_inv_ri2 … H) /2 width=1 by/
+| #G #L #V1 #V2 #T #_ #_ #H
+ elim (cix_inv_ri2 … H) /2 width=1 by/
+| #a #G #L #V1 #V2 #W1 #W2 #T1 #T2 #_ #_ #_ #_ #_ #_ #H
+ elim (cix_inv_appl … H) -H #_ #_ #H
+ elim (simple_inv_bind … H)
+| #a #G #L #V #V1 #V2 #W1 #W2 #T1 #T2 #_ #_ #_ #_ #_ #_ #_ #H
+ elim (cix_inv_appl … H) -H #_ #_ #H
+ elim (simple_inv_bind … H)
+]
+qed-.
--- /dev/null
+lemma cpx_delift: ∀h,I,G,K,V,T1,L,l. ⬇[l] L ≡ (K.ⓑ{I}V) →
+ ∃∃T2,T. ⦃G, L⦄ ⊢ T1 ➡[h] T2 & ⬆[l, 1] T ≡ T2.
+#h #o #I #G #K #V #T1 elim T1 -T1
+[ * #i #L #l /2 width=4 by cpx_atom, lift_sort, lift_gref, ex2_2_intro/
+ elim (lt_or_eq_or_gt i l) #Hil [1,3: /4 width=4 by cpx_atom,
+lift_lref_ge_minus, lift_lref_lt, ylt_inj, yle_inj, ex2_2_intro/ ]
+ destruct
+ elim (lift_total V 0 (i+1)) #W #HVW
+ elim (lift_split … HVW i i) /3 width=7 by cpx_delta, ex2_2_intro/
+| * [ #a ] #I #W1 #U1 #IHW1 #IHU1 #L #l #HLK
+ elim (IHW1 … HLK) -IHW1 #W2 #W #HW12 #HW2
+ [ elim (IHU1 (L. ⓑ{I} W1) (l+1)) -IHU1 /3 width=9 by cpx_bind,
+drop_drop, lift_bind, ex2_2_intro/
+ | elim (IHU1 … HLK) -IHU1 -HLK /3 width=8 by cpx_flat, lift_flat,
+ex2_2_intro/
+ ]
+]
+qed-.
--- /dev/null
+lemma cpx_inv_lref1_ge: ∀h,G,L,T2,i. ⦃G, L⦄ ⊢ #i ➡[h] T2 → |L| ≤ i → T2 = #i.
--- /dev/null
+fact sta_cpx_aux: ∀h,o,G,L,T1,T2,d2,d1. ⦃G, L⦄ ⊢ T1 •*[h, d2] T2 → d2 = 1 →
+ ⦃G, L⦄ ⊢ T1 ▪[h, o] d1+1 → ⦃G, L⦄ ⊢ T1 ➡[h, o] T2.
+#h #o #G #L #T1 #T2 #d2 #d1 #H elim H -G -L -T1 -T2 -d2
+[ #G #L #d2 #s #H0 destruct normalize
+ /3 width=4 by cpx_st, da_inv_sort/
+| #G #L #K #V1 #V2 #W2 #i #d2 #HLK #_ #HVW2 #IHV12 #H0 #H destruct
+ elim (da_inv_lref … H) -H * #K0 #V0 [| #d0 ] #HLK0
+ lapply (drop_mono … HLK0 … HLK) -HLK0 #H destruct /3 width=7 by cpx_delta/
+| #G #L #K #V1 #V2 #i #_ #_ #_ #H destruct
+| #G #L #K #V1 #V2 #W2 #i #d2 #HLK #HV12 #HVW2 #_ #H0 #H
+ lapply (discr_plus_xy_y … H0) -H0 #H0 destruct
+ elim (da_inv_lref … H) -H * #K0 #V0 [| #d0 ] #HLK0
+ lapply (drop_mono … HLK0 … HLK) -HLK0 #H destruct
+ /4 width=7 by cpx_delta, cpr_cpx, lstas_cpr/
+| /4 width=2 by cpx_bind, da_inv_bind/
+| /4 width=3 by cpx_flat, da_inv_flat/
+| /4 width=3 by cpx_eps, da_inv_flat/
+]
+qed-.
+
+lemma sta_cpx: ∀h,o,G,L,T1,T2,d. ⦃G, L⦄ ⊢ T1 •*[h, 1] T2 →
+ ⦃G, L⦄ ⊢ T1 ▪[h, o] d+1 → ⦃G, L⦄ ⊢ T1 ➡[h, o] T2.
+/2 width=3 by sta_cpx_aux/ qed.
+
+lemma fqu_sta_trans: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐ ⦃G2, L2, T2⦄ →
+ ∀U2. ⦃G2, L2⦄ ⊢ T2 •*[h, 1] U2 →
+ ∀d. ⦃G2, L2⦄ ⊢ T2 ▪[h, o] d+1 →
+ ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ➡[h, o] U1 & ⦃G1, L1, U1⦄ ⊐ ⦃G2, L2, U2⦄.
+/3 width=5 by fqu_cpx_trans, sta_cpx/ qed-.
+
+lemma fquq_sta_trans: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐⸮ ⦃G2, L2, T2⦄ →
+ ∀U2. ⦃G2, L2⦄ ⊢ T2 •*[h, 1] U2 →
+ ∀d. ⦃G2, L2⦄ ⊢ T2 ▪[h, o] d+1 →
+ ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ➡[h, o] U1 & ⦃G1, L1, U1⦄ ⊐⸮ ⦃G2, L2, U2⦄.
+/3 width=5 by fquq_cpx_trans, sta_cpx/ qed-.
+
c: conversion
d: decomposed rt-reduction
e: decomposed rt-conversion
-g: generic rt-transition
+g: counted rt-transition (generic)
q: restricted reduction
r: reduction
s: substitution
u: supclosure
w: reserved for generic pointwise extension
-x: rt-reduction
+x: uncounted rt-transition (extended)
y: rt-substitution
- forth letter (if present)
+++ /dev/null
-(**************************************************************************)
-(* ___ *)
-(* ||M|| *)
-(* ||A|| A project by Andrea Asperti *)
-(* ||T|| *)
-(* ||I|| Developers: *)
-(* ||T|| The HELM team. *)
-(* ||A|| http://helm.cs.unibo.it *)
-(* \ / *)
-(* \ / This file is distributed under the terms of the *)
-(* v GNU General Public License Version 2 *)
-(* *)
-(**************************************************************************)
-
-(* NOTATION FOR THE FORMAL SYSTEM λδ ****************************************)
-
-notation "hvbox( ⦃ term 46 G , break term 46 L ⦄ ⊢ break term 46 T1 ➡ break term 46 T2 )"
- non associative with precedence 45
- for @{ 'PRed $G $L $T1 $T2 }.
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* NOTATION FOR THE FORMAL SYSTEM λδ ****************************************)
+
+notation "hvbox( ⦃ term 46 G, break term 46 L ⦄ ⊢ break term 46 T1 ➡ break [ term 46 h ] break term 46 T2 )"
+ non associative with precedence 45
+ for @{ 'PRed $h $G $L $T1 $T2 }.
include "basic_2/relocation/lifts.ma".
include "basic_2/static/sh.ma".
-(* CONTEXT-SENSITIVE GENERIC PARALLEL RT-TRANSITION FOR TERMS ***************)
+(* COUNTED CONTEXT-SENSITIVE PARALLEL RT-TRANSITION FOR TERMS ***************)
(* avtivate genv *)
inductive cpg (h): rtc → relation4 genv lenv term term ≝
.
interpretation
- "context-sensitive generic parallel rt-transition (term)"
+ "counted context-sensitive parallel rt-transition (term)"
'PRed c h G L T1 T2 = (cpg h c G L T1 T2).
(* Basic properties *********************************************************)
(* Basic forward lemmas *****************************************************)
-lemma cpg_fwd_bind1_minus: ∀c,h,I,G,L,V1,T1,T. ⦃G, L⦄ ⊢ -ⓑ{I}V1.T1 ➡[c, h] T → ∀b.
- ∃∃V2,T2. ⦃G, L⦄ ⊢ ⓑ{b,I}V1.T1 ➡[c, h] ⓑ{b,I}V2.T2 &
+lemma cpg_fwd_bind1_minus: ∀c,h,I,G,L,V1,T1,T. ⦃G, L⦄ ⊢ -ⓑ{I}V1.T1 ➡[c, h] T → ∀p.
+ ∃∃V2,T2. ⦃G, L⦄ ⊢ ⓑ{p,I}V1.T1 ➡[c, h] ⓑ{p,I}V2.T2 &
T = -ⓑ{I}V2.T2.
-#c #h #I #G #L #V1 #T1 #T #H #b elim (cpg_inv_bind1 … H) -H *
+#c #h #I #G #L #V1 #T1 #T #H #p elim (cpg_inv_bind1 … H) -H *
[ #cV #cT #V2 #T2 #HV12 #HT12 #H1 #H2 destruct /3 width=4 by cpg_bind, ex2_2_intro/
| #c #T2 #_ #_ #H destruct
]
include "basic_2/s_computation/fqup_drops.ma".
include "basic_2/rt_transition/cpg.ma".
-(* CONTEXT-SENSITIVE GENERIC PARALLEL RT-TRANSITION FOR TERMS ***************)
+(* COUNTED CONTEXT-SENSITIVE PARALLEL RT-TRANSITION FOR TERMS ***************)
(* Advanced properties ******************************************************)
]
qed-.
+lemma cpg_inv_atom1_drops: ∀c,h,I,G,L,T2. ⦃G, L⦄ ⊢ ⓪{I} ➡[c, h] T2 →
+ ∨∨ T2 = ⓪{I} ∧ c = 𝟘𝟘
+ | ∃∃s. T2 = ⋆(next h s) & I = Sort s & c = 𝟘𝟙
+ | ∃∃cV,i,K,V,V2. ⬇*[i] L ≡ K.ⓓV & ⦃G, K⦄ ⊢ V ➡[cV, h] V2 &
+ ⬆*[⫯i] V2 ≡ T2 & I = LRef i & c = cV
+ | ∃∃cV,i,K,V,V2. ⬇*[i] L ≡ K.ⓛV & ⦃G, K⦄ ⊢ V ➡[cV, h] V2 &
+ ⬆*[⫯i] V2 ≡ T2 & I = LRef i & c = (↓cV) + 𝟘𝟙.
+#c #h * #n #G #L #T2 #H
+[ elim (cpg_inv_sort1 … H) -H *
+ /3 width=3 by or4_intro0, or4_intro1, ex3_intro, conj/
+| elim (cpg_inv_lref1_drops … H) -H *
+ /3 width=10 by or4_intro0, or4_intro2, or4_intro3, ex5_5_intro, conj/
+| elim (cpg_inv_gref1 … H) -H
+ /3 width=1 by or4_intro0, conj/
+]
+qed-.
+
(* Properties with generic slicing for local environments *******************)
lemma cpg_lifts: ∀c,h,G. d_liftable2 (cpg h c G).
(* Inversion lemmas with generic slicing for local environments *************)
-lemma cpg_inv_lift1: ∀c,h,G. d_deliftable2_sn (cpg h c G).
+lemma cpg_inv_lifts1: ∀c,h,G. d_deliftable2_sn (cpg h c G).
#c #h #G #L #U generalize in match c; -c
@(fqup_wf_ind_eq … G L U) -G -L -U #G0 #L0 #U0 #IH #G #L * *
[ #s #HG #HL #HU #c #X2 #H2 #b #f #K #HLK #X1 #H1 destruct -IH
include "basic_2/static/lsubr.ma".
include "basic_2/rt_transition/cpg.ma".
-(* CONTEXT-SENSITIVE GENERIC PARALLEL RT-TRANSITION FOR TERMS ***************)
+(* COUNTED CONTEXT-SENSITIVE PARALLEL RT-TRANSITION FOR TERMS ***************)
(* Properties with restricted refinement for local environments *************)
include "basic_2/grammar/term_simple.ma".
include "basic_2/rt_transition/cpg.ma".
-(* CONTEXT-SENSITIVE GENERIC PARALLEL RT-TRANSITION FOR TERMS ***************)
+(* COUNTED CONTEXT-SENSITIVE PARALLEL RT-TRANSITION FOR TERMS ***************)
(* Properties with simple terms *********************************************)
(* Basic properties *********************************************************)
+lemma cpr_cpx: ∀h,G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ➡ T2 → ⦃G, L⦄ ⊢ T1 ➡[h] T2.
+#h #o #G #L #T1 #T2 #H elim H -L -T1 -T2
+/2 width=7 by cpx_delta, cpx_bind, cpx_flat, cpx_zeta, cpx_eps, cpx_beta, cpx_theta/
+qed.
+
lemma lsubr_cpr_trans: ∀G. lsub_trans … (cpr G) lsubr.
#G #L1 #T1 #T2 #H elim H -G -L1 -T1 -T2
[ //
(* *)
(**************************************************************************)
-include "basic_2/notation/relations/pred_6.ma".
-include "basic_2/static/sd.ma".
-include "basic_2/reduction/cpr.ma".
-
-(* CONTEXT-SENSITIVE EXTENDED PARALLEL REDUCTION FOR TERMS ******************)
-
-(* avtivate genv *)
-inductive cpx (h) (o): relation4 genv lenv term term ≝
-| cpx_atom : ∀I,G,L. cpx h o G L (⓪{I}) (⓪{I})
-| cpx_st : ∀G,L,s,d. deg h o s (d+1) → cpx h o G L (⋆s) (⋆(next h s))
-| cpx_delta: ∀I,G,L,K,V,V2,W2,i.
- ⬇[i] L ≡ K.ⓑ{I}V → cpx h o G K V V2 →
- ⬆[0, i+1] V2 ≡ W2 → cpx h o G L (#i) W2
-| cpx_bind : ∀a,I,G,L,V1,V2,T1,T2.
- cpx h o G L V1 V2 → cpx h o G (L.ⓑ{I}V1) T1 T2 →
- cpx h o G L (ⓑ{a,I}V1.T1) (ⓑ{a,I}V2.T2)
-| cpx_flat : ∀I,G,L,V1,V2,T1,T2.
- cpx h o G L V1 V2 → cpx h o G L T1 T2 →
- cpx h o G L (ⓕ{I}V1.T1) (ⓕ{I}V2.T2)
-| cpx_zeta : ∀G,L,V,T1,T,T2. cpx h o G (L.ⓓV) T1 T →
- ⬆[0, 1] T2 ≡ T → cpx h o G L (+ⓓV.T1) T2
-| cpx_eps : ∀G,L,V,T1,T2. cpx h o G L T1 T2 → cpx h o G L (ⓝV.T1) T2
-| cpx_ct : ∀G,L,V1,V2,T. cpx h o G L V1 V2 → cpx h o G L (ⓝV1.T) V2
-| cpx_beta : ∀a,G,L,V1,V2,W1,W2,T1,T2.
- cpx h o G L V1 V2 → cpx h o G L W1 W2 → cpx h o G (L.ⓛW1) T1 T2 →
- cpx h o G L (ⓐV1.ⓛ{a}W1.T1) (ⓓ{a}ⓝW2.V2.T2)
-| cpx_theta: ∀a,G,L,V1,V,V2,W1,W2,T1,T2.
- cpx h o G L V1 V → ⬆[0, 1] V ≡ V2 → cpx h o G L W1 W2 →
- cpx h o G (L.ⓓW1) T1 T2 →
- cpx h o G L (ⓐV1.ⓓ{a}W1.T1) (ⓓ{a}W2.ⓐV2.T2)
-.
+include "basic_2/notation/relations/pred_5.ma".
+include "basic_2/rt_transition/cpg.ma".
+
+(* UNCOUNTED CONTEXT-SENSITIVE PARALLEL REDUCTION FOR TERMS *****************)
+
+definition cpx (h): relation4 genv lenv term term ≝
+ λG,L,T1,T2. ∃c. ⦃G, L⦄ ⊢ T1 ➡[c, h] T2.
interpretation
- "context-sensitive extended parallel reduction (term)"
- 'PRed h o G L T1 T2 = (cpx h o G L T1 T2).
+ "uncounted context-sensitive parallel reduction (term)"
+ 'PRed h G L T1 T2 = (cpx h G L T1 T2).
(* Basic properties *********************************************************)
-lemma lsubr_cpx_trans: ∀h,o,G. lsub_trans … (cpx h o G) lsubr.
-#h #o #G #L1 #T1 #T2 #H elim H -G -L1 -T1 -T2
-[ //
-| /2 width=2 by cpx_st/
-| #I #G #L1 #K1 #V1 #V2 #W2 #i #HLK1 #_ #HVW2 #IHV12 #L2 #HL12
- elim (lsubr_fwd_drop2_pair … HL12 … HLK1) -HL12 -HLK1 *
- /4 width=7 by cpx_delta, cpx_ct/
-|4,9: /4 width=1 by cpx_bind, cpx_beta, lsubr_pair/
-|5,7,8: /3 width=1 by cpx_flat, cpx_eps, cpx_ct/
-|6,10: /4 width=3 by cpx_zeta, cpx_theta, lsubr_pair/
-]
-qed-.
+lemma cpx_atom: ∀h,I,G,L. ⦃G, L⦄ ⊢ ⓪{I} ➡[h] ⓪{I}.
+/2 width=2 by cpg_atom, ex_intro/ qed.
-(* Note: this is "∀h,g,L. reflexive … (cpx h g L)" *)
-lemma cpx_refl: ∀h,o,G,T,L. ⦃G, L⦄ ⊢ T ➡[h, o] T.
-#h #o #G #T elim T -T // * /2 width=1 by cpx_bind, cpx_flat/
+(* Basic_2A1: was: cpx_st *)
+lemma cpx_ess: ∀h,G,L,s. ⦃G, L⦄ ⊢ ⋆s ➡[h] ⋆(next h s).
+/2 width=2 by cpg_ess, ex_intro/ qed.
+
+lemma cpx_delta: ∀h,I,G,K,V1,V2,W2. ⦃G, K⦄ ⊢ V1 ➡[h] V2 →
+ ⬆*[1] V2 ≡ W2 → ⦃G, K.ⓑ{I}V1⦄ ⊢ #0 ➡[h] W2.
+#h * #G #K #V1 #V2 #W2 *
+/3 width=4 by cpg_delta, cpg_ell, ex_intro/
qed.
-lemma cpr_cpx: ∀h,o,G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ➡ T2 → ⦃G, L⦄ ⊢ T1 ➡[h, o] T2.
-#h #o #G #L #T1 #T2 #H elim H -L -T1 -T2
-/2 width=7 by cpx_delta, cpx_bind, cpx_flat, cpx_zeta, cpx_eps, cpx_beta, cpx_theta/
+lemma cpx_lref: ∀h,I,G,K,V,T,U,i. ⦃G, K⦄ ⊢ #i ➡[h] T →
+ ⬆*[1] T ≡ U → ⦃G, K.ⓑ{I}V⦄ ⊢ #⫯i ➡[h] U.
+#h #I #G #K #V #T #U #i *
+/3 width=4 by cpg_lref, ex_intro/
qed.
-lemma cpx_pair_sn: ∀h,o,I,G,L,V1,V2. ⦃G, L⦄ ⊢ V1 ➡[h, o] V2 →
- ∀T. ⦃G, L⦄ ⊢ ②{I}V1.T ➡[h, o] ②{I}V2.T.
-#h #o * /2 width=1 by cpx_bind, cpx_flat/
+lemma cpx_bind: ∀h,p,I,G,L,V1,V2,T1,T2.
+ ⦃G, L⦄ ⊢ V1 ➡[h] V2 → ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ➡[h] T2 →
+ ⦃G, L⦄ ⊢ ⓑ{p,I}V1.T1 ➡[h] ⓑ{p,I}V2.T2.
+#h #p #I #G #L #V1 #V2 #T1 #T2 * #cV #HV12 *
+/3 width=2 by cpg_bind, ex_intro/
qed.
-lemma cpx_delift: ∀h,o,I,G,K,V,T1,L,l. ⬇[l] L ≡ (K.ⓑ{I}V) →
- ∃∃T2,T. ⦃G, L⦄ ⊢ T1 ➡[h, o] T2 & ⬆[l, 1] T ≡ T2.
-#h #o #I #G #K #V #T1 elim T1 -T1
-[ * #i #L #l /2 width=4 by cpx_atom, lift_sort, lift_gref, ex2_2_intro/
- elim (lt_or_eq_or_gt i l) #Hil [1,3: /4 width=4 by cpx_atom, lift_lref_ge_minus, lift_lref_lt, ylt_inj, yle_inj, ex2_2_intro/ ]
- destruct
- elim (lift_total V 0 (i+1)) #W #HVW
- elim (lift_split … HVW i i) /3 width=7 by cpx_delta, ex2_2_intro/
-| * [ #a ] #I #W1 #U1 #IHW1 #IHU1 #L #l #HLK
- elim (IHW1 … HLK) -IHW1 #W2 #W #HW12 #HW2
- [ elim (IHU1 (L. ⓑ{I} W1) (l+1)) -IHU1 /3 width=9 by cpx_bind, drop_drop, lift_bind, ex2_2_intro/
- | elim (IHU1 … HLK) -IHU1 -HLK /3 width=8 by cpx_flat, lift_flat, ex2_2_intro/
- ]
-]
-qed-.
+lemma cpx_flat: ∀h,I,G,L,V1,V2,T1,T2.
+ ⦃G, L⦄ ⊢ V1 ➡[h] V2 → ⦃G, L⦄ ⊢ T1 ➡[h] T2 →
+ ⦃G, L⦄ ⊢ ⓕ{I}V1.T1 ➡[h] ⓕ{I}V2.T2.
+#h #I #G #L #V1 #V2 #T1 #T2 * #cV #HV12 *
+/3 width=2 by cpg_flat, ex_intro/
+qed.
-(* Basic inversion lemmas ***************************************************)
+lemma cpx_zeta: ∀h,G,L,V,T1,T,T2. ⦃G, L.ⓓV⦄ ⊢ T1 ➡[h] T →
+ ⬆*[1] T2 ≡ T → ⦃G, L⦄ ⊢ +ⓓV.T1 ➡[h] T2.
+#h #G #L #V #T1 #T #T2 *
+/3 width=4 by cpg_zeta, ex_intro/
+qed.
-fact cpx_inv_atom1_aux: ∀h,o,G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ➡[h, o] T2 → ∀J. T1 = ⓪{J} →
- ∨∨ T2 = ⓪{J}
- | ∃∃s,d. deg h o s (d+1) & T2 = ⋆(next h s) & J = Sort s
- | ∃∃I,K,V,V2,i. ⬇[i] L ≡ K.ⓑ{I}V & ⦃G, K⦄ ⊢ V ➡[h, o] V2 &
- ⬆[O, i+1] V2 ≡ T2 & J = LRef i.
-#G #h #o #L #T1 #T2 * -L -T1 -T2
-[ #I #G #L #J #H destruct /2 width=1 by or3_intro0/
-| #G #L #s #d #Hkd #J #H destruct /3 width=5 by or3_intro1, ex3_2_intro/
-| #I #G #L #K #V #V2 #T2 #i #HLK #HV2 #HVT2 #J #H destruct /3 width=9 by or3_intro2, ex4_5_intro/
-| #a #I #G #L #V1 #V2 #T1 #T2 #_ #_ #J #H destruct
-| #I #G #L #V1 #V2 #T1 #T2 #_ #_ #J #H destruct
-| #G #L #V #T1 #T #T2 #_ #_ #J #H destruct
-| #G #L #V #T1 #T2 #_ #J #H destruct
-| #G #L #V1 #V2 #T #_ #J #H destruct
-| #a #G #L #V1 #V2 #W1 #W2 #T1 #T2 #_ #_ #_ #J #H destruct
-| #a #G #L #V1 #V #V2 #W1 #W2 #T1 #T2 #_ #_ #_ #_ #J #H destruct
-]
-qed-.
+lemma cpx_eps: ∀h,G,L,V,T1,T2. ⦃G, L⦄ ⊢ T1 ➡[h] T2 → ⦃G, L⦄ ⊢ ⓝV.T1 ➡[h] T2.
+#h #G #L #V #T1 #T2 *
+/3 width=2 by cpg_eps, ex_intro/
+qed.
+
+(* Basic_2A1: was: cpx_ct *)
+lemma cpx_ee: ∀h,G,L,V1,V2,T. ⦃G, L⦄ ⊢ V1 ➡[h] V2 → ⦃G, L⦄ ⊢ ⓝV1.T ➡[h] V2.
+#h #G #L #V1 #V2 #T *
+/3 width=2 by cpg_ee, ex_intro/
+qed.
-lemma cpx_inv_atom1: ∀h,o,J,G,L,T2. ⦃G, L⦄ ⊢ ⓪{J} ➡[h, o] T2 →
+lemma cpx_beta: ∀h,p,G,L,V1,V2,W1,W2,T1,T2.
+ ⦃G, L⦄ ⊢ V1 ➡[h] V2 → ⦃G, L⦄ ⊢ W1 ➡[h] W2 → ⦃G, L.ⓛW1⦄ ⊢ T1 ➡[h] T2 →
+ ⦃G, L⦄ ⊢ ⓐV1.ⓛ{p}W1.T1 ➡[h] ⓓ{p}ⓝW2.V2.T2.
+#h #p #G #L #V1 #V2 #W1 #W2 #T1 #T2 * #cV #HV12 * #cW #HW12 *
+/3 width=2 by cpg_beta, ex_intro/
+qed.
+
+lemma cpx_theta: ∀h,p,G,L,V1,V,V2,W1,W2,T1,T2.
+ ⦃G, L⦄ ⊢ V1 ➡[h] V → ⬆*[1] V ≡ V2 → ⦃G, L⦄ ⊢ W1 ➡[h] W2 →
+ ⦃G, L.ⓓW1⦄ ⊢ T1 ➡[h] T2 →
+ ⦃G, L⦄ ⊢ ⓐV1.ⓓ{p}W1.T1 ➡[h] ⓓ{p}W2.ⓐV2.T2.
+#h #p #G #L #V1 #V #V2 #W1 #W2 #T1 #T2 * #cV #HV1 #HV2 * #cW #HW12 *
+/3 width=4 by cpg_theta, ex_intro/
+qed.
+
+lemma cpx_refl: ∀h,G,L. reflexive … (cpx h G L).
+/2 width=2 by ex_intro/ qed.
+
+lemma cpx_pair_sn: ∀h,I,G,L,V1,V2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 →
+ ∀T. ⦃G, L⦄ ⊢ ②{I}V1.T ➡[h] ②{I}V2.T.
+#h #I #G #L #V1 #V2 *
+/3 width=2 by cpg_pair_sn, ex_intro/
+qed.
+
+(* Basic inversion lemmas ***************************************************)
+
+lemma cpx_inv_atom1: ∀h,J,G,L,T2. ⦃G, L⦄ ⊢ ⓪{J} ➡[h] T2 →
∨∨ T2 = ⓪{J}
- | ∃∃s,d. deg h o s (d+1) & T2 = ⋆(next h s) & J = Sort s
- | ∃∃I,K,V,V2,i. ⬇[i] L ≡ K.ⓑ{I}V & ⦃G, K⦄ ⊢ V ➡[h, o] V2 &
- ⬆[O, i+1] V2 ≡ T2 & J = LRef i.
-/2 width=3 by cpx_inv_atom1_aux/ qed-.
-
-lemma cpx_inv_sort1: ∀h,o,G,L,T2,s. ⦃G, L⦄ ⊢ ⋆s ➡[h, o] T2 → T2 = ⋆s ∨
- ∃∃d. deg h o s (d+1) & T2 = ⋆(next h s).
-#h #o #G #L #T2 #s #H
-elim (cpx_inv_atom1 … H) -H /2 width=1 by or_introl/ *
-[ #s0 #d0 #Hkd0 #H1 #H2 destruct /3 width=4 by ex2_intro, or_intror/
-| #I #K #V #V2 #i #_ #_ #_ #H destruct
-]
+ | ∃∃s. T2 = ⋆(next h s) & J = Sort s
+ | ∃∃I,K,V1,V2. ⦃G, K⦄ ⊢ V1 ➡[h] V2 & ⬆*[1] V2 ≡ T2 &
+ L = K.ⓑ{I}V1 & J = LRef 0
+ | ∃∃I,K,V,T,i. ⦃G, K⦄ ⊢ #i ➡[h] T & ⬆*[1] T ≡ T2 &
+ L = K.ⓑ{I}V & J = LRef (⫯i).
+#h #J #G #L #T2 * #c #H elim (cpg_inv_atom1 … H) -H *
+/4 width=9 by or4_intro0, or4_intro1, or4_intro2, or4_intro3, ex4_5_intro, ex4_4_intro, ex2_intro, ex_intro/
qed-.
-lemma cpx_inv_lref1: ∀h,o,G,L,T2,i. ⦃G, L⦄ ⊢ #i ➡[h, o] T2 →
- T2 = #i ∨
- ∃∃I,K,V,V2. ⬇[i] L ≡ K. ⓑ{I}V & ⦃G, K⦄ ⊢ V ➡[h, o] V2 &
- ⬆[O, i+1] V2 ≡ T2.
-#h #o #G #L #T2 #i #H
-elim (cpx_inv_atom1 … H) -H /2 width=1 by or_introl/ *
-[ #s #d #_ #_ #H destruct
-| #I #K #V #V2 #j #HLK #HV2 #HVT2 #H destruct /3 width=7 by ex3_4_intro, or_intror/
-]
+lemma cpx_inv_sort1: ∀h,G,L,T2,s. ⦃G, L⦄ ⊢ ⋆s ➡[h] T2 →
+ T2 = ⋆s ∨ T2 = ⋆(next h s).
+#h #G #L #T2 #s * #c #H elim (cpg_inv_sort1 … H) -H *
+/2 width=1 by or_introl, or_intror/
qed-.
-lemma cpx_inv_lref1_ge: ∀h,o,G,L,T2,i. ⦃G, L⦄ ⊢ #i ➡[h, o] T2 → |L| ≤ i → T2 = #i.
-#h #o #G #L #T2 #i #H elim (cpx_inv_lref1 … H) -H // *
-#I #K #V1 #V2 #HLK #_ #_ #HL -h -G -V2 lapply (drop_fwd_length_lt2 … HLK) -K -I -V1
-#H elim (lt_refl_false i) /2 width=3 by lt_to_le_to_lt/
+lemma cpx_inv_zero1: ∀h,G,L,T2. ⦃G, L⦄ ⊢ #0 ➡[h] T2 →
+ T2 = #0 ∨
+ ∃∃I,K,V1,V2. ⦃G, K⦄ ⊢ V1 ➡[h] V2 & ⬆*[1] V2 ≡ T2 &
+ L = K.ⓑ{I}V1.
+#h #G #L #T2 * #c #H elim (cpg_inv_zero1 … H) -H *
+/4 width=7 by ex3_4_intro, ex_intro, or_introl, or_intror/
qed-.
-lemma cpx_inv_gref1: ∀h,o,G,L,T2,p. ⦃G, L⦄ ⊢ §p ➡[h, o] T2 → T2 = §p.
-#h #o #G #L #T2 #p #H
-elim (cpx_inv_atom1 … H) -H // *
-[ #s #d #_ #_ #H destruct
-| #I #K #V #V2 #i #_ #_ #_ #H destruct
-]
+lemma cpx_inv_lref1: ∀h,G,L,T2,i. ⦃G, L⦄ ⊢ #⫯i ➡[h] T2 →
+ T2 = #(⫯i) ∨
+ ∃∃I,K,V,T. ⦃G, K⦄ ⊢ #i ➡[h] T & ⬆*[1] T ≡ T2 & L = K.ⓑ{I}V.
+#h #G #L #T2 #i * #c #H elim (cpg_inv_lref1 … H) -H *
+/4 width=7 by ex3_4_intro, ex_intro, or_introl, or_intror/
qed-.
-fact cpx_inv_bind1_aux: ∀h,o,G,L,U1,U2. ⦃G, L⦄ ⊢ U1 ➡[h, o] U2 →
- ∀a,J,V1,T1. U1 = ⓑ{a,J}V1.T1 → (
- ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h, o] V2 & ⦃G, L.ⓑ{J}V1⦄ ⊢ T1 ➡[h, o] T2 &
- U2 = ⓑ{a,J}V2.T2
- ) ∨
- ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ➡[h, o] T & ⬆[0, 1] U2 ≡ T &
- a = true & J = Abbr.
-#h #o #G #L #U1 #U2 * -L -U1 -U2
-[ #I #G #L #b #J #W #U1 #H destruct
-| #G #L #s #d #_ #b #J #W #U1 #H destruct
-| #I #G #L #K #V #V2 #W2 #i #_ #_ #_ #b #J #W #U1 #H destruct
-| #a #I #G #L #V1 #V2 #T1 #T2 #HV12 #HT12 #b #J #W #U1 #H destruct /3 width=5 by ex3_2_intro, or_introl/
-| #I #G #L #V1 #V2 #T1 #T2 #_ #_ #b #J #W #U1 #H destruct
-| #G #L #V #T1 #T #T2 #HT1 #HT2 #b #J #W #U1 #H destruct /3 width=3 by ex4_intro, or_intror/
-| #G #L #V #T1 #T2 #_ #b #J #W #U1 #H destruct
-| #G #L #V1 #V2 #T #_ #b #J #W #U1 #H destruct
-| #a #G #L #V1 #V2 #W1 #W2 #T1 #T2 #_ #_ #_ #b #J #W #U1 #H destruct
-| #a #G #L #V1 #V #V2 #W1 #W2 #T1 #T2 #_ #_ #_ #_ #b #J #W #U1 #H destruct
-]
+lemma cpx_inv_gref1: ∀h,G,L,T2,l. ⦃G, L⦄ ⊢ §l ➡[h] T2 → T2 = §l.
+#h #G #L #T2 #l * #c #H elim (cpg_inv_gref1 … H) -H //
qed-.
-lemma cpx_inv_bind1: ∀h,o,a,I,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ➡[h, o] U2 → (
- ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h, o] V2 & ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ➡[h, o] T2 &
- U2 = ⓑ{a,I} V2. T2
+lemma cpx_inv_bind1: ∀h,p,I,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓑ{p,I}V1.T1 ➡[h] U2 → (
+ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ➡[h] T2 &
+ U2 = ⓑ{p,I}V2.T2
) ∨
- ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ➡[h, o] T & ⬆[0, 1] U2 ≡ T &
- a = true & I = Abbr.
-/2 width=3 by cpx_inv_bind1_aux/ qed-.
-
-lemma cpx_inv_abbr1: ∀h,o,a,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓓ{a}V1.T1 ➡[h, o] U2 → (
- ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h, o] V2 & ⦃G, L.ⓓV1⦄ ⊢ T1 ➡[h, o] T2 &
- U2 = ⓓ{a} V2. T2
- ) ∨
- ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ➡[h, o] T & ⬆[0, 1] U2 ≡ T & a = true.
-#h #o #a #G #L #V1 #T1 #U2 #H
-elim (cpx_inv_bind1 … H) -H * /3 width=5 by ex3_2_intro, ex3_intro, or_introl, or_intror/
+ ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ➡[h] T & ⬆*[1] U2 ≡ T &
+ p = true & I = Abbr.
+#h #p #I #G #L #V1 #T1 #U2 * #c #H elim (cpg_inv_bind1 … H) -H *
+/4 width=5 by ex4_intro, ex3_2_intro, ex_intro, or_introl, or_intror/
qed-.
-lemma cpx_inv_abst1: ∀h,o,a,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓛ{a}V1.T1 ➡[h, o] U2 →
- ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h, o] V2 & ⦃G, L.ⓛV1⦄ ⊢ T1 ➡[h, o] T2 &
- U2 = ⓛ{a} V2. T2.
-#h #o #a #G #L #V1 #T1 #U2 #H
-elim (cpx_inv_bind1 … H) -H *
-[ /3 width=5 by ex3_2_intro/
-| #T #_ #_ #_ #H destruct
-]
+lemma cpx_inv_abbr1: ∀h,p,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓓ{p}V1.T1 ➡[h] U2 → (
+ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L.ⓓV1⦄ ⊢ T1 ➡[h] T2 &
+ U2 = ⓓ{p}V2.T2
+ ) ∨
+ ∃∃T. ⦃G, L.ⓓV1⦄ ⊢ T1 ➡[h] T & ⬆*[1] U2 ≡ T & p = true.
+#h #p #G #L #V1 #T1 #U2 * #c #H elim (cpg_inv_abbr1 … H) -H *
+/4 width=5 by ex3_2_intro, ex3_intro, ex_intro, or_introl, or_intror/
qed-.
-fact cpx_inv_flat1_aux: ∀h,o,G,L,U,U2. ⦃G, L⦄ ⊢ U ➡[h, o] U2 →
- ∀J,V1,U1. U = ⓕ{J}V1.U1 →
- ∨∨ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h, o] V2 & ⦃G, L⦄ ⊢ U1 ➡[h, o] T2 &
- U2 = ⓕ{J}V2.T2
- | (⦃G, L⦄ ⊢ U1 ➡[h, o] U2 ∧ J = Cast)
- | (⦃G, L⦄ ⊢ V1 ➡[h, o] U2 ∧ J = Cast)
- | ∃∃a,V2,W1,W2,T1,T2. ⦃G, L⦄ ⊢ V1 ➡[h, o] V2 & ⦃G, L⦄ ⊢ W1 ➡[h, o] W2 &
- ⦃G, L.ⓛW1⦄ ⊢ T1 ➡[h, o] T2 &
- U1 = ⓛ{a}W1.T1 &
- U2 = ⓓ{a}ⓝW2.V2.T2 & J = Appl
- | ∃∃a,V,V2,W1,W2,T1,T2. ⦃G, L⦄ ⊢ V1 ➡[h, o] V & ⬆[0,1] V ≡ V2 &
- ⦃G, L⦄ ⊢ W1 ➡[h, o] W2 & ⦃G, L.ⓓW1⦄ ⊢ T1 ➡[h, o] T2 &
- U1 = ⓓ{a}W1.T1 &
- U2 = ⓓ{a}W2.ⓐV2.T2 & J = Appl.
-#h #o #G #L #U #U2 * -L -U -U2
-[ #I #G #L #J #W #U1 #H destruct
-| #G #L #s #d #_ #J #W #U1 #H destruct
-| #I #G #L #K #V #V2 #W2 #i #_ #_ #_ #J #W #U1 #H destruct
-| #a #I #G #L #V1 #V2 #T1 #T2 #_ #_ #J #W #U1 #H destruct
-| #I #G #L #V1 #V2 #T1 #T2 #HV12 #HT12 #J #W #U1 #H destruct /3 width=5 by or5_intro0, ex3_2_intro/
-| #G #L #V #T1 #T #T2 #_ #_ #J #W #U1 #H destruct
-| #G #L #V #T1 #T2 #HT12 #J #W #U1 #H destruct /3 width=1 by or5_intro1, conj/
-| #G #L #V1 #V2 #T #HV12 #J #W #U1 #H destruct /3 width=1 by or5_intro2, conj/
-| #a #G #L #V1 #V2 #W1 #W2 #T1 #T2 #HV12 #HW12 #HT12 #J #W #U1 #H destruct /3 width=11 by or5_intro3, ex6_6_intro/
-| #a #G #L #V1 #V #V2 #W1 #W2 #T1 #T2 #HV1 #HV2 #HW12 #HT12 #J #W #U1 #H destruct /3 width=13 by or5_intro4, ex7_7_intro/
-]
+lemma cpx_inv_abst1: ∀h,p,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓛ{p}V1.T1 ➡[h] U2 →
+ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L.ⓛV1⦄ ⊢ T1 ➡[h] T2 &
+ U2 = ⓛ{p}V2.T2.
+#h #p #G #L #V1 #T1 #U2 * #c #H elim (cpg_inv_abst1 … H) -H
+/3 width=5 by ex3_2_intro, ex_intro/
qed-.
-lemma cpx_inv_flat1: ∀h,o,I,G,L,V1,U1,U2. ⦃G, L⦄ ⊢ ⓕ{I}V1.U1 ➡[h, o] U2 →
- ∨∨ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h, o] V2 & ⦃G, L⦄ ⊢ U1 ➡[h, o] T2 &
- U2 = ⓕ{I} V2. T2
- | (⦃G, L⦄ ⊢ U1 ➡[h, o] U2 ∧ I = Cast)
- | (⦃G, L⦄ ⊢ V1 ➡[h, o] U2 ∧ I = Cast)
- | ∃∃a,V2,W1,W2,T1,T2. ⦃G, L⦄ ⊢ V1 ➡[h, o] V2 & ⦃G, L⦄ ⊢ W1 ➡[h, o] W2 &
- ⦃G, L.ⓛW1⦄ ⊢ T1 ➡[h, o] T2 &
- U1 = ⓛ{a}W1.T1 &
- U2 = ⓓ{a}ⓝW2.V2.T2 & I = Appl
- | ∃∃a,V,V2,W1,W2,T1,T2. ⦃G, L⦄ ⊢ V1 ➡[h, o] V & ⬆[0,1] V ≡ V2 &
- ⦃G, L⦄ ⊢ W1 ➡[h, o] W2 & ⦃G, L.ⓓW1⦄ ⊢ T1 ➡[h, o] T2 &
- U1 = ⓓ{a}W1.T1 &
- U2 = ⓓ{a}W2.ⓐV2.T2 & I = Appl.
-/2 width=3 by cpx_inv_flat1_aux/ qed-.
-
-lemma cpx_inv_appl1: ∀h,o,G,L,V1,U1,U2. ⦃G, L⦄ ⊢ ⓐ V1.U1 ➡[h, o] U2 →
- ∨∨ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h, o] V2 & ⦃G, L⦄ ⊢ U1 ➡[h, o] T2 &
- U2 = ⓐ V2. T2
- | ∃∃a,V2,W1,W2,T1,T2. ⦃G, L⦄ ⊢ V1 ➡[h, o] V2 & ⦃G, L⦄ ⊢ W1 ➡[h, o] W2 &
- ⦃G, L.ⓛW1⦄ ⊢ T1 ➡[h, o] T2 &
- U1 = ⓛ{a}W1.T1 & U2 = ⓓ{a}ⓝW2.V2.T2
- | ∃∃a,V,V2,W1,W2,T1,T2. ⦃G, L⦄ ⊢ V1 ➡[h, o] V & ⬆[0,1] V ≡ V2 &
- ⦃G, L⦄ ⊢ W1 ➡[h, o] W2 & ⦃G, L.ⓓW1⦄ ⊢ T1 ➡[h, o] T2 &
- U1 = ⓓ{a}W1.T1 & U2 = ⓓ{a}W2. ⓐV2. T2.
-#h #o #G #L #V1 #U1 #U2 #H elim (cpx_inv_flat1 … H) -H *
-[ /3 width=5 by or3_intro0, ex3_2_intro/
-|2,3: #_ #H destruct
-| /3 width=11 by or3_intro1, ex5_6_intro/
-| /3 width=13 by or3_intro2, ex6_7_intro/
-]
+lemma cpx_inv_flat1: ∀h,I,G,L,V1,U1,U2. ⦃G, L⦄ ⊢ ⓕ{I}V1.U1 ➡[h] U2 →
+ ∨∨ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L⦄ ⊢ U1 ➡[h] T2 &
+ U2 = ⓕ{I}V2.T2
+ | (⦃G, L⦄ ⊢ U1 ➡[h] U2 ∧ I = Cast)
+ | (⦃G, L⦄ ⊢ V1 ➡[h] U2 ∧ I = Cast)
+ | ∃∃p,V2,W1,W2,T1,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L⦄ ⊢ W1 ➡[h] W2 &
+ ⦃G, L.ⓛW1⦄ ⊢ T1 ➡[h] T2 &
+ U1 = ⓛ{p}W1.T1 &
+ U2 = ⓓ{p}ⓝW2.V2.T2 & I = Appl
+ | ∃∃p,V,V2,W1,W2,T1,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V & ⬆*[1] V ≡ V2 &
+ ⦃G, L⦄ ⊢ W1 ➡[h] W2 & ⦃G, L.ⓓW1⦄ ⊢ T1 ➡[h] T2 &
+ U1 = ⓓ{p}W1.T1 &
+ U2 = ⓓ{p}W2.ⓐV2.T2 & I = Appl.
+#h #I #G #L #V1 #U1 #U2 * #c #H elim (cpg_inv_flat1 … H) -H *
+/4 width=14 by or5_intro0, or5_intro1, or5_intro2, or5_intro3, or5_intro4, ex7_7_intro, ex6_6_intro, ex3_2_intro, ex_intro, conj/
qed-.
-(* Note: the main property of simple terms *)
-lemma cpx_inv_appl1_simple: ∀h,o,G,L,V1,T1,U. ⦃G, L⦄ ⊢ ⓐV1.T1 ➡[h, o] U → 𝐒⦃T1⦄ →
- ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h, o] V2 & ⦃G, L⦄ ⊢ T1 ➡[h, o] T2 &
- U = ⓐV2.T2.
-#h #o #G #L #V1 #T1 #U #H #HT1
-elim (cpx_inv_appl1 … H) -H *
-[ /2 width=5 by ex3_2_intro/
-| #a #V2 #W1 #W2 #U1 #U2 #_ #_ #_ #H #_ destruct
- elim (simple_inv_bind … HT1)
-| #a #V #V2 #W1 #W2 #U1 #U2 #_ #_ #_ #_ #H #_ destruct
- elim (simple_inv_bind … HT1)
-]
+lemma cpx_inv_appl1: ∀h,G,L,V1,U1,U2. ⦃G, L⦄ ⊢ ⓐ V1.U1 ➡[h] U2 →
+ ∨∨ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L⦄ ⊢ U1 ➡[h] T2 &
+ U2 = ⓐV2.T2
+ | ∃∃p,V2,W1,W2,T1,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L⦄ ⊢ W1 ➡[h] W2 &
+ ⦃G, L.ⓛW1⦄ ⊢ T1 ➡[h] T2 &
+ U1 = ⓛ{p}W1.T1 & U2 = ⓓ{p}ⓝW2.V2.T2
+ | ∃∃p,V,V2,W1,W2,T1,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V & ⬆*[1] V ≡ V2 &
+ ⦃G, L⦄ ⊢ W1 ➡[h] W2 & ⦃G, L.ⓓW1⦄ ⊢ T1 ➡[h] T2 &
+ U1 = ⓓ{p}W1.T1 & U2 = ⓓ{p}W2.ⓐV2.T2.
+#h #G #L #V1 #U1 #U2 * #c #H elim (cpg_inv_appl1 … H) -H *
+/4 width=13 by or3_intro0, or3_intro1, or3_intro2, ex6_7_intro, ex5_6_intro, ex3_2_intro, ex_intro/
qed-.
-lemma cpx_inv_cast1: ∀h,o,G,L,V1,U1,U2. ⦃G, L⦄ ⊢ ⓝV1.U1 ➡[h, o] U2 →
- ∨∨ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h, o] V2 & ⦃G, L⦄ ⊢ U1 ➡[h, o] T2 &
- U2 = ⓝ V2. T2
- | ⦃G, L⦄ ⊢ U1 ➡[h, o] U2
- | ⦃G, L⦄ ⊢ V1 ➡[h, o] U2.
-#h #o #G #L #V1 #U1 #U2 #H elim (cpx_inv_flat1 … H) -H *
-[ /3 width=5 by or3_intro0, ex3_2_intro/
-|2,3: /2 width=1 by or3_intro1, or3_intro2/
-| #a #V2 #W1 #W2 #T1 #T2 #_ #_ #_ #_ #_ #H destruct
-| #a #V #V2 #W1 #W2 #T1 #T2 #_ #_ #_ #_ #_ #_ #H destruct
-]
+lemma cpx_inv_cast1: ∀h,G,L,V1,U1,U2. ⦃G, L⦄ ⊢ ⓝV1.U1 ➡[h] U2 →
+ ∨∨ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L⦄ ⊢ U1 ➡[h] T2 &
+ U2 = ⓝV2.T2
+ | ⦃G, L⦄ ⊢ U1 ➡[h] U2
+ | ⦃G, L⦄ ⊢ V1 ➡[h] U2.
+#h #G #L #V1 #U1 #U2 * #c #H elim (cpg_inv_cast1 … H) -H *
+/4 width=5 by or3_intro0, or3_intro1, or3_intro2, ex3_2_intro, ex_intro/
qed-.
(* Basic forward lemmas *****************************************************)
-lemma cpx_fwd_bind1_minus: ∀h,o,I,G,L,V1,T1,T. ⦃G, L⦄ ⊢ -ⓑ{I}V1.T1 ➡[h, o] T → ∀b.
- ∃∃V2,T2. ⦃G, L⦄ ⊢ ⓑ{b,I}V1.T1 ➡[h, o] ⓑ{b,I}V2.T2 &
+lemma cpx_fwd_bind1_minus: ∀h,I,G,L,V1,T1,T. ⦃G, L⦄ ⊢ -ⓑ{I}V1.T1 ➡[h] T → ∀p.
+ ∃∃V2,T2. ⦃G, L⦄ ⊢ ⓑ{p,I}V1.T1 ➡[h] ⓑ{p,I}V2.T2 &
T = -ⓑ{I}V2.T2.
-#h #o #I #G #L #V1 #T1 #T #H #b
-elim (cpx_inv_bind1 … H) -H *
-[ #V2 #T2 #HV12 #HT12 #H destruct /3 width=4 by cpx_bind, ex2_2_intro/
-| #T2 #_ #_ #H destruct
-]
+#h #I #G #L #V1 #T1 #T * #c #H #p elim (cpg_fwd_bind1_minus … H p) -H
+/3 width=4 by ex2_2_intro, ex_intro/
qed-.
+++ /dev/null
-(**************************************************************************)
-(* ___ *)
-(* ||M|| *)
-(* ||A|| A project by Andrea Asperti *)
-(* ||T|| *)
-(* ||I|| Developers: *)
-(* ||T|| The HELM team. *)
-(* ||A|| http://helm.cs.unibo.it *)
-(* \ / *)
-(* \ / This file is distributed under the terms of the *)
-(* v GNU General Public License Version 2 *)
-(* *)
-(**************************************************************************)
-
-include "basic_2/reduction/cix.ma".
-include "basic_2/reduction/cpx.ma".
-
-(* CONTEXT-SENSITIVE EXTENDED PARALLEL REDUCTION FOR TERMS ******************)
-
-(* Advanced forward lemmas on irreducibility ********************************)
-
-lemma cpx_fwd_cix: ∀h,o,G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ➡[h, o] T2 → ⦃G, L⦄ ⊢ ➡[h, o] 𝐈⦃T1⦄ → T2 = T1.
-#h #o #G #L #T1 #T2 #H elim H -G -L -T1 -T2
-[ //
-| #G #L #s #d #Hkd #H elim (cix_inv_sort … Hkd H)
-| #I #G #L #K #V1 #V2 #W2 #i #HLK #_ #HVW2 #IHV12 #H
- elim (cix_inv_delta … HLK) //
-| #a * #G #L #V1 #V2 #T1 #T2 #_ #_ #IHV1 #IHT1 #H
- [ elim (cix_inv_bind … H) -H #HV1 #HT1 * #H destruct
- lapply (IHV1 … HV1) -IHV1 -HV1 #H destruct
- lapply (IHT1 … HT1) -IHT1 #H destruct //
- | elim (cix_inv_ib2 … H) -H /3 width=2 by or_introl, eq_f2/
- ]
-| * #G #L #V1 #V2 #T1 #T2 #_ #_ #IHV1 #IHT1 #H
- [ elim (cix_inv_appl … H) -H #HV1 #HT1 #_
- >IHV1 -IHV1 // -HV1 >IHT1 -IHT1 //
- | elim (cix_inv_ri2 … H) /2 width=1 by/
- ]
-| #G #L #V1 #T1 #T #T2 #_ #_ #_ #H
- elim (cix_inv_ri2 … H) /2 width=1 by or_introl/
-| #G #L #V1 #T1 #T2 #_ #_ #H
- elim (cix_inv_ri2 … H) /2 width=1 by/
-| #G #L #V1 #V2 #T #_ #_ #H
- elim (cix_inv_ri2 … H) /2 width=1 by/
-| #a #G #L #V1 #V2 #W1 #W2 #T1 #T2 #_ #_ #_ #_ #_ #_ #H
- elim (cix_inv_appl … H) -H #_ #_ #H
- elim (simple_inv_bind … H)
-| #a #G #L #V #V1 #V2 #W1 #W2 #T1 #T2 #_ #_ #_ #_ #_ #_ #_ #H
- elim (cix_inv_appl … H) -H #_ #_ #H
- elim (simple_inv_bind … H)
-]
-qed-.
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+include "basic_2/rt_transition/cpg_drops.ma".
+include "basic_2/rt_transition/cpx.ma".
+
+(* UNCOUNTED CONTEXT-SENSITIVE PARALLEL REDUCTION FOR TERMS *****************)
+
+(* Advanced properties ******************************************************)
+
+(* Basic_2A1: was: cpx_delta *)
+lemma cpx_delta_drops: ∀h,I,G,L,K,V,V2,W2,i.
+ ⬇*[i] L ≡ K.ⓑ{I}V → ⦃G, K⦄ ⊢ V ➡[h] V2 →
+ ⬆*[⫯i] V2 ≡ W2 → ⦃G, L⦄ ⊢ #i ➡[h] W2.
+#h * #G #L #K #V #V2 #W2 #i #HLK *
+/3 width=7 by cpg_ell_drops, cpg_delta_drops, ex_intro/
+qed.
+
+(* Advanced inversion lemmas ************************************************)
+
+(* Basic_2A1: was: cpx_inv_atom1 *)
+lemma cpx_inv_atom1_drops: ∀h,I,G,L,T2. ⦃G, L⦄ ⊢ ⓪{I} ➡[h] T2 →
+ ∨∨ T2 = ⓪{I}
+ | ∃∃s. T2 = ⋆(next h s) & I = Sort s
+ | ∃∃J,K,V,V2,i. ⬇*[i] L ≡ K.ⓑ{J}V & ⦃G, K⦄ ⊢ V ➡[h] V2 &
+ ⬆*[⫯i] V2 ≡ T2 & I = LRef i.
+#h #I #G #L #T2 * #c #H elim (cpg_inv_atom1_drops … H) -H *
+/4 width=9 by or3_intro0, or3_intro1, or3_intro2, ex4_5_intro, ex2_intro, ex_intro/
+qed-.
+
+(* Basic_2A1: was: cpx_inv_lref1 *)
+lemma cpx_inv_lref1_drops: ∀h,G,L,T2,i. ⦃G, L⦄ ⊢ #i ➡[h] T2 →
+ T2 = #i ∨
+ ∃∃J,K,V,V2. ⬇*[i] L ≡ K. ⓑ{J}V & ⦃G, K⦄ ⊢ V ➡[h] V2 &
+ ⬆*[⫯i] V2 ≡ T2.
+#h #G #L #T1 #i * #c #H elim (cpg_inv_lref1_drops … H) -H *
+/4 width=7 by ex3_4_intro, ex_intro, or_introl, or_intror/
+qed-.
+
+(* Properties with generic slicing for local environments *******************)
+
+(* Basic_2A1: includes: cpx_lift *)
+lemma cpx_lifts: ∀h,G. d_liftable2 (cpx h G).
+#h #G #K #T1 #T2 * #cT #HT12 #b #f #L #HLK #U1 #HTU1
+elim (cpg_lifts … HT12 … HLK … HTU1) -K -T1
+/3 width=4 by ex2_intro, ex_intro/
+qed-.
+
+(* Inversion lemmas with generic slicing for local environments *************)
+
+(* Basic_2A1: includes: cpx_inv_lift1 *)
+lemma cpx_inv_lift1: ∀h,G. d_deliftable2_sn (cpx h G).
+#h #G #L #U1 #U2 * #cU #HU12 #b #f #K #HLK #T1 #HTU1
+elim (cpg_inv_lifts1 … HU12 … HLK … HTU1) -L -U1
+/3 width=4 by ex2_intro, ex_intro/
+qed-.
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* Properties on supclosure *************************************************)
+
+lemma fqu_cpx_trans: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐ ⦃G2, L2, T2⦄ →
+ ∀U2. ⦃G2, L2⦄ ⊢ T2 ➡[h, o] U2 →
+ ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ➡[h, o] U1 & ⦃G1, L1, U1⦄ ⊐ ⦃G2, L2, U2⦄.
+#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -G1 -G2 -L1 -L2 -T1 -T2
+/3 width=3 by fqu_pair_sn, fqu_bind_dx, fqu_flat_dx, cpx_pair_sn, cpx_bind, cpx_flat, ex2_intro/
+[ #I #G #L #V2 #U2 #HVU2
+ elim (lift_total U2 0 1)
+ /4 width=7 by fqu_drop, cpx_delta, drop_pair, drop_drop, ex2_intro/
+| #G #L #K #T1 #U1 #k #HLK1 #HTU1 #T2 #HTU2
+ elim (lift_total T2 0 (k+1))
+ /3 width=11 by cpx_lift, fqu_drop, ex2_intro/
+]
+qed-.
+
+lemma fquq_cpx_trans: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐⸮ ⦃G2, L2, T2⦄ →
+ ∀U2. ⦃G2, L2⦄ ⊢ T2 ➡[h, o] U2 →
+ ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ➡[h, o] U1 & ⦃G1, L1, U1⦄ ⊐⸮ ⦃G2, L2, U2⦄.
+#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H #U2 #HTU2 elim (fquq_inv_gen … H) -H
+[ #HT12 elim (fqu_cpx_trans … HT12 … HTU2) /3 width=3 by fqu_fquq, ex2_intro/
+| * #H1 #H2 #H3 destruct /2 width=3 by ex2_intro/
+]
+qed-.
+
+lemma fqup_cpx_trans: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐+ ⦃G2, L2, T2⦄ →
+ ∀U2. ⦃G2, L2⦄ ⊢ T2 ➡[h, o] U2 →
+ ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ➡[h, o] U1 & ⦃G1, L1, U1⦄ ⊐+ ⦃G2, L2, U2⦄.
+#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H @(fqup_ind … H) -G2 -L2 -T2
+[ #G2 #L2 #T2 #H12 #U2 #HTU2 elim (fqu_cpx_trans … H12 … HTU2) -T2
+ /3 width=3 by fqu_fqup, ex2_intro/
+| #G #G2 #L #L2 #T #T2 #_ #HT2 #IHT1 #U2 #HTU2
+ elim (fqu_cpx_trans … HT2 … HTU2) -T2 #T2 #HT2 #HTU2
+ elim (IHT1 … HT2) -T /3 width=7 by fqup_strap1, ex2_intro/
+]
+qed-.
+
+lemma fqus_cpx_trans: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐* ⦃G2, L2, T2⦄ →
+ ∀U2. ⦃G2, L2⦄ ⊢ T2 ➡[h, o] U2 →
+ ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ➡[h, o] U1 & ⦃G1, L1, U1⦄ ⊐* ⦃G2, L2, U2⦄.
+#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H #U2 #HTU2 elim (fqus_inv_gen … H) -H
+[ #HT12 elim (fqup_cpx_trans … HT12 … HTU2) /3 width=3 by fqup_fqus, ex2_intro/
+| * #H1 #H2 #H3 destruct /2 width=3 by ex2_intro/
+]
+qed-.
+
+lemma fqu_cpx_trans_neq: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐ ⦃G2, L2, T2⦄ →
+ ∀U2. ⦃G2, L2⦄ ⊢ T2 ➡[h, o] U2 → (T2 = U2 → ⊥) →
+ ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ➡[h, o] U1 & T1 = U1 → ⊥ & ⦃G1, L1, U1⦄ ⊐ ⦃G2, L2, U2⦄.
+#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -G1 -G2 -L1 -L2 -T1 -T2
+[ #I #G #L #V1 #V2 #HV12 #_ elim (lift_total V2 0 1)
+ #U2 #HVU2 @(ex3_intro … U2)
+ [1,3: /3 width=7 by fqu_drop, cpx_delta, drop_pair, drop_drop/
+ | #H destruct
+ lapply (lift_inv_lref2_be … HVU2 ? ?) -HVU2 //
+ ]
+| #I #G #L #V1 #T #V2 #HV12 #H @(ex3_intro … (②{I}V2.T))
+ [1,3: /2 width=4 by fqu_pair_sn, cpx_pair_sn/
+ | #H0 destruct /2 width=1 by/
+ ]
+| #a #I #G #L #V #T1 #T2 #HT12 #H @(ex3_intro … (ⓑ{a,I}V.T2))
+ [1,3: /2 width=4 by fqu_bind_dx, cpx_bind/
+ | #H0 destruct /2 width=1 by/
+ ]
+| #I #G #L #V #T1 #T2 #HT12 #H @(ex3_intro … (ⓕ{I}V.T2))
+ [1,3: /2 width=4 by fqu_flat_dx, cpx_flat/
+ | #H0 destruct /2 width=1 by/
+ ]
+| #G #L #K #T1 #U1 #k #HLK #HTU1 #T2 #HT12 #H elim (lift_total T2 0 (k+1))
+ #U2 #HTU2 @(ex3_intro … U2)
+ [1,3: /2 width=10 by cpx_lift, fqu_drop/
+ | #H0 destruct /3 width=5 by lift_inj/
+]
+qed-.
+
+lemma fquq_cpx_trans_neq: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐⸮ ⦃G2, L2, T2⦄ →
+ ∀U2. ⦃G2, L2⦄ ⊢ T2 ➡[h, o] U2 → (T2 = U2 → ⊥) →
+ ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ➡[h, o] U1 & T1 = U1 → ⊥ & ⦃G1, L1, U1⦄ ⊐⸮ ⦃G2, L2, U2⦄.
+#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H12 #U2 #HTU2 #H elim (fquq_inv_gen … H12) -H12
+[ #H12 elim (fqu_cpx_trans_neq … H12 … HTU2 H) -T2
+ /3 width=4 by fqu_fquq, ex3_intro/
+| * #HG #HL #HT destruct /3 width=4 by ex3_intro/
+]
+qed-.
+
+lemma fqup_cpx_trans_neq: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐+ ⦃G2, L2, T2⦄ →
+ ∀U2. ⦃G2, L2⦄ ⊢ T2 ➡[h, o] U2 → (T2 = U2 → ⊥) →
+ ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ➡[h, o] U1 & T1 = U1 → ⊥ & ⦃G1, L1, U1⦄ ⊐+ ⦃G2, L2, U2⦄.
+#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H @(fqup_ind_dx … H) -G1 -L1 -T1
+[ #G1 #L1 #T1 #H12 #U2 #HTU2 #H elim (fqu_cpx_trans_neq … H12 … HTU2 H) -T2
+ /3 width=4 by fqu_fqup, ex3_intro/
+| #G #G1 #L #L1 #T #T1 #H1 #_ #IH12 #U2 #HTU2 #H elim (IH12 … HTU2 H) -T2
+ #U1 #HTU1 #H #H12 elim (fqu_cpx_trans_neq … H1 … HTU1 H) -T1
+ /3 width=8 by fqup_strap2, ex3_intro/
+]
+qed-.
+
+lemma fqus_cpx_trans_neq: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐* ⦃G2, L2, T2⦄ →
+ ∀U2. ⦃G2, L2⦄ ⊢ T2 ➡[h, o] U2 → (T2 = U2 → ⊥) →
+ ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ➡[h, o] U1 & T1 = U1 → ⊥ & ⦃G1, L1, U1⦄ ⊐* ⦃G2, L2, U2⦄.
+#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H12 #U2 #HTU2 #H elim (fqus_inv_gen … H12) -H12
+[ #H12 elim (fqup_cpx_trans_neq … H12 … HTU2 H) -T2
+ /3 width=4 by fqup_fqus, ex3_intro/
+| * #HG #HL #HT destruct /3 width=4 by ex3_intro/
+]
+qed-.
+++ /dev/null
-(**************************************************************************)
-(* ___ *)
-(* ||M|| *)
-(* ||A|| A project by Andrea Asperti *)
-(* ||T|| *)
-(* ||I|| Developers: *)
-(* ||T|| The HELM team. *)
-(* ||A|| http://helm.cs.unibo.it *)
-(* \ / *)
-(* \ / This file is distributed under the terms of the *)
-(* v GNU General Public License Version 2 *)
-(* *)
-(**************************************************************************)
-
-include "ground_2/ynat/ynat_max.ma".
-include "basic_2/substitution/drop_drop.ma".
-include "basic_2/multiple/fqus_alt.ma".
-include "basic_2/static/da.ma".
-include "basic_2/reduction/cpx.ma".
-
-(* CONTEXT-SENSITIVE EXTENDED PARALLEL REDUCTION FOR TERMS ******************)
-
-(* Advanced properties ******************************************************)
-
-fact sta_cpx_aux: ∀h,o,G,L,T1,T2,d2,d1. ⦃G, L⦄ ⊢ T1 •*[h, d2] T2 → d2 = 1 →
- ⦃G, L⦄ ⊢ T1 ▪[h, o] d1+1 → ⦃G, L⦄ ⊢ T1 ➡[h, o] T2.
-#h #o #G #L #T1 #T2 #d2 #d1 #H elim H -G -L -T1 -T2 -d2
-[ #G #L #d2 #s #H0 destruct normalize
- /3 width=4 by cpx_st, da_inv_sort/
-| #G #L #K #V1 #V2 #W2 #i #d2 #HLK #_ #HVW2 #IHV12 #H0 #H destruct
- elim (da_inv_lref … H) -H * #K0 #V0 [| #d0 ] #HLK0
- lapply (drop_mono … HLK0 … HLK) -HLK0 #H destruct /3 width=7 by cpx_delta/
-| #G #L #K #V1 #V2 #i #_ #_ #_ #H destruct
-| #G #L #K #V1 #V2 #W2 #i #d2 #HLK #HV12 #HVW2 #_ #H0 #H
- lapply (discr_plus_xy_y … H0) -H0 #H0 destruct
- elim (da_inv_lref … H) -H * #K0 #V0 [| #d0 ] #HLK0
- lapply (drop_mono … HLK0 … HLK) -HLK0 #H destruct
- /4 width=7 by cpx_delta, cpr_cpx, lstas_cpr/
-| /4 width=2 by cpx_bind, da_inv_bind/
-| /4 width=3 by cpx_flat, da_inv_flat/
-| /4 width=3 by cpx_eps, da_inv_flat/
-]
-qed-.
-
-lemma sta_cpx: ∀h,o,G,L,T1,T2,d. ⦃G, L⦄ ⊢ T1 •*[h, 1] T2 →
- ⦃G, L⦄ ⊢ T1 ▪[h, o] d+1 → ⦃G, L⦄ ⊢ T1 ➡[h, o] T2.
-/2 width=3 by sta_cpx_aux/ qed.
-
-(* Relocation properties ****************************************************)
-
-lemma cpx_lift: ∀h,o,G. d_liftable (cpx h o G).
-#h #o #G #K #T1 #T2 #H elim H -G -K -T1 -T2
-[ #I #G #K #L #b #l #k #_ #U1 #H1 #U2 #H2
- >(lift_mono … H1 … H2) -H1 -H2 //
-| #G #K #s #d #Hkd #L #b #l #k #_ #U1 #H1 #U2 #H2
- >(lift_inv_sort1 … H1) -U1
- >(lift_inv_sort1 … H2) -U2 /2 width=2 by cpx_st/
-| #I #G #K #KV #V #V2 #W2 #i #HKV #HV2 #HVW2 #IHV2 #L #b #l #k #HLK #U1 #H #U2 #HWU2
- elim (lift_inv_lref1 … H) * #Hil #H destruct
- [ elim (lift_trans_ge … HVW2 … HWU2) -W2 /2 width=1 by ylt_fwd_le_succ1/ #W2 #HVW2 #HWU2
- elim (drop_trans_le … HLK … HKV) -K /2 width=2 by ylt_fwd_le/ #X #HLK #H
- elim (drop_inv_skip2 … H) -H /2 width=1 by ylt_to_minus/ -Hil
- #K #Y #HKV #HVY #H destruct /3 width=10 by cpx_delta/
- | lapply (lift_trans_be … HVW2 … HWU2 ? ?) -W2 /2 width=1 by yle_succ_dx/ >plus_plus_comm_23 #HVU2
- lapply (drop_trans_ge_comm … HLK … HKV ?) -K /3 width=7 by cpx_delta, drop_inv_gen/
- ]
-| #a #I #G #K #V1 #V2 #T1 #T2 #_ #_ #IHV12 #IHT12 #L #b #l #k #HLK #U1 #H1 #U2 #H2
- elim (lift_inv_bind1 … H1) -H1 #VV1 #TT1 #HVV1 #HTT1 #H1 destruct
- elim (lift_inv_bind1 … H2) -H2 #VV2 #TT2 #HVV2 #HTT2 #H2 destruct /4 width=6 by cpx_bind, drop_skip/
-| #I #G #K #V1 #V2 #T1 #T2 #_ #_ #IHV12 #IHT12 #L #b #l #k #HLK #U1 #H1 #U2 #H2
- elim (lift_inv_flat1 … H1) -H1 #VV1 #TT1 #HVV1 #HTT1 #H1 destruct
- elim (lift_inv_flat1 … H2) -H2 #VV2 #TT2 #HVV2 #HTT2 #H2 destruct /3 width=6 by cpx_flat/
-| #G #K #V #T1 #T #T2 #_ #HT2 #IHT1 #L #b #l #k #HLK #U1 #H #U2 #HTU2
- elim (lift_inv_bind1 … H) -H #VV1 #TT1 #HVV1 #HTT1 #H destruct
- elim (lift_conf_O1 … HTU2 … HT2) -T2 /4 width=6 by cpx_zeta, drop_skip/
-| #G #K #V #T1 #T2 #_ #IHT12 #L #b #l #k #HLK #U1 #H #U2 #HTU2
- elim (lift_inv_flat1 … H) -H #VV1 #TT1 #HVV1 #HTT1 #H destruct /3 width=6 by cpx_eps/
-| #G #K #V1 #V2 #T #_ #IHV12 #L #b #l #k #HLK #U1 #H #U2 #HVU2
- elim (lift_inv_flat1 … H) -H #VV1 #TT1 #HVV1 #HTT1 #H destruct /3 width=6 by cpx_ct/
-| #a #G #K #V1 #V2 #W1 #W2 #T1 #T2 #_ #_ #_ #IHV12 #IHW12 #IHT12 #L #b #l #k #HLK #X1 #HX1 #X2 #HX2
- elim (lift_inv_flat1 … HX1) -HX1 #V0 #X #HV10 #HX #HX1 destruct
- elim (lift_inv_bind1 … HX) -HX #W0 #T0 #HW0 #HT10 #HX destruct
- elim (lift_inv_bind1 … HX2) -HX2 #X #T3 #HX #HT23 #HX2 destruct
- elim (lift_inv_flat1 … HX) -HX #W3 #V3 #HW23 #HV23 #HX destruct /4 width=6 by cpx_beta, drop_skip/
-| #a #G #K #V1 #V #V2 #W1 #W2 #T1 #T2 #_ #HV2 #_ #_ #IHV1 #IHW12 #IHT12 #L #b #l #k #HLK #X1 #HX1 #X2 #HX2
- elim (lift_inv_flat1 … HX1) -HX1 #V0 #X #HV10 #HX #HX1 destruct
- elim (lift_inv_bind1 … HX) -HX #W0 #T0 #HW0 #HT10 #HX destruct
- elim (lift_inv_bind1 … HX2) -HX2 #W3 #X #HW23 #HX #HX2 destruct
- elim (lift_inv_flat1 … HX) -HX #V3 #T3 #HV3 #HT23 #HX destruct
- elim (lift_trans_ge … HV2 … HV3) -V2 /4 width=6 by cpx_theta, drop_skip/
-]
-qed.
-
-lemma cpx_inv_lift1: ∀h,o,G. d_deliftable_sn (cpx h o G).
-#h #o #G #L #U1 #U2 #H elim H -G -L -U1 -U2
-[ * #i #G #L #K #b #l #k #_ #T1 #H
- [ lapply (lift_inv_sort2 … H) -H #H destruct /2 width=3 by cpx_atom, lift_sort, ex2_intro/
- | elim (lift_inv_lref2 … H) -H * #Hil #H destruct /3 width=3 by cpx_atom, lift_lref_ge_minus, lift_lref_lt, ex2_intro/
- | lapply (lift_inv_gref2 … H) -H #H destruct /2 width=3 by cpx_atom, lift_gref, ex2_intro/
- ]
-| #G #L #s #d #Hkd #K #b #l #k #_ #T1 #H
- lapply (lift_inv_sort2 … H) -H #H destruct /3 width=3 by cpx_st, lift_sort, ex2_intro/
-| #I #G #L #LV #V #V2 #W2 #i #HLV #HV2 #HVW2 #IHV2 #K #b #l #k #HLK #T1 #H
- elim (lift_inv_lref2 … H) -H * #Hil #H destruct
- [ elim (drop_conf_lt … HLK … HLV) -L // #L #U #HKL #HLV #HUV
- elim (IHV2 … HLV … HUV) -V #U2 #HUV2 #HU2
- elim (lift_trans_le … HUV2 … HVW2) -V2 // <yminus_succ2 <yplus_inj >yplus_SO2 >ymax_pre_sn /3 width=9 by cpx_delta, ylt_fwd_le_succ1, ex2_intro/
- | elim (yle_inv_plus_inj2 … Hil) #Hlim #Hmi
- lapply (yle_inv_inj … Hmi) -Hmi #Hmi
- lapply (drop_conf_ge … HLK … HLV ?) -L // #HKLV
- elim (lift_split … HVW2 l (i - k + 1)) -HVW2 /3 width=1 by yle_succ, yle_pred_sn, le_S_S/ -Hil -Hlim
- #V1 #HV1 >plus_minus // <minus_minus /2 width=1 by le_S/ <minus_n_n <plus_n_O /3 width=9 by cpx_delta, ex2_intro/
- ]
-| #a #I #G #L #V1 #V2 #U1 #U2 #_ #_ #IHV12 #IHU12 #K #b #l #k #HLK #X #H
- elim (lift_inv_bind2 … H) -H #W1 #T1 #HWV1 #HTU1 #H destruct
- elim (IHV12 … HLK … HWV1) -IHV12 #W2 #HW12 #HWV2
- elim (IHU12 … HTU1) -IHU12 -HTU1 /3 width=6 by cpx_bind, drop_skip, lift_bind, ex2_intro/
-| #I #G #L #V1 #V2 #U1 #U2 #_ #_ #IHV12 #IHU12 #K #b #l #k #HLK #X #H
- elim (lift_inv_flat2 … H) -H #W1 #T1 #HWV1 #HTU1 #H destruct
- elim (IHV12 … HLK … HWV1) -V1
- elim (IHU12 … HLK … HTU1) -U1 -HLK /3 width=5 by cpx_flat, lift_flat, ex2_intro/
-| #G #L #V #U1 #U #U2 #_ #HU2 #IHU1 #K #b #l #k #HLK #X #H
- elim (lift_inv_bind2 … H) -H #W1 #T1 #HWV1 #HTU1 #H destruct
- elim (IHU1 (K.ⓓW1) b … HTU1) /2 width=1 by drop_skip/ -L -U1 #T #HTU #HT1
- elim (lift_div_le … HU2 … HTU) -U /3 width=5 by cpx_zeta, ex2_intro/
-| #G #L #V #U1 #U2 #_ #IHU12 #K #b #l #k #HLK #X #H
- elim (lift_inv_flat2 … H) -H #W1 #T1 #HWV1 #HTU1 #H destruct
- elim (IHU12 … HLK … HTU1) -L -U1 /3 width=3 by cpx_eps, ex2_intro/
-| #G #L #V1 #V2 #U1 #_ #IHV12 #K #b #l #k #HLK #X #H
- elim (lift_inv_flat2 … H) -H #W1 #T1 #HWV1 #HTU1 #H destruct
- elim (IHV12 … HLK … HWV1) -L -V1 /3 width=3 by cpx_ct, ex2_intro/
-| #a #G #L #V1 #V2 #W1 #W2 #T1 #T2 #_ #_ #_ #IHV12 #IHW12 #IHT12 #K #b #l #k #HLK #X #HX
- elim (lift_inv_flat2 … HX) -HX #V0 #Y #HV01 #HY #HX destruct
- elim (lift_inv_bind2 … HY) -HY #W0 #T0 #HW01 #HT01 #HY destruct
- elim (IHV12 … HLK … HV01) -V1 #V3 #HV32 #HV03
- elim (IHT12 (K.ⓛW0) b … HT01) -T1 /2 width=1 by drop_skip/ #T3 #HT32 #HT03
- elim (IHW12 … HLK … HW01) -W1
- /4 width=7 by cpx_beta, lift_bind, lift_flat, ex2_intro/
-| #a #G #L #V1 #V #V2 #W1 #W2 #T1 #T2 #_ #HV2 #_ #_ #IHV1 #IHW12 #IHT12 #K #b #l #k #HLK #X #HX
- elim (lift_inv_flat2 … HX) -HX #V0 #Y #HV01 #HY #HX destruct
- elim (lift_inv_bind2 … HY) -HY #W0 #T0 #HW01 #HT01 #HY destruct
- elim (IHV1 … HLK … HV01) -V1 #V3 #HV3 #HV03
- elim (IHT12 (K.ⓓW0) b … HT01) -T1 /2 width=1 by drop_skip/ #T3 #HT32 #HT03
- elim (IHW12 … HLK … HW01) -W1 #W3 #HW32 #HW03
- elim (lift_trans_le … HV3 … HV2) -V
- /4 width=9 by cpx_theta, lift_bind, lift_flat, ex2_intro/
-]
-qed-.
-
-(* Properties on supclosure *************************************************)
-
-lemma fqu_cpx_trans: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐ ⦃G2, L2, T2⦄ →
- ∀U2. ⦃G2, L2⦄ ⊢ T2 ➡[h, o] U2 →
- ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ➡[h, o] U1 & ⦃G1, L1, U1⦄ ⊐ ⦃G2, L2, U2⦄.
-#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -G1 -G2 -L1 -L2 -T1 -T2
-/3 width=3 by fqu_pair_sn, fqu_bind_dx, fqu_flat_dx, cpx_pair_sn, cpx_bind, cpx_flat, ex2_intro/
-[ #I #G #L #V2 #U2 #HVU2
- elim (lift_total U2 0 1)
- /4 width=7 by fqu_drop, cpx_delta, drop_pair, drop_drop, ex2_intro/
-| #G #L #K #T1 #U1 #k #HLK1 #HTU1 #T2 #HTU2
- elim (lift_total T2 0 (k+1))
- /3 width=11 by cpx_lift, fqu_drop, ex2_intro/
-]
-qed-.
-
-lemma fqu_sta_trans: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐ ⦃G2, L2, T2⦄ →
- ∀U2. ⦃G2, L2⦄ ⊢ T2 •*[h, 1] U2 →
- ∀d. ⦃G2, L2⦄ ⊢ T2 ▪[h, o] d+1 →
- ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ➡[h, o] U1 & ⦃G1, L1, U1⦄ ⊐ ⦃G2, L2, U2⦄.
-/3 width=5 by fqu_cpx_trans, sta_cpx/ qed-.
-
-lemma fquq_cpx_trans: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐⸮ ⦃G2, L2, T2⦄ →
- ∀U2. ⦃G2, L2⦄ ⊢ T2 ➡[h, o] U2 →
- ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ➡[h, o] U1 & ⦃G1, L1, U1⦄ ⊐⸮ ⦃G2, L2, U2⦄.
-#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H #U2 #HTU2 elim (fquq_inv_gen … H) -H
-[ #HT12 elim (fqu_cpx_trans … HT12 … HTU2) /3 width=3 by fqu_fquq, ex2_intro/
-| * #H1 #H2 #H3 destruct /2 width=3 by ex2_intro/
-]
-qed-.
-
-lemma fquq_sta_trans: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐⸮ ⦃G2, L2, T2⦄ →
- ∀U2. ⦃G2, L2⦄ ⊢ T2 •*[h, 1] U2 →
- ∀d. ⦃G2, L2⦄ ⊢ T2 ▪[h, o] d+1 →
- ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ➡[h, o] U1 & ⦃G1, L1, U1⦄ ⊐⸮ ⦃G2, L2, U2⦄.
-/3 width=5 by fquq_cpx_trans, sta_cpx/ qed-.
-
-lemma fqup_cpx_trans: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐+ ⦃G2, L2, T2⦄ →
- ∀U2. ⦃G2, L2⦄ ⊢ T2 ➡[h, o] U2 →
- ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ➡[h, o] U1 & ⦃G1, L1, U1⦄ ⊐+ ⦃G2, L2, U2⦄.
-#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H @(fqup_ind … H) -G2 -L2 -T2
-[ #G2 #L2 #T2 #H12 #U2 #HTU2 elim (fqu_cpx_trans … H12 … HTU2) -T2
- /3 width=3 by fqu_fqup, ex2_intro/
-| #G #G2 #L #L2 #T #T2 #_ #HT2 #IHT1 #U2 #HTU2
- elim (fqu_cpx_trans … HT2 … HTU2) -T2 #T2 #HT2 #HTU2
- elim (IHT1 … HT2) -T /3 width=7 by fqup_strap1, ex2_intro/
-]
-qed-.
-
-lemma fqus_cpx_trans: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐* ⦃G2, L2, T2⦄ →
- ∀U2. ⦃G2, L2⦄ ⊢ T2 ➡[h, o] U2 →
- ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ➡[h, o] U1 & ⦃G1, L1, U1⦄ ⊐* ⦃G2, L2, U2⦄.
-#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H #U2 #HTU2 elim (fqus_inv_gen … H) -H
-[ #HT12 elim (fqup_cpx_trans … HT12 … HTU2) /3 width=3 by fqup_fqus, ex2_intro/
-| * #H1 #H2 #H3 destruct /2 width=3 by ex2_intro/
-]
-qed-.
-
-lemma fqu_cpx_trans_neq: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐ ⦃G2, L2, T2⦄ →
- ∀U2. ⦃G2, L2⦄ ⊢ T2 ➡[h, o] U2 → (T2 = U2 → ⊥) →
- ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ➡[h, o] U1 & T1 = U1 → ⊥ & ⦃G1, L1, U1⦄ ⊐ ⦃G2, L2, U2⦄.
-#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -G1 -G2 -L1 -L2 -T1 -T2
-[ #I #G #L #V1 #V2 #HV12 #_ elim (lift_total V2 0 1)
- #U2 #HVU2 @(ex3_intro … U2)
- [1,3: /3 width=7 by fqu_drop, cpx_delta, drop_pair, drop_drop/
- | #H destruct
- lapply (lift_inv_lref2_be … HVU2 ? ?) -HVU2 //
- ]
-| #I #G #L #V1 #T #V2 #HV12 #H @(ex3_intro … (②{I}V2.T))
- [1,3: /2 width=4 by fqu_pair_sn, cpx_pair_sn/
- | #H0 destruct /2 width=1 by/
- ]
-| #a #I #G #L #V #T1 #T2 #HT12 #H @(ex3_intro … (ⓑ{a,I}V.T2))
- [1,3: /2 width=4 by fqu_bind_dx, cpx_bind/
- | #H0 destruct /2 width=1 by/
- ]
-| #I #G #L #V #T1 #T2 #HT12 #H @(ex3_intro … (ⓕ{I}V.T2))
- [1,3: /2 width=4 by fqu_flat_dx, cpx_flat/
- | #H0 destruct /2 width=1 by/
- ]
-| #G #L #K #T1 #U1 #k #HLK #HTU1 #T2 #HT12 #H elim (lift_total T2 0 (k+1))
- #U2 #HTU2 @(ex3_intro … U2)
- [1,3: /2 width=10 by cpx_lift, fqu_drop/
- | #H0 destruct /3 width=5 by lift_inj/
-]
-qed-.
-
-lemma fquq_cpx_trans_neq: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐⸮ ⦃G2, L2, T2⦄ →
- ∀U2. ⦃G2, L2⦄ ⊢ T2 ➡[h, o] U2 → (T2 = U2 → ⊥) →
- ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ➡[h, o] U1 & T1 = U1 → ⊥ & ⦃G1, L1, U1⦄ ⊐⸮ ⦃G2, L2, U2⦄.
-#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H12 #U2 #HTU2 #H elim (fquq_inv_gen … H12) -H12
-[ #H12 elim (fqu_cpx_trans_neq … H12 … HTU2 H) -T2
- /3 width=4 by fqu_fquq, ex3_intro/
-| * #HG #HL #HT destruct /3 width=4 by ex3_intro/
-]
-qed-.
-
-lemma fqup_cpx_trans_neq: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐+ ⦃G2, L2, T2⦄ →
- ∀U2. ⦃G2, L2⦄ ⊢ T2 ➡[h, o] U2 → (T2 = U2 → ⊥) →
- ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ➡[h, o] U1 & T1 = U1 → ⊥ & ⦃G1, L1, U1⦄ ⊐+ ⦃G2, L2, U2⦄.
-#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H @(fqup_ind_dx … H) -G1 -L1 -T1
-[ #G1 #L1 #T1 #H12 #U2 #HTU2 #H elim (fqu_cpx_trans_neq … H12 … HTU2 H) -T2
- /3 width=4 by fqu_fqup, ex3_intro/
-| #G #G1 #L #L1 #T #T1 #H1 #_ #IH12 #U2 #HTU2 #H elim (IH12 … HTU2 H) -T2
- #U1 #HTU1 #H #H12 elim (fqu_cpx_trans_neq … H1 … HTU1 H) -T1
- /3 width=8 by fqup_strap2, ex3_intro/
-]
-qed-.
-
-lemma fqus_cpx_trans_neq: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐* ⦃G2, L2, T2⦄ →
- ∀U2. ⦃G2, L2⦄ ⊢ T2 ➡[h, o] U2 → (T2 = U2 → ⊥) →
- ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ➡[h, o] U1 & T1 = U1 → ⊥ & ⦃G1, L1, U1⦄ ⊐* ⦃G2, L2, U2⦄.
-#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H12 #U2 #HTU2 #H elim (fqus_inv_gen … H12) -H12
-[ #H12 elim (fqup_cpx_trans_neq … H12 … HTU2 H) -T2
- /3 width=4 by fqup_fqus, ex3_intro/
-| * #HG #HL #HT destruct /3 width=4 by ex3_intro/
-]
-qed-.
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+include "basic_2/rt_transition/cpg_lsubr.ma".
+include "basic_2/rt_transition/cpx.ma".
+
+(* UNCOUNTED CONTEXT-SENSITIVE PARALLEL REDUCTION FOR TERMS *****************)
+
+lemma lsubr_cpx_trans: ∀h,G. lsub_trans … (cpx h G) lsubr.
+#h #G #L1 #T1 #T2 * /3 width=4 by lsubr_cpg_trans, ex_intro/
+qed-.
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+include "basic_2/rt_transition/cpg_simple.ma".
+include "basic_2/rt_transition/cpx.ma".
+
+(* UNCOUNTED CONTEXT-SENSITIVE PARALLEL REDUCTION FOR TERMS *****************)
+
+lemma cpx_inv_appl1_simple: ∀h,G,L,V1,T1,U. ⦃G, L⦄ ⊢ ⓐV1.T1 ➡[h] U → 𝐒⦃T1⦄ →
+ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡[h] V2 & ⦃G, L⦄ ⊢ T1 ➡[h] T2 &
+ U = ⓐV2.T2.
+#h #G #L #V1 #T1 #U * #c #H #HT1 elim (cpg_inv_appl1_simple … H) -H
+/3 width=5 by ex3_2_intro, ex_intro/
+qed-.
}
]
*)
+ [ { "uncounted context-sensitive rt-transition" * } {
+ [ "cpx ( ⦃?,?⦄ ⊢ ? ➡[?] ? )" "cpx_simple" + "cpx_drops" + "cpx_lsubr" * ]
+ }
+ ]
[ { "counted context-sensitive rt-transition" * } {
[ "cpg ( ⦃?,?⦄ ⊢ ? ➡[?,?] ? )" "cpg_simple" + "cpg_drops" + "cpg_lsubr" * ]
}