--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/LambdaDelta/pr0/dec".
+
+include "pr0/fwd.ma".
+
+include "subst0/dec.ma".
+
+include "T/dec.ma".
+
+include "T/props.ma".
+
+theorem nf0_dec:
+ \forall (t1: T).(or (\forall (t2: T).((pr0 t1 t2) \to (eq T t1 t2))) (ex2 T
+(\lambda (t2: T).((eq T t1 t2) \to (\forall (P: Prop).P))) (\lambda (t2:
+T).(pr0 t1 t2))))
+\def
+ \lambda (t1: T).(T_ind (\lambda (t: T).(or (\forall (t2: T).((pr0 t t2) \to
+(eq T t t2))) (ex2 T (\lambda (t2: T).((eq T t t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 t t2))))) (\lambda (n: nat).(or_introl
+(\forall (t2: T).((pr0 (TSort n) t2) \to (eq T (TSort n) t2))) (ex2 T
+(\lambda (t2: T).((eq T (TSort n) t2) \to (\forall (P: Prop).P))) (\lambda
+(t2: T).(pr0 (TSort n) t2))) (\lambda (t2: T).(\lambda (H: (pr0 (TSort n)
+t2)).(eq_ind_r T (TSort n) (\lambda (t: T).(eq T (TSort n) t)) (refl_equal T
+(TSort n)) t2 (pr0_gen_sort t2 n H)))))) (\lambda (n: nat).(or_introl
+(\forall (t2: T).((pr0 (TLRef n) t2) \to (eq T (TLRef n) t2))) (ex2 T
+(\lambda (t2: T).((eq T (TLRef n) t2) \to (\forall (P: Prop).P))) (\lambda
+(t2: T).(pr0 (TLRef n) t2))) (\lambda (t2: T).(\lambda (H: (pr0 (TLRef n)
+t2)).(eq_ind_r T (TLRef n) (\lambda (t: T).(eq T (TLRef n) t)) (refl_equal T
+(TLRef n)) t2 (pr0_gen_lref t2 n H)))))) (\lambda (k: K).(\lambda (t:
+T).(\lambda (H: (or (\forall (t2: T).((pr0 t t2) \to (eq T t t2))) (ex2 T
+(\lambda (t2: T).((eq T t t2) \to (\forall (P: Prop).P))) (\lambda (t2:
+T).(pr0 t t2))))).(\lambda (t0: T).(\lambda (H0: (or (\forall (t2: T).((pr0
+t0 t2) \to (eq T t0 t2))) (ex2 T (\lambda (t2: T).((eq T t0 t2) \to (\forall
+(P: Prop).P))) (\lambda (t2: T).(pr0 t0 t2))))).(match k in K return (\lambda
+(k0: K).(or (\forall (t2: T).((pr0 (THead k0 t t0) t2) \to (eq T (THead k0 t
+t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead k0 t t0) t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 (THead k0 t t0) t2))))) with [(Bind b)
+\Rightarrow (match b in B return (\lambda (b0: B).(or (\forall (t2: T).((pr0
+(THead (Bind b0) t t0) t2) \to (eq T (THead (Bind b0) t t0) t2))) (ex2 T
+(\lambda (t2: T).((eq T (THead (Bind b0) t t0) t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind b0) t t0) t2))))) with [Abbr
+\Rightarrow (or_intror (\forall (t2: T).((pr0 (THead (Bind Abbr) t t0) t2)
+\to (eq T (THead (Bind Abbr) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T
+(THead (Bind Abbr) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2:
+T).(pr0 (THead (Bind Abbr) t t0) t2))) (let H_x \def (dnf_dec t t0 O) in (let
+H1 \def H_x in (ex_ind T (\lambda (v: T).(or (subst0 O t t0 (lift (S O) O v))
+(eq T t0 (lift (S O) O v)))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind
+Abbr) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead
+(Bind Abbr) t t0) t2))) (\lambda (x: T).(\lambda (H2: (or (subst0 O t t0
+(lift (S O) O x)) (eq T t0 (lift (S O) O x)))).(or_ind (subst0 O t t0 (lift
+(S O) O x)) (eq T t0 (lift (S O) O x)) (ex2 T (\lambda (t2: T).((eq T (THead
+(Bind Abbr) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0
+(THead (Bind Abbr) t t0) t2))) (\lambda (H3: (subst0 O t t0 (lift (S O) O
+x))).(ex_intro2 T (\lambda (t2: T).((eq T (THead (Bind Abbr) t t0) t2) \to
+(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abbr) t t0) t2))
+(THead (Bind Abbr) t (lift (S O) O x)) (\lambda (H4: (eq T (THead (Bind Abbr)
+t t0) (THead (Bind Abbr) t (lift (S O) O x)))).(\lambda (P: Prop).(let H5
+\def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T)
+with [(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t2)
+\Rightarrow t2])) (THead (Bind Abbr) t t0) (THead (Bind Abbr) t (lift (S O) O
+x)) H4) in (let H6 \def (eq_ind T t0 (\lambda (t2: T).(subst0 O t t2 (lift (S
+O) O x))) H3 (lift (S O) O x) H5) in (subst0_refl t (lift (S O) O x) O H6
+P))))) (pr0_delta t t (pr0_refl t) t0 t0 (pr0_refl t0) (lift (S O) O x) H3)))
+(\lambda (H3: (eq T t0 (lift (S O) O x))).(eq_ind_r T (lift (S O) O x)
+(\lambda (t2: T).(ex2 T (\lambda (t3: T).((eq T (THead (Bind Abbr) t t2) t3)
+\to (\forall (P: Prop).P))) (\lambda (t3: T).(pr0 (THead (Bind Abbr) t t2)
+t3)))) (ex_intro2 T (\lambda (t2: T).((eq T (THead (Bind Abbr) t (lift (S O)
+O x)) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind
+Abbr) t (lift (S O) O x)) t2)) x (\lambda (H4: (eq T (THead (Bind Abbr) t
+(lift (S O) O x)) x)).(\lambda (P: Prop).(thead_x_lift_y_y (Bind Abbr) x t (S
+O) O H4 P))) (pr0_zeta Abbr not_abbr_abst x x (pr0_refl x) t)) t0 H3)) H2)))
+H1)))) | Abst \Rightarrow (let H1 \def H in (or_ind (\forall (t2: T).((pr0 t
+t2) \to (eq T t t2))) (ex2 T (\lambda (t2: T).((eq T t t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 t t2))) (or (\forall (t2: T).((pr0 (THead
+(Bind Abst) t t0) t2) \to (eq T (THead (Bind Abst) t t0) t2))) (ex2 T
+(\lambda (t2: T).((eq T (THead (Bind Abst) t t0) t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abst) t t0) t2)))) (\lambda
+(H2: ((\forall (t2: T).((pr0 t t2) \to (eq T t t2))))).(let H3 \def H0 in
+(or_ind (\forall (t2: T).((pr0 t0 t2) \to (eq T t0 t2))) (ex2 T (\lambda (t2:
+T).((eq T t0 t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t0 t2)))
+(or (\forall (t2: T).((pr0 (THead (Bind Abst) t t0) t2) \to (eq T (THead
+(Bind Abst) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind Abst) t
+t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abst)
+t t0) t2)))) (\lambda (H4: ((\forall (t2: T).((pr0 t0 t2) \to (eq T t0
+t2))))).(or_introl (\forall (t2: T).((pr0 (THead (Bind Abst) t t0) t2) \to
+(eq T (THead (Bind Abst) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead
+(Bind Abst) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0
+(THead (Bind Abst) t t0) t2))) (\lambda (t2: T).(\lambda (H5: (pr0 (THead
+(Bind Abst) t t0) t2)).(ex3_2_ind T T (\lambda (u2: T).(\lambda (t3: T).(eq T
+t2 (THead (Bind Abst) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 t u2)))
+(\lambda (_: T).(\lambda (t3: T).(pr0 t0 t3))) (eq T (THead (Bind Abst) t t0)
+t2) (\lambda (x0: T).(\lambda (x1: T).(\lambda (H6: (eq T t2 (THead (Bind
+Abst) x0 x1))).(\lambda (H7: (pr0 t x0)).(\lambda (H8: (pr0 t0 x1)).(let H_y
+\def (H4 x1 H8) in (let H_y0 \def (H2 x0 H7) in (let H9 \def (eq_ind_r T x1
+(\lambda (t3: T).(pr0 t0 t3)) H8 t0 H_y) in (let H10 \def (eq_ind_r T x1
+(\lambda (t3: T).(eq T t2 (THead (Bind Abst) x0 t3))) H6 t0 H_y) in (let H11
+\def (eq_ind_r T x0 (\lambda (t3: T).(pr0 t t3)) H7 t H_y0) in (let H12 \def
+(eq_ind_r T x0 (\lambda (t3: T).(eq T t2 (THead (Bind Abst) t3 t0))) H10 t
+H_y0) in (eq_ind_r T (THead (Bind Abst) t t0) (\lambda (t3: T).(eq T (THead
+(Bind Abst) t t0) t3)) (refl_equal T (THead (Bind Abst) t t0)) t2
+H12)))))))))))) (pr0_gen_abst t t0 t2 H5)))))) (\lambda (H4: (ex2 T (\lambda
+(t2: T).((eq T t0 t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t0
+t2)))).(ex2_ind T (\lambda (t2: T).((eq T t0 t2) \to (\forall (P: Prop).P)))
+(\lambda (t2: T).(pr0 t0 t2)) (or (\forall (t2: T).((pr0 (THead (Bind Abst) t
+t0) t2) \to (eq T (THead (Bind Abst) t t0) t2))) (ex2 T (\lambda (t2: T).((eq
+T (THead (Bind Abst) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2:
+T).(pr0 (THead (Bind Abst) t t0) t2)))) (\lambda (x: T).(\lambda (H5: (((eq T
+t0 x) \to (\forall (P: Prop).P)))).(\lambda (H6: (pr0 t0 x)).(or_intror
+(\forall (t2: T).((pr0 (THead (Bind Abst) t t0) t2) \to (eq T (THead (Bind
+Abst) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind Abst) t t0) t2)
+\to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abst) t t0)
+t2))) (ex_intro2 T (\lambda (t2: T).((eq T (THead (Bind Abst) t t0) t2) \to
+(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abst) t t0) t2))
+(THead (Bind Abst) t x) (\lambda (H7: (eq T (THead (Bind Abst) t t0) (THead
+(Bind Abst) t x))).(\lambda (P: Prop).(let H8 \def (f_equal T T (\lambda (e:
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0 |
+(TLRef _) \Rightarrow t0 | (THead _ _ t2) \Rightarrow t2])) (THead (Bind
+Abst) t t0) (THead (Bind Abst) t x) H7) in (let H9 \def (eq_ind_r T x
+(\lambda (t2: T).(pr0 t0 t2)) H6 t0 H8) in (let H10 \def (eq_ind_r T x
+(\lambda (t2: T).((eq T t0 t2) \to (\forall (P0: Prop).P0))) H5 t0 H8) in
+(H10 (refl_equal T t0) P)))))) (pr0_comp t t (pr0_refl t) t0 x H6 (Bind
+Abst))))))) H4)) H3))) (\lambda (H2: (ex2 T (\lambda (t2: T).((eq T t t2) \to
+(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t t2)))).(ex2_ind T (\lambda
+(t2: T).((eq T t t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t t2))
+(or (\forall (t2: T).((pr0 (THead (Bind Abst) t t0) t2) \to (eq T (THead
+(Bind Abst) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind Abst) t
+t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abst)
+t t0) t2)))) (\lambda (x: T).(\lambda (H3: (((eq T t x) \to (\forall (P:
+Prop).P)))).(\lambda (H4: (pr0 t x)).(or_intror (\forall (t2: T).((pr0 (THead
+(Bind Abst) t t0) t2) \to (eq T (THead (Bind Abst) t t0) t2))) (ex2 T
+(\lambda (t2: T).((eq T (THead (Bind Abst) t t0) t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abst) t t0) t2))) (ex_intro2 T
+(\lambda (t2: T).((eq T (THead (Bind Abst) t t0) t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Abst) t t0) t2)) (THead (Bind
+Abst) x t0) (\lambda (H5: (eq T (THead (Bind Abst) t t0) (THead (Bind Abst) x
+t0))).(\lambda (P: Prop).(let H6 \def (f_equal T T (\lambda (e: T).(match e
+in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t | (TLRef _)
+\Rightarrow t | (THead _ t2 _) \Rightarrow t2])) (THead (Bind Abst) t t0)
+(THead (Bind Abst) x t0) H5) in (let H7 \def (eq_ind_r T x (\lambda (t2:
+T).(pr0 t t2)) H4 t H6) in (let H8 \def (eq_ind_r T x (\lambda (t2: T).((eq T
+t t2) \to (\forall (P0: Prop).P0))) H3 t H6) in (H8 (refl_equal T t) P))))))
+(pr0_comp t x H4 t0 t0 (pr0_refl t0) (Bind Abst))))))) H2)) H1)) | Void
+\Rightarrow (let H_x \def (dnf_dec t t0 O) in (let H1 \def H_x in (ex_ind T
+(\lambda (v: T).(or (subst0 O t t0 (lift (S O) O v)) (eq T t0 (lift (S O) O
+v)))) (or (\forall (t2: T).((pr0 (THead (Bind Void) t t0) t2) \to (eq T
+(THead (Bind Void) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind
+Void) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead
+(Bind Void) t t0) t2)))) (\lambda (x: T).(\lambda (H2: (or (subst0 O t t0
+(lift (S O) O x)) (eq T t0 (lift (S O) O x)))).(or_ind (subst0 O t t0 (lift
+(S O) O x)) (eq T t0 (lift (S O) O x)) (or (\forall (t2: T).((pr0 (THead
+(Bind Void) t t0) t2) \to (eq T (THead (Bind Void) t t0) t2))) (ex2 T
+(\lambda (t2: T).((eq T (THead (Bind Void) t t0) t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Void) t t0) t2)))) (\lambda
+(H3: (subst0 O t t0 (lift (S O) O x))).(let H4 \def H in (or_ind (\forall
+(t2: T).((pr0 t t2) \to (eq T t t2))) (ex2 T (\lambda (t2: T).((eq T t t2)
+\to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t t2))) (or (\forall (t2:
+T).((pr0 (THead (Bind Void) t t0) t2) \to (eq T (THead (Bind Void) t t0)
+t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind Void) t t0) t2) \to
+(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Void) t t0) t2))))
+(\lambda (H5: ((\forall (t2: T).((pr0 t t2) \to (eq T t t2))))).(let H6 \def
+H0 in (or_ind (\forall (t2: T).((pr0 t0 t2) \to (eq T t0 t2))) (ex2 T
+(\lambda (t2: T).((eq T t0 t2) \to (\forall (P: Prop).P))) (\lambda (t2:
+T).(pr0 t0 t2))) (or (\forall (t2: T).((pr0 (THead (Bind Void) t t0) t2) \to
+(eq T (THead (Bind Void) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead
+(Bind Void) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0
+(THead (Bind Void) t t0) t2)))) (\lambda (H7: ((\forall (t2: T).((pr0 t0 t2)
+\to (eq T t0 t2))))).(or_introl (\forall (t2: T).((pr0 (THead (Bind Void) t
+t0) t2) \to (eq T (THead (Bind Void) t t0) t2))) (ex2 T (\lambda (t2: T).((eq
+T (THead (Bind Void) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2:
+T).(pr0 (THead (Bind Void) t t0) t2))) (\lambda (t2: T).(\lambda (H8: (pr0
+(THead (Bind Void) t t0) t2)).(or_ind (ex3_2 T T (\lambda (u2: T).(\lambda
+(t3: T).(eq T t2 (THead (Bind Void) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(pr0 t u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t0 t3)))) (pr0 t0 (lift
+(S O) O t2)) (eq T (THead (Bind Void) t t0) t2) (\lambda (H9: (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Void) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 t u2))) (\lambda (_: T).(\lambda (t3:
+T).(pr0 t0 t3))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2
+(THead (Bind Void) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 t u2)))
+(\lambda (_: T).(\lambda (t3: T).(pr0 t0 t3))) (eq T (THead (Bind Void) t t0)
+t2) (\lambda (x0: T).(\lambda (x1: T).(\lambda (H10: (eq T t2 (THead (Bind
+Void) x0 x1))).(\lambda (H11: (pr0 t x0)).(\lambda (H12: (pr0 t0 x1)).(let
+H_y \def (H7 x1 H12) in (let H_y0 \def (H5 x0 H11) in (let H13 \def (eq_ind_r
+T x1 (\lambda (t3: T).(pr0 t0 t3)) H12 t0 H_y) in (let H14 \def (eq_ind_r T
+x1 (\lambda (t3: T).(eq T t2 (THead (Bind Void) x0 t3))) H10 t0 H_y) in (let
+H15 \def (eq_ind_r T x0 (\lambda (t3: T).(pr0 t t3)) H11 t H_y0) in (let H16
+\def (eq_ind_r T x0 (\lambda (t3: T).(eq T t2 (THead (Bind Void) t3 t0))) H14
+t H_y0) in (eq_ind_r T (THead (Bind Void) t t0) (\lambda (t3: T).(eq T (THead
+(Bind Void) t t0) t3)) (refl_equal T (THead (Bind Void) t t0)) t2
+H16)))))))))))) H9)) (\lambda (H9: (pr0 t0 (lift (S O) O t2))).(let H_y \def
+(H7 (lift (S O) O t2) H9) in (let H10 \def (eq_ind T t0 (\lambda (t3:
+T).(subst0 O t t3 (lift (S O) O x))) H3 (lift (S O) O t2) H_y) in (eq_ind_r T
+(lift (S O) O t2) (\lambda (t3: T).(eq T (THead (Bind Void) t t3) t2))
+(subst0_gen_lift_false t2 t (lift (S O) O x) (S O) O O (le_n O) (eq_ind_r nat
+(plus (S O) O) (\lambda (n: nat).(lt O n)) (le_n (plus (S O) O)) (plus O (S
+O)) (plus_comm O (S O))) H10 (eq T (THead (Bind Void) t (lift (S O) O t2))
+t2)) t0 H_y)))) (pr0_gen_void t t0 t2 H8)))))) (\lambda (H7: (ex2 T (\lambda
+(t2: T).((eq T t0 t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t0
+t2)))).(ex2_ind T (\lambda (t2: T).((eq T t0 t2) \to (\forall (P: Prop).P)))
+(\lambda (t2: T).(pr0 t0 t2)) (or (\forall (t2: T).((pr0 (THead (Bind Void) t
+t0) t2) \to (eq T (THead (Bind Void) t t0) t2))) (ex2 T (\lambda (t2: T).((eq
+T (THead (Bind Void) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2:
+T).(pr0 (THead (Bind Void) t t0) t2)))) (\lambda (x0: T).(\lambda (H8: (((eq
+T t0 x0) \to (\forall (P: Prop).P)))).(\lambda (H9: (pr0 t0 x0)).(or_intror
+(\forall (t2: T).((pr0 (THead (Bind Void) t t0) t2) \to (eq T (THead (Bind
+Void) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind Void) t t0) t2)
+\to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Void) t t0)
+t2))) (ex_intro2 T (\lambda (t2: T).((eq T (THead (Bind Void) t t0) t2) \to
+(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Void) t t0) t2))
+(THead (Bind Void) t x0) (\lambda (H10: (eq T (THead (Bind Void) t t0) (THead
+(Bind Void) t x0))).(\lambda (P: Prop).(let H11 \def (f_equal T T (\lambda
+(e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0
+| (TLRef _) \Rightarrow t0 | (THead _ _ t2) \Rightarrow t2])) (THead (Bind
+Void) t t0) (THead (Bind Void) t x0) H10) in (let H12 \def (eq_ind_r T x0
+(\lambda (t2: T).(pr0 t0 t2)) H9 t0 H11) in (let H13 \def (eq_ind_r T x0
+(\lambda (t2: T).((eq T t0 t2) \to (\forall (P0: Prop).P0))) H8 t0 H11) in
+(H13 (refl_equal T t0) P)))))) (pr0_comp t t (pr0_refl t) t0 x0 H9 (Bind
+Void))))))) H7)) H6))) (\lambda (H5: (ex2 T (\lambda (t2: T).((eq T t t2) \to
+(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t t2)))).(ex2_ind T (\lambda
+(t2: T).((eq T t t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t t2))
+(or (\forall (t2: T).((pr0 (THead (Bind Void) t t0) t2) \to (eq T (THead
+(Bind Void) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind Void) t
+t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Void)
+t t0) t2)))) (\lambda (x0: T).(\lambda (H6: (((eq T t x0) \to (\forall (P:
+Prop).P)))).(\lambda (H7: (pr0 t x0)).(or_intror (\forall (t2: T).((pr0
+(THead (Bind Void) t t0) t2) \to (eq T (THead (Bind Void) t t0) t2))) (ex2 T
+(\lambda (t2: T).((eq T (THead (Bind Void) t t0) t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Void) t t0) t2))) (ex_intro2 T
+(\lambda (t2: T).((eq T (THead (Bind Void) t t0) t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Void) t t0) t2)) (THead (Bind
+Void) x0 t0) (\lambda (H8: (eq T (THead (Bind Void) t t0) (THead (Bind Void)
+x0 t0))).(\lambda (P: Prop).(let H9 \def (f_equal T T (\lambda (e: T).(match
+e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t | (TLRef _)
+\Rightarrow t | (THead _ t2 _) \Rightarrow t2])) (THead (Bind Void) t t0)
+(THead (Bind Void) x0 t0) H8) in (let H10 \def (eq_ind_r T x0 (\lambda (t2:
+T).(pr0 t t2)) H7 t H9) in (let H11 \def (eq_ind_r T x0 (\lambda (t2: T).((eq
+T t t2) \to (\forall (P0: Prop).P0))) H6 t H9) in (H11 (refl_equal T t)
+P)))))) (pr0_comp t x0 H7 t0 t0 (pr0_refl t0) (Bind Void))))))) H5)) H4)))
+(\lambda (H3: (eq T t0 (lift (S O) O x))).(let H4 \def (eq_ind T t0 (\lambda
+(t2: T).(or (\forall (t3: T).((pr0 t2 t3) \to (eq T t2 t3))) (ex2 T (\lambda
+(t3: T).((eq T t2 t3) \to (\forall (P: Prop).P))) (\lambda (t3: T).(pr0 t2
+t3))))) H0 (lift (S O) O x) H3) in (eq_ind_r T (lift (S O) O x) (\lambda (t2:
+T).(or (\forall (t3: T).((pr0 (THead (Bind Void) t t2) t3) \to (eq T (THead
+(Bind Void) t t2) t3))) (ex2 T (\lambda (t3: T).((eq T (THead (Bind Void) t
+t2) t3) \to (\forall (P: Prop).P))) (\lambda (t3: T).(pr0 (THead (Bind Void)
+t t2) t3))))) (or_intror (\forall (t2: T).((pr0 (THead (Bind Void) t (lift (S
+O) O x)) t2) \to (eq T (THead (Bind Void) t (lift (S O) O x)) t2))) (ex2 T
+(\lambda (t2: T).((eq T (THead (Bind Void) t (lift (S O) O x)) t2) \to
+(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Void) t (lift (S
+O) O x)) t2))) (ex_intro2 T (\lambda (t2: T).((eq T (THead (Bind Void) t
+(lift (S O) O x)) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0
+(THead (Bind Void) t (lift (S O) O x)) t2)) x (\lambda (H5: (eq T (THead
+(Bind Void) t (lift (S O) O x)) x)).(\lambda (P: Prop).(thead_x_lift_y_y
+(Bind Void) x t (S O) O H5 P))) (pr0_zeta Void not_void_abst x x (pr0_refl x)
+t))) t0 H3))) H2))) H1)))]) | (Flat f) \Rightarrow (match f in F return
+(\lambda (f0: F).(or (\forall (t2: T).((pr0 (THead (Flat f0) t t0) t2) \to
+(eq T (THead (Flat f0) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead
+(Flat f0) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead
+(Flat f0) t t0) t2))))) with [Appl \Rightarrow (let H_x \def (binder_dec t0)
+in (let H1 \def H_x in (or_ind (ex_3 B T T (\lambda (b: B).(\lambda (w:
+T).(\lambda (u: T).(eq T t0 (THead (Bind b) w u)))))) (\forall (b:
+B).(\forall (w: T).(\forall (u: T).((eq T t0 (THead (Bind b) w u)) \to
+(\forall (P: Prop).P))))) (or (\forall (t2: T).((pr0 (THead (Flat Appl) t t0)
+t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T
+(THead (Flat Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2:
+T).(pr0 (THead (Flat Appl) t t0) t2)))) (\lambda (H2: (ex_3 B T T (\lambda
+(b: B).(\lambda (w: T).(\lambda (u: T).(eq T t0 (THead (Bind b) w
+u))))))).(ex_3_ind B T T (\lambda (b: B).(\lambda (w: T).(\lambda (u: T).(eq
+T t0 (THead (Bind b) w u))))) (or (\forall (t2: T).((pr0 (THead (Flat Appl) t
+t0) t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq
+T (THead (Flat Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2:
+T).(pr0 (THead (Flat Appl) t t0) t2)))) (\lambda (x0: B).(\lambda (x1:
+T).(\lambda (x2: T).(\lambda (H3: (eq T t0 (THead (Bind x0) x1 x2))).(let H4
+\def (eq_ind T t0 (\lambda (t2: T).(or (\forall (t3: T).((pr0 t2 t3) \to (eq
+T t2 t3))) (ex2 T (\lambda (t3: T).((eq T t2 t3) \to (\forall (P: Prop).P)))
+(\lambda (t3: T).(pr0 t2 t3))))) H0 (THead (Bind x0) x1 x2) H3) in (eq_ind_r
+T (THead (Bind x0) x1 x2) (\lambda (t2: T).(or (\forall (t3: T).((pr0 (THead
+(Flat Appl) t t2) t3) \to (eq T (THead (Flat Appl) t t2) t3))) (ex2 T
+(\lambda (t3: T).((eq T (THead (Flat Appl) t t2) t3) \to (\forall (P:
+Prop).P))) (\lambda (t3: T).(pr0 (THead (Flat Appl) t t2) t3))))) ((match x0
+in B return (\lambda (b: B).((or (\forall (t2: T).((pr0 (THead (Bind b) x1
+x2) t2) \to (eq T (THead (Bind b) x1 x2) t2))) (ex2 T (\lambda (t2: T).((eq T
+(THead (Bind b) x1 x2) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0
+(THead (Bind b) x1 x2) t2)))) \to (or (\forall (t2: T).((pr0 (THead (Flat
+Appl) t (THead (Bind b) x1 x2)) t2) \to (eq T (THead (Flat Appl) t (THead
+(Bind b) x1 x2)) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t
+(THead (Bind b) x1 x2)) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0
+(THead (Flat Appl) t (THead (Bind b) x1 x2)) t2)))))) with [Abbr \Rightarrow
+(\lambda (_: (or (\forall (t2: T).((pr0 (THead (Bind Abbr) x1 x2) t2) \to (eq
+T (THead (Bind Abbr) x1 x2) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind
+Abbr) x1 x2) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead
+(Bind Abbr) x1 x2) t2))))).(or_intror (\forall (t2: T).((pr0 (THead (Flat
+Appl) t (THead (Bind Abbr) x1 x2)) t2) \to (eq T (THead (Flat Appl) t (THead
+(Bind Abbr) x1 x2)) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t
+(THead (Bind Abbr) x1 x2)) t2) \to (\forall (P: Prop).P))) (\lambda (t2:
+T).(pr0 (THead (Flat Appl) t (THead (Bind Abbr) x1 x2)) t2))) (ex_intro2 T
+(\lambda (t2: T).((eq T (THead (Flat Appl) t (THead (Bind Abbr) x1 x2)) t2)
+\to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t (THead
+(Bind Abbr) x1 x2)) t2)) (THead (Bind Abbr) x1 (THead (Flat Appl) (lift (S O)
+O t) x2)) (\lambda (H6: (eq T (THead (Flat Appl) t (THead (Bind Abbr) x1 x2))
+(THead (Bind Abbr) x1 (THead (Flat Appl) (lift (S O) O t) x2)))).(\lambda (P:
+Prop).(let H7 \def (eq_ind T (THead (Flat Appl) t (THead (Bind Abbr) x1 x2))
+(\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ t2) \Rightarrow
+(match t2 in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False
+| (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in K
+return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow True | (Flat _)
+\Rightarrow False])])])) I (THead (Bind Abbr) x1 (THead (Flat Appl) (lift (S
+O) O t) x2)) H6) in (False_ind P H7)))) (pr0_upsilon Abbr not_abbr_abst t t
+(pr0_refl t) x1 x1 (pr0_refl x1) x2 x2 (pr0_refl x2))))) | Abst \Rightarrow
+(\lambda (_: (or (\forall (t2: T).((pr0 (THead (Bind Abst) x1 x2) t2) \to (eq
+T (THead (Bind Abst) x1 x2) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind
+Abst) x1 x2) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead
+(Bind Abst) x1 x2) t2))))).(or_intror (\forall (t2: T).((pr0 (THead (Flat
+Appl) t (THead (Bind Abst) x1 x2)) t2) \to (eq T (THead (Flat Appl) t (THead
+(Bind Abst) x1 x2)) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t
+(THead (Bind Abst) x1 x2)) t2) \to (\forall (P: Prop).P))) (\lambda (t2:
+T).(pr0 (THead (Flat Appl) t (THead (Bind Abst) x1 x2)) t2))) (ex_intro2 T
+(\lambda (t2: T).((eq T (THead (Flat Appl) t (THead (Bind Abst) x1 x2)) t2)
+\to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t (THead
+(Bind Abst) x1 x2)) t2)) (THead (Bind Abbr) t x2) (\lambda (H6: (eq T (THead
+(Flat Appl) t (THead (Bind Abst) x1 x2)) (THead (Bind Abbr) t x2))).(\lambda
+(P: Prop).(let H7 \def (eq_ind T (THead (Flat Appl) t (THead (Bind Abst) x1
+x2)) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _ _)
+\Rightarrow (match k0 in K return (\lambda (_: K).Prop) with [(Bind _)
+\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind Abbr) t x2)
+H6) in (False_ind P H7)))) (pr0_beta x1 t t (pr0_refl t) x2 x2 (pr0_refl
+x2))))) | Void \Rightarrow (\lambda (_: (or (\forall (t2: T).((pr0 (THead
+(Bind Void) x1 x2) t2) \to (eq T (THead (Bind Void) x1 x2) t2))) (ex2 T
+(\lambda (t2: T).((eq T (THead (Bind Void) x1 x2) t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind Void) x1 x2) t2))))).(or_intror
+(\forall (t2: T).((pr0 (THead (Flat Appl) t (THead (Bind Void) x1 x2)) t2)
+\to (eq T (THead (Flat Appl) t (THead (Bind Void) x1 x2)) t2))) (ex2 T
+(\lambda (t2: T).((eq T (THead (Flat Appl) t (THead (Bind Void) x1 x2)) t2)
+\to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t (THead
+(Bind Void) x1 x2)) t2))) (ex_intro2 T (\lambda (t2: T).((eq T (THead (Flat
+Appl) t (THead (Bind Void) x1 x2)) t2) \to (\forall (P: Prop).P))) (\lambda
+(t2: T).(pr0 (THead (Flat Appl) t (THead (Bind Void) x1 x2)) t2)) (THead
+(Bind Void) x1 (THead (Flat Appl) (lift (S O) O t) x2)) (\lambda (H6: (eq T
+(THead (Flat Appl) t (THead (Bind Void) x1 x2)) (THead (Bind Void) x1 (THead
+(Flat Appl) (lift (S O) O t) x2)))).(\lambda (P: Prop).(let H7 \def (eq_ind T
+(THead (Flat Appl) t (THead (Bind Void) x1 x2)) (\lambda (ee: T).(match ee in
+T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead _ _ t2) \Rightarrow (match t2 in T return (\lambda
+(_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False
+| (THead k0 _ _) \Rightarrow (match k0 in K return (\lambda (_: K).Prop) with
+[(Bind _) \Rightarrow True | (Flat _) \Rightarrow False])])])) I (THead (Bind
+Void) x1 (THead (Flat Appl) (lift (S O) O t) x2)) H6) in (False_ind P H7))))
+(pr0_upsilon Void not_void_abst t t (pr0_refl t) x1 x1 (pr0_refl x1) x2 x2
+(pr0_refl x2)))))]) H4) t0 H3)))))) H2)) (\lambda (H2: ((\forall (b:
+B).(\forall (w: T).(\forall (u: T).((eq T t0 (THead (Bind b) w u)) \to
+(\forall (P: Prop).P))))))).(let H3 \def H in (or_ind (\forall (t2: T).((pr0
+t t2) \to (eq T t t2))) (ex2 T (\lambda (t2: T).((eq T t t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 t t2))) (or (\forall (t2: T).((pr0 (THead
+(Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T
+(\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2)))) (\lambda
+(H4: ((\forall (t2: T).((pr0 t t2) \to (eq T t t2))))).(let H5 \def H0 in
+(or_ind (\forall (t2: T).((pr0 t0 t2) \to (eq T t0 t2))) (ex2 T (\lambda (t2:
+T).((eq T t0 t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t0 t2)))
+(or (\forall (t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq T (THead
+(Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t
+t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl)
+t t0) t2)))) (\lambda (H6: ((\forall (t2: T).((pr0 t0 t2) \to (eq T t0
+t2))))).(or_introl (\forall (t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to
+(eq T (THead (Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead
+(Flat Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0
+(THead (Flat Appl) t t0) t2))) (\lambda (t2: T).(\lambda (H7: (pr0 (THead
+(Flat Appl) t t0) t2)).(or3_ind (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T t2 (THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(pr0 t u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t0 t3)))) (ex4_4 T T T
+T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t0
+(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2 t3)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr0 t u2))))) (\lambda
+(_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3))))))
+(ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T t0 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (v2: T).(\lambda (t3: T).(eq T
+t2 (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O u2) t3)))))))))
+(\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_:
+T).(\lambda (_: T).(pr0 t u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2)))))))
+(\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (t3: T).(pr0 z1 t3)))))))) (eq T (THead (Flat Appl) t t0) t2)
+(\lambda (H8: (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead
+(Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 t u2))) (\lambda
+(_: T).(\lambda (t3: T).(pr0 t0 t3))))).(ex3_2_ind T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 t u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t0
+t3))) (eq T (THead (Flat Appl) t t0) t2) (\lambda (x0: T).(\lambda (x1:
+T).(\lambda (H9: (eq T t2 (THead (Flat Appl) x0 x1))).(\lambda (H10: (pr0 t
+x0)).(\lambda (H11: (pr0 t0 x1)).(let H_y \def (H6 x1 H11) in (let H_y0 \def
+(H4 x0 H10) in (let H12 \def (eq_ind_r T x1 (\lambda (t3: T).(pr0 t0 t3)) H11
+t0 H_y) in (let H13 \def (eq_ind_r T x1 (\lambda (t3: T).(eq T t2 (THead
+(Flat Appl) x0 t3))) H9 t0 H_y) in (let H14 \def (eq_ind_r T x0 (\lambda (t3:
+T).(pr0 t t3)) H10 t H_y0) in (let H15 \def (eq_ind_r T x0 (\lambda (t3:
+T).(eq T t2 (THead (Flat Appl) t3 t0))) H13 t H_y0) in (eq_ind_r T (THead
+(Flat Appl) t t0) (\lambda (t3: T).(eq T (THead (Flat Appl) t t0) t3))
+(refl_equal T (THead (Flat Appl) t t0)) t2 H15)))))))))))) H8)) (\lambda (H8:
+(ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_:
+T).(eq T t0 (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2 t3))))))
+(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr0 t
+u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3:
+T).(pr0 z1 t3))))))).(ex4_4_ind T T T T (\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(eq T t0 (THead (Bind Abst) y1 z1))))))
+(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T t2
+(THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(pr0 t u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda
+(_: T).(\lambda (t3: T).(pr0 z1 t3))))) (eq T (THead (Flat Appl) t t0) t2)
+(\lambda (x0: T).(\lambda (x1: T).(\lambda (x2: T).(\lambda (x3: T).(\lambda
+(H9: (eq T t0 (THead (Bind Abst) x0 x1))).(\lambda (H10: (eq T t2 (THead
+(Bind Abbr) x2 x3))).(\lambda (_: (pr0 t x2)).(\lambda (_: (pr0 x1
+x3)).(eq_ind_r T (THead (Bind Abbr) x2 x3) (\lambda (t3: T).(eq T (THead
+(Flat Appl) t t0) t3)) (let H13 \def (eq_ind T t0 (\lambda (t3: T).(\forall
+(t4: T).((pr0 t3 t4) \to (eq T t3 t4)))) H6 (THead (Bind Abst) x0 x1) H9) in
+(let H14 \def (eq_ind T t0 (\lambda (t3: T).(\forall (b: B).(\forall (w:
+T).(\forall (u: T).((eq T t3 (THead (Bind b) w u)) \to (\forall (P:
+Prop).P)))))) H2 (THead (Bind Abst) x0 x1) H9) in (eq_ind_r T (THead (Bind
+Abst) x0 x1) (\lambda (t3: T).(eq T (THead (Flat Appl) t t3) (THead (Bind
+Abbr) x2 x3))) (H14 Abst x0 x1 (H13 (THead (Bind Abst) x0 x1) (pr0_refl
+(THead (Bind Abst) x0 x1))) (eq T (THead (Flat Appl) t (THead (Bind Abst) x0
+x1)) (THead (Bind Abbr) x2 x3))) t0 H9))) t2 H10))))))))) H8)) (\lambda (H8:
+(ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T t0 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (v2: T).(\lambda (t3: T).(eq T
+t2 (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O u2) t3)))))))))
+(\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_:
+T).(\lambda (_: T).(pr0 t u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2)))))))
+(\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (t3: T).(pr0 z1 t3))))))))).(ex6_6_ind B T T T T T (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t0 (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(u2: T).(\lambda (v2: T).(\lambda (t3: T).(eq T t2 (THead (Bind b) v2 (THead
+(Flat Appl) (lift (S O) O u2) t3))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0 t
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(t3: T).(pr0 z1 t3))))))) (eq T (THead (Flat Appl) t t0) t2) (\lambda (x0:
+B).(\lambda (x1: T).(\lambda (x2: T).(\lambda (x3: T).(\lambda (x4:
+T).(\lambda (x5: T).(\lambda (_: (not (eq B x0 Abst))).(\lambda (H10: (eq T
+t0 (THead (Bind x0) x1 x2))).(\lambda (H11: (eq T t2 (THead (Bind x0) x4
+(THead (Flat Appl) (lift (S O) O x3) x5)))).(\lambda (_: (pr0 t x3)).(\lambda
+(_: (pr0 x1 x4)).(\lambda (_: (pr0 x2 x5)).(eq_ind_r T (THead (Bind x0) x4
+(THead (Flat Appl) (lift (S O) O x3) x5)) (\lambda (t3: T).(eq T (THead (Flat
+Appl) t t0) t3)) (let H15 \def (eq_ind T t0 (\lambda (t3: T).(\forall (t4:
+T).((pr0 t3 t4) \to (eq T t3 t4)))) H6 (THead (Bind x0) x1 x2) H10) in (let
+H16 \def (eq_ind T t0 (\lambda (t3: T).(\forall (b: B).(\forall (w:
+T).(\forall (u: T).((eq T t3 (THead (Bind b) w u)) \to (\forall (P:
+Prop).P)))))) H2 (THead (Bind x0) x1 x2) H10) in (eq_ind_r T (THead (Bind x0)
+x1 x2) (\lambda (t3: T).(eq T (THead (Flat Appl) t t3) (THead (Bind x0) x4
+(THead (Flat Appl) (lift (S O) O x3) x5)))) (H16 x0 x1 x2 (H15 (THead (Bind
+x0) x1 x2) (pr0_refl (THead (Bind x0) x1 x2))) (eq T (THead (Flat Appl) t
+(THead (Bind x0) x1 x2)) (THead (Bind x0) x4 (THead (Flat Appl) (lift (S O) O
+x3) x5)))) t0 H10))) t2 H11))))))))))))) H8)) (pr0_gen_appl t t0 t2 H7))))))
+(\lambda (H6: (ex2 T (\lambda (t2: T).((eq T t0 t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 t0 t2)))).(ex2_ind T (\lambda (t2: T).((eq T
+t0 t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t0 t2)) (or (\forall
+(t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0)
+t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to
+(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2))))
+(\lambda (x: T).(\lambda (H7: (((eq T t0 x) \to (\forall (P:
+Prop).P)))).(\lambda (H8: (pr0 t0 x)).(or_intror (\forall (t2: T).((pr0
+(THead (Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T
+(\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2))) (ex_intro2 T
+(\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2)) (THead (Flat
+Appl) t x) (\lambda (H9: (eq T (THead (Flat Appl) t t0) (THead (Flat Appl) t
+x))).(\lambda (P: Prop).(let H10 \def (f_equal T T (\lambda (e: T).(match e
+in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0 | (TLRef _)
+\Rightarrow t0 | (THead _ _ t2) \Rightarrow t2])) (THead (Flat Appl) t t0)
+(THead (Flat Appl) t x) H9) in (let H11 \def (eq_ind_r T x (\lambda (t2:
+T).(pr0 t0 t2)) H8 t0 H10) in (let H12 \def (eq_ind_r T x (\lambda (t2:
+T).((eq T t0 t2) \to (\forall (P0: Prop).P0))) H7 t0 H10) in (H12 (refl_equal
+T t0) P)))))) (pr0_comp t t (pr0_refl t) t0 x H8 (Flat Appl))))))) H6)) H5)))
+(\lambda (H4: (ex2 T (\lambda (t2: T).((eq T t t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 t t2)))).(ex2_ind T (\lambda (t2: T).((eq T
+t t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t t2)) (or (\forall
+(t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0)
+t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to
+(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2))))
+(\lambda (x: T).(\lambda (H5: (((eq T t x) \to (\forall (P:
+Prop).P)))).(\lambda (H6: (pr0 t x)).(or_intror (\forall (t2: T).((pr0 (THead
+(Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T
+(\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2))) (ex_intro2 T
+(\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2)) (THead (Flat
+Appl) x t0) (\lambda (H7: (eq T (THead (Flat Appl) t t0) (THead (Flat Appl) x
+t0))).(\lambda (P: Prop).(let H8 \def (f_equal T T (\lambda (e: T).(match e
+in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t | (TLRef _)
+\Rightarrow t | (THead _ t2 _) \Rightarrow t2])) (THead (Flat Appl) t t0)
+(THead (Flat Appl) x t0) H7) in (let H9 \def (eq_ind_r T x (\lambda (t2:
+T).(pr0 t t2)) H6 t H8) in (let H10 \def (eq_ind_r T x (\lambda (t2: T).((eq
+T t t2) \to (\forall (P0: Prop).P0))) H5 t H8) in (H10 (refl_equal T t)
+P)))))) (pr0_comp t x H6 t0 t0 (pr0_refl t0) (Flat Appl))))))) H4)) H3)))
+H1))) | Cast \Rightarrow (or_intror (\forall (t2: T).((pr0 (THead (Flat Cast)
+t t0) t2) \to (eq T (THead (Flat Cast) t t0) t2))) (ex2 T (\lambda (t2:
+T).((eq T (THead (Flat Cast) t t0) t2) \to (\forall (P: Prop).P))) (\lambda
+(t2: T).(pr0 (THead (Flat Cast) t t0) t2))) (ex_intro2 T (\lambda (t2:
+T).((eq T (THead (Flat Cast) t t0) t2) \to (\forall (P: Prop).P))) (\lambda
+(t2: T).(pr0 (THead (Flat Cast) t t0) t2)) t0 (\lambda (H1: (eq T (THead
+(Flat Cast) t t0) t0)).(\lambda (P: Prop).(thead_x_y_y (Flat Cast) t t0 H1
+P))) (pr0_epsilon t0 t0 (pr0_refl t0) t)))])])))))) t1).
+
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/LambdaDelta/pr0/defs".
+
+include "subst0/defs.ma".
+
+inductive pr0: T \to (T \to Prop) \def
+| pr0_refl: \forall (t: T).(pr0 t t)
+| pr0_comp: \forall (u1: T).(\forall (u2: T).((pr0 u1 u2) \to (\forall (t1:
+T).(\forall (t2: T).((pr0 t1 t2) \to (\forall (k: K).(pr0 (THead k u1 t1)
+(THead k u2 t2))))))))
+| pr0_beta: \forall (u: T).(\forall (v1: T).(\forall (v2: T).((pr0 v1 v2) \to
+(\forall (t1: T).(\forall (t2: T).((pr0 t1 t2) \to (pr0 (THead (Flat Appl) v1
+(THead (Bind Abst) u t1)) (THead (Bind Abbr) v2 t2))))))))
+| pr0_upsilon: \forall (b: B).((not (eq B b Abst)) \to (\forall (v1:
+T).(\forall (v2: T).((pr0 v1 v2) \to (\forall (u1: T).(\forall (u2: T).((pr0
+u1 u2) \to (\forall (t1: T).(\forall (t2: T).((pr0 t1 t2) \to (pr0 (THead
+(Flat Appl) v1 (THead (Bind b) u1 t1)) (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t2)))))))))))))
+| pr0_delta: \forall (u1: T).(\forall (u2: T).((pr0 u1 u2) \to (\forall (t1:
+T).(\forall (t2: T).((pr0 t1 t2) \to (\forall (w: T).((subst0 O u2 t2 w) \to
+(pr0 (THead (Bind Abbr) u1 t1) (THead (Bind Abbr) u2 w)))))))))
+| pr0_zeta: \forall (b: B).((not (eq B b Abst)) \to (\forall (t1: T).(\forall
+(t2: T).((pr0 t1 t2) \to (\forall (u: T).(pr0 (THead (Bind b) u (lift (S O) O
+t1)) t2))))))
+| pr0_epsilon: \forall (t1: T).(\forall (t2: T).((pr0 t1 t2) \to (\forall (u:
+T).(pr0 (THead (Flat Cast) u t1) t2)))).
+
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/LambdaDelta/pr0/fwd".
+
+include "pr0/props.ma".
+
+theorem pr0_gen_sort:
+ \forall (x: T).(\forall (n: nat).((pr0 (TSort n) x) \to (eq T x (TSort n))))
+\def
+ \lambda (x: T).(\lambda (n: nat).(\lambda (H: (pr0 (TSort n) x)).(let H0
+\def (match H in pr0 return (\lambda (t: T).(\lambda (t0: T).(\lambda (_:
+(pr0 t t0)).((eq T t (TSort n)) \to ((eq T t0 x) \to (eq T x (TSort n)))))))
+with [(pr0_refl t) \Rightarrow (\lambda (H0: (eq T t (TSort n))).(\lambda
+(H1: (eq T t x)).(eq_ind T (TSort n) (\lambda (t0: T).((eq T t0 x) \to (eq T
+x (TSort n)))) (\lambda (H2: (eq T (TSort n) x)).(eq_ind T (TSort n) (\lambda
+(t0: T).(eq T t0 (TSort n))) (refl_equal T (TSort n)) x H2)) t (sym_eq T t
+(TSort n) H0) H1))) | (pr0_comp u1 u2 H0 t1 t2 H1 k) \Rightarrow (\lambda
+(H2: (eq T (THead k u1 t1) (TSort n))).(\lambda (H3: (eq T (THead k u2 t2)
+x)).((let H4 \def (eq_ind T (THead k u1 t1) (\lambda (e: T).(match e in T
+return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TSort n) H2) in
+(False_ind ((eq T (THead k u2 t2) x) \to ((pr0 u1 u2) \to ((pr0 t1 t2) \to
+(eq T x (TSort n))))) H4)) H3 H0 H1))) | (pr0_beta u v1 v2 H0 t1 t2 H1)
+\Rightarrow (\lambda (H2: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u
+t1)) (TSort n))).(\lambda (H3: (eq T (THead (Bind Abbr) v2 t2) x)).((let H4
+\def (eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u t1)) (\lambda (e:
+T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
+False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow True])) I
+(TSort n) H2) in (False_ind ((eq T (THead (Bind Abbr) v2 t2) x) \to ((pr0 v1
+v2) \to ((pr0 t1 t2) \to (eq T x (TSort n))))) H4)) H3 H0 H1))) |
+(pr0_upsilon b H0 v1 v2 H1 u1 u2 H2 t1 t2 H3) \Rightarrow (\lambda (H4: (eq T
+(THead (Flat Appl) v1 (THead (Bind b) u1 t1)) (TSort n))).(\lambda (H5: (eq T
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t2)) x)).((let H6
+\def (eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u1 t1)) (\lambda (e:
+T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
+False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow True])) I
+(TSort n) H4) in (False_ind ((eq T (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t2)) x) \to ((not (eq B b Abst)) \to ((pr0 v1 v2) \to ((pr0
+u1 u2) \to ((pr0 t1 t2) \to (eq T x (TSort n))))))) H6)) H5 H0 H1 H2 H3))) |
+(pr0_delta u1 u2 H0 t1 t2 H1 w H2) \Rightarrow (\lambda (H3: (eq T (THead
+(Bind Abbr) u1 t1) (TSort n))).(\lambda (H4: (eq T (THead (Bind Abbr) u2 w)
+x)).((let H5 \def (eq_ind T (THead (Bind Abbr) u1 t1) (\lambda (e: T).(match
+e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False |
+(TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TSort n)
+H3) in (False_ind ((eq T (THead (Bind Abbr) u2 w) x) \to ((pr0 u1 u2) \to
+((pr0 t1 t2) \to ((subst0 O u2 t2 w) \to (eq T x (TSort n)))))) H5)) H4 H0 H1
+H2))) | (pr0_zeta b H0 t1 t2 H1 u) \Rightarrow (\lambda (H2: (eq T (THead
+(Bind b) u (lift (S O) O t1)) (TSort n))).(\lambda (H3: (eq T t2 x)).((let H4
+\def (eq_ind T (THead (Bind b) u (lift (S O) O t1)) (\lambda (e: T).(match e
+in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef
+_) \Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TSort n) H2) in
+(False_ind ((eq T t2 x) \to ((not (eq B b Abst)) \to ((pr0 t1 t2) \to (eq T x
+(TSort n))))) H4)) H3 H0 H1))) | (pr0_epsilon t1 t2 H0 u) \Rightarrow
+(\lambda (H1: (eq T (THead (Flat Cast) u t1) (TSort n))).(\lambda (H2: (eq T
+t2 x)).((let H3 \def (eq_ind T (THead (Flat Cast) u t1) (\lambda (e:
+T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
+False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow True])) I
+(TSort n) H1) in (False_ind ((eq T t2 x) \to ((pr0 t1 t2) \to (eq T x (TSort
+n)))) H3)) H2 H0)))]) in (H0 (refl_equal T (TSort n)) (refl_equal T x))))).
+
+theorem pr0_gen_lref:
+ \forall (x: T).(\forall (n: nat).((pr0 (TLRef n) x) \to (eq T x (TLRef n))))
+\def
+ \lambda (x: T).(\lambda (n: nat).(\lambda (H: (pr0 (TLRef n) x)).(let H0
+\def (match H in pr0 return (\lambda (t: T).(\lambda (t0: T).(\lambda (_:
+(pr0 t t0)).((eq T t (TLRef n)) \to ((eq T t0 x) \to (eq T x (TLRef n)))))))
+with [(pr0_refl t) \Rightarrow (\lambda (H0: (eq T t (TLRef n))).(\lambda
+(H1: (eq T t x)).(eq_ind T (TLRef n) (\lambda (t0: T).((eq T t0 x) \to (eq T
+x (TLRef n)))) (\lambda (H2: (eq T (TLRef n) x)).(eq_ind T (TLRef n) (\lambda
+(t0: T).(eq T t0 (TLRef n))) (refl_equal T (TLRef n)) x H2)) t (sym_eq T t
+(TLRef n) H0) H1))) | (pr0_comp u1 u2 H0 t1 t2 H1 k) \Rightarrow (\lambda
+(H2: (eq T (THead k u1 t1) (TLRef n))).(\lambda (H3: (eq T (THead k u2 t2)
+x)).((let H4 \def (eq_ind T (THead k u1 t1) (\lambda (e: T).(match e in T
+return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TLRef n) H2) in
+(False_ind ((eq T (THead k u2 t2) x) \to ((pr0 u1 u2) \to ((pr0 t1 t2) \to
+(eq T x (TLRef n))))) H4)) H3 H0 H1))) | (pr0_beta u v1 v2 H0 t1 t2 H1)
+\Rightarrow (\lambda (H2: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u
+t1)) (TLRef n))).(\lambda (H3: (eq T (THead (Bind Abbr) v2 t2) x)).((let H4
+\def (eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u t1)) (\lambda (e:
+T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
+False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow True])) I
+(TLRef n) H2) in (False_ind ((eq T (THead (Bind Abbr) v2 t2) x) \to ((pr0 v1
+v2) \to ((pr0 t1 t2) \to (eq T x (TLRef n))))) H4)) H3 H0 H1))) |
+(pr0_upsilon b H0 v1 v2 H1 u1 u2 H2 t1 t2 H3) \Rightarrow (\lambda (H4: (eq T
+(THead (Flat Appl) v1 (THead (Bind b) u1 t1)) (TLRef n))).(\lambda (H5: (eq T
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t2)) x)).((let H6
+\def (eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u1 t1)) (\lambda (e:
+T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
+False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow True])) I
+(TLRef n) H4) in (False_ind ((eq T (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t2)) x) \to ((not (eq B b Abst)) \to ((pr0 v1 v2) \to ((pr0
+u1 u2) \to ((pr0 t1 t2) \to (eq T x (TLRef n))))))) H6)) H5 H0 H1 H2 H3))) |
+(pr0_delta u1 u2 H0 t1 t2 H1 w H2) \Rightarrow (\lambda (H3: (eq T (THead
+(Bind Abbr) u1 t1) (TLRef n))).(\lambda (H4: (eq T (THead (Bind Abbr) u2 w)
+x)).((let H5 \def (eq_ind T (THead (Bind Abbr) u1 t1) (\lambda (e: T).(match
+e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False |
+(TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TLRef n)
+H3) in (False_ind ((eq T (THead (Bind Abbr) u2 w) x) \to ((pr0 u1 u2) \to
+((pr0 t1 t2) \to ((subst0 O u2 t2 w) \to (eq T x (TLRef n)))))) H5)) H4 H0 H1
+H2))) | (pr0_zeta b H0 t1 t2 H1 u) \Rightarrow (\lambda (H2: (eq T (THead
+(Bind b) u (lift (S O) O t1)) (TLRef n))).(\lambda (H3: (eq T t2 x)).((let H4
+\def (eq_ind T (THead (Bind b) u (lift (S O) O t1)) (\lambda (e: T).(match e
+in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef
+_) \Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TLRef n) H2) in
+(False_ind ((eq T t2 x) \to ((not (eq B b Abst)) \to ((pr0 t1 t2) \to (eq T x
+(TLRef n))))) H4)) H3 H0 H1))) | (pr0_epsilon t1 t2 H0 u) \Rightarrow
+(\lambda (H1: (eq T (THead (Flat Cast) u t1) (TLRef n))).(\lambda (H2: (eq T
+t2 x)).((let H3 \def (eq_ind T (THead (Flat Cast) u t1) (\lambda (e:
+T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
+False | (TLRef _) \Rightarrow False | (THead _ _ _) \Rightarrow True])) I
+(TLRef n) H1) in (False_ind ((eq T t2 x) \to ((pr0 t1 t2) \to (eq T x (TLRef
+n)))) H3)) H2 H0)))]) in (H0 (refl_equal T (TLRef n)) (refl_equal T x))))).
+
+theorem pr0_gen_abst:
+ \forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr0 (THead (Bind Abst) u1
+t1) x) \to (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead (Bind
+Abst) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
+T).(\lambda (t2: T).(pr0 t1 t2)))))))
+\def
+ \lambda (u1: T).(\lambda (t1: T).(\lambda (x: T).(\lambda (H: (pr0 (THead
+(Bind Abst) u1 t1) x)).(let H0 \def (match H in pr0 return (\lambda (t:
+T).(\lambda (t0: T).(\lambda (_: (pr0 t t0)).((eq T t (THead (Bind Abst) u1
+t1)) \to ((eq T t0 x) \to (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T
+x (THead (Bind Abst) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2)))
+(\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2))))))))) with [(pr0_refl t)
+\Rightarrow (\lambda (H0: (eq T t (THead (Bind Abst) u1 t1))).(\lambda (H1:
+(eq T t x)).(eq_ind T (THead (Bind Abst) u1 t1) (\lambda (t0: T).((eq T t0 x)
+\to (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead (Bind Abst)
+u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
+T).(\lambda (t2: T).(pr0 t1 t2)))))) (\lambda (H2: (eq T (THead (Bind Abst)
+u1 t1) x)).(eq_ind T (THead (Bind Abst) u1 t1) (\lambda (t0: T).(ex3_2 T T
+(\lambda (u2: T).(\lambda (t2: T).(eq T t0 (THead (Bind Abst) u2 t2))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2:
+T).(pr0 t1 t2))))) (ex3_2_intro T T (\lambda (u2: T).(\lambda (t2: T).(eq T
+(THead (Bind Abst) u1 t1) (THead (Bind Abst) u2 t2)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1
+t2))) u1 t1 (refl_equal T (THead (Bind Abst) u1 t1)) (pr0_refl u1) (pr0_refl
+t1)) x H2)) t (sym_eq T t (THead (Bind Abst) u1 t1) H0) H1))) | (pr0_comp u0
+u2 H0 t0 t2 H1 k) \Rightarrow (\lambda (H2: (eq T (THead k u0 t0) (THead
+(Bind Abst) u1 t1))).(\lambda (H3: (eq T (THead k u2 t2) x)).((let H4 \def
+(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
+[(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t)
+\Rightarrow t])) (THead k u0 t0) (THead (Bind Abst) u1 t1) H2) in ((let H5
+\def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T)
+with [(TSort _) \Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t _)
+\Rightarrow t])) (THead k u0 t0) (THead (Bind Abst) u1 t1) H2) in ((let H6
+\def (f_equal T K (\lambda (e: T).(match e in T return (\lambda (_: T).K)
+with [(TSort _) \Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _)
+\Rightarrow k0])) (THead k u0 t0) (THead (Bind Abst) u1 t1) H2) in (eq_ind K
+(Bind Abst) (\lambda (k0: K).((eq T u0 u1) \to ((eq T t0 t1) \to ((eq T
+(THead k0 u2 t2) x) \to ((pr0 u0 u2) \to ((pr0 t0 t2) \to (ex3_2 T T (\lambda
+(u3: T).(\lambda (t3: T).(eq T x (THead (Bind Abst) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))))))))) (\lambda (H7: (eq T u0 u1)).(eq_ind T u1 (\lambda (t: T).((eq T
+t0 t1) \to ((eq T (THead (Bind Abst) u2 t2) x) \to ((pr0 t u2) \to ((pr0 t0
+t2) \to (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T x (THead (Bind
+Abst) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_:
+T).(\lambda (t3: T).(pr0 t1 t3))))))))) (\lambda (H8: (eq T t0 t1)).(eq_ind T
+t1 (\lambda (t: T).((eq T (THead (Bind Abst) u2 t2) x) \to ((pr0 u1 u2) \to
+((pr0 t t2) \to (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T x (THead
+(Bind Abst) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda
+(_: T).(\lambda (t3: T).(pr0 t1 t3)))))))) (\lambda (H9: (eq T (THead (Bind
+Abst) u2 t2) x)).(eq_ind T (THead (Bind Abst) u2 t2) (\lambda (t: T).((pr0 u1
+u2) \to ((pr0 t1 t2) \to (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t
+(THead (Bind Abst) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3)))
+(\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3))))))) (\lambda (H10: (pr0 u1
+u2)).(\lambda (H11: (pr0 t1 t2)).(ex3_2_intro T T (\lambda (u3: T).(\lambda
+(t3: T).(eq T (THead (Bind Abst) u2 t2) (THead (Bind Abst) u3 t3)))) (\lambda
+(u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0
+t1 t3))) u2 t2 (refl_equal T (THead (Bind Abst) u2 t2)) H10 H11))) x H9)) t0
+(sym_eq T t0 t1 H8))) u0 (sym_eq T u0 u1 H7))) k (sym_eq K k (Bind Abst)
+H6))) H5)) H4)) H3 H0 H1))) | (pr0_beta u v1 v2 H0 t0 t2 H1) \Rightarrow
+(\lambda (H2: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t0)) (THead
+(Bind Abst) u1 t1))).(\lambda (H3: (eq T (THead (Bind Abbr) v2 t2) x)).((let
+H4 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u t0)) (\lambda
+(e: T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
+False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K
+return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _)
+\Rightarrow True])])) I (THead (Bind Abst) u1 t1) H2) in (False_ind ((eq T
+(THead (Bind Abbr) v2 t2) x) \to ((pr0 v1 v2) \to ((pr0 t0 t2) \to (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abst) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3:
+T).(pr0 t1 t3))))))) H4)) H3 H0 H1))) | (pr0_upsilon b H0 v1 v2 H1 u0 u2 H2
+t0 t2 H3) \Rightarrow (\lambda (H4: (eq T (THead (Flat Appl) v1 (THead (Bind
+b) u0 t0)) (THead (Bind Abst) u1 t1))).(\lambda (H5: (eq T (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t2)) x)).((let H6 \def (eq_ind T (THead
+(Flat Appl) v1 (THead (Bind b) u0 t0)) (\lambda (e: T).(match e in T return
+(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda
+(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow
+True])])) I (THead (Bind Abst) u1 t1) H4) in (False_ind ((eq T (THead (Bind
+b) u2 (THead (Flat Appl) (lift (S O) O v2) t2)) x) \to ((not (eq B b Abst))
+\to ((pr0 v1 v2) \to ((pr0 u0 u2) \to ((pr0 t0 t2) \to (ex3_2 T T (\lambda
+(u3: T).(\lambda (t3: T).(eq T x (THead (Bind Abst) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3))))))))) H6)) H5 H0 H1 H2 H3))) | (pr0_delta u0 u2 H0 t0 t2 H1 w H2)
+\Rightarrow (\lambda (H3: (eq T (THead (Bind Abbr) u0 t0) (THead (Bind Abst)
+u1 t1))).(\lambda (H4: (eq T (THead (Bind Abbr) u2 w) x)).((let H5 \def
+(eq_ind T (THead (Bind Abbr) u0 t0) (\lambda (e: T).(match e in T return
+(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda
+(_: K).Prop) with [(Bind b) \Rightarrow (match b in B return (\lambda (_:
+B).Prop) with [Abbr \Rightarrow True | Abst \Rightarrow False | Void
+\Rightarrow False]) | (Flat _) \Rightarrow False])])) I (THead (Bind Abst) u1
+t1) H3) in (False_ind ((eq T (THead (Bind Abbr) u2 w) x) \to ((pr0 u0 u2) \to
+((pr0 t0 t2) \to ((subst0 O u2 t2 w) \to (ex3_2 T T (\lambda (u3: T).(\lambda
+(t3: T).(eq T x (THead (Bind Abst) u3 t3)))) (\lambda (u3: T).(\lambda (_:
+T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))))))) H5)) H4
+H0 H1 H2))) | (pr0_zeta b H0 t0 t2 H1 u) \Rightarrow (\lambda (H2: (eq T
+(THead (Bind b) u (lift (S O) O t0)) (THead (Bind Abst) u1 t1))).(\lambda
+(H3: (eq T t2 x)).((let H4 \def (f_equal T T (\lambda (e: T).(match e in T
+return (\lambda (_: T).T) with [(TSort _) \Rightarrow ((let rec lref_map (f:
+((nat \to nat))) (d: nat) (t: T) on t: T \def (match t with [(TSort n)
+\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with
+[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k u0 t3)
+\Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) t3))]) in
+lref_map) (\lambda (x0: nat).(plus x0 (S O))) O t0) | (TLRef _) \Rightarrow
+((let rec lref_map (f: ((nat \to nat))) (d: nat) (t: T) on t: T \def (match t
+with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match
+(blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) | (THead k u0
+t3) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) t3))]) in
+lref_map) (\lambda (x0: nat).(plus x0 (S O))) O t0) | (THead _ _ t)
+\Rightarrow t])) (THead (Bind b) u (lift (S O) O t0)) (THead (Bind Abst) u1
+t1) H2) in ((let H5 \def (f_equal T T (\lambda (e: T).(match e in T return
+(\lambda (_: T).T) with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u |
+(THead _ t _) \Rightarrow t])) (THead (Bind b) u (lift (S O) O t0)) (THead
+(Bind Abst) u1 t1) H2) in ((let H6 \def (f_equal T B (\lambda (e: T).(match e
+in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow b | (TLRef _)
+\Rightarrow b | (THead k _ _) \Rightarrow (match k in K return (\lambda (_:
+K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow b])])) (THead
+(Bind b) u (lift (S O) O t0)) (THead (Bind Abst) u1 t1) H2) in (eq_ind B Abst
+(\lambda (b0: B).((eq T u u1) \to ((eq T (lift (S O) O t0) t1) \to ((eq T t2
+x) \to ((not (eq B b0 Abst)) \to ((pr0 t0 t2) \to (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abst) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))))))))) (\lambda (H7: (eq T u u1)).(eq_ind T u1 (\lambda (_: T).((eq T
+(lift (S O) O t0) t1) \to ((eq T t2 x) \to ((not (eq B Abst Abst)) \to ((pr0
+t0 t2) \to (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind
+Abst) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr0 t1 t3))))))))) (\lambda (H8: (eq T (lift (S O) O t0)
+t1)).(eq_ind T (lift (S O) O t0) (\lambda (t: T).((eq T t2 x) \to ((not (eq B
+Abst Abst)) \to ((pr0 t0 t2) \to (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T x (THead (Bind Abst) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0
+u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t t3)))))))) (\lambda (H9: (eq
+T t2 x)).(eq_ind T x (\lambda (t: T).((not (eq B Abst Abst)) \to ((pr0 t0 t)
+\to (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abst)
+u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr0 (lift (S O) O t0) t3))))))) (\lambda (H10: (not (eq
+B Abst Abst))).(\lambda (_: (pr0 t0 x)).(False_ind (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abst) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 (lift
+(S O) O t0) t3)))) (H10 (refl_equal B Abst))))) t2 (sym_eq T t2 x H9))) t1
+H8)) u (sym_eq T u u1 H7))) b (sym_eq B b Abst H6))) H5)) H4)) H3 H0 H1))) |
+(pr0_epsilon t0 t2 H0 u) \Rightarrow (\lambda (H1: (eq T (THead (Flat Cast) u
+t0) (THead (Bind Abst) u1 t1))).(\lambda (H2: (eq T t2 x)).((let H3 \def
+(eq_ind T (THead (Flat Cast) u t0) (\lambda (e: T).(match e in T return
+(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda
+(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow
+True])])) I (THead (Bind Abst) u1 t1) H1) in (False_ind ((eq T t2 x) \to
+((pr0 t0 t2) \to (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead
+(Bind Abst) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
+(_: T).(\lambda (t3: T).(pr0 t1 t3)))))) H3)) H2 H0)))]) in (H0 (refl_equal T
+(THead (Bind Abst) u1 t1)) (refl_equal T x)))))).
+
+theorem pr0_gen_appl:
+ \forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr0 (THead (Flat Appl) u1
+t1) x) \to (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead
+(Flat Appl) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
+(_: T).(\lambda (t2: T).(pr0 t1 t2)))) (ex4_4 T T T T (\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
+Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(t2: T).(eq T x (THead (Bind Abbr) u2 t2)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (t2: T).(pr0 z1 t2)))))) (ex6_6 B T T T T T
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (v2: T).(\lambda (t2: T).(eq T x (THead (Bind b)
+v2 (THead (Flat Appl) (lift (S O) O u2) t2))))))))) (\lambda (_: B).(\lambda
+(_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0
+u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(t2: T).(pr0 z1 t2))))))))))))
+\def
+ \lambda (u1: T).(\lambda (t1: T).(\lambda (x: T).(\lambda (H: (pr0 (THead
+(Flat Appl) u1 t1) x)).(let H0 \def (match H in pr0 return (\lambda (t:
+T).(\lambda (t0: T).(\lambda (_: (pr0 t t0)).((eq T t (THead (Flat Appl) u1
+t1)) \to ((eq T t0 x) \to (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t2:
+T).(eq T x (THead (Flat Appl) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0
+u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (ex4_4 T T T T
+(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (t2: T).(eq T x (THead (Bind Abbr) u2 t2)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))))) (\lambda
+(_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t2: T).(pr0 z1 t2))))))
+(ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T t1 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (v2: T).(\lambda (t2: T).(eq T x
+(THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O u2) t2))))))))) (\lambda
+(_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_:
+T).(\lambda (_: T).(pr0 u1 u2))))))) (\lambda (_: B).(\lambda (y1:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1
+v2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (t2: T).(pr0 z1 t2)))))))))))))) with [(pr0_refl
+t) \Rightarrow (\lambda (H0: (eq T t (THead (Flat Appl) u1 t1))).(\lambda
+(H1: (eq T t x)).(eq_ind T (THead (Flat Appl) u1 t1) (\lambda (t0: T).((eq T
+t0 x) \to (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead
+(Flat Appl) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
+(_: T).(\lambda (t2: T).(pr0 t1 t2)))) (ex4_4 T T T T (\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
+Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(t2: T).(eq T x (THead (Bind Abbr) u2 t2)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (t2: T).(pr0 z1 t2)))))) (ex6_6 B T T T T T
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (v2: T).(\lambda (t2: T).(eq T x (THead (Bind b)
+v2 (THead (Flat Appl) (lift (S O) O u2) t2))))))))) (\lambda (_: B).(\lambda
+(_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0
+u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(t2: T).(pr0 z1 t2))))))))))) (\lambda (H2: (eq T (THead (Flat Appl) u1 t1)
+x)).(eq_ind T (THead (Flat Appl) u1 t1) (\lambda (t0: T).(or3 (ex3_2 T T
+(\lambda (u2: T).(\lambda (t2: T).(eq T t0 (THead (Flat Appl) u2 t2))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2:
+T).(pr0 t1 t2)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda
+(_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t2: T).(eq T t0 (THead (Bind
+Abbr) u2 t2)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t2: T).(pr0 z1 t2)))))) (ex6_6 B T T T T T (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(u2: T).(\lambda (v2: T).(\lambda (t2: T).(eq T t0 (THead (Bind b) v2 (THead
+(Flat Appl) (lift (S O) O u2) t2))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(t2: T).(pr0 z1 t2)))))))))) (or3_intro0 (ex3_2 T T (\lambda (u2: T).(\lambda
+(t2: T).(eq T (THead (Flat Appl) u1 t1) (THead (Flat Appl) u2 t2)))) (\lambda
+(u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0
+t1 t2)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t2: T).(eq T (THead (Flat Appl)
+u1 t1) (THead (Bind Abbr) u2 t2)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (t2: T).(pr0 z1 t2)))))) (ex6_6 B T T T T T
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (v2: T).(\lambda (t2: T).(eq T (THead (Flat
+Appl) u1 t1) (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O u2)
+t2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(\lambda (_: T).(pr0 u1 u2))))))) (\lambda (_: B).(\lambda
+(y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0
+y1 v2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (t2: T).(pr0 z1 t2)))))))) (ex3_2_intro T T
+(\lambda (u2: T).(\lambda (t2: T).(eq T (THead (Flat Appl) u1 t1) (THead
+(Flat Appl) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
+(_: T).(\lambda (t2: T).(pr0 t1 t2))) u1 t1 (refl_equal T (THead (Flat Appl)
+u1 t1)) (pr0_refl u1) (pr0_refl t1))) x H2)) t (sym_eq T t (THead (Flat Appl)
+u1 t1) H0) H1))) | (pr0_comp u0 u2 H0 t0 t2 H1 k) \Rightarrow (\lambda (H2:
+(eq T (THead k u0 t0) (THead (Flat Appl) u1 t1))).(\lambda (H3: (eq T (THead
+k u2 t2) x)).((let H4 \def (f_equal T T (\lambda (e: T).(match e in T return
+(\lambda (_: T).T) with [(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0
+| (THead _ _ t) \Rightarrow t])) (THead k u0 t0) (THead (Flat Appl) u1 t1)
+H2) in ((let H5 \def (f_equal T T (\lambda (e: T).(match e in T return
+(\lambda (_: T).T) with [(TSort _) \Rightarrow u0 | (TLRef _) \Rightarrow u0
+| (THead _ t _) \Rightarrow t])) (THead k u0 t0) (THead (Flat Appl) u1 t1)
+H2) in ((let H6 \def (f_equal T K (\lambda (e: T).(match e in T return
+(\lambda (_: T).K) with [(TSort _) \Rightarrow k | (TLRef _) \Rightarrow k |
+(THead k0 _ _) \Rightarrow k0])) (THead k u0 t0) (THead (Flat Appl) u1 t1)
+H2) in (eq_ind K (Flat Appl) (\lambda (k0: K).((eq T u0 u1) \to ((eq T t0 t1)
+\to ((eq T (THead k0 u2 t2) x) \to ((pr0 u0 u2) \to ((pr0 t0 t2) \to (or3
+(ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T x (THead (Flat Appl) u3
+t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_:
+T).(\lambda (t3: T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t3:
+T).(eq T x (THead (Bind Abbr) u3 t3)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))))) (\lambda (_: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u3: T).(\lambda (v2: T).(\lambda (t3: T).(eq T x (THead (Bind b)
+v2 (THead (Flat Appl) (lift (S O) O u3) t3))))))))) (\lambda (_: B).(\lambda
+(_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(\lambda (_: T).(pr0
+u1 u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(t3: T).(pr0 z1 t3))))))))))))))) (\lambda (H7: (eq T u0 u1)).(eq_ind T u1
+(\lambda (t: T).((eq T t0 t1) \to ((eq T (THead (Flat Appl) u2 t2) x) \to
+((pr0 t u2) \to ((pr0 t0 t2) \to (or3 (ex3_2 T T (\lambda (u3: T).(\lambda
+(t3: T).(eq T x (THead (Flat Appl) u3 t3)))) (\lambda (u3: T).(\lambda (_:
+T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (ex4_4 T T T
+T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u3 t3)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))))) (\lambda
+(_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3))))))
+(ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T t1 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (v2: T).(\lambda (t3: T).(eq T x
+(THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O u3) t3))))))))) (\lambda
+(_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_:
+T).(\lambda (_: T).(pr0 u1 u3))))))) (\lambda (_: B).(\lambda (y1:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1
+v2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))))))))))) (\lambda (H8:
+(eq T t0 t1)).(eq_ind T t1 (\lambda (t: T).((eq T (THead (Flat Appl) u2 t2)
+x) \to ((pr0 u1 u2) \to ((pr0 t t2) \to (or3 (ex3_2 T T (\lambda (u3:
+T).(\lambda (t3: T).(eq T x (THead (Flat Appl) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t3: T).(eq T x (THead (Bind
+Abbr) u3 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda
+(_: T).(pr0 u1 u3))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(u3: T).(\lambda (v2: T).(\lambda (t3: T).(eq T x (THead (Bind b) v2 (THead
+(Flat Appl) (lift (S O) O u3) t3))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1
+u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(t3: T).(pr0 z1 t3))))))))))))) (\lambda (H9: (eq T (THead (Flat Appl) u2 t2)
+x)).(eq_ind T (THead (Flat Appl) u2 t2) (\lambda (t: T).((pr0 u1 u2) \to
+((pr0 t1 t2) \to (or3 (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t
+(THead (Flat Appl) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3)))
+(\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
+Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda
+(t3: T).(eq T t (THead (Bind Abbr) u3 t3)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))))) (\lambda (_: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u3: T).(\lambda (v2: T).(\lambda (t3: T).(eq T t (THead (Bind b)
+v2 (THead (Flat Appl) (lift (S O) O u3) t3))))))))) (\lambda (_: B).(\lambda
+(_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(\lambda (_: T).(pr0
+u1 u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(t3: T).(pr0 z1 t3)))))))))))) (\lambda (H10: (pr0 u1 u2)).(\lambda (H11:
+(pr0 t1 t2)).(or3_intro0 (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T
+(THead (Flat Appl) u2 t2) (THead (Flat Appl) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Flat Appl)
+u2 t2) (THead (Bind Abbr) u3 t3)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))))) (\lambda (_: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u3: T).(\lambda (v2: T).(\lambda (t3: T).(eq T (THead (Flat
+Appl) u2 t2) (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O u3)
+t3))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u3:
+T).(\lambda (_: T).(\lambda (_: T).(pr0 u1 u3))))))) (\lambda (_: B).(\lambda
+(y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0
+y1 v2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))))) (ex3_2_intro T T
+(\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Flat Appl) u2 t2) (THead
+(Flat Appl) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda
+(_: T).(\lambda (t3: T).(pr0 t1 t3))) u2 t2 (refl_equal T (THead (Flat Appl)
+u2 t2)) H10 H11)))) x H9)) t0 (sym_eq T t0 t1 H8))) u0 (sym_eq T u0 u1 H7)))
+k (sym_eq K k (Flat Appl) H6))) H5)) H4)) H3 H0 H1))) | (pr0_beta u v1 v2 H0
+t0 t2 H1) \Rightarrow (\lambda (H2: (eq T (THead (Flat Appl) v1 (THead (Bind
+Abst) u t0)) (THead (Flat Appl) u1 t1))).(\lambda (H3: (eq T (THead (Bind
+Abbr) v2 t2) x)).((let H4 \def (f_equal T T (\lambda (e: T).(match e in T
+return (\lambda (_: T).T) with [(TSort _) \Rightarrow (THead (Bind Abst) u
+t0) | (TLRef _) \Rightarrow (THead (Bind Abst) u t0) | (THead _ _ t)
+\Rightarrow t])) (THead (Flat Appl) v1 (THead (Bind Abst) u t0)) (THead (Flat
+Appl) u1 t1) H2) in ((let H5 \def (f_equal T T (\lambda (e: T).(match e in T
+return (\lambda (_: T).T) with [(TSort _) \Rightarrow v1 | (TLRef _)
+\Rightarrow v1 | (THead _ t _) \Rightarrow t])) (THead (Flat Appl) v1 (THead
+(Bind Abst) u t0)) (THead (Flat Appl) u1 t1) H2) in (eq_ind T u1 (\lambda (t:
+T).((eq T (THead (Bind Abst) u t0) t1) \to ((eq T (THead (Bind Abbr) v2 t2)
+x) \to ((pr0 t v2) \to ((pr0 t0 t2) \to (or3 (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Flat Appl) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind
+Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(u2: T).(\lambda (v3: T).(\lambda (t3: T).(eq T x (THead (Bind b) v3 (THead
+(Flat Appl) (lift (S O) O u2) t3))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (v3: T).(\lambda (_: T).(pr0 y1 v3))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(t3: T).(pr0 z1 t3)))))))))))))) (\lambda (H6: (eq T (THead (Bind Abst) u t0)
+t1)).(eq_ind T (THead (Bind Abst) u t0) (\lambda (t: T).((eq T (THead (Bind
+Abbr) v2 t2) x) \to ((pr0 u1 v2) \to ((pr0 t0 t2) \to (or3 (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat Appl) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3:
+T).(pr0 t t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda
+(_: T).(\lambda (_: T).(eq T t (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind
+Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(u2: T).(\lambda (v3: T).(\lambda (t3: T).(eq T x (THead (Bind b) v3 (THead
+(Flat Appl) (lift (S O) O u2) t3))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (v3: T).(\lambda (_: T).(pr0 y1 v3))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(t3: T).(pr0 z1 t3))))))))))))) (\lambda (H7: (eq T (THead (Bind Abbr) v2 t2)
+x)).(eq_ind T (THead (Bind Abbr) v2 t2) (\lambda (t: T).((pr0 u1 v2) \to
+((pr0 t0 t2) \to (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t
+(THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2)))
+(\lambda (_: T).(\lambda (t3: T).(pr0 (THead (Bind Abst) u t0) t3)))) (ex4_4
+T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq
+T (THead (Bind Abst) u t0) (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T t (THead (Bind
+Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind
+Abst) u t0) (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (v3: T).(\lambda (t3: T).(eq T t
+(THead (Bind b) v3 (THead (Flat Appl) (lift (S O) O u2) t3))))))))) (\lambda
+(_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_:
+T).(\lambda (_: T).(pr0 u1 u2))))))) (\lambda (_: B).(\lambda (y1:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (v3: T).(\lambda (_: T).(pr0 y1
+v3))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))))))))) (\lambda (H8: (pr0
+u1 v2)).(\lambda (H9: (pr0 t0 t2)).(or3_intro1 (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T (THead (Bind Abbr) v2 t2) (THead (Flat Appl) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr0 (THead (Bind Abst) u t0) t3)))) (ex4_4 T T T T
+(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind Abst) u t0) (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind Abbr)
+v2 t2) (THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind Abst) u t0) (THead (Bind b) y1 z1)))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (v3: T).(\lambda
+(t3: T).(eq T (THead (Bind Abbr) v2 t2) (THead (Bind b) v3 (THead (Flat Appl)
+(lift (S O) O u2) t3))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1 u2)))))))
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(v3: T).(\lambda (_: T).(pr0 y1 v3))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1
+t3)))))))) (ex4_4_intro T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda
+(_: T).(\lambda (_: T).(eq T (THead (Bind Abst) u t0) (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3:
+T).(eq T (THead (Bind Abbr) v2 t2) (THead (Bind Abbr) u2 t3)))))) (\lambda
+(_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2)))))
+(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1
+t3))))) u t0 v2 t2 (refl_equal T (THead (Bind Abst) u t0)) (refl_equal T
+(THead (Bind Abbr) v2 t2)) H8 H9)))) x H7)) t1 H6)) v1 (sym_eq T v1 u1 H5)))
+H4)) H3 H0 H1))) | (pr0_upsilon b H0 v1 v2 H1 u0 u2 H2 t0 t2 H3) \Rightarrow
+(\lambda (H4: (eq T (THead (Flat Appl) v1 (THead (Bind b) u0 t0)) (THead
+(Flat Appl) u1 t1))).(\lambda (H5: (eq T (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t2)) x)).((let H6 \def (f_equal T T (\lambda (e:
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow (THead
+(Bind b) u0 t0) | (TLRef _) \Rightarrow (THead (Bind b) u0 t0) | (THead _ _
+t) \Rightarrow t])) (THead (Flat Appl) v1 (THead (Bind b) u0 t0)) (THead
+(Flat Appl) u1 t1) H4) in ((let H7 \def (f_equal T T (\lambda (e: T).(match e
+in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow v1 | (TLRef _)
+\Rightarrow v1 | (THead _ t _) \Rightarrow t])) (THead (Flat Appl) v1 (THead
+(Bind b) u0 t0)) (THead (Flat Appl) u1 t1) H4) in (eq_ind T u1 (\lambda (t:
+T).((eq T (THead (Bind b) u0 t0) t1) \to ((eq T (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t2)) x) \to ((not (eq B b Abst)) \to ((pr0 t
+v2) \to ((pr0 u0 u2) \to ((pr0 t0 t2) \to (or3 (ex3_2 T T (\lambda (u3:
+T).(\lambda (t3: T).(eq T x (THead (Flat Appl) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t3: T).(eq T x (THead (Bind
+Abbr) u3 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda
+(_: T).(pr0 u1 u3))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T (\lambda (b0:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b0 Abst)))))))) (\lambda (b0: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
+b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(u3: T).(\lambda (v3: T).(\lambda (t3: T).(eq T x (THead (Bind b0) v3 (THead
+(Flat Appl) (lift (S O) O u3) t3))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1
+u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (v3: T).(\lambda (_: T).(pr0 y1 v3))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(t3: T).(pr0 z1 t3)))))))))))))))) (\lambda (H8: (eq T (THead (Bind b) u0 t0)
+t1)).(eq_ind T (THead (Bind b) u0 t0) (\lambda (t: T).((eq T (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t2)) x) \to ((not (eq B b Abst)) \to
+((pr0 u1 v2) \to ((pr0 u0 u2) \to ((pr0 t0 t2) \to (or3 (ex3_2 T T (\lambda
+(u3: T).(\lambda (t3: T).(eq T x (THead (Flat Appl) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t
+t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(eq T t (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t3: T).(eq T x (THead (Bind
+Abbr) u3 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda
+(_: T).(pr0 u1 u3))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T (\lambda (b0:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b0 Abst)))))))) (\lambda (b0: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t (THead (Bind
+b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(u3: T).(\lambda (v3: T).(\lambda (t3: T).(eq T x (THead (Bind b0) v3 (THead
+(Flat Appl) (lift (S O) O u3) t3))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1
+u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (v3: T).(\lambda (_: T).(pr0 y1 v3))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(t3: T).(pr0 z1 t3))))))))))))))) (\lambda (H9: (eq T (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t2)) x)).(eq_ind T (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t2)) (\lambda (t: T).((not (eq B b
+Abst)) \to ((pr0 u1 v2) \to ((pr0 u0 u2) \to ((pr0 t0 t2) \to (or3 (ex3_2 T T
+(\lambda (u3: T).(\lambda (t3: T).(eq T t (THead (Flat Appl) u3 t3))))
+(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3:
+T).(pr0 (THead (Bind b) u0 t0) t3)))) (ex4_4 T T T T (\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind b) u0
+t0) (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda
+(u3: T).(\lambda (t3: T).(eq T t (THead (Bind Abbr) u3 t3)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))))) (\lambda
+(_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3))))))
+(ex6_6 B T T T T T (\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b0 Abst)))))))) (\lambda
+(b0: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(eq T (THead (Bind b) u0 t0) (THead (Bind b0) y1
+z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u3:
+T).(\lambda (v3: T).(\lambda (t3: T).(eq T t (THead (Bind b0) v3 (THead (Flat
+Appl) (lift (S O) O u3) t3))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (u3: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1 u3)))))))
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(v3: T).(\lambda (_: T).(pr0 y1 v3))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1
+t3)))))))))))))) (\lambda (H10: (not (eq B b Abst))).(\lambda (H11: (pr0 u1
+v2)).(\lambda (H12: (pr0 u0 u2)).(\lambda (H13: (pr0 t0 t2)).(or3_intro2
+(ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t2)) (THead (Flat Appl) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 (THead
+(Bind b) u0 t0) t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind b) u0 t0) (THead (Bind
+Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda
+(t3: T).(eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t2))
+(THead (Bind Abbr) u3 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))))) (\lambda (_: T).(\lambda (z1: T).(\lambda
+(_: T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T (\lambda (b0:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b0 Abst)))))))) (\lambda (b0: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind b)
+u0 t0) (THead (Bind b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (v3: T).(\lambda (t3: T).(eq T
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t2)) (THead (Bind b0)
+v3 (THead (Flat Appl) (lift (S O) O u3) t3))))))))) (\lambda (_: B).(\lambda
+(_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(\lambda (_: T).(pr0
+u1 u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (v3: T).(\lambda (_: T).(pr0 y1 v3))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(t3: T).(pr0 z1 t3)))))))) (ex6_6_intro B T T T T T (\lambda (b0: B).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not
+(eq B b0 Abst)))))))) (\lambda (b0: B).(\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind b) u0
+t0) (THead (Bind b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (u3: T).(\lambda (v3: T).(\lambda (t3: T).(eq T (THead (Bind
+b) u2 (THead (Flat Appl) (lift (S O) O v2) t2)) (THead (Bind b0) v3 (THead
+(Flat Appl) (lift (S O) O u3) t3))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1
+u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (v3: T).(\lambda (_: T).(pr0 y1 v3))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(t3: T).(pr0 z1 t3))))))) b u0 t0 v2 u2 t2 H10 (refl_equal T (THead (Bind b)
+u0 t0)) (refl_equal T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t2))) H11 H12 H13)))))) x H9)) t1 H8)) v1 (sym_eq T v1 u1 H7))) H6)) H5 H0 H1
+H2 H3))) | (pr0_delta u0 u2 H0 t0 t2 H1 w H2) \Rightarrow (\lambda (H3: (eq T
+(THead (Bind Abbr) u0 t0) (THead (Flat Appl) u1 t1))).(\lambda (H4: (eq T
+(THead (Bind Abbr) u2 w) x)).((let H5 \def (eq_ind T (THead (Bind Abbr) u0
+t0) (\lambda (e: T).(match e in T return (\lambda (_: T).Prop) with [(TSort
+_) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _)
+\Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
+\Rightarrow True | (Flat _) \Rightarrow False])])) I (THead (Flat Appl) u1
+t1) H3) in (False_ind ((eq T (THead (Bind Abbr) u2 w) x) \to ((pr0 u0 u2) \to
+((pr0 t0 t2) \to ((subst0 O u2 t2 w) \to (or3 (ex3_2 T T (\lambda (u3:
+T).(\lambda (t3: T).(eq T x (THead (Flat Appl) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t3: T).(eq T x (THead (Bind
+Abbr) u3 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda
+(_: T).(pr0 u1 u3))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(u3: T).(\lambda (v2: T).(\lambda (t3: T).(eq T x (THead (Bind b) v2 (THead
+(Flat Appl) (lift (S O) O u3) t3))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1
+u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(t3: T).(pr0 z1 t3))))))))))))) H5)) H4 H0 H1 H2))) | (pr0_zeta b H0 t0 t2 H1
+u) \Rightarrow (\lambda (H2: (eq T (THead (Bind b) u (lift (S O) O t0))
+(THead (Flat Appl) u1 t1))).(\lambda (H3: (eq T t2 x)).((let H4 \def (eq_ind
+T (THead (Bind b) u (lift (S O) O t0)) (\lambda (e: T).(match e in T return
+(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda
+(_: K).Prop) with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow
+False])])) I (THead (Flat Appl) u1 t1) H2) in (False_ind ((eq T t2 x) \to
+((not (eq B b Abst)) \to ((pr0 t0 t2) \to (or3 (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Flat Appl) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind
+Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T (\lambda (b0:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b0 Abst)))))))) (\lambda (b0: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
+b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(u2: T).(\lambda (v2: T).(\lambda (t3: T).(eq T x (THead (Bind b0) v2 (THead
+(Flat Appl) (lift (S O) O u2) t3))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(t3: T).(pr0 z1 t3)))))))))))) H4)) H3 H0 H1))) | (pr0_epsilon t0 t2 H0 u)
+\Rightarrow (\lambda (H1: (eq T (THead (Flat Cast) u t0) (THead (Flat Appl)
+u1 t1))).(\lambda (H2: (eq T t2 x)).((let H3 \def (eq_ind T (THead (Flat
+Cast) u t0) (\lambda (e: T).(match e in T return (\lambda (_: T).Prop) with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _)
+\Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
+\Rightarrow False | (Flat f) \Rightarrow (match f in F return (\lambda (_:
+F).Prop) with [Appl \Rightarrow False | Cast \Rightarrow True])])])) I (THead
+(Flat Appl) u1 t1) H1) in (False_ind ((eq T t2 x) \to ((pr0 t0 t2) \to (or3
+(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat Appl) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr0 t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3:
+T).(eq T x (THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (v2: T).(\lambda (t3: T).(eq T x (THead (Bind b)
+v2 (THead (Flat Appl) (lift (S O) O u2) t3))))))))) (\lambda (_: B).(\lambda
+(_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0
+u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(t3: T).(pr0 z1 t3))))))))))) H3)) H2 H0)))]) in (H0 (refl_equal T (THead
+(Flat Appl) u1 t1)) (refl_equal T x)))))).
+
+theorem pr0_gen_cast:
+ \forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr0 (THead (Flat Cast) u1
+t1) x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead
+(Flat Cast) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
+(_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 x)))))
+\def
+ \lambda (u1: T).(\lambda (t1: T).(\lambda (x: T).(\lambda (H: (pr0 (THead
+(Flat Cast) u1 t1) x)).(let H0 \def (match H in pr0 return (\lambda (t:
+T).(\lambda (t0: T).(\lambda (_: (pr0 t t0)).((eq T t (THead (Flat Cast) u1
+t1)) \to ((eq T t0 x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2:
+T).(eq T x (THead (Flat Cast) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0
+u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 x)))))))
+with [(pr0_refl t) \Rightarrow (\lambda (H0: (eq T t (THead (Flat Cast) u1
+t1))).(\lambda (H1: (eq T t x)).(eq_ind T (THead (Flat Cast) u1 t1) (\lambda
+(t0: T).((eq T t0 x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq
+T x (THead (Flat Cast) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1
+u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 x)))) (\lambda
+(H2: (eq T (THead (Flat Cast) u1 t1) x)).(eq_ind T (THead (Flat Cast) u1 t1)
+(\lambda (t0: T).(or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T t0
+(THead (Flat Cast) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2)))
+(\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 t0))) (or_introl
+(ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T (THead (Flat Cast) u1 t1)
+(THead (Flat Cast) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2)))
+(\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 (THead (Flat Cast) u1
+t1)) (ex3_2_intro T T (\lambda (u2: T).(\lambda (t2: T).(eq T (THead (Flat
+Cast) u1 t1) (THead (Flat Cast) u2 t2)))) (\lambda (u2: T).(\lambda (_:
+T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2))) u1 t1
+(refl_equal T (THead (Flat Cast) u1 t1)) (pr0_refl u1) (pr0_refl t1))) x H2))
+t (sym_eq T t (THead (Flat Cast) u1 t1) H0) H1))) | (pr0_comp u0 u2 H0 t0 t2
+H1 k) \Rightarrow (\lambda (H2: (eq T (THead k u0 t0) (THead (Flat Cast) u1
+t1))).(\lambda (H3: (eq T (THead k u2 t2) x)).((let H4 \def (f_equal T T
+(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t) \Rightarrow t]))
+(THead k u0 t0) (THead (Flat Cast) u1 t1) H2) in ((let H5 \def (f_equal T T
+(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t _) \Rightarrow t]))
+(THead k u0 t0) (THead (Flat Cast) u1 t1) H2) in ((let H6 \def (f_equal T K
+(\lambda (e: T).(match e in T return (\lambda (_: T).K) with [(TSort _)
+\Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _) \Rightarrow k0]))
+(THead k u0 t0) (THead (Flat Cast) u1 t1) H2) in (eq_ind K (Flat Cast)
+(\lambda (k0: K).((eq T u0 u1) \to ((eq T t0 t1) \to ((eq T (THead k0 u2 t2)
+x) \to ((pr0 u0 u2) \to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u3:
+T).(\lambda (t3: T).(eq T x (THead (Flat Cast) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 x)))))))) (\lambda (H7: (eq T u0 u1)).(eq_ind T u1 (\lambda
+(t: T).((eq T t0 t1) \to ((eq T (THead (Flat Cast) u2 t2) x) \to ((pr0 t u2)
+\to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T x
+(THead (Flat Cast) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3)))
+(\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 x))))))) (\lambda
+(H8: (eq T t0 t1)).(eq_ind T t1 (\lambda (t: T).((eq T (THead (Flat Cast) u2
+t2) x) \to ((pr0 u1 u2) \to ((pr0 t t2) \to (or (ex3_2 T T (\lambda (u3:
+T).(\lambda (t3: T).(eq T x (THead (Flat Cast) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 x)))))) (\lambda (H9: (eq T (THead (Flat Cast) u2 t2)
+x)).(eq_ind T (THead (Flat Cast) u2 t2) (\lambda (t: T).((pr0 u1 u2) \to
+((pr0 t1 t2) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t
+(THead (Flat Cast) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3)))
+(\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 t))))) (\lambda (H10:
+(pr0 u1 u2)).(\lambda (H11: (pr0 t1 t2)).(or_introl (ex3_2 T T (\lambda (u3:
+T).(\lambda (t3: T).(eq T (THead (Flat Cast) u2 t2) (THead (Flat Cast) u3
+t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_:
+T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (THead (Flat Cast) u2 t2))
+(ex3_2_intro T T (\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Flat Cast)
+u2 t2) (THead (Flat Cast) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1
+u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3))) u2 t2 (refl_equal T
+(THead (Flat Cast) u2 t2)) H10 H11)))) x H9)) t0 (sym_eq T t0 t1 H8))) u0
+(sym_eq T u0 u1 H7))) k (sym_eq K k (Flat Cast) H6))) H5)) H4)) H3 H0 H1))) |
+(pr0_beta u v1 v2 H0 t0 t2 H1) \Rightarrow (\lambda (H2: (eq T (THead (Flat
+Appl) v1 (THead (Bind Abst) u t0)) (THead (Flat Cast) u1 t1))).(\lambda (H3:
+(eq T (THead (Bind Abbr) v2 t2) x)).((let H4 \def (eq_ind T (THead (Flat
+Appl) v1 (THead (Bind Abst) u t0)) (\lambda (e: T).(match e in T return
+(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda
+(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat f) \Rightarrow (match f
+in F return (\lambda (_: F).Prop) with [Appl \Rightarrow True | Cast
+\Rightarrow False])])])) I (THead (Flat Cast) u1 t1) H2) in (False_ind ((eq T
+(THead (Bind Abbr) v2 t2) x) \to ((pr0 v1 v2) \to ((pr0 t0 t2) \to (or (ex3_2
+T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat Cast) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3:
+T).(pr0 t1 t3)))) (pr0 t1 x))))) H4)) H3 H0 H1))) | (pr0_upsilon b H0 v1 v2
+H1 u0 u2 H2 t0 t2 H3) \Rightarrow (\lambda (H4: (eq T (THead (Flat Appl) v1
+(THead (Bind b) u0 t0)) (THead (Flat Cast) u1 t1))).(\lambda (H5: (eq T
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t2)) x)).((let H6
+\def (eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u0 t0)) (\lambda (e:
+T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
+False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K
+return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat f)
+\Rightarrow (match f in F return (\lambda (_: F).Prop) with [Appl \Rightarrow
+True | Cast \Rightarrow False])])])) I (THead (Flat Cast) u1 t1) H4) in
+(False_ind ((eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t2)) x) \to ((not (eq B b Abst)) \to ((pr0 v1 v2) \to ((pr0 u0 u2) \to ((pr0
+t0 t2) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T x (THead
+(Flat Cast) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda
+(_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 x))))))) H6)) H5 H0 H1 H2
+H3))) | (pr0_delta u0 u2 H0 t0 t2 H1 w H2) \Rightarrow (\lambda (H3: (eq T
+(THead (Bind Abbr) u0 t0) (THead (Flat Cast) u1 t1))).(\lambda (H4: (eq T
+(THead (Bind Abbr) u2 w) x)).((let H5 \def (eq_ind T (THead (Bind Abbr) u0
+t0) (\lambda (e: T).(match e in T return (\lambda (_: T).Prop) with [(TSort
+_) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _)
+\Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
+\Rightarrow True | (Flat _) \Rightarrow False])])) I (THead (Flat Cast) u1
+t1) H3) in (False_ind ((eq T (THead (Bind Abbr) u2 w) x) \to ((pr0 u0 u2) \to
+((pr0 t0 t2) \to ((subst0 O u2 t2 w) \to (or (ex3_2 T T (\lambda (u3:
+T).(\lambda (t3: T).(eq T x (THead (Flat Cast) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 x)))))) H5)) H4 H0 H1 H2))) | (pr0_zeta b H0 t0 t2 H1 u)
+\Rightarrow (\lambda (H2: (eq T (THead (Bind b) u (lift (S O) O t0)) (THead
+(Flat Cast) u1 t1))).(\lambda (H3: (eq T t2 x)).((let H4 \def (eq_ind T
+(THead (Bind b) u (lift (S O) O t0)) (\lambda (e: T).(match e in T return
+(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda
+(_: K).Prop) with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow
+False])])) I (THead (Flat Cast) u1 t1) H2) in (False_ind ((eq T t2 x) \to
+((not (eq B b Abst)) \to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Flat Cast) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 x))))) H4)) H3 H0 H1))) | (pr0_epsilon t0 t2 H0 u) \Rightarrow
+(\lambda (H1: (eq T (THead (Flat Cast) u t0) (THead (Flat Cast) u1
+t1))).(\lambda (H2: (eq T t2 x)).((let H3 \def (f_equal T T (\lambda (e:
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0 |
+(TLRef _) \Rightarrow t0 | (THead _ _ t) \Rightarrow t])) (THead (Flat Cast)
+u t0) (THead (Flat Cast) u1 t1) H1) in ((let H4 \def (f_equal T T (\lambda
+(e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u
+| (TLRef _) \Rightarrow u | (THead _ t _) \Rightarrow t])) (THead (Flat Cast)
+u t0) (THead (Flat Cast) u1 t1) H1) in (eq_ind T u1 (\lambda (_: T).((eq T t0
+t1) \to ((eq T t2 x) \to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Flat Cast) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 x)))))) (\lambda (H5: (eq T t0 t1)).(eq_ind T t1 (\lambda (t:
+T).((eq T t2 x) \to ((pr0 t t2) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda
+(t3: T).(eq T x (THead (Flat Cast) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1
+x))))) (\lambda (H6: (eq T t2 x)).(eq_ind T x (\lambda (t: T).((pr0 t1 t) \to
+(or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat Cast)
+u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 x)))) (\lambda (H7: (pr0 t1
+x)).(or_intror (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead
+(Flat Cast) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
+(_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 x) H7)) t2 (sym_eq T t2 x
+H6))) t0 (sym_eq T t0 t1 H5))) u (sym_eq T u u1 H4))) H3)) H2 H0)))]) in (H0
+(refl_equal T (THead (Flat Cast) u1 t1)) (refl_equal T x)))))).
+
+theorem pr0_gen_abbr:
+ \forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr0 (THead (Bind Abbr) u1
+t1) x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead
+(Bind Abbr) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
+(u2: T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T (\lambda (y: T).(pr0 t1 y))
+(\lambda (y: T).(subst0 O u2 y t2))))))) (pr0 t1 (lift (S O) O x))))))
+\def
+ \lambda (u1: T).(\lambda (t1: T).(\lambda (x: T).(\lambda (H: (pr0 (THead
+(Bind Abbr) u1 t1) x)).(let H0 \def (match H in pr0 return (\lambda (t:
+T).(\lambda (t0: T).(\lambda (_: (pr0 t t0)).((eq T t (THead (Bind Abbr) u1
+t1)) \to ((eq T t0 x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2:
+T).(eq T x (THead (Bind Abbr) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0
+u1 u2))) (\lambda (u2: T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T (\lambda
+(y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O u2 y t2))))))) (pr0 t1 (lift (S
+O) O x)))))))) with [(pr0_refl t) \Rightarrow (\lambda (H0: (eq T t (THead
+(Bind Abbr) u1 t1))).(\lambda (H1: (eq T t x)).(eq_ind T (THead (Bind Abbr)
+u1 t1) (\lambda (t0: T).((eq T t0 x) \to (or (ex3_2 T T (\lambda (u2:
+T).(\lambda (t2: T).(eq T x (THead (Bind Abbr) u2 t2)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t2: T).(or (pr0
+t1 t2) (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O u2 y
+t2))))))) (pr0 t1 (lift (S O) O x))))) (\lambda (H2: (eq T (THead (Bind Abbr)
+u1 t1) x)).(eq_ind T (THead (Bind Abbr) u1 t1) (\lambda (t0: T).(or (ex3_2 T
+T (\lambda (u2: T).(\lambda (t2: T).(eq T t0 (THead (Bind Abbr) u2 t2))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t2:
+T).(or (pr0 t1 t2) (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0
+O u2 y t2))))))) (pr0 t1 (lift (S O) O t0)))) (or_introl (ex3_2 T T (\lambda
+(u2: T).(\lambda (t2: T).(eq T (THead (Bind Abbr) u1 t1) (THead (Bind Abbr)
+u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2:
+T).(\lambda (t2: T).(or (pr0 t1 t2) (ex2 T (\lambda (y: T).(pr0 t1 y))
+(\lambda (y: T).(subst0 O u2 y t2))))))) (pr0 t1 (lift (S O) O (THead (Bind
+Abbr) u1 t1))) (ex3_2_intro T T (\lambda (u2: T).(\lambda (t2: T).(eq T
+(THead (Bind Abbr) u1 t1) (THead (Bind Abbr) u2 t2)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t2: T).(or (pr0
+t1 t2) (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O u2 y
+t2)))))) u1 t1 (refl_equal T (THead (Bind Abbr) u1 t1)) (pr0_refl u1)
+(or_introl (pr0 t1 t1) (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda (y:
+T).(subst0 O u1 y t1))) (pr0_refl t1)))) x H2)) t (sym_eq T t (THead (Bind
+Abbr) u1 t1) H0) H1))) | (pr0_comp u0 u2 H0 t0 t2 H1 k) \Rightarrow (\lambda
+(H2: (eq T (THead k u0 t0) (THead (Bind Abbr) u1 t1))).(\lambda (H3: (eq T
+(THead k u2 t2) x)).((let H4 \def (f_equal T T (\lambda (e: T).(match e in T
+return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0 | (TLRef _)
+\Rightarrow t0 | (THead _ _ t) \Rightarrow t])) (THead k u0 t0) (THead (Bind
+Abbr) u1 t1) H2) in ((let H5 \def (f_equal T T (\lambda (e: T).(match e in T
+return (\lambda (_: T).T) with [(TSort _) \Rightarrow u0 | (TLRef _)
+\Rightarrow u0 | (THead _ t _) \Rightarrow t])) (THead k u0 t0) (THead (Bind
+Abbr) u1 t1) H2) in ((let H6 \def (f_equal T K (\lambda (e: T).(match e in T
+return (\lambda (_: T).K) with [(TSort _) \Rightarrow k | (TLRef _)
+\Rightarrow k | (THead k0 _ _) \Rightarrow k0])) (THead k u0 t0) (THead (Bind
+Abbr) u1 t1) H2) in (eq_ind K (Bind Abbr) (\lambda (k0: K).((eq T u0 u1) \to
+((eq T t0 t1) \to ((eq T (THead k0 u2 t2) x) \to ((pr0 u0 u2) \to ((pr0 t0
+t2) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T x (THead (Bind
+Abbr) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3:
+T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y: T).(pr0 t1 y))
+(\lambda (y: T).(subst0 O u3 y t3))))))) (pr0 t1 (lift (S O) O x)))))))))
+(\lambda (H7: (eq T u0 u1)).(eq_ind T u1 (\lambda (t: T).((eq T t0 t1) \to
+((eq T (THead (Bind Abbr) u2 t2) x) \to ((pr0 t u2) \to ((pr0 t0 t2) \to (or
+(ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u3
+t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3:
+T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y: T).(pr0 t1 y))
+(\lambda (y: T).(subst0 O u3 y t3))))))) (pr0 t1 (lift (S O) O x))))))))
+(\lambda (H8: (eq T t0 t1)).(eq_ind T t1 (\lambda (t: T).((eq T (THead (Bind
+Abbr) u2 t2) x) \to ((pr0 u1 u2) \to ((pr0 t t2) \to (or (ex3_2 T T (\lambda
+(u3: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t3: T).(or (pr0
+t1 t3) (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O u3 y
+t3))))))) (pr0 t1 (lift (S O) O x))))))) (\lambda (H9: (eq T (THead (Bind
+Abbr) u2 t2) x)).(eq_ind T (THead (Bind Abbr) u2 t2) (\lambda (t: T).((pr0 u1
+u2) \to ((pr0 t1 t2) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq
+T t (THead (Bind Abbr) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1
+u3))) (\lambda (u3: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y:
+T).(pr0 t1 y)) (\lambda (y: T).(subst0 O u3 y t3))))))) (pr0 t1 (lift (S O) O
+t)))))) (\lambda (H10: (pr0 u1 u2)).(\lambda (H11: (pr0 t1 t2)).(or_introl
+(ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Bind Abbr) u2 t2)
+(THead (Bind Abbr) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3)))
+(\lambda (u3: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y: T).(pr0
+t1 y)) (\lambda (y: T).(subst0 O u3 y t3))))))) (pr0 t1 (lift (S O) O (THead
+(Bind Abbr) u2 t2))) (ex3_2_intro T T (\lambda (u3: T).(\lambda (t3: T).(eq T
+(THead (Bind Abbr) u2 t2) (THead (Bind Abbr) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t3: T).(or (pr0
+t1 t3) (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O u3 y
+t3)))))) u2 t2 (refl_equal T (THead (Bind Abbr) u2 t2)) H10 (or_introl (pr0
+t1 t2) (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O u2 y
+t2))) H11))))) x H9)) t0 (sym_eq T t0 t1 H8))) u0 (sym_eq T u0 u1 H7))) k
+(sym_eq K k (Bind Abbr) H6))) H5)) H4)) H3 H0 H1))) | (pr0_beta u v1 v2 H0 t0
+t2 H1) \Rightarrow (\lambda (H2: (eq T (THead (Flat Appl) v1 (THead (Bind
+Abst) u t0)) (THead (Bind Abbr) u1 t1))).(\lambda (H3: (eq T (THead (Bind
+Abbr) v2 t2) x)).((let H4 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind
+Abst) u t0)) (\lambda (e: T).(match e in T return (\lambda (_: T).Prop) with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _)
+\Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
+\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind Abbr) u1
+t1) H2) in (False_ind ((eq T (THead (Bind Abbr) v2 t2) x) \to ((pr0 v1 v2)
+\to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x
+(THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2)))
+(\lambda (u2: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y: T).(pr0
+t1 y)) (\lambda (y: T).(subst0 O u2 y t3))))))) (pr0 t1 (lift (S O) O x))))))
+H4)) H3 H0 H1))) | (pr0_upsilon b H0 v1 v2 H1 u0 u2 H2 t0 t2 H3) \Rightarrow
+(\lambda (H4: (eq T (THead (Flat Appl) v1 (THead (Bind b) u0 t0)) (THead
+(Bind Abbr) u1 t1))).(\lambda (H5: (eq T (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t2)) x)).((let H6 \def (eq_ind T (THead (Flat Appl)
+v1 (THead (Bind b) u0 t0)) (\lambda (e: T).(match e in T return (\lambda (_:
+T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False |
+(THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).Prop) with
+[(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind
+Abbr) u1 t1) H4) in (False_ind ((eq T (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t2)) x) \to ((not (eq B b Abst)) \to ((pr0 v1 v2) \to ((pr0
+u0 u2) \to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3:
+T).(eq T x (THead (Bind Abbr) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0
+u1 u3))) (\lambda (u3: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda
+(y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O u3 y t3))))))) (pr0 t1 (lift (S
+O) O x)))))))) H6)) H5 H0 H1 H2 H3))) | (pr0_delta u0 u2 H0 t0 t2 H1 w H2)
+\Rightarrow (\lambda (H3: (eq T (THead (Bind Abbr) u0 t0) (THead (Bind Abbr)
+u1 t1))).(\lambda (H4: (eq T (THead (Bind Abbr) u2 w) x)).((let H5 \def
+(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
+[(TSort _) \Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t)
+\Rightarrow t])) (THead (Bind Abbr) u0 t0) (THead (Bind Abbr) u1 t1) H3) in
+((let H6 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_:
+T).T) with [(TSort _) \Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t
+_) \Rightarrow t])) (THead (Bind Abbr) u0 t0) (THead (Bind Abbr) u1 t1) H3)
+in (eq_ind T u1 (\lambda (t: T).((eq T t0 t1) \to ((eq T (THead (Bind Abbr)
+u2 w) x) \to ((pr0 t u2) \to ((pr0 t0 t2) \to ((subst0 O u2 t2 w) \to (or
+(ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u3
+t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3:
+T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y: T).(pr0 t1 y))
+(\lambda (y: T).(subst0 O u3 y t3))))))) (pr0 t1 (lift (S O) O x)))))))))
+(\lambda (H7: (eq T t0 t1)).(eq_ind T t1 (\lambda (t: T).((eq T (THead (Bind
+Abbr) u2 w) x) \to ((pr0 u1 u2) \to ((pr0 t t2) \to ((subst0 O u2 t2 w) \to
+(or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr)
+u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3:
+T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y: T).(pr0 t1 y))
+(\lambda (y: T).(subst0 O u3 y t3))))))) (pr0 t1 (lift (S O) O x))))))))
+(\lambda (H8: (eq T (THead (Bind Abbr) u2 w) x)).(eq_ind T (THead (Bind Abbr)
+u2 w) (\lambda (t: T).((pr0 u1 u2) \to ((pr0 t1 t2) \to ((subst0 O u2 t2 w)
+\to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T t (THead (Bind
+Abbr) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3:
+T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y: T).(pr0 t1 y))
+(\lambda (y: T).(subst0 O u3 y t3))))))) (pr0 t1 (lift (S O) O t)))))))
+(\lambda (H9: (pr0 u1 u2)).(\lambda (H10: (pr0 t1 t2)).(\lambda (H11: (subst0
+O u2 t2 w)).(or_introl (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T
+(THead (Bind Abbr) u2 w) (THead (Bind Abbr) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3: T).(\lambda (t3: T).(or (pr0
+t1 t3) (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O u3 y
+t3))))))) (pr0 t1 (lift (S O) O (THead (Bind Abbr) u2 w))) (ex3_2_intro T T
+(\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Bind Abbr) u2 w) (THead (Bind
+Abbr) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (u3:
+T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y: T).(pr0 t1 y))
+(\lambda (y: T).(subst0 O u3 y t3)))))) u2 w (refl_equal T (THead (Bind Abbr)
+u2 w)) H9 (or_intror (pr0 t1 w) (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda
+(y: T).(subst0 O u2 y w))) (ex_intro2 T (\lambda (y: T).(pr0 t1 y)) (\lambda
+(y: T).(subst0 O u2 y w)) t2 H10 H11))))))) x H8)) t0 (sym_eq T t0 t1 H7)))
+u0 (sym_eq T u0 u1 H6))) H5)) H4 H0 H1 H2))) | (pr0_zeta b H0 t0 t2 H1 u)
+\Rightarrow (\lambda (H2: (eq T (THead (Bind b) u (lift (S O) O t0)) (THead
+(Bind Abbr) u1 t1))).(\lambda (H3: (eq T t2 x)).((let H4 \def (f_equal T T
+(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat) (t: T) on t: T
+\def (match t with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow
+(TLRef (match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)]))
+| (THead k u0 t3) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d)
+t3))]) in lref_map) (\lambda (x0: nat).(plus x0 (S O))) O t0) | (TLRef _)
+\Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat) (t: T) on t: T
+\def (match t with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow
+(TLRef (match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)]))
+| (THead k u0 t3) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d)
+t3))]) in lref_map) (\lambda (x0: nat).(plus x0 (S O))) O t0) | (THead _ _ t)
+\Rightarrow t])) (THead (Bind b) u (lift (S O) O t0)) (THead (Bind Abbr) u1
+t1) H2) in ((let H5 \def (f_equal T T (\lambda (e: T).(match e in T return
+(\lambda (_: T).T) with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u |
+(THead _ t _) \Rightarrow t])) (THead (Bind b) u (lift (S O) O t0)) (THead
+(Bind Abbr) u1 t1) H2) in ((let H6 \def (f_equal T B (\lambda (e: T).(match e
+in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow b | (TLRef _)
+\Rightarrow b | (THead k _ _) \Rightarrow (match k in K return (\lambda (_:
+K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow b])])) (THead
+(Bind b) u (lift (S O) O t0)) (THead (Bind Abbr) u1 t1) H2) in (eq_ind B Abbr
+(\lambda (b0: B).((eq T u u1) \to ((eq T (lift (S O) O t0) t1) \to ((eq T t2
+x) \to ((not (eq B b0 Abst)) \to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda
+(u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t3: T).(or (pr0
+t1 t3) (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O u2 y
+t3))))))) (pr0 t1 (lift (S O) O x))))))))) (\lambda (H7: (eq T u u1)).(eq_ind
+T u1 (\lambda (_: T).((eq T (lift (S O) O t0) t1) \to ((eq T t2 x) \to ((not
+(eq B Abbr Abst)) \to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t3: T).(or (pr0
+t1 t3) (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O u2 y
+t3))))))) (pr0 t1 (lift (S O) O x)))))))) (\lambda (H8: (eq T (lift (S O) O
+t0) t1)).(eq_ind T (lift (S O) O t0) (\lambda (t: T).((eq T t2 x) \to ((not
+(eq B Abbr Abst)) \to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t3: T).(or (pr0 t
+t3) (ex2 T (\lambda (y: T).(pr0 t y)) (\lambda (y: T).(subst0 O u2 y
+t3))))))) (pr0 t (lift (S O) O x))))))) (\lambda (H9: (eq T t2 x)).(eq_ind T
+x (\lambda (t: T).((not (eq B Abbr Abst)) \to ((pr0 t0 t) \to (or (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t3:
+T).(or (pr0 (lift (S O) O t0) t3) (ex2 T (\lambda (y: T).(pr0 (lift (S O) O
+t0) y)) (\lambda (y: T).(subst0 O u2 y t3))))))) (pr0 (lift (S O) O t0) (lift
+(S O) O x)))))) (\lambda (_: (not (eq B Abbr Abst))).(\lambda (H11: (pr0 t0
+x)).(or_intror (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead
+(Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
+(u2: T).(\lambda (t3: T).(or (pr0 (lift (S O) O t0) t3) (ex2 T (\lambda (y:
+T).(pr0 (lift (S O) O t0) y)) (\lambda (y: T).(subst0 O u2 y t3))))))) (pr0
+(lift (S O) O t0) (lift (S O) O x)) (pr0_lift t0 x H11 (S O) O)))) t2 (sym_eq
+T t2 x H9))) t1 H8)) u (sym_eq T u u1 H7))) b (sym_eq B b Abbr H6))) H5))
+H4)) H3 H0 H1))) | (pr0_epsilon t0 t2 H0 u) \Rightarrow (\lambda (H1: (eq T
+(THead (Flat Cast) u t0) (THead (Bind Abbr) u1 t1))).(\lambda (H2: (eq T t2
+x)).((let H3 \def (eq_ind T (THead (Flat Cast) u t0) (\lambda (e: T).(match e
+in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef
+_) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K return
+(\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow
+True])])) I (THead (Bind Abbr) u1 t1) H1) in (False_ind ((eq T t2 x) \to
+((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x
+(THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2)))
+(\lambda (u2: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y: T).(pr0
+t1 y)) (\lambda (y: T).(subst0 O u2 y t3))))))) (pr0 t1 (lift (S O) O x)))))
+H3)) H2 H0)))]) in (H0 (refl_equal T (THead (Bind Abbr) u1 t1)) (refl_equal T
+x)))))).
+
+theorem pr0_gen_void:
+ \forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr0 (THead (Bind Void) u1
+t1) x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead
+(Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
+(_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O x))))))
+\def
+ \lambda (u1: T).(\lambda (t1: T).(\lambda (x: T).(\lambda (H: (pr0 (THead
+(Bind Void) u1 t1) x)).(let H0 \def (match H in pr0 return (\lambda (t:
+T).(\lambda (t0: T).(\lambda (_: (pr0 t t0)).((eq T t (THead (Bind Void) u1
+t1)) \to ((eq T t0 x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2:
+T).(eq T x (THead (Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0
+u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 (lift (S O)
+O x)))))))) with [(pr0_refl t) \Rightarrow (\lambda (H0: (eq T t (THead (Bind
+Void) u1 t1))).(\lambda (H1: (eq T t x)).(eq_ind T (THead (Bind Void) u1 t1)
+(\lambda (t0: T).((eq T t0 x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda
+(t2: T).(eq T x (THead (Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_:
+T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1
+(lift (S O) O x))))) (\lambda (H2: (eq T (THead (Bind Void) u1 t1)
+x)).(eq_ind T (THead (Bind Void) u1 t1) (\lambda (t0: T).(or (ex3_2 T T
+(\lambda (u2: T).(\lambda (t2: T).(eq T t0 (THead (Bind Void) u2 t2))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2:
+T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O t0)))) (or_introl (ex3_2 T T (\lambda
+(u2: T).(\lambda (t2: T).(eq T (THead (Bind Void) u1 t1) (THead (Bind Void)
+u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
+T).(\lambda (t2: T).(pr0 t1 t2)))) (pr0 t1 (lift (S O) O (THead (Bind Void)
+u1 t1))) (ex3_2_intro T T (\lambda (u2: T).(\lambda (t2: T).(eq T (THead
+(Bind Void) u1 t1) (THead (Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_:
+T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr0 t1 t2))) u1 t1
+(refl_equal T (THead (Bind Void) u1 t1)) (pr0_refl u1) (pr0_refl t1))) x H2))
+t (sym_eq T t (THead (Bind Void) u1 t1) H0) H1))) | (pr0_comp u0 u2 H0 t0 t2
+H1 k) \Rightarrow (\lambda (H2: (eq T (THead k u0 t0) (THead (Bind Void) u1
+t1))).(\lambda (H3: (eq T (THead k u2 t2) x)).((let H4 \def (f_equal T T
+(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow t0 | (TLRef _) \Rightarrow t0 | (THead _ _ t) \Rightarrow t]))
+(THead k u0 t0) (THead (Bind Void) u1 t1) H2) in ((let H5 \def (f_equal T T
+(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t _) \Rightarrow t]))
+(THead k u0 t0) (THead (Bind Void) u1 t1) H2) in ((let H6 \def (f_equal T K
+(\lambda (e: T).(match e in T return (\lambda (_: T).K) with [(TSort _)
+\Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _) \Rightarrow k0]))
+(THead k u0 t0) (THead (Bind Void) u1 t1) H2) in (eq_ind K (Bind Void)
+(\lambda (k0: K).((eq T u0 u1) \to ((eq T t0 t1) \to ((eq T (THead k0 u2 t2)
+x) \to ((pr0 u0 u2) \to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u3:
+T).(\lambda (t3: T).(eq T x (THead (Bind Void) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 (lift (S O) O x))))))))) (\lambda (H7: (eq T u0 u1)).(eq_ind T
+u1 (\lambda (t: T).((eq T t0 t1) \to ((eq T (THead (Bind Void) u2 t2) x) \to
+((pr0 t u2) \to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda
+(t3: T).(eq T x (THead (Bind Void) u3 t3)))) (\lambda (u3: T).(\lambda (_:
+T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1
+(lift (S O) O x)))))))) (\lambda (H8: (eq T t0 t1)).(eq_ind T t1 (\lambda (t:
+T).((eq T (THead (Bind Void) u2 t2) x) \to ((pr0 u1 u2) \to ((pr0 t t2) \to
+(or (ex3_2 T T (\lambda (u3: T).(\lambda (t3: T).(eq T x (THead (Bind Void)
+u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_:
+T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O x))))))) (\lambda
+(H9: (eq T (THead (Bind Void) u2 t2) x)).(eq_ind T (THead (Bind Void) u2 t2)
+(\lambda (t: T).((pr0 u1 u2) \to ((pr0 t1 t2) \to (or (ex3_2 T T (\lambda
+(u3: T).(\lambda (t3: T).(eq T t (THead (Bind Void) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 (lift (S O) O t)))))) (\lambda (H10: (pr0 u1 u2)).(\lambda
+(H11: (pr0 t1 t2)).(or_introl (ex3_2 T T (\lambda (u3: T).(\lambda (t3:
+T).(eq T (THead (Bind Void) u2 t2) (THead (Bind Void) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 (lift (S O) O (THead (Bind Void) u2 t2))) (ex3_2_intro T T
+(\lambda (u3: T).(\lambda (t3: T).(eq T (THead (Bind Void) u2 t2) (THead
+(Bind Void) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0 u1 u3))) (\lambda
+(_: T).(\lambda (t3: T).(pr0 t1 t3))) u2 t2 (refl_equal T (THead (Bind Void)
+u2 t2)) H10 H11)))) x H9)) t0 (sym_eq T t0 t1 H8))) u0 (sym_eq T u0 u1 H7)))
+k (sym_eq K k (Bind Void) H6))) H5)) H4)) H3 H0 H1))) | (pr0_beta u v1 v2 H0
+t0 t2 H1) \Rightarrow (\lambda (H2: (eq T (THead (Flat Appl) v1 (THead (Bind
+Abst) u t0)) (THead (Bind Void) u1 t1))).(\lambda (H3: (eq T (THead (Bind
+Abbr) v2 t2) x)).((let H4 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind
+Abst) u t0)) (\lambda (e: T).(match e in T return (\lambda (_: T).Prop) with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _)
+\Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
+\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind Void) u1
+t1) H2) in (False_ind ((eq T (THead (Bind Abbr) v2 t2) x) \to ((pr0 v1 v2)
+\to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x
+(THead (Bind Void) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2)))
+(\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O x))))))
+H4)) H3 H0 H1))) | (pr0_upsilon b H0 v1 v2 H1 u0 u2 H2 t0 t2 H3) \Rightarrow
+(\lambda (H4: (eq T (THead (Flat Appl) v1 (THead (Bind b) u0 t0)) (THead
+(Bind Void) u1 t1))).(\lambda (H5: (eq T (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t2)) x)).((let H6 \def (eq_ind T (THead (Flat Appl)
+v1 (THead (Bind b) u0 t0)) (\lambda (e: T).(match e in T return (\lambda (_:
+T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False |
+(THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).Prop) with
+[(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind
+Void) u1 t1) H4) in (False_ind ((eq T (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t2)) x) \to ((not (eq B b Abst)) \to ((pr0 v1 v2) \to ((pr0
+u0 u2) \to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u3: T).(\lambda (t3:
+T).(eq T x (THead (Bind Void) u3 t3)))) (\lambda (u3: T).(\lambda (_: T).(pr0
+u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (lift (S O)
+O x)))))))) H6)) H5 H0 H1 H2 H3))) | (pr0_delta u0 u2 H0 t0 t2 H1 w H2)
+\Rightarrow (\lambda (H3: (eq T (THead (Bind Abbr) u0 t0) (THead (Bind Void)
+u1 t1))).(\lambda (H4: (eq T (THead (Bind Abbr) u2 w) x)).((let H5 \def
+(eq_ind T (THead (Bind Abbr) u0 t0) (\lambda (e: T).(match e in T return
+(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda
+(_: K).Prop) with [(Bind b) \Rightarrow (match b in B return (\lambda (_:
+B).Prop) with [Abbr \Rightarrow True | Abst \Rightarrow False | Void
+\Rightarrow False]) | (Flat _) \Rightarrow False])])) I (THead (Bind Void) u1
+t1) H3) in (False_ind ((eq T (THead (Bind Abbr) u2 w) x) \to ((pr0 u0 u2) \to
+((pr0 t0 t2) \to ((subst0 O u2 t2 w) \to (or (ex3_2 T T (\lambda (u3:
+T).(\lambda (t3: T).(eq T x (THead (Bind Void) u3 t3)))) (\lambda (u3:
+T).(\lambda (_: T).(pr0 u1 u3))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 (lift (S O) O x))))))) H5)) H4 H0 H1 H2))) | (pr0_zeta b H0 t0
+t2 H1 u) \Rightarrow (\lambda (H2: (eq T (THead (Bind b) u (lift (S O) O t0))
+(THead (Bind Void) u1 t1))).(\lambda (H3: (eq T t2 x)).((let H4 \def (f_equal
+T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat) (t: T) on t: T
+\def (match t with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow
+(TLRef (match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)]))
+| (THead k u0 t3) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d)
+t3))]) in lref_map) (\lambda (x0: nat).(plus x0 (S O))) O t0) | (TLRef _)
+\Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat) (t: T) on t: T
+\def (match t with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow
+(TLRef (match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)]))
+| (THead k u0 t3) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d)
+t3))]) in lref_map) (\lambda (x0: nat).(plus x0 (S O))) O t0) | (THead _ _ t)
+\Rightarrow t])) (THead (Bind b) u (lift (S O) O t0)) (THead (Bind Void) u1
+t1) H2) in ((let H5 \def (f_equal T T (\lambda (e: T).(match e in T return
+(\lambda (_: T).T) with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u |
+(THead _ t _) \Rightarrow t])) (THead (Bind b) u (lift (S O) O t0)) (THead
+(Bind Void) u1 t1) H2) in ((let H6 \def (f_equal T B (\lambda (e: T).(match e
+in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow b | (TLRef _)
+\Rightarrow b | (THead k _ _) \Rightarrow (match k in K return (\lambda (_:
+K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow b])])) (THead
+(Bind b) u (lift (S O) O t0)) (THead (Bind Void) u1 t1) H2) in (eq_ind B Void
+(\lambda (b0: B).((eq T u u1) \to ((eq T (lift (S O) O t0) t1) \to ((eq T t2
+x) \to ((not (eq B b0 Abst)) \to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda
+(u2: T).(\lambda (t3: T).(eq T x (THead (Bind Void) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 (lift (S O) O x))))))))) (\lambda (H7: (eq T u u1)).(eq_ind T
+u1 (\lambda (_: T).((eq T (lift (S O) O t0) t1) \to ((eq T t2 x) \to ((not
+(eq B Void Abst)) \to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Void) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 (lift (S O) O x)))))))) (\lambda (H8: (eq T (lift (S O) O t0)
+t1)).(eq_ind T (lift (S O) O t0) (\lambda (t: T).((eq T t2 x) \to ((not (eq B
+Void Abst)) \to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda
+(t3: T).(eq T x (THead (Bind Void) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t t3)))) (pr0 t (lift
+(S O) O x))))))) (\lambda (H9: (eq T t2 x)).(eq_ind T x (\lambda (t: T).((not
+(eq B Void Abst)) \to ((pr0 t0 t) \to (or (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Void) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 (lift
+(S O) O t0) t3)))) (pr0 (lift (S O) O t0) (lift (S O) O x)))))) (\lambda (_:
+(not (eq B Void Abst))).(\lambda (H11: (pr0 t0 x)).(or_intror (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Void) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3:
+T).(pr0 (lift (S O) O t0) t3)))) (pr0 (lift (S O) O t0) (lift (S O) O x))
+(pr0_lift t0 x H11 (S O) O)))) t2 (sym_eq T t2 x H9))) t1 H8)) u (sym_eq T u
+u1 H7))) b (sym_eq B b Void H6))) H5)) H4)) H3 H0 H1))) | (pr0_epsilon t0 t2
+H0 u) \Rightarrow (\lambda (H1: (eq T (THead (Flat Cast) u t0) (THead (Bind
+Void) u1 t1))).(\lambda (H2: (eq T t2 x)).((let H3 \def (eq_ind T (THead
+(Flat Cast) u t0) (\lambda (e: T).(match e in T return (\lambda (_: T).Prop)
+with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _
+_) \Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
+\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind Void) u1
+t1) H1) in (False_ind ((eq T t2 x) \to ((pr0 t0 t2) \to (or (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Void) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3:
+T).(pr0 t1 t3)))) (pr0 t1 (lift (S O) O x))))) H3)) H2 H0)))]) in (H0
+(refl_equal T (THead (Bind Void) u1 t1)) (refl_equal T x)))))).
+
+theorem pr0_gen_lift:
+ \forall (t1: T).(\forall (x: T).(\forall (h: nat).(\forall (d: nat).((pr0
+(lift h d t1) x) \to (ex2 T (\lambda (t2: T).(eq T x (lift h d t2))) (\lambda
+(t2: T).(pr0 t1 t2)))))))
+\def
+ \lambda (t1: T).(\lambda (x: T).(\lambda (h: nat).(\lambda (d: nat).(\lambda
+(H: (pr0 (lift h d t1) x)).(insert_eq T (lift h d t1) (\lambda (t: T).(pr0 t
+x)) (ex2 T (\lambda (t2: T).(eq T x (lift h d t2))) (\lambda (t2: T).(pr0 t1
+t2))) (\lambda (y: T).(\lambda (H0: (pr0 y x)).(unintro nat d (\lambda (n:
+nat).((eq T y (lift h n t1)) \to (ex2 T (\lambda (t2: T).(eq T x (lift h n
+t2))) (\lambda (t2: T).(pr0 t1 t2))))) (unintro T t1 (\lambda (t: T).(\forall
+(x0: nat).((eq T y (lift h x0 t)) \to (ex2 T (\lambda (t2: T).(eq T x (lift h
+x0 t2))) (\lambda (t2: T).(pr0 t t2)))))) (pr0_ind (\lambda (t: T).(\lambda
+(t0: T).(\forall (x0: T).(\forall (x1: nat).((eq T t (lift h x1 x0)) \to (ex2
+T (\lambda (t2: T).(eq T t0 (lift h x1 t2))) (\lambda (t2: T).(pr0 x0
+t2)))))))) (\lambda (t: T).(\lambda (x0: T).(\lambda (x1: nat).(\lambda (H1:
+(eq T t (lift h x1 x0))).(ex_intro2 T (\lambda (t2: T).(eq T t (lift h x1
+t2))) (\lambda (t2: T).(pr0 x0 t2)) x0 H1 (pr0_refl x0)))))) (\lambda (u1:
+T).(\lambda (u2: T).(\lambda (_: (pr0 u1 u2)).(\lambda (H2: ((\forall (x0:
+T).(\forall (x1: nat).((eq T u1 (lift h x1 x0)) \to (ex2 T (\lambda (t2:
+T).(eq T u2 (lift h x1 t2))) (\lambda (t2: T).(pr0 x0 t2)))))))).(\lambda
+(t2: T).(\lambda (t3: T).(\lambda (_: (pr0 t2 t3)).(\lambda (H4: ((\forall
+(x0: T).(\forall (x1: nat).((eq T t2 (lift h x1 x0)) \to (ex2 T (\lambda (t4:
+T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 x0 t4)))))))).(\lambda (k:
+K).(\lambda (x0: T).(\lambda (x1: nat).(\lambda (H5: (eq T (THead k u1 t2)
+(lift h x1 x0))).(K_ind (\lambda (k0: K).((eq T (THead k0 u1 t2) (lift h x1
+x0)) \to (ex2 T (\lambda (t4: T).(eq T (THead k0 u2 t3) (lift h x1 t4)))
+(\lambda (t4: T).(pr0 x0 t4))))) (\lambda (b: B).(\lambda (H6: (eq T (THead
+(Bind b) u1 t2) (lift h x1 x0))).(ex3_2_ind T T (\lambda (y0: T).(\lambda (z:
+T).(eq T x0 (THead (Bind b) y0 z)))) (\lambda (y0: T).(\lambda (_: T).(eq T
+u1 (lift h x1 y0)))) (\lambda (_: T).(\lambda (z: T).(eq T t2 (lift h (S x1)
+z)))) (ex2 T (\lambda (t4: T).(eq T (THead (Bind b) u2 t3) (lift h x1 t4)))
+(\lambda (t4: T).(pr0 x0 t4))) (\lambda (x2: T).(\lambda (x3: T).(\lambda
+(H7: (eq T x0 (THead (Bind b) x2 x3))).(\lambda (H8: (eq T u1 (lift h x1
+x2))).(\lambda (H9: (eq T t2 (lift h (S x1) x3))).(eq_ind_r T (THead (Bind b)
+x2 x3) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T (THead (Bind b) u2 t3)
+(lift h x1 t4))) (\lambda (t4: T).(pr0 t t4)))) (ex2_ind T (\lambda (t4:
+T).(eq T t3 (lift h (S x1) t4))) (\lambda (t4: T).(pr0 x3 t4)) (ex2 T
+(\lambda (t4: T).(eq T (THead (Bind b) u2 t3) (lift h x1 t4))) (\lambda (t4:
+T).(pr0 (THead (Bind b) x2 x3) t4))) (\lambda (x4: T).(\lambda (H_x: (eq T t3
+(lift h (S x1) x4))).(\lambda (H10: (pr0 x3 x4)).(eq_ind_r T (lift h (S x1)
+x4) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T (THead (Bind b) u2 t) (lift
+h x1 t4))) (\lambda (t4: T).(pr0 (THead (Bind b) x2 x3) t4)))) (ex2_ind T
+(\lambda (t4: T).(eq T u2 (lift h x1 t4))) (\lambda (t4: T).(pr0 x2 t4)) (ex2
+T (\lambda (t4: T).(eq T (THead (Bind b) u2 (lift h (S x1) x4)) (lift h x1
+t4))) (\lambda (t4: T).(pr0 (THead (Bind b) x2 x3) t4))) (\lambda (x5:
+T).(\lambda (H_x0: (eq T u2 (lift h x1 x5))).(\lambda (H11: (pr0 x2
+x5)).(eq_ind_r T (lift h x1 x5) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T
+(THead (Bind b) t (lift h (S x1) x4)) (lift h x1 t4))) (\lambda (t4: T).(pr0
+(THead (Bind b) x2 x3) t4)))) (ex_intro2 T (\lambda (t4: T).(eq T (THead
+(Bind b) (lift h x1 x5) (lift h (S x1) x4)) (lift h x1 t4))) (\lambda (t4:
+T).(pr0 (THead (Bind b) x2 x3) t4)) (THead (Bind b) x5 x4) (sym_eq T (lift h
+x1 (THead (Bind b) x5 x4)) (THead (Bind b) (lift h x1 x5) (lift h (S x1) x4))
+(lift_bind b x5 x4 h x1)) (pr0_comp x2 x5 H11 x3 x4 H10 (Bind b))) u2
+H_x0)))) (H2 x2 x1 H8)) t3 H_x)))) (H4 x3 (S x1) H9)) x0 H7))))))
+(lift_gen_bind b u1 t2 x0 h x1 H6)))) (\lambda (f: F).(\lambda (H6: (eq T
+(THead (Flat f) u1 t2) (lift h x1 x0))).(ex3_2_ind T T (\lambda (y0:
+T).(\lambda (z: T).(eq T x0 (THead (Flat f) y0 z)))) (\lambda (y0:
+T).(\lambda (_: T).(eq T u1 (lift h x1 y0)))) (\lambda (_: T).(\lambda (z:
+T).(eq T t2 (lift h x1 z)))) (ex2 T (\lambda (t4: T).(eq T (THead (Flat f) u2
+t3) (lift h x1 t4))) (\lambda (t4: T).(pr0 x0 t4))) (\lambda (x2: T).(\lambda
+(x3: T).(\lambda (H7: (eq T x0 (THead (Flat f) x2 x3))).(\lambda (H8: (eq T
+u1 (lift h x1 x2))).(\lambda (H9: (eq T t2 (lift h x1 x3))).(eq_ind_r T
+(THead (Flat f) x2 x3) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T (THead
+(Flat f) u2 t3) (lift h x1 t4))) (\lambda (t4: T).(pr0 t t4)))) (ex2_ind T
+(\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 x3 t4)) (ex2
+T (\lambda (t4: T).(eq T (THead (Flat f) u2 t3) (lift h x1 t4))) (\lambda
+(t4: T).(pr0 (THead (Flat f) x2 x3) t4))) (\lambda (x4: T).(\lambda (H_x: (eq
+T t3 (lift h x1 x4))).(\lambda (H10: (pr0 x3 x4)).(eq_ind_r T (lift h x1 x4)
+(\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T (THead (Flat f) u2 t) (lift h
+x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat f) x2 x3) t4)))) (ex2_ind T
+(\lambda (t4: T).(eq T u2 (lift h x1 t4))) (\lambda (t4: T).(pr0 x2 t4)) (ex2
+T (\lambda (t4: T).(eq T (THead (Flat f) u2 (lift h x1 x4)) (lift h x1 t4)))
+(\lambda (t4: T).(pr0 (THead (Flat f) x2 x3) t4))) (\lambda (x5: T).(\lambda
+(H_x0: (eq T u2 (lift h x1 x5))).(\lambda (H11: (pr0 x2 x5)).(eq_ind_r T
+(lift h x1 x5) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T (THead (Flat f)
+t (lift h x1 x4)) (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat f) x2
+x3) t4)))) (ex_intro2 T (\lambda (t4: T).(eq T (THead (Flat f) (lift h x1 x5)
+(lift h x1 x4)) (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat f) x2 x3)
+t4)) (THead (Flat f) x5 x4) (sym_eq T (lift h x1 (THead (Flat f) x5 x4))
+(THead (Flat f) (lift h x1 x5) (lift h x1 x4)) (lift_flat f x5 x4 h x1))
+(pr0_comp x2 x5 H11 x3 x4 H10 (Flat f))) u2 H_x0)))) (H2 x2 x1 H8)) t3
+H_x)))) (H4 x3 x1 H9)) x0 H7)))))) (lift_gen_flat f u1 t2 x0 h x1 H6)))) k
+H5))))))))))))) (\lambda (u: T).(\lambda (v1: T).(\lambda (v2: T).(\lambda
+(_: (pr0 v1 v2)).(\lambda (H2: ((\forall (x0: T).(\forall (x1: nat).((eq T v1
+(lift h x1 x0)) \to (ex2 T (\lambda (t2: T).(eq T v2 (lift h x1 t2)))
+(\lambda (t2: T).(pr0 x0 t2)))))))).(\lambda (t2: T).(\lambda (t3:
+T).(\lambda (_: (pr0 t2 t3)).(\lambda (H4: ((\forall (x0: T).(\forall (x1:
+nat).((eq T t2 (lift h x1 x0)) \to (ex2 T (\lambda (t4: T).(eq T t3 (lift h
+x1 t4))) (\lambda (t4: T).(pr0 x0 t4)))))))).(\lambda (x0: T).(\lambda (x1:
+nat).(\lambda (H5: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t2))
+(lift h x1 x0))).(ex3_2_ind T T (\lambda (y0: T).(\lambda (z: T).(eq T x0
+(THead (Flat Appl) y0 z)))) (\lambda (y0: T).(\lambda (_: T).(eq T v1 (lift h
+x1 y0)))) (\lambda (_: T).(\lambda (z: T).(eq T (THead (Bind Abst) u t2)
+(lift h x1 z)))) (ex2 T (\lambda (t4: T).(eq T (THead (Bind Abbr) v2 t3)
+(lift h x1 t4))) (\lambda (t4: T).(pr0 x0 t4))) (\lambda (x2: T).(\lambda
+(x3: T).(\lambda (H6: (eq T x0 (THead (Flat Appl) x2 x3))).(\lambda (H7: (eq
+T v1 (lift h x1 x2))).(\lambda (H8: (eq T (THead (Bind Abst) u t2) (lift h x1
+x3))).(eq_ind_r T (THead (Flat Appl) x2 x3) (\lambda (t: T).(ex2 T (\lambda
+(t4: T).(eq T (THead (Bind Abbr) v2 t3) (lift h x1 t4))) (\lambda (t4:
+T).(pr0 t t4)))) (ex3_2_ind T T (\lambda (y0: T).(\lambda (z: T).(eq T x3
+(THead (Bind Abst) y0 z)))) (\lambda (y0: T).(\lambda (_: T).(eq T u (lift h
+x1 y0)))) (\lambda (_: T).(\lambda (z: T).(eq T t2 (lift h (S x1) z)))) (ex2
+T (\lambda (t4: T).(eq T (THead (Bind Abbr) v2 t3) (lift h x1 t4))) (\lambda
+(t4: T).(pr0 (THead (Flat Appl) x2 x3) t4))) (\lambda (x4: T).(\lambda (x5:
+T).(\lambda (H9: (eq T x3 (THead (Bind Abst) x4 x5))).(\lambda (_: (eq T u
+(lift h x1 x4))).(\lambda (H11: (eq T t2 (lift h (S x1) x5))).(eq_ind_r T
+(THead (Bind Abst) x4 x5) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T
+(THead (Bind Abbr) v2 t3) (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat
+Appl) x2 t) t4)))) (ex2_ind T (\lambda (t4: T).(eq T t3 (lift h (S x1) t4)))
+(\lambda (t4: T).(pr0 x5 t4)) (ex2 T (\lambda (t4: T).(eq T (THead (Bind
+Abbr) v2 t3) (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat Appl) x2
+(THead (Bind Abst) x4 x5)) t4))) (\lambda (x6: T).(\lambda (H_x: (eq T t3
+(lift h (S x1) x6))).(\lambda (H12: (pr0 x5 x6)).(eq_ind_r T (lift h (S x1)
+x6) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T (THead (Bind Abbr) v2 t)
+(lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat Appl) x2 (THead (Bind
+Abst) x4 x5)) t4)))) (ex2_ind T (\lambda (t4: T).(eq T v2 (lift h x1 t4)))
+(\lambda (t4: T).(pr0 x2 t4)) (ex2 T (\lambda (t4: T).(eq T (THead (Bind
+Abbr) v2 (lift h (S x1) x6)) (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead
+(Flat Appl) x2 (THead (Bind Abst) x4 x5)) t4))) (\lambda (x7: T).(\lambda
+(H_x0: (eq T v2 (lift h x1 x7))).(\lambda (H13: (pr0 x2 x7)).(eq_ind_r T
+(lift h x1 x7) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T (THead (Bind
+Abbr) t (lift h (S x1) x6)) (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead
+(Flat Appl) x2 (THead (Bind Abst) x4 x5)) t4)))) (ex_intro2 T (\lambda (t4:
+T).(eq T (THead (Bind Abbr) (lift h x1 x7) (lift h (S x1) x6)) (lift h x1
+t4))) (\lambda (t4: T).(pr0 (THead (Flat Appl) x2 (THead (Bind Abst) x4 x5))
+t4)) (THead (Bind Abbr) x7 x6) (sym_eq T (lift h x1 (THead (Bind Abbr) x7
+x6)) (THead (Bind Abbr) (lift h x1 x7) (lift h (S x1) x6)) (lift_bind Abbr x7
+x6 h x1)) (pr0_beta x4 x2 x7 H13 x5 x6 H12)) v2 H_x0)))) (H2 x2 x1 H7)) t3
+H_x)))) (H4 x5 (S x1) H11)) x3 H9)))))) (lift_gen_bind Abst u t2 x3 h x1 H8))
+x0 H6)))))) (lift_gen_flat Appl v1 (THead (Bind Abst) u t2) x0 h x1
+H5)))))))))))))) (\lambda (b: B).(\lambda (H1: (not (eq B b Abst))).(\lambda
+(v1: T).(\lambda (v2: T).(\lambda (_: (pr0 v1 v2)).(\lambda (H3: ((\forall
+(x0: T).(\forall (x1: nat).((eq T v1 (lift h x1 x0)) \to (ex2 T (\lambda (t2:
+T).(eq T v2 (lift h x1 t2))) (\lambda (t2: T).(pr0 x0 t2)))))))).(\lambda
+(u1: T).(\lambda (u2: T).(\lambda (_: (pr0 u1 u2)).(\lambda (H5: ((\forall
+(x0: T).(\forall (x1: nat).((eq T u1 (lift h x1 x0)) \to (ex2 T (\lambda (t2:
+T).(eq T u2 (lift h x1 t2))) (\lambda (t2: T).(pr0 x0 t2)))))))).(\lambda
+(t2: T).(\lambda (t3: T).(\lambda (_: (pr0 t2 t3)).(\lambda (H7: ((\forall
+(x0: T).(\forall (x1: nat).((eq T t2 (lift h x1 x0)) \to (ex2 T (\lambda (t4:
+T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 x0 t4)))))))).(\lambda
+(x0: T).(\lambda (x1: nat).(\lambda (H8: (eq T (THead (Flat Appl) v1 (THead
+(Bind b) u1 t2)) (lift h x1 x0))).(ex3_2_ind T T (\lambda (y0: T).(\lambda
+(z: T).(eq T x0 (THead (Flat Appl) y0 z)))) (\lambda (y0: T).(\lambda (_:
+T).(eq T v1 (lift h x1 y0)))) (\lambda (_: T).(\lambda (z: T).(eq T (THead
+(Bind b) u1 t2) (lift h x1 z)))) (ex2 T (\lambda (t4: T).(eq T (THead (Bind
+b) u2 (THead (Flat Appl) (lift (S O) O v2) t3)) (lift h x1 t4))) (\lambda
+(t4: T).(pr0 x0 t4))) (\lambda (x2: T).(\lambda (x3: T).(\lambda (H9: (eq T
+x0 (THead (Flat Appl) x2 x3))).(\lambda (H10: (eq T v1 (lift h x1
+x2))).(\lambda (H11: (eq T (THead (Bind b) u1 t2) (lift h x1 x3))).(eq_ind_r
+T (THead (Flat Appl) x2 x3) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t3)) (lift h x1 t4)))
+(\lambda (t4: T).(pr0 t t4)))) (ex3_2_ind T T (\lambda (y0: T).(\lambda (z:
+T).(eq T x3 (THead (Bind b) y0 z)))) (\lambda (y0: T).(\lambda (_: T).(eq T
+u1 (lift h x1 y0)))) (\lambda (_: T).(\lambda (z: T).(eq T t2 (lift h (S x1)
+z)))) (ex2 T (\lambda (t4: T).(eq T (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t3)) (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat
+Appl) x2 x3) t4))) (\lambda (x4: T).(\lambda (x5: T).(\lambda (H12: (eq T x3
+(THead (Bind b) x4 x5))).(\lambda (H13: (eq T u1 (lift h x1 x4))).(\lambda
+(H14: (eq T t2 (lift h (S x1) x5))).(eq_ind_r T (THead (Bind b) x4 x5)
+(\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t3)) (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead
+(Flat Appl) x2 t) t4)))) (ex2_ind T (\lambda (t4: T).(eq T t3 (lift h (S x1)
+t4))) (\lambda (t4: T).(pr0 x5 t4)) (ex2 T (\lambda (t4: T).(eq T (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t3)) (lift h x1 t4)))
+(\lambda (t4: T).(pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5)) t4)))
+(\lambda (x6: T).(\lambda (H_x: (eq T t3 (lift h (S x1) x6))).(\lambda (H15:
+(pr0 x5 x6)).(eq_ind_r T (lift h (S x1) x6) (\lambda (t: T).(ex2 T (\lambda
+(t4: T).(eq T (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t))
+(lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat Appl) x2 (THead (Bind b)
+x4 x5)) t4)))) (ex2_ind T (\lambda (t4: T).(eq T u2 (lift h x1 t4))) (\lambda
+(t4: T).(pr0 x4 t4)) (ex2 T (\lambda (t4: T).(eq T (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) (lift h (S x1) x6))) (lift h x1 t4))) (\lambda
+(t4: T).(pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5)) t4))) (\lambda
+(x7: T).(\lambda (H_x0: (eq T u2 (lift h x1 x7))).(\lambda (H16: (pr0 x4
+x7)).(eq_ind_r T (lift h x1 x7) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T
+(THead (Bind b) t (THead (Flat Appl) (lift (S O) O v2) (lift h (S x1) x6)))
+(lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat Appl) x2 (THead (Bind b)
+x4 x5)) t4)))) (ex2_ind T (\lambda (t4: T).(eq T v2 (lift h x1 t4))) (\lambda
+(t4: T).(pr0 x2 t4)) (ex2 T (\lambda (t4: T).(eq T (THead (Bind b) (lift h x1
+x7) (THead (Flat Appl) (lift (S O) O v2) (lift h (S x1) x6))) (lift h x1
+t4))) (\lambda (t4: T).(pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5))
+t4))) (\lambda (x8: T).(\lambda (H_x1: (eq T v2 (lift h x1 x8))).(\lambda
+(H17: (pr0 x2 x8)).(eq_ind_r T (lift h x1 x8) (\lambda (t: T).(ex2 T (\lambda
+(t4: T).(eq T (THead (Bind b) (lift h x1 x7) (THead (Flat Appl) (lift (S O) O
+t) (lift h (S x1) x6))) (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat
+Appl) x2 (THead (Bind b) x4 x5)) t4)))) (eq_ind T (lift h (plus (S O) x1)
+(lift (S O) O x8)) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T (THead (Bind
+b) (lift h x1 x7) (THead (Flat Appl) t (lift h (S x1) x6))) (lift h x1 t4)))
+(\lambda (t4: T).(pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5)) t4))))
+(eq_ind T (lift h (S x1) (THead (Flat Appl) (lift (S O) O x8) x6)) (\lambda
+(t: T).(ex2 T (\lambda (t4: T).(eq T (THead (Bind b) (lift h x1 x7) t) (lift
+h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat Appl) x2 (THead (Bind b) x4
+x5)) t4)))) (ex_intro2 T (\lambda (t4: T).(eq T (THead (Bind b) (lift h x1
+x7) (lift h (S x1) (THead (Flat Appl) (lift (S O) O x8) x6))) (lift h x1
+t4))) (\lambda (t4: T).(pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5))
+t4)) (THead (Bind b) x7 (THead (Flat Appl) (lift (S O) O x8) x6)) (sym_eq T
+(lift h x1 (THead (Bind b) x7 (THead (Flat Appl) (lift (S O) O x8) x6)))
+(THead (Bind b) (lift h x1 x7) (lift h (S x1) (THead (Flat Appl) (lift (S O)
+O x8) x6))) (lift_bind b x7 (THead (Flat Appl) (lift (S O) O x8) x6) h x1))
+(pr0_upsilon b H1 x2 x8 H17 x4 x7 H16 x5 x6 H15)) (THead (Flat Appl) (lift h
+(S x1) (lift (S O) O x8)) (lift h (S x1) x6)) (lift_flat Appl (lift (S O) O
+x8) x6 h (S x1))) (lift (S O) O (lift h x1 x8)) (lift_d x8 h (S O) x1 O
+(le_O_n x1))) v2 H_x1)))) (H3 x2 x1 H10)) u2 H_x0)))) (H5 x4 x1 H13)) t3
+H_x)))) (H7 x5 (S x1) H14)) x3 H12)))))) (lift_gen_bind b u1 t2 x3 h x1 H11))
+x0 H9)))))) (lift_gen_flat Appl v1 (THead (Bind b) u1 t2) x0 h x1
+H8))))))))))))))))))) (\lambda (u1: T).(\lambda (u2: T).(\lambda (_: (pr0 u1
+u2)).(\lambda (H2: ((\forall (x0: T).(\forall (x1: nat).((eq T u1 (lift h x1
+x0)) \to (ex2 T (\lambda (t2: T).(eq T u2 (lift h x1 t2))) (\lambda (t2:
+T).(pr0 x0 t2)))))))).(\lambda (t2: T).(\lambda (t3: T).(\lambda (_: (pr0 t2
+t3)).(\lambda (H4: ((\forall (x0: T).(\forall (x1: nat).((eq T t2 (lift h x1
+x0)) \to (ex2 T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4:
+T).(pr0 x0 t4)))))))).(\lambda (w: T).(\lambda (H5: (subst0 O u2 t3
+w)).(\lambda (x0: T).(\lambda (x1: nat).(\lambda (H6: (eq T (THead (Bind
+Abbr) u1 t2) (lift h x1 x0))).(ex3_2_ind T T (\lambda (y0: T).(\lambda (z:
+T).(eq T x0 (THead (Bind Abbr) y0 z)))) (\lambda (y0: T).(\lambda (_: T).(eq
+T u1 (lift h x1 y0)))) (\lambda (_: T).(\lambda (z: T).(eq T t2 (lift h (S
+x1) z)))) (ex2 T (\lambda (t4: T).(eq T (THead (Bind Abbr) u2 w) (lift h x1
+t4))) (\lambda (t4: T).(pr0 x0 t4))) (\lambda (x2: T).(\lambda (x3:
+T).(\lambda (H7: (eq T x0 (THead (Bind Abbr) x2 x3))).(\lambda (H8: (eq T u1
+(lift h x1 x2))).(\lambda (H9: (eq T t2 (lift h (S x1) x3))).(eq_ind_r T
+(THead (Bind Abbr) x2 x3) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T
+(THead (Bind Abbr) u2 w) (lift h x1 t4))) (\lambda (t4: T).(pr0 t t4))))
+(ex2_ind T (\lambda (t4: T).(eq T t3 (lift h (S x1) t4))) (\lambda (t4:
+T).(pr0 x3 t4)) (ex2 T (\lambda (t4: T).(eq T (THead (Bind Abbr) u2 w) (lift
+h x1 t4))) (\lambda (t4: T).(pr0 (THead (Bind Abbr) x2 x3) t4))) (\lambda
+(x4: T).(\lambda (H_x: (eq T t3 (lift h (S x1) x4))).(\lambda (H10: (pr0 x3
+x4)).(let H11 \def (eq_ind T t3 (\lambda (t: T).(subst0 O u2 t w)) H5 (lift h
+(S x1) x4) H_x) in (ex2_ind T (\lambda (t4: T).(eq T u2 (lift h x1 t4)))
+(\lambda (t4: T).(pr0 x2 t4)) (ex2 T (\lambda (t4: T).(eq T (THead (Bind
+Abbr) u2 w) (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Bind Abbr) x2 x3)
+t4))) (\lambda (x5: T).(\lambda (H_x0: (eq T u2 (lift h x1 x5))).(\lambda
+(H12: (pr0 x2 x5)).(eq_ind_r T (lift h x1 x5) (\lambda (t: T).(ex2 T (\lambda
+(t4: T).(eq T (THead (Bind Abbr) t w) (lift h x1 t4))) (\lambda (t4: T).(pr0
+(THead (Bind Abbr) x2 x3) t4)))) (let H13 \def (eq_ind T u2 (\lambda (t:
+T).(subst0 O t (lift h (S x1) x4) w)) H11 (lift h x1 x5) H_x0) in (let H14
+\def (refl_equal nat (S (plus O x1))) in (let H15 \def (eq_ind nat (S x1)
+(\lambda (n: nat).(subst0 O (lift h x1 x5) (lift h n x4) w)) H13 (S (plus O
+x1)) H14) in (ex2_ind T (\lambda (t4: T).(eq T w (lift h (S (plus O x1))
+t4))) (\lambda (t4: T).(subst0 O x5 x4 t4)) (ex2 T (\lambda (t4: T).(eq T
+(THead (Bind Abbr) (lift h x1 x5) w) (lift h x1 t4))) (\lambda (t4: T).(pr0
+(THead (Bind Abbr) x2 x3) t4))) (\lambda (x6: T).(\lambda (H16: (eq T w (lift
+h (S (plus O x1)) x6))).(\lambda (H17: (subst0 O x5 x4 x6)).(eq_ind_r T (lift
+h (S (plus O x1)) x6) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T (THead
+(Bind Abbr) (lift h x1 x5) t) (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead
+(Bind Abbr) x2 x3) t4)))) (ex_intro2 T (\lambda (t4: T).(eq T (THead (Bind
+Abbr) (lift h x1 x5) (lift h (S (plus O x1)) x6)) (lift h x1 t4))) (\lambda
+(t4: T).(pr0 (THead (Bind Abbr) x2 x3) t4)) (THead (Bind Abbr) x5 x6) (sym_eq
+T (lift h x1 (THead (Bind Abbr) x5 x6)) (THead (Bind Abbr) (lift h x1 x5)
+(lift h (S (plus O x1)) x6)) (lift_bind Abbr x5 x6 h (plus O x1))) (pr0_delta
+x2 x5 H12 x3 x4 H10 x6 H17)) w H16)))) (subst0_gen_lift_lt x5 x4 w O h x1
+H15))))) u2 H_x0)))) (H2 x2 x1 H8)))))) (H4 x3 (S x1) H9)) x0 H7))))))
+(lift_gen_bind Abbr u1 t2 x0 h x1 H6))))))))))))))) (\lambda (b: B).(\lambda
+(H1: (not (eq B b Abst))).(\lambda (t2: T).(\lambda (t3: T).(\lambda (_: (pr0
+t2 t3)).(\lambda (H3: ((\forall (x0: T).(\forall (x1: nat).((eq T t2 (lift h
+x1 x0)) \to (ex2 T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4:
+T).(pr0 x0 t4)))))))).(\lambda (u: T).(\lambda (x0: T).(\lambda (x1:
+nat).(\lambda (H4: (eq T (THead (Bind b) u (lift (S O) O t2)) (lift h x1
+x0))).(ex3_2_ind T T (\lambda (y0: T).(\lambda (z: T).(eq T x0 (THead (Bind
+b) y0 z)))) (\lambda (y0: T).(\lambda (_: T).(eq T u (lift h x1 y0))))
+(\lambda (_: T).(\lambda (z: T).(eq T (lift (S O) O t2) (lift h (S x1) z))))
+(ex2 T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 x0
+t4))) (\lambda (x2: T).(\lambda (x3: T).(\lambda (H5: (eq T x0 (THead (Bind
+b) x2 x3))).(\lambda (_: (eq T u (lift h x1 x2))).(\lambda (H7: (eq T (lift
+(S O) O t2) (lift h (S x1) x3))).(eq_ind_r T (THead (Bind b) x2 x3) (\lambda
+(t: T).(ex2 T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4:
+T).(pr0 t t4)))) (let H8 \def (eq_ind_r nat (plus (S O) x1) (\lambda (n:
+nat).(eq nat (S x1) n)) (refl_equal nat (plus (S O) x1)) (plus x1 (S O))
+(plus_comm x1 (S O))) in (let H9 \def (eq_ind nat (S x1) (\lambda (n:
+nat).(eq T (lift (S O) O t2) (lift h n x3))) H7 (plus x1 (S O)) H8) in
+(ex2_ind T (\lambda (t4: T).(eq T x3 (lift (S O) O t4))) (\lambda (t4: T).(eq
+T t2 (lift h x1 t4))) (ex2 T (\lambda (t4: T).(eq T t3 (lift h x1 t4)))
+(\lambda (t4: T).(pr0 (THead (Bind b) x2 x3) t4))) (\lambda (x4: T).(\lambda
+(H10: (eq T x3 (lift (S O) O x4))).(\lambda (H11: (eq T t2 (lift h x1
+x4))).(eq_ind_r T (lift (S O) O x4) (\lambda (t: T).(ex2 T (\lambda (t4:
+T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Bind b) x2 t)
+t4)))) (ex2_ind T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4:
+T).(pr0 x4 t4)) (ex2 T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda
+(t4: T).(pr0 (THead (Bind b) x2 (lift (S O) O x4)) t4))) (\lambda (x5:
+T).(\lambda (H_x: (eq T t3 (lift h x1 x5))).(\lambda (H12: (pr0 x4
+x5)).(eq_ind_r T (lift h x1 x5) (\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T
+t (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Bind b) x2 (lift (S O) O
+x4)) t4)))) (ex_intro2 T (\lambda (t4: T).(eq T (lift h x1 x5) (lift h x1
+t4))) (\lambda (t4: T).(pr0 (THead (Bind b) x2 (lift (S O) O x4)) t4)) x5
+(refl_equal T (lift h x1 x5)) (pr0_zeta b H1 x4 x5 H12 x2)) t3 H_x)))) (H3 x4
+x1 H11)) x3 H10)))) (lift_gen_lift t2 x3 (S O) h O x1 (le_O_n x1) H9)))) x0
+H5)))))) (lift_gen_bind b u (lift (S O) O t2) x0 h x1 H4)))))))))))) (\lambda
+(t2: T).(\lambda (t3: T).(\lambda (_: (pr0 t2 t3)).(\lambda (H2: ((\forall
+(x0: T).(\forall (x1: nat).((eq T t2 (lift h x1 x0)) \to (ex2 T (\lambda (t4:
+T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 x0 t4)))))))).(\lambda (u:
+T).(\lambda (x0: T).(\lambda (x1: nat).(\lambda (H3: (eq T (THead (Flat Cast)
+u t2) (lift h x1 x0))).(ex3_2_ind T T (\lambda (y0: T).(\lambda (z: T).(eq T
+x0 (THead (Flat Cast) y0 z)))) (\lambda (y0: T).(\lambda (_: T).(eq T u (lift
+h x1 y0)))) (\lambda (_: T).(\lambda (z: T).(eq T t2 (lift h x1 z)))) (ex2 T
+(\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 x0 t4)))
+(\lambda (x2: T).(\lambda (x3: T).(\lambda (H4: (eq T x0 (THead (Flat Cast)
+x2 x3))).(\lambda (_: (eq T u (lift h x1 x2))).(\lambda (H6: (eq T t2 (lift h
+x1 x3))).(eq_ind_r T (THead (Flat Cast) x2 x3) (\lambda (t: T).(ex2 T
+(\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0 t t4))))
+(ex2_ind T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4: T).(pr0
+x3 t4)) (ex2 T (\lambda (t4: T).(eq T t3 (lift h x1 t4))) (\lambda (t4:
+T).(pr0 (THead (Flat Cast) x2 x3) t4))) (\lambda (x4: T).(\lambda (H_x: (eq T
+t3 (lift h x1 x4))).(\lambda (H7: (pr0 x3 x4)).(eq_ind_r T (lift h x1 x4)
+(\lambda (t: T).(ex2 T (\lambda (t4: T).(eq T t (lift h x1 t4))) (\lambda
+(t4: T).(pr0 (THead (Flat Cast) x2 x3) t4)))) (ex_intro2 T (\lambda (t4:
+T).(eq T (lift h x1 x4) (lift h x1 t4))) (\lambda (t4: T).(pr0 (THead (Flat
+Cast) x2 x3) t4)) x4 (refl_equal T (lift h x1 x4)) (pr0_epsilon x3 x4 H7 x2))
+t3 H_x)))) (H2 x3 x1 H6)) x0 H4)))))) (lift_gen_flat Cast u t2 x0 h x1
+H3)))))))))) y x H0))))) H))))).
+
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/LambdaDelta/pr0/pr0".
+
+include "pr0/fwd.ma".
+
+include "lift/tlt.ma".
+
+theorem pr0_confluence__pr0_cong_upsilon_refl:
+ \forall (b: B).((not (eq B b Abst)) \to (\forall (u0: T).(\forall (u3:
+T).((pr0 u0 u3) \to (\forall (t4: T).(\forall (t5: T).((pr0 t4 t5) \to
+(\forall (u2: T).(\forall (v2: T).(\forall (x: T).((pr0 u2 x) \to ((pr0 v2 x)
+\to (ex2 T (\lambda (t: T).(pr0 (THead (Flat Appl) u2 (THead (Bind b) u0 t4))
+t)) (\lambda (t: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O
+v2) t5)) t)))))))))))))))
+\def
+ \lambda (b: B).(\lambda (H: (not (eq B b Abst))).(\lambda (u0: T).(\lambda
+(u3: T).(\lambda (H0: (pr0 u0 u3)).(\lambda (t4: T).(\lambda (t5: T).(\lambda
+(H1: (pr0 t4 t5)).(\lambda (u2: T).(\lambda (v2: T).(\lambda (x: T).(\lambda
+(H2: (pr0 u2 x)).(\lambda (H3: (pr0 v2 x)).(ex_intro2 T (\lambda (t: T).(pr0
+(THead (Flat Appl) u2 (THead (Bind b) u0 t4)) t)) (\lambda (t: T).(pr0 (THead
+(Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t5)) t)) (THead (Bind b) u3
+(THead (Flat Appl) (lift (S O) O x) t5)) (pr0_upsilon b H u2 x H2 u0 u3 H0 t4
+t5 H1) (pr0_comp u3 u3 (pr0_refl u3) (THead (Flat Appl) (lift (S O) O v2) t5)
+(THead (Flat Appl) (lift (S O) O x) t5) (pr0_comp (lift (S O) O v2) (lift (S
+O) O x) (pr0_lift v2 x H3 (S O) O) t5 t5 (pr0_refl t5) (Flat Appl)) (Bind
+b))))))))))))))).
+
+theorem pr0_confluence__pr0_cong_upsilon_cong:
+ \forall (b: B).((not (eq B b Abst)) \to (\forall (u2: T).(\forall (v2:
+T).(\forall (x: T).((pr0 u2 x) \to ((pr0 v2 x) \to (\forall (t2: T).(\forall
+(t5: T).(\forall (x0: T).((pr0 t2 x0) \to ((pr0 t5 x0) \to (\forall (u5:
+T).(\forall (u3: T).(\forall (x1: T).((pr0 u5 x1) \to ((pr0 u3 x1) \to (ex2 T
+(\lambda (t: T).(pr0 (THead (Flat Appl) u2 (THead (Bind b) u5 t2)) t))
+(\lambda (t: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2)
+t5)) t)))))))))))))))))))
+\def
+ \lambda (b: B).(\lambda (H: (not (eq B b Abst))).(\lambda (u2: T).(\lambda
+(v2: T).(\lambda (x: T).(\lambda (H0: (pr0 u2 x)).(\lambda (H1: (pr0 v2
+x)).(\lambda (t2: T).(\lambda (t5: T).(\lambda (x0: T).(\lambda (H2: (pr0 t2
+x0)).(\lambda (H3: (pr0 t5 x0)).(\lambda (u5: T).(\lambda (u3: T).(\lambda
+(x1: T).(\lambda (H4: (pr0 u5 x1)).(\lambda (H5: (pr0 u3 x1)).(ex_intro2 T
+(\lambda (t: T).(pr0 (THead (Flat Appl) u2 (THead (Bind b) u5 t2)) t))
+(\lambda (t: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2)
+t5)) t)) (THead (Bind b) x1 (THead (Flat Appl) (lift (S O) O x) x0))
+(pr0_upsilon b H u2 x H0 u5 x1 H4 t2 x0 H2) (pr0_comp u3 x1 H5 (THead (Flat
+Appl) (lift (S O) O v2) t5) (THead (Flat Appl) (lift (S O) O x) x0) (pr0_comp
+(lift (S O) O v2) (lift (S O) O x) (pr0_lift v2 x H1 (S O) O) t5 x0 H3 (Flat
+Appl)) (Bind b))))))))))))))))))).
+
+theorem pr0_confluence__pr0_cong_upsilon_delta:
+ (not (eq B Abbr Abst)) \to (\forall (u5: T).(\forall (t2: T).(\forall (w:
+T).((subst0 O u5 t2 w) \to (\forall (u2: T).(\forall (v2: T).(\forall (x:
+T).((pr0 u2 x) \to ((pr0 v2 x) \to (\forall (t5: T).(\forall (x0: T).((pr0 t2
+x0) \to ((pr0 t5 x0) \to (\forall (u3: T).(\forall (x1: T).((pr0 u5 x1) \to
+((pr0 u3 x1) \to (ex2 T (\lambda (t: T).(pr0 (THead (Flat Appl) u2 (THead
+(Bind Abbr) u5 w)) t)) (\lambda (t: T).(pr0 (THead (Bind Abbr) u3 (THead
+(Flat Appl) (lift (S O) O v2) t5)) t))))))))))))))))))))
+\def
+ \lambda (H: (not (eq B Abbr Abst))).(\lambda (u5: T).(\lambda (t2:
+T).(\lambda (w: T).(\lambda (H0: (subst0 O u5 t2 w)).(\lambda (u2:
+T).(\lambda (v2: T).(\lambda (x: T).(\lambda (H1: (pr0 u2 x)).(\lambda (H2:
+(pr0 v2 x)).(\lambda (t5: T).(\lambda (x0: T).(\lambda (H3: (pr0 t2
+x0)).(\lambda (H4: (pr0 t5 x0)).(\lambda (u3: T).(\lambda (x1: T).(\lambda
+(H5: (pr0 u5 x1)).(\lambda (H6: (pr0 u3 x1)).(or_ind (pr0 w x0) (ex2 T
+(\lambda (w2: T).(pr0 w w2)) (\lambda (w2: T).(subst0 O x1 x0 w2))) (ex2 T
+(\lambda (t: T).(pr0 (THead (Flat Appl) u2 (THead (Bind Abbr) u5 w)) t))
+(\lambda (t: T).(pr0 (THead (Bind Abbr) u3 (THead (Flat Appl) (lift (S O) O
+v2) t5)) t))) (\lambda (H7: (pr0 w x0)).(ex_intro2 T (\lambda (t: T).(pr0
+(THead (Flat Appl) u2 (THead (Bind Abbr) u5 w)) t)) (\lambda (t: T).(pr0
+(THead (Bind Abbr) u3 (THead (Flat Appl) (lift (S O) O v2) t5)) t)) (THead
+(Bind Abbr) x1 (THead (Flat Appl) (lift (S O) O x) x0)) (pr0_upsilon Abbr H
+u2 x H1 u5 x1 H5 w x0 H7) (pr0_comp u3 x1 H6 (THead (Flat Appl) (lift (S O) O
+v2) t5) (THead (Flat Appl) (lift (S O) O x) x0) (pr0_comp (lift (S O) O v2)
+(lift (S O) O x) (pr0_lift v2 x H2 (S O) O) t5 x0 H4 (Flat Appl)) (Bind
+Abbr)))) (\lambda (H7: (ex2 T (\lambda (w2: T).(pr0 w w2)) (\lambda (w2:
+T).(subst0 O x1 x0 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 w w2)) (\lambda
+(w2: T).(subst0 O x1 x0 w2)) (ex2 T (\lambda (t: T).(pr0 (THead (Flat Appl)
+u2 (THead (Bind Abbr) u5 w)) t)) (\lambda (t: T).(pr0 (THead (Bind Abbr) u3
+(THead (Flat Appl) (lift (S O) O v2) t5)) t))) (\lambda (x2: T).(\lambda (H8:
+(pr0 w x2)).(\lambda (H9: (subst0 O x1 x0 x2)).(ex_intro2 T (\lambda (t:
+T).(pr0 (THead (Flat Appl) u2 (THead (Bind Abbr) u5 w)) t)) (\lambda (t:
+T).(pr0 (THead (Bind Abbr) u3 (THead (Flat Appl) (lift (S O) O v2) t5)) t))
+(THead (Bind Abbr) x1 (THead (Flat Appl) (lift (S O) O x) x2)) (pr0_upsilon
+Abbr H u2 x H1 u5 x1 H5 w x2 H8) (pr0_delta u3 x1 H6 (THead (Flat Appl) (lift
+(S O) O v2) t5) (THead (Flat Appl) (lift (S O) O x) x0) (pr0_comp (lift (S O)
+O v2) (lift (S O) O x) (pr0_lift v2 x H2 (S O) O) t5 x0 H4 (Flat Appl))
+(THead (Flat Appl) (lift (S O) O x) x2) (subst0_snd (Flat Appl) x1 x2 x0 O H9
+(lift (S O) O x))))))) H7)) (pr0_subst0 t2 x0 H3 u5 w O H0 x1
+H5))))))))))))))))))).
+
+theorem pr0_confluence__pr0_cong_upsilon_zeta:
+ \forall (b: B).((not (eq B b Abst)) \to (\forall (u0: T).(\forall (u3:
+T).((pr0 u0 u3) \to (\forall (u2: T).(\forall (v2: T).(\forall (x0: T).((pr0
+u2 x0) \to ((pr0 v2 x0) \to (\forall (x: T).(\forall (t3: T).(\forall (x1:
+T).((pr0 x x1) \to ((pr0 t3 x1) \to (ex2 T (\lambda (t: T).(pr0 (THead (Flat
+Appl) u2 t3) t)) (\lambda (t: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl)
+(lift (S O) O v2) (lift (S O) O x))) t)))))))))))))))))
+\def
+ \lambda (b: B).(\lambda (H: (not (eq B b Abst))).(\lambda (u0: T).(\lambda
+(u3: T).(\lambda (_: (pr0 u0 u3)).(\lambda (u2: T).(\lambda (v2: T).(\lambda
+(x0: T).(\lambda (H1: (pr0 u2 x0)).(\lambda (H2: (pr0 v2 x0)).(\lambda (x:
+T).(\lambda (t3: T).(\lambda (x1: T).(\lambda (H3: (pr0 x x1)).(\lambda (H4:
+(pr0 t3 x1)).(eq_ind T (lift (S O) O (THead (Flat Appl) v2 x)) (\lambda (t:
+T).(ex2 T (\lambda (t0: T).(pr0 (THead (Flat Appl) u2 t3) t0)) (\lambda (t0:
+T).(pr0 (THead (Bind b) u3 t) t0)))) (ex_intro2 T (\lambda (t: T).(pr0 (THead
+(Flat Appl) u2 t3) t)) (\lambda (t: T).(pr0 (THead (Bind b) u3 (lift (S O) O
+(THead (Flat Appl) v2 x))) t)) (THead (Flat Appl) x0 x1) (pr0_comp u2 x0 H1
+t3 x1 H4 (Flat Appl)) (pr0_zeta b H (THead (Flat Appl) v2 x) (THead (Flat
+Appl) x0 x1) (pr0_comp v2 x0 H2 x x1 H3 (Flat Appl)) u3)) (THead (Flat Appl)
+(lift (S O) O v2) (lift (S O) O x)) (lift_flat Appl v2 x (S O)
+O)))))))))))))))).
+
+theorem pr0_confluence__pr0_cong_delta:
+ \forall (u3: T).(\forall (t5: T).(\forall (w: T).((subst0 O u3 t5 w) \to
+(\forall (u2: T).(\forall (x: T).((pr0 u2 x) \to ((pr0 u3 x) \to (\forall
+(t3: T).(\forall (x0: T).((pr0 t3 x0) \to ((pr0 t5 x0) \to (ex2 T (\lambda
+(t: T).(pr0 (THead (Bind Abbr) u2 t3) t)) (\lambda (t: T).(pr0 (THead (Bind
+Abbr) u3 w) t))))))))))))))
+\def
+ \lambda (u3: T).(\lambda (t5: T).(\lambda (w: T).(\lambda (H: (subst0 O u3
+t5 w)).(\lambda (u2: T).(\lambda (x: T).(\lambda (H0: (pr0 u2 x)).(\lambda
+(H1: (pr0 u3 x)).(\lambda (t3: T).(\lambda (x0: T).(\lambda (H2: (pr0 t3
+x0)).(\lambda (H3: (pr0 t5 x0)).(or_ind (pr0 w x0) (ex2 T (\lambda (w2:
+T).(pr0 w w2)) (\lambda (w2: T).(subst0 O x x0 w2))) (ex2 T (\lambda (t:
+T).(pr0 (THead (Bind Abbr) u2 t3) t)) (\lambda (t: T).(pr0 (THead (Bind Abbr)
+u3 w) t))) (\lambda (H4: (pr0 w x0)).(ex_intro2 T (\lambda (t: T).(pr0 (THead
+(Bind Abbr) u2 t3) t)) (\lambda (t: T).(pr0 (THead (Bind Abbr) u3 w) t))
+(THead (Bind Abbr) x x0) (pr0_comp u2 x H0 t3 x0 H2 (Bind Abbr)) (pr0_comp u3
+x H1 w x0 H4 (Bind Abbr)))) (\lambda (H4: (ex2 T (\lambda (w2: T).(pr0 w w2))
+(\lambda (w2: T).(subst0 O x x0 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 w
+w2)) (\lambda (w2: T).(subst0 O x x0 w2)) (ex2 T (\lambda (t: T).(pr0 (THead
+(Bind Abbr) u2 t3) t)) (\lambda (t: T).(pr0 (THead (Bind Abbr) u3 w) t)))
+(\lambda (x1: T).(\lambda (H5: (pr0 w x1)).(\lambda (H6: (subst0 O x x0
+x1)).(ex_intro2 T (\lambda (t: T).(pr0 (THead (Bind Abbr) u2 t3) t)) (\lambda
+(t: T).(pr0 (THead (Bind Abbr) u3 w) t)) (THead (Bind Abbr) x x1) (pr0_delta
+u2 x H0 t3 x0 H2 x1 H6) (pr0_comp u3 x H1 w x1 H5 (Bind Abbr)))))) H4))
+(pr0_subst0 t5 x0 H3 u3 w O H x H1))))))))))))).
+
+theorem pr0_confluence__pr0_upsilon_upsilon:
+ \forall (b: B).((not (eq B b Abst)) \to (\forall (v1: T).(\forall (v2:
+T).(\forall (x0: T).((pr0 v1 x0) \to ((pr0 v2 x0) \to (\forall (u1:
+T).(\forall (u2: T).(\forall (x1: T).((pr0 u1 x1) \to ((pr0 u2 x1) \to
+(\forall (t1: T).(\forall (t2: T).(\forall (x2: T).((pr0 t1 x2) \to ((pr0 t2
+x2) \to (ex2 T (\lambda (t: T).(pr0 (THead (Bind b) u1 (THead (Flat Appl)
+(lift (S O) O v1) t1)) t)) (\lambda (t: T).(pr0 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t2)) t)))))))))))))))))))
+\def
+ \lambda (b: B).(\lambda (_: (not (eq B b Abst))).(\lambda (v1: T).(\lambda
+(v2: T).(\lambda (x0: T).(\lambda (H0: (pr0 v1 x0)).(\lambda (H1: (pr0 v2
+x0)).(\lambda (u1: T).(\lambda (u2: T).(\lambda (x1: T).(\lambda (H2: (pr0 u1
+x1)).(\lambda (H3: (pr0 u2 x1)).(\lambda (t1: T).(\lambda (t2: T).(\lambda
+(x2: T).(\lambda (H4: (pr0 t1 x2)).(\lambda (H5: (pr0 t2 x2)).(ex_intro2 T
+(\lambda (t: T).(pr0 (THead (Bind b) u1 (THead (Flat Appl) (lift (S O) O v1)
+t1)) t)) (\lambda (t: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t2)) t)) (THead (Bind b) x1 (THead (Flat Appl) (lift (S O) O x0)
+x2)) (pr0_comp u1 x1 H2 (THead (Flat Appl) (lift (S O) O v1) t1) (THead (Flat
+Appl) (lift (S O) O x0) x2) (pr0_comp (lift (S O) O v1) (lift (S O) O x0)
+(pr0_lift v1 x0 H0 (S O) O) t1 x2 H4 (Flat Appl)) (Bind b)) (pr0_comp u2 x1
+H3 (THead (Flat Appl) (lift (S O) O v2) t2) (THead (Flat Appl) (lift (S O) O
+x0) x2) (pr0_comp (lift (S O) O v2) (lift (S O) O x0) (pr0_lift v2 x0 H1 (S
+O) O) t2 x2 H5 (Flat Appl)) (Bind b))))))))))))))))))).
+
+theorem pr0_confluence__pr0_delta_delta:
+ \forall (u2: T).(\forall (t3: T).(\forall (w: T).((subst0 O u2 t3 w) \to
+(\forall (u3: T).(\forall (t5: T).(\forall (w0: T).((subst0 O u3 t5 w0) \to
+(\forall (x: T).((pr0 u2 x) \to ((pr0 u3 x) \to (\forall (x0: T).((pr0 t3 x0)
+\to ((pr0 t5 x0) \to (ex2 T (\lambda (t: T).(pr0 (THead (Bind Abbr) u2 w) t))
+(\lambda (t: T).(pr0 (THead (Bind Abbr) u3 w0) t))))))))))))))))
+\def
+ \lambda (u2: T).(\lambda (t3: T).(\lambda (w: T).(\lambda (H: (subst0 O u2
+t3 w)).(\lambda (u3: T).(\lambda (t5: T).(\lambda (w0: T).(\lambda (H0:
+(subst0 O u3 t5 w0)).(\lambda (x: T).(\lambda (H1: (pr0 u2 x)).(\lambda (H2:
+(pr0 u3 x)).(\lambda (x0: T).(\lambda (H3: (pr0 t3 x0)).(\lambda (H4: (pr0 t5
+x0)).(or_ind (pr0 w0 x0) (ex2 T (\lambda (w2: T).(pr0 w0 w2)) (\lambda (w2:
+T).(subst0 O x x0 w2))) (ex2 T (\lambda (t: T).(pr0 (THead (Bind Abbr) u2 w)
+t)) (\lambda (t: T).(pr0 (THead (Bind Abbr) u3 w0) t))) (\lambda (H5: (pr0 w0
+x0)).(or_ind (pr0 w x0) (ex2 T (\lambda (w2: T).(pr0 w w2)) (\lambda (w2:
+T).(subst0 O x x0 w2))) (ex2 T (\lambda (t: T).(pr0 (THead (Bind Abbr) u2 w)
+t)) (\lambda (t: T).(pr0 (THead (Bind Abbr) u3 w0) t))) (\lambda (H6: (pr0 w
+x0)).(ex_intro2 T (\lambda (t: T).(pr0 (THead (Bind Abbr) u2 w) t)) (\lambda
+(t: T).(pr0 (THead (Bind Abbr) u3 w0) t)) (THead (Bind Abbr) x x0) (pr0_comp
+u2 x H1 w x0 H6 (Bind Abbr)) (pr0_comp u3 x H2 w0 x0 H5 (Bind Abbr))))
+(\lambda (H6: (ex2 T (\lambda (w2: T).(pr0 w w2)) (\lambda (w2: T).(subst0 O
+x x0 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 w w2)) (\lambda (w2: T).(subst0
+O x x0 w2)) (ex2 T (\lambda (t: T).(pr0 (THead (Bind Abbr) u2 w) t)) (\lambda
+(t: T).(pr0 (THead (Bind Abbr) u3 w0) t))) (\lambda (x1: T).(\lambda (H7:
+(pr0 w x1)).(\lambda (H8: (subst0 O x x0 x1)).(ex_intro2 T (\lambda (t:
+T).(pr0 (THead (Bind Abbr) u2 w) t)) (\lambda (t: T).(pr0 (THead (Bind Abbr)
+u3 w0) t)) (THead (Bind Abbr) x x1) (pr0_comp u2 x H1 w x1 H7 (Bind Abbr))
+(pr0_delta u3 x H2 w0 x0 H5 x1 H8))))) H6)) (pr0_subst0 t3 x0 H3 u2 w O H x
+H1))) (\lambda (H5: (ex2 T (\lambda (w2: T).(pr0 w0 w2)) (\lambda (w2:
+T).(subst0 O x x0 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 w0 w2)) (\lambda
+(w2: T).(subst0 O x x0 w2)) (ex2 T (\lambda (t: T).(pr0 (THead (Bind Abbr) u2
+w) t)) (\lambda (t: T).(pr0 (THead (Bind Abbr) u3 w0) t))) (\lambda (x1:
+T).(\lambda (H6: (pr0 w0 x1)).(\lambda (H7: (subst0 O x x0 x1)).(or_ind (pr0
+w x0) (ex2 T (\lambda (w2: T).(pr0 w w2)) (\lambda (w2: T).(subst0 O x x0
+w2))) (ex2 T (\lambda (t: T).(pr0 (THead (Bind Abbr) u2 w) t)) (\lambda (t:
+T).(pr0 (THead (Bind Abbr) u3 w0) t))) (\lambda (H8: (pr0 w x0)).(ex_intro2 T
+(\lambda (t: T).(pr0 (THead (Bind Abbr) u2 w) t)) (\lambda (t: T).(pr0 (THead
+(Bind Abbr) u3 w0) t)) (THead (Bind Abbr) x x1) (pr0_delta u2 x H1 w x0 H8 x1
+H7) (pr0_comp u3 x H2 w0 x1 H6 (Bind Abbr)))) (\lambda (H8: (ex2 T (\lambda
+(w2: T).(pr0 w w2)) (\lambda (w2: T).(subst0 O x x0 w2)))).(ex2_ind T
+(\lambda (w2: T).(pr0 w w2)) (\lambda (w2: T).(subst0 O x x0 w2)) (ex2 T
+(\lambda (t: T).(pr0 (THead (Bind Abbr) u2 w) t)) (\lambda (t: T).(pr0 (THead
+(Bind Abbr) u3 w0) t))) (\lambda (x2: T).(\lambda (H9: (pr0 w x2)).(\lambda
+(H10: (subst0 O x x0 x2)).(or4_ind (eq T x2 x1) (ex2 T (\lambda (t:
+T).(subst0 O x x2 t)) (\lambda (t: T).(subst0 O x x1 t))) (subst0 O x x2 x1)
+(subst0 O x x1 x2) (ex2 T (\lambda (t: T).(pr0 (THead (Bind Abbr) u2 w) t))
+(\lambda (t: T).(pr0 (THead (Bind Abbr) u3 w0) t))) (\lambda (H11: (eq T x2
+x1)).(let H12 \def (eq_ind T x2 (\lambda (t: T).(pr0 w t)) H9 x1 H11) in
+(ex_intro2 T (\lambda (t: T).(pr0 (THead (Bind Abbr) u2 w) t)) (\lambda (t:
+T).(pr0 (THead (Bind Abbr) u3 w0) t)) (THead (Bind Abbr) x x1) (pr0_comp u2 x
+H1 w x1 H12 (Bind Abbr)) (pr0_comp u3 x H2 w0 x1 H6 (Bind Abbr))))) (\lambda
+(H11: (ex2 T (\lambda (t: T).(subst0 O x x2 t)) (\lambda (t: T).(subst0 O x
+x1 t)))).(ex2_ind T (\lambda (t: T).(subst0 O x x2 t)) (\lambda (t:
+T).(subst0 O x x1 t)) (ex2 T (\lambda (t: T).(pr0 (THead (Bind Abbr) u2 w)
+t)) (\lambda (t: T).(pr0 (THead (Bind Abbr) u3 w0) t))) (\lambda (x3:
+T).(\lambda (H12: (subst0 O x x2 x3)).(\lambda (H13: (subst0 O x x1
+x3)).(ex_intro2 T (\lambda (t: T).(pr0 (THead (Bind Abbr) u2 w) t)) (\lambda
+(t: T).(pr0 (THead (Bind Abbr) u3 w0) t)) (THead (Bind Abbr) x x3) (pr0_delta
+u2 x H1 w x2 H9 x3 H12) (pr0_delta u3 x H2 w0 x1 H6 x3 H13))))) H11))
+(\lambda (H11: (subst0 O x x2 x1)).(ex_intro2 T (\lambda (t: T).(pr0 (THead
+(Bind Abbr) u2 w) t)) (\lambda (t: T).(pr0 (THead (Bind Abbr) u3 w0) t))
+(THead (Bind Abbr) x x1) (pr0_delta u2 x H1 w x2 H9 x1 H11) (pr0_comp u3 x H2
+w0 x1 H6 (Bind Abbr)))) (\lambda (H11: (subst0 O x x1 x2)).(ex_intro2 T
+(\lambda (t: T).(pr0 (THead (Bind Abbr) u2 w) t)) (\lambda (t: T).(pr0 (THead
+(Bind Abbr) u3 w0) t)) (THead (Bind Abbr) x x2) (pr0_comp u2 x H1 w x2 H9
+(Bind Abbr)) (pr0_delta u3 x H2 w0 x1 H6 x2 H11))) (subst0_confluence_eq x0
+x2 x O H10 x1 H7))))) H8)) (pr0_subst0 t3 x0 H3 u2 w O H x H1))))) H5))
+(pr0_subst0 t5 x0 H4 u3 w0 O H0 x H2))))))))))))))).
+
+theorem pr0_confluence__pr0_delta_epsilon:
+ \forall (u2: T).(\forall (t3: T).(\forall (w: T).((subst0 O u2 t3 w) \to
+(\forall (t4: T).((pr0 (lift (S O) O t4) t3) \to (\forall (t2: T).(ex2 T
+(\lambda (t: T).(pr0 (THead (Bind Abbr) u2 w) t)) (\lambda (t: T).(pr0 t2
+t)))))))))
+\def
+ \lambda (u2: T).(\lambda (t3: T).(\lambda (w: T).(\lambda (H: (subst0 O u2
+t3 w)).(\lambda (t4: T).(\lambda (H0: (pr0 (lift (S O) O t4) t3)).(\lambda
+(t2: T).(ex2_ind T (\lambda (t5: T).(eq T t3 (lift (S O) O t5))) (\lambda
+(t5: T).(pr0 t4 t5)) (ex2 T (\lambda (t: T).(pr0 (THead (Bind Abbr) u2 w) t))
+(\lambda (t: T).(pr0 t2 t))) (\lambda (x: T).(\lambda (H1: (eq T t3 (lift (S
+O) O x))).(\lambda (_: (pr0 t4 x)).(let H3 \def (eq_ind T t3 (\lambda (t:
+T).(subst0 O u2 t w)) H (lift (S O) O x) H1) in (subst0_gen_lift_false x u2 w
+(S O) O O (le_n O) (eq_ind_r nat (plus (S O) O) (\lambda (n: nat).(lt O n))
+(le_n (plus (S O) O)) (plus O (S O)) (plus_comm O (S O))) H3 (ex2 T (\lambda
+(t: T).(pr0 (THead (Bind Abbr) u2 w) t)) (\lambda (t: T).(pr0 t2 t))))))))
+(pr0_gen_lift t4 t3 (S O) O H0)))))))).
+
+theorem pr0_confluence:
+ \forall (t0: T).(\forall (t1: T).((pr0 t0 t1) \to (\forall (t2: T).((pr0 t0
+t2) \to (ex2 T (\lambda (t: T).(pr0 t1 t)) (\lambda (t: T).(pr0 t2 t)))))))
+\def
+ \lambda (t0: T).(tlt_wf_ind (\lambda (t: T).(\forall (t1: T).((pr0 t t1) \to
+(\forall (t2: T).((pr0 t t2) \to (ex2 T (\lambda (t3: T).(pr0 t1 t3))
+(\lambda (t3: T).(pr0 t2 t3)))))))) (\lambda (t: T).(\lambda (H: ((\forall
+(v: T).((tlt v t) \to (\forall (t1: T).((pr0 v t1) \to (\forall (t2: T).((pr0
+v t2) \to (ex2 T (\lambda (t3: T).(pr0 t1 t3)) (\lambda (t3: T).(pr0 t2
+t3))))))))))).(\lambda (t1: T).(\lambda (H0: (pr0 t t1)).(\lambda (t2:
+T).(\lambda (H1: (pr0 t t2)).(let H2 \def (match H0 in pr0 return (\lambda
+(t3: T).(\lambda (t4: T).(\lambda (_: (pr0 t3 t4)).((eq T t3 t) \to ((eq T t4
+t1) \to (ex2 T (\lambda (t5: T).(pr0 t1 t5)) (\lambda (t5: T).(pr0 t2
+t5)))))))) with [(pr0_refl t3) \Rightarrow (\lambda (H2: (eq T t3
+t)).(\lambda (H3: (eq T t3 t1)).(eq_ind T t (\lambda (t4: T).((eq T t4 t1)
+\to (ex2 T (\lambda (t5: T).(pr0 t1 t5)) (\lambda (t5: T).(pr0 t2 t5)))))
+(\lambda (H4: (eq T t t1)).(eq_ind T t1 (\lambda (_: T).(ex2 T (\lambda (t5:
+T).(pr0 t1 t5)) (\lambda (t5: T).(pr0 t2 t5)))) (let H5 \def (match H1 in pr0
+return (\lambda (t4: T).(\lambda (t5: T).(\lambda (_: (pr0 t4 t5)).((eq T t4
+t) \to ((eq T t5 t2) \to (ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6:
+T).(pr0 t2 t6)))))))) with [(pr0_refl t4) \Rightarrow (\lambda (H5: (eq T t4
+t)).(\lambda (H6: (eq T t4 t2)).(eq_ind T t (\lambda (t5: T).((eq T t5 t2)
+\to (ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t2 t6)))))
+(\lambda (H7: (eq T t t2)).(eq_ind T t2 (\lambda (_: T).(ex2 T (\lambda (t6:
+T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t2 t6)))) (let H8 \def (eq_ind T t
+(\lambda (t5: T).(eq T t4 t5)) H5 t2 H7) in (let H9 \def (eq_ind T t (\lambda
+(t5: T).(eq T t5 t1)) H4 t2 H7) in (let H10 \def (eq_ind T t (\lambda (t5:
+T).(eq T t3 t5)) H2 t2 H7) in (let H11 \def (eq_ind T t (\lambda (t5:
+T).(\forall (v: T).((tlt v t5) \to (\forall (t6: T).((pr0 v t6) \to (\forall
+(t7: T).((pr0 v t7) \to (ex2 T (\lambda (t8: T).(pr0 t6 t8)) (\lambda (t8:
+T).(pr0 t7 t8)))))))))) H t2 H7) in (let H12 \def (eq_ind T t2 (\lambda (t5:
+T).(\forall (v: T).((tlt v t5) \to (\forall (t6: T).((pr0 v t6) \to (\forall
+(t7: T).((pr0 v t7) \to (ex2 T (\lambda (t8: T).(pr0 t6 t8)) (\lambda (t8:
+T).(pr0 t7 t8)))))))))) H11 t1 H9) in (eq_ind_r T t1 (\lambda (t5: T).(ex2 T
+(\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t5 t6)))) (let H13 \def
+(eq_ind T t2 (\lambda (t5: T).(eq T t3 t5)) H10 t1 H9) in (ex_intro2 T
+(\lambda (t5: T).(pr0 t1 t5)) (\lambda (t5: T).(pr0 t1 t5)) t1 (pr0_refl t1)
+(pr0_refl t1))) t2 H9)))))) t (sym_eq T t t2 H7))) t4 (sym_eq T t4 t H5)
+H6))) | (pr0_comp u1 u2 H5 t4 t5 H6 k) \Rightarrow (\lambda (H7: (eq T (THead
+k u1 t4) t)).(\lambda (H8: (eq T (THead k u2 t5) t2)).(eq_ind T (THead k u1
+t4) (\lambda (_: T).((eq T (THead k u2 t5) t2) \to ((pr0 u1 u2) \to ((pr0 t4
+t5) \to (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2
+t7))))))) (\lambda (H9: (eq T (THead k u2 t5) t2)).(eq_ind T (THead k u2 t5)
+(\lambda (t6: T).((pr0 u1 u2) \to ((pr0 t4 t5) \to (ex2 T (\lambda (t7:
+T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t6 t7)))))) (\lambda (H10: (pr0 u1
+u2)).(\lambda (H11: (pr0 t4 t5)).(let H12 \def (eq_ind_r T t (\lambda (t6:
+T).(eq T t6 t1)) H4 (THead k u1 t4) H7) in (eq_ind T (THead k u1 t4) (\lambda
+(t6: T).(ex2 T (\lambda (t7: T).(pr0 t6 t7)) (\lambda (t7: T).(pr0 (THead k
+u2 t5) t7)))) (let H13 \def (eq_ind_r T t (\lambda (t6: T).(eq T t3 t6)) H2
+(THead k u1 t4) H7) in (let H14 \def (eq_ind_r T t (\lambda (t6: T).(\forall
+(v: T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7) \to (\forall (t8:
+T).((pr0 v t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9)) (\lambda (t9: T).(pr0
+t8 t9)))))))))) H (THead k u1 t4) H7) in (ex_intro2 T (\lambda (t6: T).(pr0
+(THead k u1 t4) t6)) (\lambda (t6: T).(pr0 (THead k u2 t5) t6)) (THead k u2
+t5) (pr0_comp u1 u2 H10 t4 t5 H11 k) (pr0_refl (THead k u2 t5))))) t1 H12))))
+t2 H9)) t H7 H8 H5 H6))) | (pr0_beta u v1 v2 H5 t4 t5 H6) \Rightarrow
+(\lambda (H7: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t4))
+t)).(\lambda (H8: (eq T (THead (Bind Abbr) v2 t5) t2)).(eq_ind T (THead (Flat
+Appl) v1 (THead (Bind Abst) u t4)) (\lambda (_: T).((eq T (THead (Bind Abbr)
+v2 t5) t2) \to ((pr0 v1 v2) \to ((pr0 t4 t5) \to (ex2 T (\lambda (t7: T).(pr0
+t1 t7)) (\lambda (t7: T).(pr0 t2 t7))))))) (\lambda (H9: (eq T (THead (Bind
+Abbr) v2 t5) t2)).(eq_ind T (THead (Bind Abbr) v2 t5) (\lambda (t6: T).((pr0
+v1 v2) \to ((pr0 t4 t5) \to (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda
+(t7: T).(pr0 t6 t7)))))) (\lambda (H10: (pr0 v1 v2)).(\lambda (H11: (pr0 t4
+t5)).(let H12 \def (eq_ind_r T t (\lambda (t6: T).(eq T t6 t1)) H4 (THead
+(Flat Appl) v1 (THead (Bind Abst) u t4)) H7) in (eq_ind T (THead (Flat Appl)
+v1 (THead (Bind Abst) u t4)) (\lambda (t6: T).(ex2 T (\lambda (t7: T).(pr0 t6
+t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t5) t7)))) (let H13 \def
+(eq_ind_r T t (\lambda (t6: T).(eq T t3 t6)) H2 (THead (Flat Appl) v1 (THead
+(Bind Abst) u t4)) H7) in (let H14 \def (eq_ind_r T t (\lambda (t6:
+T).(\forall (v: T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7) \to (\forall
+(t8: T).((pr0 v t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9)) (\lambda (t9:
+T).(pr0 t8 t9)))))))))) H (THead (Flat Appl) v1 (THead (Bind Abst) u t4)) H7)
+in (ex_intro2 T (\lambda (t6: T).(pr0 (THead (Flat Appl) v1 (THead (Bind
+Abst) u t4)) t6)) (\lambda (t6: T).(pr0 (THead (Bind Abbr) v2 t5) t6)) (THead
+(Bind Abbr) v2 t5) (pr0_beta u v1 v2 H10 t4 t5 H11) (pr0_refl (THead (Bind
+Abbr) v2 t5))))) t1 H12)))) t2 H9)) t H7 H8 H5 H6))) | (pr0_upsilon b H5 v1
+v2 H6 u1 u2 H7 t4 t5 H8) \Rightarrow (\lambda (H9: (eq T (THead (Flat Appl)
+v1 (THead (Bind b) u1 t4)) t)).(\lambda (H10: (eq T (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t5)) t2)).(eq_ind T (THead (Flat Appl) v1
+(THead (Bind b) u1 t4)) (\lambda (_: T).((eq T (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t5)) t2) \to ((not (eq B b Abst)) \to ((pr0 v1
+v2) \to ((pr0 u1 u2) \to ((pr0 t4 t5) \to (ex2 T (\lambda (t7: T).(pr0 t1
+t7)) (\lambda (t7: T).(pr0 t2 t7))))))))) (\lambda (H11: (eq T (THead (Bind
+b) u2 (THead (Flat Appl) (lift (S O) O v2) t5)) t2)).(eq_ind T (THead (Bind
+b) u2 (THead (Flat Appl) (lift (S O) O v2) t5)) (\lambda (t6: T).((not (eq B
+b Abst)) \to ((pr0 v1 v2) \to ((pr0 u1 u2) \to ((pr0 t4 t5) \to (ex2 T
+(\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t6 t7)))))))) (\lambda
+(H12: (not (eq B b Abst))).(\lambda (H13: (pr0 v1 v2)).(\lambda (H14: (pr0 u1
+u2)).(\lambda (H15: (pr0 t4 t5)).(let H16 \def (eq_ind_r T t (\lambda (t6:
+T).(eq T t6 t1)) H4 (THead (Flat Appl) v1 (THead (Bind b) u1 t4)) H9) in
+(eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u1 t4)) (\lambda (t6: T).(ex2
+T (\lambda (t7: T).(pr0 t6 t7)) (\lambda (t7: T).(pr0 (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t5)) t7)))) (let H17 \def (eq_ind_r T t
+(\lambda (t6: T).(eq T t3 t6)) H2 (THead (Flat Appl) v1 (THead (Bind b) u1
+t4)) H9) in (let H18 \def (eq_ind_r T t (\lambda (t6: T).(\forall (v:
+T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7) \to (\forall (t8: T).((pr0 v
+t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9)) (\lambda (t9: T).(pr0 t8
+t9)))))))))) H (THead (Flat Appl) v1 (THead (Bind b) u1 t4)) H9) in
+(pr0_confluence__pr0_cong_upsilon_refl b H12 u1 u2 H14 t4 t5 H15 v1 v2 v2 H13
+(pr0_refl v2)))) t1 H16)))))) t2 H11)) t H9 H10 H5 H6 H7 H8))) | (pr0_delta
+u1 u2 H5 t4 t5 H6 w H7) \Rightarrow (\lambda (H8: (eq T (THead (Bind Abbr) u1
+t4) t)).(\lambda (H9: (eq T (THead (Bind Abbr) u2 w) t2)).(eq_ind T (THead
+(Bind Abbr) u1 t4) (\lambda (_: T).((eq T (THead (Bind Abbr) u2 w) t2) \to
+((pr0 u1 u2) \to ((pr0 t4 t5) \to ((subst0 O u2 t5 w) \to (ex2 T (\lambda
+(t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7)))))))) (\lambda (H10: (eq T
+(THead (Bind Abbr) u2 w) t2)).(eq_ind T (THead (Bind Abbr) u2 w) (\lambda
+(t6: T).((pr0 u1 u2) \to ((pr0 t4 t5) \to ((subst0 O u2 t5 w) \to (ex2 T
+(\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t6 t7))))))) (\lambda
+(H11: (pr0 u1 u2)).(\lambda (H12: (pr0 t4 t5)).(\lambda (H13: (subst0 O u2 t5
+w)).(let H14 \def (eq_ind_r T t (\lambda (t6: T).(eq T t6 t1)) H4 (THead
+(Bind Abbr) u1 t4) H8) in (eq_ind T (THead (Bind Abbr) u1 t4) (\lambda (t6:
+T).(ex2 T (\lambda (t7: T).(pr0 t6 t7)) (\lambda (t7: T).(pr0 (THead (Bind
+Abbr) u2 w) t7)))) (let H15 \def (eq_ind_r T t (\lambda (t6: T).(eq T t3 t6))
+H2 (THead (Bind Abbr) u1 t4) H8) in (let H16 \def (eq_ind_r T t (\lambda (t6:
+T).(\forall (v: T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7) \to (\forall
+(t8: T).((pr0 v t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9)) (\lambda (t9:
+T).(pr0 t8 t9)))))))))) H (THead (Bind Abbr) u1 t4) H8) in (ex_intro2 T
+(\lambda (t6: T).(pr0 (THead (Bind Abbr) u1 t4) t6)) (\lambda (t6: T).(pr0
+(THead (Bind Abbr) u2 w) t6)) (THead (Bind Abbr) u2 w) (pr0_delta u1 u2 H11
+t4 t5 H12 w H13) (pr0_refl (THead (Bind Abbr) u2 w))))) t1 H14))))) t2 H10))
+t H8 H9 H5 H6 H7))) | (pr0_zeta b H5 t4 t5 H6 u) \Rightarrow (\lambda (H7:
+(eq T (THead (Bind b) u (lift (S O) O t4)) t)).(\lambda (H8: (eq T t5
+t2)).(eq_ind T (THead (Bind b) u (lift (S O) O t4)) (\lambda (_: T).((eq T t5
+t2) \to ((not (eq B b Abst)) \to ((pr0 t4 t5) \to (ex2 T (\lambda (t7:
+T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))))))) (\lambda (H9: (eq T t5
+t2)).(eq_ind T t2 (\lambda (t6: T).((not (eq B b Abst)) \to ((pr0 t4 t6) \to
+(ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))))))
+(\lambda (H10: (not (eq B b Abst))).(\lambda (H11: (pr0 t4 t2)).(let H12 \def
+(eq_ind_r T t (\lambda (t6: T).(eq T t6 t1)) H4 (THead (Bind b) u (lift (S O)
+O t4)) H7) in (eq_ind T (THead (Bind b) u (lift (S O) O t4)) (\lambda (t6:
+T).(ex2 T (\lambda (t7: T).(pr0 t6 t7)) (\lambda (t7: T).(pr0 t2 t7)))) (let
+H13 \def (eq_ind_r T t (\lambda (t6: T).(eq T t3 t6)) H2 (THead (Bind b) u
+(lift (S O) O t4)) H7) in (let H14 \def (eq_ind_r T t (\lambda (t6:
+T).(\forall (v: T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7) \to (\forall
+(t8: T).((pr0 v t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9)) (\lambda (t9:
+T).(pr0 t8 t9)))))))))) H (THead (Bind b) u (lift (S O) O t4)) H7) in
+(ex_intro2 T (\lambda (t6: T).(pr0 (THead (Bind b) u (lift (S O) O t4)) t6))
+(\lambda (t6: T).(pr0 t2 t6)) t2 (pr0_zeta b H10 t4 t2 H11 u) (pr0_refl
+t2)))) t1 H12)))) t5 (sym_eq T t5 t2 H9))) t H7 H8 H5 H6))) | (pr0_epsilon t4
+t5 H5 u) \Rightarrow (\lambda (H6: (eq T (THead (Flat Cast) u t4)
+t)).(\lambda (H7: (eq T t5 t2)).(eq_ind T (THead (Flat Cast) u t4) (\lambda
+(_: T).((eq T t5 t2) \to ((pr0 t4 t5) \to (ex2 T (\lambda (t7: T).(pr0 t1
+t7)) (\lambda (t7: T).(pr0 t2 t7)))))) (\lambda (H8: (eq T t5 t2)).(eq_ind T
+t2 (\lambda (t6: T).((pr0 t4 t6) \to (ex2 T (\lambda (t7: T).(pr0 t1 t7))
+(\lambda (t7: T).(pr0 t2 t7))))) (\lambda (H9: (pr0 t4 t2)).(let H10 \def
+(eq_ind_r T t (\lambda (t6: T).(eq T t6 t1)) H4 (THead (Flat Cast) u t4) H6)
+in (eq_ind T (THead (Flat Cast) u t4) (\lambda (t6: T).(ex2 T (\lambda (t7:
+T).(pr0 t6 t7)) (\lambda (t7: T).(pr0 t2 t7)))) (let H11 \def (eq_ind_r T t
+(\lambda (t6: T).(eq T t3 t6)) H2 (THead (Flat Cast) u t4) H6) in (let H12
+\def (eq_ind_r T t (\lambda (t6: T).(\forall (v: T).((tlt v t6) \to (\forall
+(t7: T).((pr0 v t7) \to (\forall (t8: T).((pr0 v t8) \to (ex2 T (\lambda (t9:
+T).(pr0 t7 t9)) (\lambda (t9: T).(pr0 t8 t9)))))))))) H (THead (Flat Cast) u
+t4) H6) in (ex_intro2 T (\lambda (t6: T).(pr0 (THead (Flat Cast) u t4) t6))
+(\lambda (t6: T).(pr0 t2 t6)) t2 (pr0_epsilon t4 t2 H9 u) (pr0_refl t2)))) t1
+H10))) t5 (sym_eq T t5 t2 H8))) t H6 H7 H5)))]) in (H5 (refl_equal T t)
+(refl_equal T t2))) t (sym_eq T t t1 H4))) t3 (sym_eq T t3 t H2) H3))) |
+(pr0_comp u1 u2 H2 t3 t4 H3 k) \Rightarrow (\lambda (H4: (eq T (THead k u1
+t3) t)).(\lambda (H5: (eq T (THead k u2 t4) t1)).(eq_ind T (THead k u1 t3)
+(\lambda (_: T).((eq T (THead k u2 t4) t1) \to ((pr0 u1 u2) \to ((pr0 t3 t4)
+\to (ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t2 t6)))))))
+(\lambda (H6: (eq T (THead k u2 t4) t1)).(eq_ind T (THead k u2 t4) (\lambda
+(t5: T).((pr0 u1 u2) \to ((pr0 t3 t4) \to (ex2 T (\lambda (t6: T).(pr0 t5
+t6)) (\lambda (t6: T).(pr0 t2 t6)))))) (\lambda (H7: (pr0 u1 u2)).(\lambda
+(H8: (pr0 t3 t4)).(let H9 \def (match H1 in pr0 return (\lambda (t5:
+T).(\lambda (t6: T).(\lambda (_: (pr0 t5 t6)).((eq T t5 t) \to ((eq T t6 t2)
+\to (ex2 T (\lambda (t7: T).(pr0 (THead k u2 t4) t7)) (\lambda (t7: T).(pr0
+t2 t7)))))))) with [(pr0_refl t5) \Rightarrow (\lambda (H9: (eq T t5
+t)).(\lambda (H10: (eq T t5 t2)).(eq_ind T t (\lambda (t6: T).((eq T t6 t2)
+\to (ex2 T (\lambda (t7: T).(pr0 (THead k u2 t4) t7)) (\lambda (t7: T).(pr0
+t2 t7))))) (\lambda (H11: (eq T t t2)).(eq_ind T t2 (\lambda (_: T).(ex2 T
+(\lambda (t7: T).(pr0 (THead k u2 t4) t7)) (\lambda (t7: T).(pr0 t2 t7))))
+(let H12 \def (eq_ind_r T t (\lambda (t6: T).(eq T t6 t2)) H11 (THead k u1
+t3) H4) in (eq_ind T (THead k u1 t3) (\lambda (t6: T).(ex2 T (\lambda (t7:
+T).(pr0 (THead k u2 t4) t7)) (\lambda (t7: T).(pr0 t6 t7)))) (let H13 \def
+(eq_ind_r T t (\lambda (t6: T).(eq T t5 t6)) H9 (THead k u1 t3) H4) in (let
+H14 \def (eq_ind_r T t (\lambda (t6: T).(\forall (v: T).((tlt v t6) \to
+(\forall (t7: T).((pr0 v t7) \to (\forall (t8: T).((pr0 v t8) \to (ex2 T
+(\lambda (t9: T).(pr0 t7 t9)) (\lambda (t9: T).(pr0 t8 t9)))))))))) H (THead
+k u1 t3) H4) in (ex_intro2 T (\lambda (t6: T).(pr0 (THead k u2 t4) t6))
+(\lambda (t6: T).(pr0 (THead k u1 t3) t6)) (THead k u2 t4) (pr0_refl (THead k
+u2 t4)) (pr0_comp u1 u2 H7 t3 t4 H8 k)))) t2 H12)) t (sym_eq T t t2 H11))) t5
+(sym_eq T t5 t H9) H10))) | (pr0_comp u0 u3 H9 t5 t6 H10 k0) \Rightarrow
+(\lambda (H11: (eq T (THead k0 u0 t5) t)).(\lambda (H12: (eq T (THead k0 u3
+t6) t2)).(eq_ind T (THead k0 u0 t5) (\lambda (_: T).((eq T (THead k0 u3 t6)
+t2) \to ((pr0 u0 u3) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead
+k u2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H13: (eq T (THead
+k0 u3 t6) t2)).(eq_ind T (THead k0 u3 t6) (\lambda (t7: T).((pr0 u0 u3) \to
+((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda
+(t8: T).(pr0 t7 t8)))))) (\lambda (H14: (pr0 u0 u3)).(\lambda (H15: (pr0 t5
+t6)).(let H16 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead k u1 t3) t7))
+H4 (THead k0 u0 t5) H11) in (let H17 \def (match H16 in eq return (\lambda
+(t7: T).(\lambda (_: (eq ? ? t7)).((eq T t7 (THead k0 u0 t5)) \to (ex2 T
+(\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0 (THead k0 u3
+t6) t8)))))) with [refl_equal \Rightarrow (\lambda (H17: (eq T (THead k u1
+t3) (THead k0 u0 t5))).(let H18 \def (f_equal T T (\lambda (e: T).(match e in
+T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _)
+\Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead k u1 t3) (THead k0
+u0 t5) H17) in ((let H19 \def (f_equal T T (\lambda (e: T).(match e in T
+return (\lambda (_: T).T) with [(TSort _) \Rightarrow u1 | (TLRef _)
+\Rightarrow u1 | (THead _ t7 _) \Rightarrow t7])) (THead k u1 t3) (THead k0
+u0 t5) H17) in ((let H20 \def (f_equal T K (\lambda (e: T).(match e in T
+return (\lambda (_: T).K) with [(TSort _) \Rightarrow k | (TLRef _)
+\Rightarrow k | (THead k1 _ _) \Rightarrow k1])) (THead k u1 t3) (THead k0 u0
+t5) H17) in (eq_ind K k0 (\lambda (k1: K).((eq T u1 u0) \to ((eq T t3 t5) \to
+(ex2 T (\lambda (t7: T).(pr0 (THead k1 u2 t4) t7)) (\lambda (t7: T).(pr0
+(THead k0 u3 t6) t7)))))) (\lambda (H21: (eq T u1 u0)).(eq_ind T u0 (\lambda
+(_: T).((eq T t3 t5) \to (ex2 T (\lambda (t8: T).(pr0 (THead k0 u2 t4) t8))
+(\lambda (t8: T).(pr0 (THead k0 u3 t6) t8))))) (\lambda (H22: (eq T t3
+t5)).(eq_ind T t5 (\lambda (_: T).(ex2 T (\lambda (t8: T).(pr0 (THead k0 u2
+t4) t8)) (\lambda (t8: T).(pr0 (THead k0 u3 t6) t8)))) (let H23 \def
+(eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8:
+T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10:
+T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead k0 u0 t5)
+H11) in (let H24 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H8 t5 H22)
+in (let H25 \def (eq_ind T u1 (\lambda (t7: T).(pr0 t7 u2)) H7 u0 H21) in
+(ex2_ind T (\lambda (t7: T).(pr0 u2 t7)) (\lambda (t7: T).(pr0 u3 t7)) (ex2 T
+(\lambda (t7: T).(pr0 (THead k0 u2 t4) t7)) (\lambda (t7: T).(pr0 (THead k0
+u3 t6) t7))) (\lambda (x: T).(\lambda (H26: (pr0 u2 x)).(\lambda (H27: (pr0
+u3 x)).(ex2_ind T (\lambda (t7: T).(pr0 t4 t7)) (\lambda (t7: T).(pr0 t6 t7))
+(ex2 T (\lambda (t7: T).(pr0 (THead k0 u2 t4) t7)) (\lambda (t7: T).(pr0
+(THead k0 u3 t6) t7))) (\lambda (x0: T).(\lambda (H28: (pr0 t4 x0)).(\lambda
+(H29: (pr0 t6 x0)).(ex_intro2 T (\lambda (t7: T).(pr0 (THead k0 u2 t4) t7))
+(\lambda (t7: T).(pr0 (THead k0 u3 t6) t7)) (THead k0 x x0) (pr0_comp u2 x
+H26 t4 x0 H28 k0) (pr0_comp u3 x H27 t6 x0 H29 k0))))) (H23 t5 (tlt_head_dx
+k0 u0 t5) t4 H24 t6 H15))))) (H23 u0 (tlt_head_sx k0 u0 t5) u2 H25 u3
+H14))))) t3 (sym_eq T t3 t5 H22))) u1 (sym_eq T u1 u0 H21))) k (sym_eq K k k0
+H20))) H19)) H18)))]) in (H17 (refl_equal T (THead k0 u0 t5))))))) t2 H13)) t
+H11 H12 H9 H10))) | (pr0_beta u v1 v2 H9 t5 t6 H10) \Rightarrow (\lambda
+(H11: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t5)) t)).(\lambda
+(H12: (eq T (THead (Bind Abbr) v2 t6) t2)).(eq_ind T (THead (Flat Appl) v1
+(THead (Bind Abst) u t5)) (\lambda (_: T).((eq T (THead (Bind Abbr) v2 t6)
+t2) \to ((pr0 v1 v2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead
+k u2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H13: (eq T (THead
+(Bind Abbr) v2 t6) t2)).(eq_ind T (THead (Bind Abbr) v2 t6) (\lambda (t7:
+T).((pr0 v1 v2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead k u2
+t4) t8)) (\lambda (t8: T).(pr0 t7 t8)))))) (\lambda (H14: (pr0 v1
+v2)).(\lambda (H15: (pr0 t5 t6)).(let H16 \def (eq_ind_r T t (\lambda (t7:
+T).(eq T (THead k u1 t3) t7)) H4 (THead (Flat Appl) v1 (THead (Bind Abst) u
+t5)) H11) in (let H17 \def (match H16 in eq return (\lambda (t7: T).(\lambda
+(_: (eq ? ? t7)).((eq T t7 (THead (Flat Appl) v1 (THead (Bind Abst) u t5)))
+\to (ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0
+(THead (Bind Abbr) v2 t6) t8)))))) with [refl_equal \Rightarrow (\lambda
+(H17: (eq T (THead k u1 t3) (THead (Flat Appl) v1 (THead (Bind Abst) u
+t5)))).(let H18 \def (f_equal T T (\lambda (e: T).(match e in T return
+(\lambda (_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3
+| (THead _ _ t7) \Rightarrow t7])) (THead k u1 t3) (THead (Flat Appl) v1
+(THead (Bind Abst) u t5)) H17) in ((let H19 \def (f_equal T T (\lambda (e:
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u1 |
+(TLRef _) \Rightarrow u1 | (THead _ t7 _) \Rightarrow t7])) (THead k u1 t3)
+(THead (Flat Appl) v1 (THead (Bind Abst) u t5)) H17) in ((let H20 \def
+(f_equal T K (\lambda (e: T).(match e in T return (\lambda (_: T).K) with
+[(TSort _) \Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _)
+\Rightarrow k0])) (THead k u1 t3) (THead (Flat Appl) v1 (THead (Bind Abst) u
+t5)) H17) in (eq_ind K (Flat Appl) (\lambda (k0: K).((eq T u1 v1) \to ((eq T
+t3 (THead (Bind Abst) u t5)) \to (ex2 T (\lambda (t7: T).(pr0 (THead k0 u2
+t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t6) t7)))))) (\lambda
+(H21: (eq T u1 v1)).(eq_ind T v1 (\lambda (_: T).((eq T t3 (THead (Bind Abst)
+u t5)) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Flat Appl) u2 t4) t8))
+(\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t6) t8))))) (\lambda (H22: (eq T
+t3 (THead (Bind Abst) u t5))).(eq_ind T (THead (Bind Abst) u t5) (\lambda (_:
+T).(ex2 T (\lambda (t8: T).(pr0 (THead (Flat Appl) u2 t4) t8)) (\lambda (t8:
+T).(pr0 (THead (Bind Abbr) v2 t6) t8)))) (let H23 \def (eq_ind_r T t (\lambda
+(t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) \to
+(\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10))
+(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Flat Appl) v1 (THead (Bind
+Abst) u t5)) H11) in (let H24 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4))
+H8 (THead (Bind Abst) u t5) H22) in (let H25 \def (match H24 in pr0 return
+(\lambda (t7: T).(\lambda (t8: T).(\lambda (_: (pr0 t7 t8)).((eq T t7 (THead
+(Bind Abst) u t5)) \to ((eq T t8 t4) \to (ex2 T (\lambda (t9: T).(pr0 (THead
+(Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6)
+t9)))))))) with [(pr0_refl t7) \Rightarrow (\lambda (H25: (eq T t7 (THead
+(Bind Abst) u t5))).(\lambda (H26: (eq T t7 t4)).(eq_ind T (THead (Bind Abst)
+u t5) (\lambda (t8: T).((eq T t8 t4) \to (ex2 T (\lambda (t9: T).(pr0 (THead
+(Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6)
+t9))))) (\lambda (H27: (eq T (THead (Bind Abst) u t5) t4)).(eq_ind T (THead
+(Bind Abst) u t5) (\lambda (t8: T).(ex2 T (\lambda (t9: T).(pr0 (THead (Flat
+Appl) u2 t8) t9)) (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9)))) (let
+H28 \def (eq_ind T u1 (\lambda (t8: T).(pr0 t8 u2)) H7 v1 H21) in (ex2_ind T
+(\lambda (t8: T).(pr0 u2 t8)) (\lambda (t8: T).(pr0 v2 t8)) (ex2 T (\lambda
+(t8: T).(pr0 (THead (Flat Appl) u2 (THead (Bind Abst) u t5)) t8)) (\lambda
+(t8: T).(pr0 (THead (Bind Abbr) v2 t6) t8))) (\lambda (x: T).(\lambda (H29:
+(pr0 u2 x)).(\lambda (H30: (pr0 v2 x)).(ex_intro2 T (\lambda (t8: T).(pr0
+(THead (Flat Appl) u2 (THead (Bind Abst) u t5)) t8)) (\lambda (t8: T).(pr0
+(THead (Bind Abbr) v2 t6) t8)) (THead (Bind Abbr) x t6) (pr0_beta u u2 x H29
+t5 t6 H15) (pr0_comp v2 x H30 t6 t6 (pr0_refl t6) (Bind Abbr)))))) (H23 v1
+(tlt_head_sx (Flat Appl) v1 (THead (Bind Abst) u t5)) u2 H28 v2 H14))) t4
+H27)) t7 (sym_eq T t7 (THead (Bind Abst) u t5) H25) H26))) | (pr0_comp u0 u3
+H25 t7 t8 H26 k0) \Rightarrow (\lambda (H27: (eq T (THead k0 u0 t7) (THead
+(Bind Abst) u t5))).(\lambda (H28: (eq T (THead k0 u3 t8) t4)).((let H29 \def
+(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
+[(TSort _) \Rightarrow t7 | (TLRef _) \Rightarrow t7 | (THead _ _ t9)
+\Rightarrow t9])) (THead k0 u0 t7) (THead (Bind Abst) u t5) H27) in ((let H30
+\def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T)
+with [(TSort _) \Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t9 _)
+\Rightarrow t9])) (THead k0 u0 t7) (THead (Bind Abst) u t5) H27) in ((let H31
+\def (f_equal T K (\lambda (e: T).(match e in T return (\lambda (_: T).K)
+with [(TSort _) \Rightarrow k0 | (TLRef _) \Rightarrow k0 | (THead k1 _ _)
+\Rightarrow k1])) (THead k0 u0 t7) (THead (Bind Abst) u t5) H27) in (eq_ind K
+(Bind Abst) (\lambda (k1: K).((eq T u0 u) \to ((eq T t7 t5) \to ((eq T (THead
+k1 u3 t8) t4) \to ((pr0 u0 u3) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9:
+T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind
+Abbr) v2 t6) t9))))))))) (\lambda (H32: (eq T u0 u)).(eq_ind T u (\lambda
+(t9: T).((eq T t7 t5) \to ((eq T (THead (Bind Abst) u3 t8) t4) \to ((pr0 t9
+u3) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2
+t4) t10)) (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t6) t10))))))))
+(\lambda (H33: (eq T t7 t5)).(eq_ind T t5 (\lambda (t9: T).((eq T (THead
+(Bind Abst) u3 t8) t4) \to ((pr0 u u3) \to ((pr0 t9 t8) \to (ex2 T (\lambda
+(t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda (t10: T).(pr0 (THead
+(Bind Abbr) v2 t6) t10))))))) (\lambda (H34: (eq T (THead (Bind Abst) u3 t8)
+t4)).(eq_ind T (THead (Bind Abst) u3 t8) (\lambda (t9: T).((pr0 u u3) \to
+((pr0 t5 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t9)
+t10)) (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t6) t10)))))) (\lambda (_:
+(pr0 u u3)).(\lambda (H36: (pr0 t5 t8)).(let H37 \def (eq_ind T u1 (\lambda
+(t9: T).(pr0 t9 u2)) H7 v1 H21) in (ex2_ind T (\lambda (t9: T).(pr0 u2 t9))
+(\lambda (t9: T).(pr0 v2 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl)
+u2 (THead (Bind Abst) u3 t8)) t9)) (\lambda (t9: T).(pr0 (THead (Bind Abbr)
+v2 t6) t9))) (\lambda (x: T).(\lambda (H38: (pr0 u2 x)).(\lambda (H39: (pr0
+v2 x)).(ex2_ind T (\lambda (t9: T).(pr0 t8 t9)) (\lambda (t9: T).(pr0 t6 t9))
+(ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead (Bind Abst) u3 t8))
+t9)) (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9))) (\lambda (x0:
+T).(\lambda (H40: (pr0 t8 x0)).(\lambda (H41: (pr0 t6 x0)).(ex_intro2 T
+(\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead (Bind Abst) u3 t8)) t9))
+(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9)) (THead (Bind Abbr) x x0)
+(pr0_beta u3 u2 x H38 t8 x0 H40) (pr0_comp v2 x H39 t6 x0 H41 (Bind
+Abbr)))))) (H23 t5 (tlt_trans (THead (Bind Abst) u t5) t5 (THead (Flat Appl)
+v1 (THead (Bind Abst) u t5)) (tlt_head_dx (Bind Abst) u t5) (tlt_head_dx
+(Flat Appl) v1 (THead (Bind Abst) u t5))) t8 H36 t6 H15))))) (H23 v1
+(tlt_head_sx (Flat Appl) v1 (THead (Bind Abst) u t5)) u2 H37 v2 H14))))) t4
+H34)) t7 (sym_eq T t7 t5 H33))) u0 (sym_eq T u0 u H32))) k0 (sym_eq K k0
+(Bind Abst) H31))) H30)) H29)) H28 H25 H26))) | (pr0_beta u0 v0 v3 H25 t7 t8
+H26) \Rightarrow (\lambda (H27: (eq T (THead (Flat Appl) v0 (THead (Bind
+Abst) u0 t7)) (THead (Bind Abst) u t5))).(\lambda (H28: (eq T (THead (Bind
+Abbr) v3 t8) t4)).((let H29 \def (eq_ind T (THead (Flat Appl) v0 (THead (Bind
+Abst) u0 t7)) (\lambda (e: T).(match e in T return (\lambda (_: T).Prop) with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _ _)
+\Rightarrow (match k0 in K return (\lambda (_: K).Prop) with [(Bind _)
+\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind Abst) u t5)
+H27) in (False_ind ((eq T (THead (Bind Abbr) v3 t8) t4) \to ((pr0 v0 v3) \to
+((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9))
+(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9)))))) H29)) H28 H25 H26)))
+| (pr0_upsilon b H25 v0 v3 H26 u0 u3 H27 t7 t8 H28) \Rightarrow (\lambda
+(H29: (eq T (THead (Flat Appl) v0 (THead (Bind b) u0 t7)) (THead (Bind Abst)
+u t5))).(\lambda (H30: (eq T (THead (Bind b) u3 (THead (Flat Appl) (lift (S
+O) O v3) t8)) t4)).((let H31 \def (eq_ind T (THead (Flat Appl) v0 (THead
+(Bind b) u0 t7)) (\lambda (e: T).(match e in T return (\lambda (_: T).Prop)
+with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _
+_) \Rightarrow (match k0 in K return (\lambda (_: K).Prop) with [(Bind _)
+\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind Abst) u t5)
+H29) in (False_ind ((eq T (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O
+v3) t8)) t4) \to ((not (eq B b Abst)) \to ((pr0 v0 v3) \to ((pr0 u0 u3) \to
+((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9))
+(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9)))))))) H31)) H30 H25 H26
+H27 H28))) | (pr0_delta u0 u3 H25 t7 t8 H26 w H27) \Rightarrow (\lambda (H28:
+(eq T (THead (Bind Abbr) u0 t7) (THead (Bind Abst) u t5))).(\lambda (H29: (eq
+T (THead (Bind Abbr) u3 w) t4)).((let H30 \def (eq_ind T (THead (Bind Abbr)
+u0 t7) (\lambda (e: T).(match e in T return (\lambda (_: T).Prop) with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _ _)
+\Rightarrow (match k0 in K return (\lambda (_: K).Prop) with [(Bind b)
+\Rightarrow (match b in B return (\lambda (_: B).Prop) with [Abbr \Rightarrow
+True | Abst \Rightarrow False | Void \Rightarrow False]) | (Flat _)
+\Rightarrow False])])) I (THead (Bind Abst) u t5) H28) in (False_ind ((eq T
+(THead (Bind Abbr) u3 w) t4) \to ((pr0 u0 u3) \to ((pr0 t7 t8) \to ((subst0 O
+u3 t8 w) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9))
+(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9))))))) H30)) H29 H25 H26
+H27))) | (pr0_zeta b H25 t7 t8 H26 u0) \Rightarrow (\lambda (H27: (eq T
+(THead (Bind b) u0 (lift (S O) O t7)) (THead (Bind Abst) u t5))).(\lambda
+(H28: (eq T t8 t4)).((let H29 \def (f_equal T T (\lambda (e: T).(match e in T
+return (\lambda (_: T).T) with [(TSort _) \Rightarrow ((let rec lref_map (f:
+((nat \to nat))) (d: nat) (t9: T) on t9: T \def (match t9 with [(TSort n)
+\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with
+[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k0 u3 t10)
+\Rightarrow (THead k0 (lref_map f d u3) (lref_map f (s k0 d) t10))]) in
+lref_map) (\lambda (x: nat).(plus x (S O))) O t7) | (TLRef _) \Rightarrow
+((let rec lref_map (f: ((nat \to nat))) (d: nat) (t9: T) on t9: T \def (match
+t9 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef
+(match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) |
+(THead k0 u3 t10) \Rightarrow (THead k0 (lref_map f d u3) (lref_map f (s k0
+d) t10))]) in lref_map) (\lambda (x: nat).(plus x (S O))) O t7) | (THead _ _
+t9) \Rightarrow t9])) (THead (Bind b) u0 (lift (S O) O t7)) (THead (Bind
+Abst) u t5) H27) in ((let H30 \def (f_equal T T (\lambda (e: T).(match e in T
+return (\lambda (_: T).T) with [(TSort _) \Rightarrow u0 | (TLRef _)
+\Rightarrow u0 | (THead _ t9 _) \Rightarrow t9])) (THead (Bind b) u0 (lift (S
+O) O t7)) (THead (Bind Abst) u t5) H27) in ((let H31 \def (f_equal T B
+(\lambda (e: T).(match e in T return (\lambda (_: T).B) with [(TSort _)
+\Rightarrow b | (TLRef _) \Rightarrow b | (THead k0 _ _) \Rightarrow (match
+k0 in K return (\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _)
+\Rightarrow b])])) (THead (Bind b) u0 (lift (S O) O t7)) (THead (Bind Abst) u
+t5) H27) in (eq_ind B Abst (\lambda (b0: B).((eq T u0 u) \to ((eq T (lift (S
+O) O t7) t5) \to ((eq T t8 t4) \to ((not (eq B b0 Abst)) \to ((pr0 t7 t8) \to
+(ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9:
+T).(pr0 (THead (Bind Abbr) v2 t6) t9))))))))) (\lambda (H32: (eq T u0
+u)).(eq_ind T u (\lambda (_: T).((eq T (lift (S O) O t7) t5) \to ((eq T t8
+t4) \to ((not (eq B Abst Abst)) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10:
+T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda (t10: T).(pr0 (THead (Bind
+Abbr) v2 t6) t10)))))))) (\lambda (H33: (eq T (lift (S O) O t7) t5)).(eq_ind
+T (lift (S O) O t7) (\lambda (_: T).((eq T t8 t4) \to ((not (eq B Abst Abst))
+\to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4)
+t10)) (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t6) t10))))))) (\lambda
+(H34: (eq T t8 t4)).(eq_ind T t4 (\lambda (t9: T).((not (eq B Abst Abst)) \to
+((pr0 t7 t9) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4)
+t10)) (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t6) t10)))))) (\lambda
+(H35: (not (eq B Abst Abst))).(\lambda (_: (pr0 t7 t4)).(let H37 \def (match
+(H35 (refl_equal B Abst)) in False return (\lambda (_: False).(ex2 T (\lambda
+(t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead
+(Bind Abbr) v2 t6) t9)))) with []) in H37))) t8 (sym_eq T t8 t4 H34))) t5
+H33)) u0 (sym_eq T u0 u H32))) b (sym_eq B b Abst H31))) H30)) H29)) H28 H25
+H26))) | (pr0_epsilon t7 t8 H25 u0) \Rightarrow (\lambda (H26: (eq T (THead
+(Flat Cast) u0 t7) (THead (Bind Abst) u t5))).(\lambda (H27: (eq T t8
+t4)).((let H28 \def (eq_ind T (THead (Flat Cast) u0 t7) (\lambda (e:
+T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
+False | (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in
+K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _)
+\Rightarrow True])])) I (THead (Bind Abst) u t5) H26) in (False_ind ((eq T t8
+t4) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2
+t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t6) t9))))) H28)) H27
+H25)))]) in (H25 (refl_equal T (THead (Bind Abst) u t5)) (refl_equal T
+t4))))) t3 (sym_eq T t3 (THead (Bind Abst) u t5) H22))) u1 (sym_eq T u1 v1
+H21))) k (sym_eq K k (Flat Appl) H20))) H19)) H18)))]) in (H17 (refl_equal T
+(THead (Flat Appl) v1 (THead (Bind Abst) u t5)))))))) t2 H13)) t H11 H12 H9
+H10))) | (pr0_upsilon b H9 v1 v2 H10 u0 u3 H11 t5 t6 H12) \Rightarrow
+(\lambda (H13: (eq T (THead (Flat Appl) v1 (THead (Bind b) u0 t5))
+t)).(\lambda (H14: (eq T (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O
+v2) t6)) t2)).(eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u0 t5))
+(\lambda (_: T).((eq T (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O
+v2) t6)) t2) \to ((not (eq B b Abst)) \to ((pr0 v1 v2) \to ((pr0 u0 u3) \to
+((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda
+(t8: T).(pr0 t2 t8))))))))) (\lambda (H15: (eq T (THead (Bind b) u3 (THead
+(Flat Appl) (lift (S O) O v2) t6)) t2)).(eq_ind T (THead (Bind b) u3 (THead
+(Flat Appl) (lift (S O) O v2) t6)) (\lambda (t7: T).((not (eq B b Abst)) \to
+((pr0 v1 v2) \to ((pr0 u0 u3) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8:
+T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0 t7 t8)))))))) (\lambda
+(H16: (not (eq B b Abst))).(\lambda (H17: (pr0 v1 v2)).(\lambda (H18: (pr0 u0
+u3)).(\lambda (H19: (pr0 t5 t6)).(let H20 \def (eq_ind_r T t (\lambda (t7:
+T).(eq T (THead k u1 t3) t7)) H4 (THead (Flat Appl) v1 (THead (Bind b) u0
+t5)) H13) in (let H21 \def (match H20 in eq return (\lambda (t7: T).(\lambda
+(_: (eq ? ? t7)).((eq T t7 (THead (Flat Appl) v1 (THead (Bind b) u0 t5))) \to
+(ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0
+(THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t8)))))) with
+[refl_equal \Rightarrow (\lambda (H21: (eq T (THead k u1 t3) (THead (Flat
+Appl) v1 (THead (Bind b) u0 t5)))).(let H22 \def (f_equal T T (\lambda (e:
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t3 |
+(TLRef _) \Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead k u1 t3)
+(THead (Flat Appl) v1 (THead (Bind b) u0 t5)) H21) in ((let H23 \def (f_equal
+T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead _ t7 _) \Rightarrow t7]))
+(THead k u1 t3) (THead (Flat Appl) v1 (THead (Bind b) u0 t5)) H21) in ((let
+H24 \def (f_equal T K (\lambda (e: T).(match e in T return (\lambda (_: T).K)
+with [(TSort _) \Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _)
+\Rightarrow k0])) (THead k u1 t3) (THead (Flat Appl) v1 (THead (Bind b) u0
+t5)) H21) in (eq_ind K (Flat Appl) (\lambda (k0: K).((eq T u1 v1) \to ((eq T
+t3 (THead (Bind b) u0 t5)) \to (ex2 T (\lambda (t7: T).(pr0 (THead k0 u2 t4)
+t7)) (\lambda (t7: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O)
+O v2) t6)) t7)))))) (\lambda (H25: (eq T u1 v1)).(eq_ind T v1 (\lambda (_:
+T).((eq T t3 (THead (Bind b) u0 t5)) \to (ex2 T (\lambda (t8: T).(pr0 (THead
+(Flat Appl) u2 t4) t8)) (\lambda (t8: T).(pr0 (THead (Bind b) u3 (THead (Flat
+Appl) (lift (S O) O v2) t6)) t8))))) (\lambda (H26: (eq T t3 (THead (Bind b)
+u0 t5))).(eq_ind T (THead (Bind b) u0 t5) (\lambda (_: T).(ex2 T (\lambda
+(t8: T).(pr0 (THead (Flat Appl) u2 t4) t8)) (\lambda (t8: T).(pr0 (THead
+(Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t8)))) (let H27 \def
+(eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8:
+T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10:
+T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Flat Appl)
+v1 (THead (Bind b) u0 t5)) H13) in (let H28 \def (eq_ind T t3 (\lambda (t7:
+T).(pr0 t7 t4)) H8 (THead (Bind b) u0 t5) H26) in (let H29 \def (match H28 in
+pr0 return (\lambda (t7: T).(\lambda (t8: T).(\lambda (_: (pr0 t7 t8)).((eq T
+t7 (THead (Bind b) u0 t5)) \to ((eq T t8 t4) \to (ex2 T (\lambda (t9: T).(pr0
+(THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind b) u3
+(THead (Flat Appl) (lift (S O) O v2) t6)) t9)))))))) with [(pr0_refl t7)
+\Rightarrow (\lambda (H29: (eq T t7 (THead (Bind b) u0 t5))).(\lambda (H30:
+(eq T t7 t4)).(eq_ind T (THead (Bind b) u0 t5) (\lambda (t8: T).((eq T t8 t4)
+\to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9:
+T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9)))))
+(\lambda (H31: (eq T (THead (Bind b) u0 t5) t4)).(eq_ind T (THead (Bind b) u0
+t5) (\lambda (t8: T).(ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t8)
+t9)) (\lambda (t9: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O)
+O v2) t6)) t9)))) (let H32 \def (eq_ind T u1 (\lambda (t8: T).(pr0 t8 u2)) H7
+v1 H25) in (ex2_ind T (\lambda (t8: T).(pr0 u2 t8)) (\lambda (t8: T).(pr0 v2
+t8)) (ex2 T (\lambda (t8: T).(pr0 (THead (Flat Appl) u2 (THead (Bind b) u0
+t5)) t8)) (\lambda (t8: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift
+(S O) O v2) t6)) t8))) (\lambda (x: T).(\lambda (H33: (pr0 u2 x)).(\lambda
+(H34: (pr0 v2 x)).(pr0_confluence__pr0_cong_upsilon_refl b H16 u0 u3 H18 t5
+t6 H19 u2 v2 x H33 H34)))) (H27 v1 (tlt_head_sx (Flat Appl) v1 (THead (Bind
+b) u0 t5)) u2 H32 v2 H17))) t4 H31)) t7 (sym_eq T t7 (THead (Bind b) u0 t5)
+H29) H30))) | (pr0_comp u4 u5 H29 t7 t8 H30 k0) \Rightarrow (\lambda (H31:
+(eq T (THead k0 u4 t7) (THead (Bind b) u0 t5))).(\lambda (H32: (eq T (THead
+k0 u5 t8) t4)).((let H33 \def (f_equal T T (\lambda (e: T).(match e in T
+return (\lambda (_: T).T) with [(TSort _) \Rightarrow t7 | (TLRef _)
+\Rightarrow t7 | (THead _ _ t9) \Rightarrow t9])) (THead k0 u4 t7) (THead
+(Bind b) u0 t5) H31) in ((let H34 \def (f_equal T T (\lambda (e: T).(match e
+in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u4 | (TLRef _)
+\Rightarrow u4 | (THead _ t9 _) \Rightarrow t9])) (THead k0 u4 t7) (THead
+(Bind b) u0 t5) H31) in ((let H35 \def (f_equal T K (\lambda (e: T).(match e
+in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow k0 | (TLRef _)
+\Rightarrow k0 | (THead k1 _ _) \Rightarrow k1])) (THead k0 u4 t7) (THead
+(Bind b) u0 t5) H31) in (eq_ind K (Bind b) (\lambda (k1: K).((eq T u4 u0) \to
+((eq T t7 t5) \to ((eq T (THead k1 u5 t8) t4) \to ((pr0 u4 u5) \to ((pr0 t7
+t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda
+(t9: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6))
+t9))))))))) (\lambda (H36: (eq T u4 u0)).(eq_ind T u0 (\lambda (t9: T).((eq T
+t7 t5) \to ((eq T (THead (Bind b) u5 t8) t4) \to ((pr0 t9 u5) \to ((pr0 t7
+t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) t10))
+(\lambda (t10: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O
+v2) t6)) t10)))))))) (\lambda (H37: (eq T t7 t5)).(eq_ind T t5 (\lambda (t9:
+T).((eq T (THead (Bind b) u5 t8) t4) \to ((pr0 u0 u5) \to ((pr0 t9 t8) \to
+(ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda (t10:
+T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6))
+t10))))))) (\lambda (H38: (eq T (THead (Bind b) u5 t8) t4)).(eq_ind T (THead
+(Bind b) u5 t8) (\lambda (t9: T).((pr0 u0 u5) \to ((pr0 t5 t8) \to (ex2 T
+(\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t9) t10)) (\lambda (t10: T).(pr0
+(THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t10))))))
+(\lambda (H39: (pr0 u0 u5)).(\lambda (H40: (pr0 t5 t8)).(let H41 \def (eq_ind
+T u1 (\lambda (t9: T).(pr0 t9 u2)) H7 v1 H25) in (ex2_ind T (\lambda (t9:
+T).(pr0 u2 t9)) (\lambda (t9: T).(pr0 v2 t9)) (ex2 T (\lambda (t9: T).(pr0
+(THead (Flat Appl) u2 (THead (Bind b) u5 t8)) t9)) (\lambda (t9: T).(pr0
+(THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9))) (\lambda
+(x: T).(\lambda (H42: (pr0 u2 x)).(\lambda (H43: (pr0 v2 x)).(ex2_ind T
+(\lambda (t9: T).(pr0 t8 t9)) (\lambda (t9: T).(pr0 t6 t9)) (ex2 T (\lambda
+(t9: T).(pr0 (THead (Flat Appl) u2 (THead (Bind b) u5 t8)) t9)) (\lambda (t9:
+T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9)))
+(\lambda (x0: T).(\lambda (H44: (pr0 t8 x0)).(\lambda (H45: (pr0 t6
+x0)).(ex2_ind T (\lambda (t9: T).(pr0 u5 t9)) (\lambda (t9: T).(pr0 u3 t9))
+(ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead (Bind b) u5 t8))
+t9)) (\lambda (t9: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O)
+O v2) t6)) t9))) (\lambda (x1: T).(\lambda (H46: (pr0 u5 x1)).(\lambda (H47:
+(pr0 u3 x1)).(pr0_confluence__pr0_cong_upsilon_cong b H16 u2 v2 x H42 H43 t8
+t6 x0 H44 H45 u5 u3 x1 H46 H47)))) (H27 u0 (tlt_trans (THead (Bind b) u0 t5)
+u0 (THead (Flat Appl) v1 (THead (Bind b) u0 t5)) (tlt_head_sx (Bind b) u0 t5)
+(tlt_head_dx (Flat Appl) v1 (THead (Bind b) u0 t5))) u5 H39 u3 H18))))) (H27
+t5 (tlt_trans (THead (Bind b) u0 t5) t5 (THead (Flat Appl) v1 (THead (Bind b)
+u0 t5)) (tlt_head_dx (Bind b) u0 t5) (tlt_head_dx (Flat Appl) v1 (THead (Bind
+b) u0 t5))) t8 H40 t6 H19))))) (H27 v1 (tlt_head_sx (Flat Appl) v1 (THead
+(Bind b) u0 t5)) u2 H41 v2 H17))))) t4 H38)) t7 (sym_eq T t7 t5 H37))) u4
+(sym_eq T u4 u0 H36))) k0 (sym_eq K k0 (Bind b) H35))) H34)) H33)) H32 H29
+H30))) | (pr0_beta u v0 v3 H29 t7 t8 H30) \Rightarrow (\lambda (H31: (eq T
+(THead (Flat Appl) v0 (THead (Bind Abst) u t7)) (THead (Bind b) u0
+t5))).(\lambda (H32: (eq T (THead (Bind Abbr) v3 t8) t4)).((let H33 \def
+(eq_ind T (THead (Flat Appl) v0 (THead (Bind Abst) u t7)) (\lambda (e:
+T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
+False | (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in
+K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _)
+\Rightarrow True])])) I (THead (Bind b) u0 t5) H31) in (False_ind ((eq T
+(THead (Bind Abbr) v3 t8) t4) \to ((pr0 v0 v3) \to ((pr0 t7 t8) \to (ex2 T
+(\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0
+(THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9)))))) H33))
+H32 H29 H30))) | (pr0_upsilon b0 H29 v0 v3 H30 u4 u5 H31 t7 t8 H32)
+\Rightarrow (\lambda (H33: (eq T (THead (Flat Appl) v0 (THead (Bind b0) u4
+t7)) (THead (Bind b) u0 t5))).(\lambda (H34: (eq T (THead (Bind b0) u5 (THead
+(Flat Appl) (lift (S O) O v3) t8)) t4)).((let H35 \def (eq_ind T (THead (Flat
+Appl) v0 (THead (Bind b0) u4 t7)) (\lambda (e: T).(match e in T return
+(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in K return (\lambda
+(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow
+True])])) I (THead (Bind b) u0 t5) H33) in (False_ind ((eq T (THead (Bind b0)
+u5 (THead (Flat Appl) (lift (S O) O v3) t8)) t4) \to ((not (eq B b0 Abst))
+\to ((pr0 v0 v3) \to ((pr0 u4 u5) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9:
+T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind b)
+u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9)))))))) H35)) H34 H29 H30 H31
+H32))) | (pr0_delta u4 u5 H29 t7 t8 H30 w H31) \Rightarrow (\lambda (H32: (eq
+T (THead (Bind Abbr) u4 t7) (THead (Bind b) u0 t5))).(\lambda (H33: (eq T
+(THead (Bind Abbr) u5 w) t4)).((let H34 \def (f_equal T T (\lambda (e:
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t7 |
+(TLRef _) \Rightarrow t7 | (THead _ _ t9) \Rightarrow t9])) (THead (Bind
+Abbr) u4 t7) (THead (Bind b) u0 t5) H32) in ((let H35 \def (f_equal T T
+(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow u4 | (TLRef _) \Rightarrow u4 | (THead _ t9 _) \Rightarrow t9]))
+(THead (Bind Abbr) u4 t7) (THead (Bind b) u0 t5) H32) in ((let H36 \def
+(f_equal T B (\lambda (e: T).(match e in T return (\lambda (_: T).B) with
+[(TSort _) \Rightarrow Abbr | (TLRef _) \Rightarrow Abbr | (THead k0 _ _)
+\Rightarrow (match k0 in K return (\lambda (_: K).B) with [(Bind b0)
+\Rightarrow b0 | (Flat _) \Rightarrow Abbr])])) (THead (Bind Abbr) u4 t7)
+(THead (Bind b) u0 t5) H32) in (eq_ind B Abbr (\lambda (b0: B).((eq T u4 u0)
+\to ((eq T t7 t5) \to ((eq T (THead (Bind Abbr) u5 w) t4) \to ((pr0 u4 u5)
+\to ((pr0 t7 t8) \to ((subst0 O u5 t8 w) \to (ex2 T (\lambda (t9: T).(pr0
+(THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind b0) u3
+(THead (Flat Appl) (lift (S O) O v2) t6)) t9)))))))))) (\lambda (H37: (eq T
+u4 u0)).(eq_ind T u0 (\lambda (t9: T).((eq T t7 t5) \to ((eq T (THead (Bind
+Abbr) u5 w) t4) \to ((pr0 t9 u5) \to ((pr0 t7 t8) \to ((subst0 O u5 t8 w) \to
+(ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda (t10:
+T).(pr0 (THead (Bind Abbr) u3 (THead (Flat Appl) (lift (S O) O v2) t6))
+t10))))))))) (\lambda (H38: (eq T t7 t5)).(eq_ind T t5 (\lambda (t9: T).((eq
+T (THead (Bind Abbr) u5 w) t4) \to ((pr0 u0 u5) \to ((pr0 t9 t8) \to ((subst0
+O u5 t8 w) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) t10))
+(\lambda (t10: T).(pr0 (THead (Bind Abbr) u3 (THead (Flat Appl) (lift (S O) O
+v2) t6)) t10)))))))) (\lambda (H39: (eq T (THead (Bind Abbr) u5 w)
+t4)).(eq_ind T (THead (Bind Abbr) u5 w) (\lambda (t9: T).((pr0 u0 u5) \to
+((pr0 t5 t8) \to ((subst0 O u5 t8 w) \to (ex2 T (\lambda (t10: T).(pr0 (THead
+(Flat Appl) u2 t9) t10)) (\lambda (t10: T).(pr0 (THead (Bind Abbr) u3 (THead
+(Flat Appl) (lift (S O) O v2) t6)) t10))))))) (\lambda (H40: (pr0 u0
+u5)).(\lambda (H41: (pr0 t5 t8)).(\lambda (H42: (subst0 O u5 t8 w)).(let H43
+\def (eq_ind_r B b (\lambda (b0: B).(\forall (v: T).((tlt v (THead (Flat
+Appl) v1 (THead (Bind b0) u0 t5))) \to (\forall (t9: T).((pr0 v t9) \to
+(\forall (t10: T).((pr0 v t10) \to (ex2 T (\lambda (t11: T).(pr0 t9 t11))
+(\lambda (t11: T).(pr0 t10 t11)))))))))) H27 Abbr H36) in (let H44 \def
+(eq_ind_r B b (\lambda (b0: B).(eq T t3 (THead (Bind b0) u0 t5))) H26 Abbr
+H36) in (let H45 \def (eq_ind_r B b (\lambda (b0: B).(not (eq B b0 Abst)))
+H16 Abbr H36) in (let H46 \def (eq_ind T u1 (\lambda (t9: T).(pr0 t9 u2)) H7
+v1 H25) in (ex2_ind T (\lambda (t9: T).(pr0 u2 t9)) (\lambda (t9: T).(pr0 v2
+t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead (Bind Abbr) u5
+w)) t9)) (\lambda (t9: T).(pr0 (THead (Bind Abbr) u3 (THead (Flat Appl) (lift
+(S O) O v2) t6)) t9))) (\lambda (x: T).(\lambda (H47: (pr0 u2 x)).(\lambda
+(H48: (pr0 v2 x)).(ex2_ind T (\lambda (t9: T).(pr0 t8 t9)) (\lambda (t9:
+T).(pr0 t6 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead
+(Bind Abbr) u5 w)) t9)) (\lambda (t9: T).(pr0 (THead (Bind Abbr) u3 (THead
+(Flat Appl) (lift (S O) O v2) t6)) t9))) (\lambda (x0: T).(\lambda (H49: (pr0
+t8 x0)).(\lambda (H50: (pr0 t6 x0)).(ex2_ind T (\lambda (t9: T).(pr0 u5 t9))
+(\lambda (t9: T).(pr0 u3 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl)
+u2 (THead (Bind Abbr) u5 w)) t9)) (\lambda (t9: T).(pr0 (THead (Bind Abbr) u3
+(THead (Flat Appl) (lift (S O) O v2) t6)) t9))) (\lambda (x1: T).(\lambda
+(H51: (pr0 u5 x1)).(\lambda (H52: (pr0 u3
+x1)).(pr0_confluence__pr0_cong_upsilon_delta H45 u5 t8 w H42 u2 v2 x H47 H48
+t6 x0 H49 H50 u3 x1 H51 H52)))) (H43 u0 (tlt_trans (THead (Bind Abbr) u0 t5)
+u0 (THead (Flat Appl) v1 (THead (Bind Abbr) u0 t5)) (tlt_head_sx (Bind Abbr)
+u0 t5) (tlt_head_dx (Flat Appl) v1 (THead (Bind Abbr) u0 t5))) u5 H40 u3
+H18))))) (H43 t5 (tlt_trans (THead (Bind Abbr) u0 t5) t5 (THead (Flat Appl)
+v1 (THead (Bind Abbr) u0 t5)) (tlt_head_dx (Bind Abbr) u0 t5) (tlt_head_dx
+(Flat Appl) v1 (THead (Bind Abbr) u0 t5))) t8 H41 t6 H19))))) (H43 v1
+(tlt_head_sx (Flat Appl) v1 (THead (Bind Abbr) u0 t5)) u2 H46 v2 H17)))))))))
+t4 H39)) t7 (sym_eq T t7 t5 H38))) u4 (sym_eq T u4 u0 H37))) b H36)) H35))
+H34)) H33 H29 H30 H31))) | (pr0_zeta b0 H29 t7 t8 H30 u) \Rightarrow (\lambda
+(H31: (eq T (THead (Bind b0) u (lift (S O) O t7)) (THead (Bind b) u0
+t5))).(\lambda (H32: (eq T t8 t4)).((let H33 \def (f_equal T T (\lambda (e:
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow ((let
+rec lref_map (f: ((nat \to nat))) (d: nat) (t9: T) on t9: T \def (match t9
+with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match
+(blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) | (THead k0
+u4 t10) \Rightarrow (THead k0 (lref_map f d u4) (lref_map f (s k0 d) t10))])
+in lref_map) (\lambda (x: nat).(plus x (S O))) O t7) | (TLRef _) \Rightarrow
+((let rec lref_map (f: ((nat \to nat))) (d: nat) (t9: T) on t9: T \def (match
+t9 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef
+(match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) |
+(THead k0 u4 t10) \Rightarrow (THead k0 (lref_map f d u4) (lref_map f (s k0
+d) t10))]) in lref_map) (\lambda (x: nat).(plus x (S O))) O t7) | (THead _ _
+t9) \Rightarrow t9])) (THead (Bind b0) u (lift (S O) O t7)) (THead (Bind b)
+u0 t5) H31) in ((let H34 \def (f_equal T T (\lambda (e: T).(match e in T
+return (\lambda (_: T).T) with [(TSort _) \Rightarrow u | (TLRef _)
+\Rightarrow u | (THead _ t9 _) \Rightarrow t9])) (THead (Bind b0) u (lift (S
+O) O t7)) (THead (Bind b) u0 t5) H31) in ((let H35 \def (f_equal T B (\lambda
+(e: T).(match e in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow b0
+| (TLRef _) \Rightarrow b0 | (THead k0 _ _) \Rightarrow (match k0 in K return
+(\lambda (_: K).B) with [(Bind b1) \Rightarrow b1 | (Flat _) \Rightarrow
+b0])])) (THead (Bind b0) u (lift (S O) O t7)) (THead (Bind b) u0 t5) H31) in
+(eq_ind B b (\lambda (b1: B).((eq T u u0) \to ((eq T (lift (S O) O t7) t5)
+\to ((eq T t8 t4) \to ((not (eq B b1 Abst)) \to ((pr0 t7 t8) \to (ex2 T
+(\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0
+(THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9)))))))))
+(\lambda (H36: (eq T u u0)).(eq_ind T u0 (\lambda (_: T).((eq T (lift (S O) O
+t7) t5) \to ((eq T t8 t4) \to ((not (eq B b Abst)) \to ((pr0 t7 t8) \to (ex2
+T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda (t10:
+T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6))
+t10)))))))) (\lambda (H37: (eq T (lift (S O) O t7) t5)).(eq_ind T (lift (S O)
+O t7) (\lambda (_: T).((eq T t8 t4) \to ((not (eq B b Abst)) \to ((pr0 t7 t8)
+\to (ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda
+(t10: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6))
+t10))))))) (\lambda (H38: (eq T t8 t4)).(eq_ind T t4 (\lambda (t9: T).((not
+(eq B b Abst)) \to ((pr0 t7 t9) \to (ex2 T (\lambda (t10: T).(pr0 (THead
+(Flat Appl) u2 t4) t10)) (\lambda (t10: T).(pr0 (THead (Bind b) u3 (THead
+(Flat Appl) (lift (S O) O v2) t6)) t10)))))) (\lambda (H39: (not (eq B b
+Abst))).(\lambda (H40: (pr0 t7 t4)).(let H41 \def (eq_ind_r T t5 (\lambda
+(t9: T).(\forall (v: T).((tlt v (THead (Flat Appl) v1 (THead (Bind b) u0
+t9))) \to (\forall (t10: T).((pr0 v t10) \to (\forall (t11: T).((pr0 v t11)
+\to (ex2 T (\lambda (t12: T).(pr0 t10 t12)) (\lambda (t12: T).(pr0 t11
+t12)))))))))) H27 (lift (S O) O t7) H37) in (let H42 \def (eq_ind_r T t5
+(\lambda (t9: T).(eq T t3 (THead (Bind b) u0 t9))) H26 (lift (S O) O t7) H37)
+in (let H43 \def (eq_ind_r T t5 (\lambda (t9: T).(pr0 t9 t6)) H19 (lift (S O)
+O t7) H37) in (ex2_ind T (\lambda (t9: T).(eq T t6 (lift (S O) O t9)))
+(\lambda (t9: T).(pr0 t7 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl)
+u2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift
+(S O) O v2) t6)) t9))) (\lambda (x: T).(\lambda (H44: (eq T t6 (lift (S O) O
+x))).(\lambda (H45: (pr0 t7 x)).(eq_ind_r T (lift (S O) O x) (\lambda (t9:
+T).(ex2 T (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t4) t10)) (\lambda
+(t10: T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t9))
+t10)))) (let H46 \def (eq_ind T u1 (\lambda (t9: T).(pr0 t9 u2)) H7 v1 H25)
+in (ex2_ind T (\lambda (t9: T).(pr0 u2 t9)) (\lambda (t9: T).(pr0 v2 t9))
+(ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9:
+T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) (lift (S O) O
+x))) t9))) (\lambda (x0: T).(\lambda (H47: (pr0 u2 x0)).(\lambda (H48: (pr0
+v2 x0)).(ex2_ind T (\lambda (t9: T).(pr0 x t9)) (\lambda (t9: T).(pr0 t4 t9))
+(ex2 T (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9:
+T).(pr0 (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) (lift (S O) O
+x))) t9))) (\lambda (x1: T).(\lambda (H49: (pr0 x x1)).(\lambda (H50: (pr0 t4
+x1)).(pr0_confluence__pr0_cong_upsilon_zeta b H39 u0 u3 H18 u2 v2 x0 H47 H48
+x t4 x1 H49 H50)))) (H41 t7 (tlt_trans (THead (Bind b) u0 (lift (S O) O t7))
+t7 (THead (Flat Appl) v1 (THead (Bind b) u0 (lift (S O) O t7))) (lift_tlt_dx
+(Bind b) u0 t7 (S O) O) (tlt_head_dx (Flat Appl) v1 (THead (Bind b) u0 (lift
+(S O) O t7)))) x H45 t4 H40))))) (H41 v1 (tlt_head_sx (Flat Appl) v1 (THead
+(Bind b) u0 (lift (S O) O t7))) u2 H46 v2 H17))) t6 H44)))) (pr0_gen_lift t7
+t6 (S O) O H43))))))) t8 (sym_eq T t8 t4 H38))) t5 H37)) u (sym_eq T u u0
+H36))) b0 (sym_eq B b0 b H35))) H34)) H33)) H32 H29 H30))) | (pr0_epsilon t7
+t8 H29 u) \Rightarrow (\lambda (H30: (eq T (THead (Flat Cast) u t7) (THead
+(Bind b) u0 t5))).(\lambda (H31: (eq T t8 t4)).((let H32 \def (eq_ind T
+(THead (Flat Cast) u t7) (\lambda (e: T).(match e in T return (\lambda (_:
+T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False |
+(THead k0 _ _) \Rightarrow (match k0 in K return (\lambda (_: K).Prop) with
+[(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind
+b) u0 t5) H30) in (False_ind ((eq T t8 t4) \to ((pr0 t7 t8) \to (ex2 T
+(\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t4) t9)) (\lambda (t9: T).(pr0
+(THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t9))))) H32))
+H31 H29)))]) in (H29 (refl_equal T (THead (Bind b) u0 t5)) (refl_equal T
+t4))))) t3 (sym_eq T t3 (THead (Bind b) u0 t5) H26))) u1 (sym_eq T u1 v1
+H25))) k (sym_eq K k (Flat Appl) H24))) H23)) H22)))]) in (H21 (refl_equal T
+(THead (Flat Appl) v1 (THead (Bind b) u0 t5)))))))))) t2 H15)) t H13 H14 H9
+H10 H11 H12))) | (pr0_delta u0 u3 H9 t5 t6 H10 w H11) \Rightarrow (\lambda
+(H12: (eq T (THead (Bind Abbr) u0 t5) t)).(\lambda (H13: (eq T (THead (Bind
+Abbr) u3 w) t2)).(eq_ind T (THead (Bind Abbr) u0 t5) (\lambda (_: T).((eq T
+(THead (Bind Abbr) u3 w) t2) \to ((pr0 u0 u3) \to ((pr0 t5 t6) \to ((subst0 O
+u3 t6 w) \to (ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda (t8:
+T).(pr0 t2 t8)))))))) (\lambda (H14: (eq T (THead (Bind Abbr) u3 w)
+t2)).(eq_ind T (THead (Bind Abbr) u3 w) (\lambda (t7: T).((pr0 u0 u3) \to
+((pr0 t5 t6) \to ((subst0 O u3 t6 w) \to (ex2 T (\lambda (t8: T).(pr0 (THead
+k u2 t4) t8)) (\lambda (t8: T).(pr0 t7 t8))))))) (\lambda (H15: (pr0 u0
+u3)).(\lambda (H16: (pr0 t5 t6)).(\lambda (H17: (subst0 O u3 t6 w)).(let H18
+\def (eq_ind_r T t (\lambda (t7: T).(eq T (THead k u1 t3) t7)) H4 (THead
+(Bind Abbr) u0 t5) H12) in (let H19 \def (match H18 in eq return (\lambda
+(t7: T).(\lambda (_: (eq ? ? t7)).((eq T t7 (THead (Bind Abbr) u0 t5)) \to
+(ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0
+(THead (Bind Abbr) u3 w) t8)))))) with [refl_equal \Rightarrow (\lambda (H19:
+(eq T (THead k u1 t3) (THead (Bind Abbr) u0 t5))).(let H20 \def (f_equal T T
+(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t7) \Rightarrow t7]))
+(THead k u1 t3) (THead (Bind Abbr) u0 t5) H19) in ((let H21 \def (f_equal T T
+(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead _ t7 _) \Rightarrow t7]))
+(THead k u1 t3) (THead (Bind Abbr) u0 t5) H19) in ((let H22 \def (f_equal T K
+(\lambda (e: T).(match e in T return (\lambda (_: T).K) with [(TSort _)
+\Rightarrow k | (TLRef _) \Rightarrow k | (THead k0 _ _) \Rightarrow k0]))
+(THead k u1 t3) (THead (Bind Abbr) u0 t5) H19) in (eq_ind K (Bind Abbr)
+(\lambda (k0: K).((eq T u1 u0) \to ((eq T t3 t5) \to (ex2 T (\lambda (t7:
+T).(pr0 (THead k0 u2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) u3 w)
+t7)))))) (\lambda (H23: (eq T u1 u0)).(eq_ind T u0 (\lambda (_: T).((eq T t3
+t5) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) u2 t4) t8)) (\lambda
+(t8: T).(pr0 (THead (Bind Abbr) u3 w) t8))))) (\lambda (H24: (eq T t3
+t5)).(eq_ind T t5 (\lambda (_: T).(ex2 T (\lambda (t8: T).(pr0 (THead (Bind
+Abbr) u2 t4) t8)) (\lambda (t8: T).(pr0 (THead (Bind Abbr) u3 w) t8)))) (let
+H25 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v t7) \to
+(\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to (ex2 T
+(\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 t10)))))))))) H
+(THead (Bind Abbr) u0 t5) H12) in (let H26 \def (eq_ind T t3 (\lambda (t7:
+T).(pr0 t7 t4)) H8 t5 H24) in (let H27 \def (eq_ind T u1 (\lambda (t7:
+T).(pr0 t7 u2)) H7 u0 H23) in (ex2_ind T (\lambda (t7: T).(pr0 u2 t7))
+(\lambda (t7: T).(pr0 u3 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr)
+u2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) u3 w) t7))) (\lambda (x:
+T).(\lambda (H28: (pr0 u2 x)).(\lambda (H29: (pr0 u3 x)).(ex2_ind T (\lambda
+(t7: T).(pr0 t4 t7)) (\lambda (t7: T).(pr0 t6 t7)) (ex2 T (\lambda (t7:
+T).(pr0 (THead (Bind Abbr) u2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind
+Abbr) u3 w) t7))) (\lambda (x0: T).(\lambda (H30: (pr0 t4 x0)).(\lambda (H31:
+(pr0 t6 x0)).(pr0_confluence__pr0_cong_delta u3 t6 w H17 u2 x H28 H29 t4 x0
+H30 H31)))) (H25 t5 (tlt_head_dx (Bind Abbr) u0 t5) t4 H26 t6 H16))))) (H25
+u0 (tlt_head_sx (Bind Abbr) u0 t5) u2 H27 u3 H15))))) t3 (sym_eq T t3 t5
+H24))) u1 (sym_eq T u1 u0 H23))) k (sym_eq K k (Bind Abbr) H22))) H21))
+H20)))]) in (H19 (refl_equal T (THead (Bind Abbr) u0 t5)))))))) t2 H14)) t
+H12 H13 H9 H10 H11))) | (pr0_zeta b H9 t5 t6 H10 u) \Rightarrow (\lambda
+(H11: (eq T (THead (Bind b) u (lift (S O) O t5)) t)).(\lambda (H12: (eq T t6
+t2)).(eq_ind T (THead (Bind b) u (lift (S O) O t5)) (\lambda (_: T).((eq T t6
+t2) \to ((not (eq B b Abst)) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8:
+T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda
+(H13: (eq T t6 t2)).(eq_ind T t2 (\lambda (t7: T).((not (eq B b Abst)) \to
+((pr0 t5 t7) \to (ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda
+(t8: T).(pr0 t2 t8)))))) (\lambda (H14: (not (eq B b Abst))).(\lambda (H15:
+(pr0 t5 t2)).(let H16 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead k u1
+t3) t7)) H4 (THead (Bind b) u (lift (S O) O t5)) H11) in (let H17 \def (match
+H16 in eq return (\lambda (t7: T).(\lambda (_: (eq ? ? t7)).((eq T t7 (THead
+(Bind b) u (lift (S O) O t5))) \to (ex2 T (\lambda (t8: T).(pr0 (THead k u2
+t4) t8)) (\lambda (t8: T).(pr0 t2 t8)))))) with [refl_equal \Rightarrow
+(\lambda (H17: (eq T (THead k u1 t3) (THead (Bind b) u (lift (S O) O
+t5)))).(let H18 \def (f_equal T T (\lambda (e: T).(match e in T return
+(\lambda (_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3
+| (THead _ _ t7) \Rightarrow t7])) (THead k u1 t3) (THead (Bind b) u (lift (S
+O) O t5)) H17) in ((let H19 \def (f_equal T T (\lambda (e: T).(match e in T
+return (\lambda (_: T).T) with [(TSort _) \Rightarrow u1 | (TLRef _)
+\Rightarrow u1 | (THead _ t7 _) \Rightarrow t7])) (THead k u1 t3) (THead
+(Bind b) u (lift (S O) O t5)) H17) in ((let H20 \def (f_equal T K (\lambda
+(e: T).(match e in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow k
+| (TLRef _) \Rightarrow k | (THead k0 _ _) \Rightarrow k0])) (THead k u1 t3)
+(THead (Bind b) u (lift (S O) O t5)) H17) in (eq_ind K (Bind b) (\lambda (k0:
+K).((eq T u1 u) \to ((eq T t3 (lift (S O) O t5)) \to (ex2 T (\lambda (t7:
+T).(pr0 (THead k0 u2 t4) t7)) (\lambda (t7: T).(pr0 t2 t7)))))) (\lambda
+(H21: (eq T u1 u)).(eq_ind T u (\lambda (_: T).((eq T t3 (lift (S O) O t5))
+\to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 t4) t8)) (\lambda (t8:
+T).(pr0 t2 t8))))) (\lambda (H22: (eq T t3 (lift (S O) O t5))).(eq_ind T
+(lift (S O) O t5) (\lambda (_: T).(ex2 T (\lambda (t8: T).(pr0 (THead (Bind
+b) u2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8)))) (let H23 \def (eq_ind_r T t
+(\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8)
+\to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10))
+(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Bind b) u (lift (S O) O
+t5)) H11) in (let H24 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H8
+(lift (S O) O t5) H22) in (ex2_ind T (\lambda (t7: T).(eq T t4 (lift (S O) O
+t7))) (\lambda (t7: T).(pr0 t5 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind
+b) u2 t4) t7)) (\lambda (t7: T).(pr0 t2 t7))) (\lambda (x: T).(\lambda (H25:
+(eq T t4 (lift (S O) O x))).(\lambda (H26: (pr0 t5 x)).(eq_ind_r T (lift (S
+O) O x) (\lambda (t7: T).(ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 t7)
+t8)) (\lambda (t8: T).(pr0 t2 t8)))) (let H27 \def (eq_ind T u1 (\lambda (t7:
+T).(pr0 t7 u2)) H7 u H21) in (ex2_ind T (\lambda (t7: T).(pr0 x t7)) (\lambda
+(t7: T).(pr0 t2 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b) u2 (lift (S
+O) O x)) t7)) (\lambda (t7: T).(pr0 t2 t7))) (\lambda (x0: T).(\lambda (H28:
+(pr0 x x0)).(\lambda (H29: (pr0 t2 x0)).(ex_intro2 T (\lambda (t7: T).(pr0
+(THead (Bind b) u2 (lift (S O) O x)) t7)) (\lambda (t7: T).(pr0 t2 t7)) x0
+(pr0_zeta b H14 x x0 H28 u2) H29)))) (H23 t5 (lift_tlt_dx (Bind b) u t5 (S O)
+O) x H26 t2 H15))) t4 H25)))) (pr0_gen_lift t5 t4 (S O) O H24)))) t3 (sym_eq
+T t3 (lift (S O) O t5) H22))) u1 (sym_eq T u1 u H21))) k (sym_eq K k (Bind b)
+H20))) H19)) H18)))]) in (H17 (refl_equal T (THead (Bind b) u (lift (S O) O
+t5)))))))) t6 (sym_eq T t6 t2 H13))) t H11 H12 H9 H10))) | (pr0_epsilon t5 t6
+H9 u) \Rightarrow (\lambda (H10: (eq T (THead (Flat Cast) u t5) t)).(\lambda
+(H11: (eq T t6 t2)).(eq_ind T (THead (Flat Cast) u t5) (\lambda (_: T).((eq T
+t6 t2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead k u2 t4) t8))
+(\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (H12: (eq T t6 t2)).(eq_ind T t2
+(\lambda (t7: T).((pr0 t5 t7) \to (ex2 T (\lambda (t8: T).(pr0 (THead k u2
+t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))) (\lambda (H13: (pr0 t5 t2)).(let
+H14 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead k u1 t3) t7)) H4 (THead
+(Flat Cast) u t5) H10) in (let H15 \def (match H14 in eq return (\lambda (t7:
+T).(\lambda (_: (eq ? ? t7)).((eq T t7 (THead (Flat Cast) u t5)) \to (ex2 T
+(\lambda (t8: T).(pr0 (THead k u2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))))
+with [refl_equal \Rightarrow (\lambda (H15: (eq T (THead k u1 t3) (THead
+(Flat Cast) u t5))).(let H16 \def (f_equal T T (\lambda (e: T).(match e in T
+return (\lambda (_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _)
+\Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead k u1 t3) (THead
+(Flat Cast) u t5) H15) in ((let H17 \def (f_equal T T (\lambda (e: T).(match
+e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u1 | (TLRef _)
+\Rightarrow u1 | (THead _ t7 _) \Rightarrow t7])) (THead k u1 t3) (THead
+(Flat Cast) u t5) H15) in ((let H18 \def (f_equal T K (\lambda (e: T).(match
+e in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow k | (TLRef _)
+\Rightarrow k | (THead k0 _ _) \Rightarrow k0])) (THead k u1 t3) (THead (Flat
+Cast) u t5) H15) in (eq_ind K (Flat Cast) (\lambda (k0: K).((eq T u1 u) \to
+((eq T t3 t5) \to (ex2 T (\lambda (t7: T).(pr0 (THead k0 u2 t4) t7)) (\lambda
+(t7: T).(pr0 t2 t7)))))) (\lambda (H19: (eq T u1 u)).(eq_ind T u (\lambda (_:
+T).((eq T t3 t5) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Flat Cast) u2 t4)
+t8)) (\lambda (t8: T).(pr0 t2 t8))))) (\lambda (H20: (eq T t3 t5)).(eq_ind T
+t5 (\lambda (_: T).(ex2 T (\lambda (t8: T).(pr0 (THead (Flat Cast) u2 t4)
+t8)) (\lambda (t8: T).(pr0 t2 t8)))) (let H21 \def (eq_ind_r T t (\lambda
+(t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) \to
+(\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10))
+(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Flat Cast) u t5) H10) in
+(let H22 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H8 t5 H20) in (let
+H23 \def (eq_ind T u1 (\lambda (t7: T).(pr0 t7 u2)) H7 u H19) in (ex2_ind T
+(\lambda (t7: T).(pr0 t4 t7)) (\lambda (t7: T).(pr0 t2 t7)) (ex2 T (\lambda
+(t7: T).(pr0 (THead (Flat Cast) u2 t4) t7)) (\lambda (t7: T).(pr0 t2 t7)))
+(\lambda (x: T).(\lambda (H24: (pr0 t4 x)).(\lambda (H25: (pr0 t2
+x)).(ex_intro2 T (\lambda (t7: T).(pr0 (THead (Flat Cast) u2 t4) t7))
+(\lambda (t7: T).(pr0 t2 t7)) x (pr0_epsilon t4 x H24 u2) H25)))) (H21 t5
+(tlt_head_dx (Flat Cast) u t5) t4 H22 t2 H13))))) t3 (sym_eq T t3 t5 H20)))
+u1 (sym_eq T u1 u H19))) k (sym_eq K k (Flat Cast) H18))) H17)) H16)))]) in
+(H15 (refl_equal T (THead (Flat Cast) u t5)))))) t6 (sym_eq T t6 t2 H12))) t
+H10 H11 H9)))]) in (H9 (refl_equal T t) (refl_equal T t2))))) t1 H6)) t H4 H5
+H2 H3))) | (pr0_beta u v1 v2 H2 t3 t4 H3) \Rightarrow (\lambda (H4: (eq T
+(THead (Flat Appl) v1 (THead (Bind Abst) u t3)) t)).(\lambda (H5: (eq T
+(THead (Bind Abbr) v2 t4) t1)).(eq_ind T (THead (Flat Appl) v1 (THead (Bind
+Abst) u t3)) (\lambda (_: T).((eq T (THead (Bind Abbr) v2 t4) t1) \to ((pr0
+v1 v2) \to ((pr0 t3 t4) \to (ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda
+(t6: T).(pr0 t2 t6))))))) (\lambda (H6: (eq T (THead (Bind Abbr) v2 t4)
+t1)).(eq_ind T (THead (Bind Abbr) v2 t4) (\lambda (t5: T).((pr0 v1 v2) \to
+((pr0 t3 t4) \to (ex2 T (\lambda (t6: T).(pr0 t5 t6)) (\lambda (t6: T).(pr0
+t2 t6)))))) (\lambda (H7: (pr0 v1 v2)).(\lambda (H8: (pr0 t3 t4)).(let H9
+\def (match H1 in pr0 return (\lambda (t5: T).(\lambda (t6: T).(\lambda (_:
+(pr0 t5 t6)).((eq T t5 t) \to ((eq T t6 t2) \to (ex2 T (\lambda (t7: T).(pr0
+(THead (Bind Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0 t2 t7)))))))) with
+[(pr0_refl t5) \Rightarrow (\lambda (H9: (eq T t5 t)).(\lambda (H10: (eq T t5
+t2)).(eq_ind T t (\lambda (t6: T).((eq T t6 t2) \to (ex2 T (\lambda (t7:
+T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0 t2 t7)))))
+(\lambda (H11: (eq T t t2)).(eq_ind T t2 (\lambda (_: T).(ex2 T (\lambda (t7:
+T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0 t2 t7)))) (let
+H12 \def (eq_ind_r T t (\lambda (t6: T).(eq T t6 t2)) H11 (THead (Flat Appl)
+v1 (THead (Bind Abst) u t3)) H4) in (eq_ind T (THead (Flat Appl) v1 (THead
+(Bind Abst) u t3)) (\lambda (t6: T).(ex2 T (\lambda (t7: T).(pr0 (THead (Bind
+Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0 t6 t7)))) (let H13 \def (eq_ind_r T t
+(\lambda (t6: T).(eq T t5 t6)) H9 (THead (Flat Appl) v1 (THead (Bind Abst) u
+t3)) H4) in (let H14 \def (eq_ind_r T t (\lambda (t6: T).(\forall (v:
+T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7) \to (\forall (t8: T).((pr0 v
+t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9)) (\lambda (t9: T).(pr0 t8
+t9)))))))))) H (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) H4) in
+(ex_intro2 T (\lambda (t6: T).(pr0 (THead (Bind Abbr) v2 t4) t6)) (\lambda
+(t6: T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) t6)) (THead
+(Bind Abbr) v2 t4) (pr0_refl (THead (Bind Abbr) v2 t4)) (pr0_beta u v1 v2 H7
+t3 t4 H8)))) t2 H12)) t (sym_eq T t t2 H11))) t5 (sym_eq T t5 t H9) H10))) |
+(pr0_comp u1 u2 H9 t5 t6 H10 k) \Rightarrow (\lambda (H11: (eq T (THead k u1
+t5) t)).(\lambda (H12: (eq T (THead k u2 t6) t2)).(eq_ind T (THead k u1 t5)
+(\lambda (_: T).((eq T (THead k u2 t6) t2) \to ((pr0 u1 u2) \to ((pr0 t5 t6)
+\to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8:
+T).(pr0 t2 t8))))))) (\lambda (H13: (eq T (THead k u2 t6) t2)).(eq_ind T
+(THead k u2 t6) (\lambda (t7: T).((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T
+(\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t7
+t8)))))) (\lambda (H14: (pr0 u1 u2)).(\lambda (H15: (pr0 t5 t6)).(let H16
+\def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind
+Abst) u t3)) t7)) H4 (THead k u1 t5) H11) in (let H17 \def (match H16 in eq
+return (\lambda (t7: T).(\lambda (_: (eq ? ? t7)).((eq T t7 (THead k u1 t5))
+\to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8:
+T).(pr0 (THead k u2 t6) t8)))))) with [refl_equal \Rightarrow (\lambda (H17:
+(eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (THead k u1 t5))).(let
+H18 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T)
+with [(TSort _) \Rightarrow (THead (Bind Abst) u t3) | (TLRef _) \Rightarrow
+(THead (Bind Abst) u t3) | (THead _ _ t7) \Rightarrow t7])) (THead (Flat
+Appl) v1 (THead (Bind Abst) u t3)) (THead k u1 t5) H17) in ((let H19 \def
+(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
+[(TSort _) \Rightarrow v1 | (TLRef _) \Rightarrow v1 | (THead _ t7 _)
+\Rightarrow t7])) (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (THead k u1
+t5) H17) in ((let H20 \def (f_equal T K (\lambda (e: T).(match e in T return
+(\lambda (_: T).K) with [(TSort _) \Rightarrow (Flat Appl) | (TLRef _)
+\Rightarrow (Flat Appl) | (THead k0 _ _) \Rightarrow k0])) (THead (Flat Appl)
+v1 (THead (Bind Abst) u t3)) (THead k u1 t5) H17) in (eq_ind K (Flat Appl)
+(\lambda (k0: K).((eq T v1 u1) \to ((eq T (THead (Bind Abst) u t3) t5) \to
+(ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda (t7:
+T).(pr0 (THead k0 u2 t6) t7)))))) (\lambda (H21: (eq T v1 u1)).(eq_ind T u1
+(\lambda (_: T).((eq T (THead (Bind Abst) u t3) t5) \to (ex2 T (\lambda (t8:
+T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 (THead (Flat
+Appl) u2 t6) t8))))) (\lambda (H22: (eq T (THead (Bind Abst) u t3)
+t5)).(eq_ind T (THead (Bind Abst) u t3) (\lambda (_: T).(ex2 T (\lambda (t8:
+T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 (THead (Flat
+Appl) u2 t6) t8)))) (let H23 \def (eq_ind_r K k (\lambda (k0: K).(eq T (THead
+k0 u1 t5) t)) H11 (Flat Appl) H20) in (let H24 \def (eq_ind_r T t5 (\lambda
+(t7: T).(pr0 t7 t6)) H15 (THead (Bind Abst) u t3) H22) in (let H25 \def
+(match H24 in pr0 return (\lambda (t7: T).(\lambda (t8: T).(\lambda (_: (pr0
+t7 t8)).((eq T t7 (THead (Bind Abst) u t3)) \to ((eq T t8 t6) \to (ex2 T
+(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0
+(THead (Flat Appl) u2 t6) t9)))))))) with [(pr0_refl t7) \Rightarrow (\lambda
+(H25: (eq T t7 (THead (Bind Abst) u t3))).(\lambda (H26: (eq T t7
+t6)).(eq_ind T (THead (Bind Abst) u t3) (\lambda (t8: T).((eq T t8 t6) \to
+(ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9:
+T).(pr0 (THead (Flat Appl) u2 t6) t9))))) (\lambda (H27: (eq T (THead (Bind
+Abst) u t3) t6)).(eq_ind T (THead (Bind Abst) u t3) (\lambda (t8: T).(ex2 T
+(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0
+(THead (Flat Appl) u2 t8) t9)))) (let H28 \def (eq_ind_r T t5 (\lambda (t8:
+T).(eq T (THead (Flat Appl) u1 t8) t)) H23 (THead (Bind Abst) u t3) H22) in
+(let H29 \def (eq_ind_r T t (\lambda (t8: T).(\forall (v: T).((tlt v t8) \to
+(\forall (t9: T).((pr0 v t9) \to (\forall (t10: T).((pr0 v t10) \to (ex2 T
+(\lambda (t11: T).(pr0 t9 t11)) (\lambda (t11: T).(pr0 t10 t11)))))))))) H
+(THead (Flat Appl) u1 (THead (Bind Abst) u t3)) H28) in (let H30 \def (eq_ind
+T v1 (\lambda (t8: T).(pr0 t8 v2)) H7 u1 H21) in (ex2_ind T (\lambda (t8:
+T).(pr0 v2 t8)) (\lambda (t8: T).(pr0 u2 t8)) (ex2 T (\lambda (t8: T).(pr0
+(THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 (THead (Flat Appl) u2
+(THead (Bind Abst) u t3)) t8))) (\lambda (x: T).(\lambda (H31: (pr0 v2
+x)).(\lambda (H32: (pr0 u2 x)).(ex_intro2 T (\lambda (t8: T).(pr0 (THead
+(Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 (THead (Flat Appl) u2 (THead
+(Bind Abst) u t3)) t8)) (THead (Bind Abbr) x t4) (pr0_comp v2 x H31 t4 t4
+(pr0_refl t4) (Bind Abbr)) (pr0_beta u u2 x H32 t3 t4 H8))))) (H29 u1
+(tlt_head_sx (Flat Appl) u1 (THead (Bind Abst) u t3)) v2 H30 u2 H14))))) t6
+H27)) t7 (sym_eq T t7 (THead (Bind Abst) u t3) H25) H26))) | (pr0_comp u0 u3
+H25 t7 t8 H26 k0) \Rightarrow (\lambda (H27: (eq T (THead k0 u0 t7) (THead
+(Bind Abst) u t3))).(\lambda (H28: (eq T (THead k0 u3 t8) t6)).((let H29 \def
+(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
+[(TSort _) \Rightarrow t7 | (TLRef _) \Rightarrow t7 | (THead _ _ t9)
+\Rightarrow t9])) (THead k0 u0 t7) (THead (Bind Abst) u t3) H27) in ((let H30
+\def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T)
+with [(TSort _) \Rightarrow u0 | (TLRef _) \Rightarrow u0 | (THead _ t9 _)
+\Rightarrow t9])) (THead k0 u0 t7) (THead (Bind Abst) u t3) H27) in ((let H31
+\def (f_equal T K (\lambda (e: T).(match e in T return (\lambda (_: T).K)
+with [(TSort _) \Rightarrow k0 | (TLRef _) \Rightarrow k0 | (THead k1 _ _)
+\Rightarrow k1])) (THead k0 u0 t7) (THead (Bind Abst) u t3) H27) in (eq_ind K
+(Bind Abst) (\lambda (k1: K).((eq T u0 u) \to ((eq T t7 t3) \to ((eq T (THead
+k1 u3 t8) t6) \to ((pr0 u0 u3) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9:
+T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Flat
+Appl) u2 t6) t9))))))))) (\lambda (H32: (eq T u0 u)).(eq_ind T u (\lambda
+(t9: T).((eq T t7 t3) \to ((eq T (THead (Bind Abst) u3 t8) t6) \to ((pr0 t9
+u3) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2
+t4) t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t6) t10))))))))
+(\lambda (H33: (eq T t7 t3)).(eq_ind T t3 (\lambda (t9: T).((eq T (THead
+(Bind Abst) u3 t8) t6) \to ((pr0 u u3) \to ((pr0 t9 t8) \to (ex2 T (\lambda
+(t10: T).(pr0 (THead (Bind Abbr) v2 t4) t10)) (\lambda (t10: T).(pr0 (THead
+(Flat Appl) u2 t6) t10))))))) (\lambda (H34: (eq T (THead (Bind Abst) u3 t8)
+t6)).(eq_ind T (THead (Bind Abst) u3 t8) (\lambda (t9: T).((pr0 u u3) \to
+((pr0 t3 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t4)
+t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t9) t10)))))) (\lambda (_:
+(pr0 u u3)).(\lambda (H36: (pr0 t3 t8)).(let H37 \def (eq_ind_r T t5 (\lambda
+(t9: T).(eq T (THead (Flat Appl) u1 t9) t)) H23 (THead (Bind Abst) u t3) H22)
+in (let H38 \def (eq_ind_r T t (\lambda (t9: T).(\forall (v: T).((tlt v t9)
+\to (\forall (t10: T).((pr0 v t10) \to (\forall (t11: T).((pr0 v t11) \to
+(ex2 T (\lambda (t12: T).(pr0 t10 t12)) (\lambda (t12: T).(pr0 t11
+t12)))))))))) H (THead (Flat Appl) u1 (THead (Bind Abst) u t3)) H37) in (let
+H39 \def (eq_ind T v1 (\lambda (t9: T).(pr0 t9 v2)) H7 u1 H21) in (ex2_ind T
+(\lambda (t9: T).(pr0 v2 t9)) (\lambda (t9: T).(pr0 u2 t9)) (ex2 T (\lambda
+(t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0 (THead
+(Flat Appl) u2 (THead (Bind Abst) u3 t8)) t9))) (\lambda (x: T).(\lambda
+(H40: (pr0 v2 x)).(\lambda (H41: (pr0 u2 x)).(ex2_ind T (\lambda (t9: T).(pr0
+t8 t9)) (\lambda (t9: T).(pr0 t4 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead
+(Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead
+(Bind Abst) u3 t8)) t9))) (\lambda (x0: T).(\lambda (H42: (pr0 t8
+x0)).(\lambda (H43: (pr0 t4 x0)).(ex_intro2 T (\lambda (t9: T).(pr0 (THead
+(Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 (THead
+(Bind Abst) u3 t8)) t9)) (THead (Bind Abbr) x x0) (pr0_comp v2 x H40 t4 x0
+H43 (Bind Abbr)) (pr0_beta u3 u2 x H41 t8 x0 H42))))) (H38 t3 (tlt_trans
+(THead (Bind Abst) u t3) t3 (THead (Flat Appl) u1 (THead (Bind Abst) u t3))
+(tlt_head_dx (Bind Abst) u t3) (tlt_head_dx (Flat Appl) u1 (THead (Bind Abst)
+u t3))) t8 H36 t4 H8))))) (H38 u1 (tlt_head_sx (Flat Appl) u1 (THead (Bind
+Abst) u t3)) v2 H39 u2 H14))))))) t6 H34)) t7 (sym_eq T t7 t3 H33))) u0
+(sym_eq T u0 u H32))) k0 (sym_eq K k0 (Bind Abst) H31))) H30)) H29)) H28 H25
+H26))) | (pr0_beta u0 v0 v3 H25 t7 t8 H26) \Rightarrow (\lambda (H27: (eq T
+(THead (Flat Appl) v0 (THead (Bind Abst) u0 t7)) (THead (Bind Abst) u
+t3))).(\lambda (H28: (eq T (THead (Bind Abbr) v3 t8) t6)).((let H29 \def
+(eq_ind T (THead (Flat Appl) v0 (THead (Bind Abst) u0 t7)) (\lambda (e:
+T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
+False | (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in
+K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _)
+\Rightarrow True])])) I (THead (Bind Abst) u t3) H27) in (False_ind ((eq T
+(THead (Bind Abbr) v3 t8) t6) \to ((pr0 v0 v3) \to ((pr0 t7 t8) \to (ex2 T
+(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0
+(THead (Flat Appl) u2 t6) t9)))))) H29)) H28 H25 H26))) | (pr0_upsilon b H25
+v0 v3 H26 u0 u3 H27 t7 t8 H28) \Rightarrow (\lambda (H29: (eq T (THead (Flat
+Appl) v0 (THead (Bind b) u0 t7)) (THead (Bind Abst) u t3))).(\lambda (H30:
+(eq T (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v3) t8)) t6)).((let
+H31 \def (eq_ind T (THead (Flat Appl) v0 (THead (Bind b) u0 t7)) (\lambda (e:
+T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
+False | (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in
+K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _)
+\Rightarrow True])])) I (THead (Bind Abst) u t3) H29) in (False_ind ((eq T
+(THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v3) t8)) t6) \to ((not
+(eq B b Abst)) \to ((pr0 v0 v3) \to ((pr0 u0 u3) \to ((pr0 t7 t8) \to (ex2 T
+(\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0
+(THead (Flat Appl) u2 t6) t9)))))))) H31)) H30 H25 H26 H27 H28))) |
+(pr0_delta u0 u3 H25 t7 t8 H26 w H27) \Rightarrow (\lambda (H28: (eq T (THead
+(Bind Abbr) u0 t7) (THead (Bind Abst) u t3))).(\lambda (H29: (eq T (THead
+(Bind Abbr) u3 w) t6)).((let H30 \def (eq_ind T (THead (Bind Abbr) u0 t7)
+(\lambda (e: T).(match e in T return (\lambda (_: T).Prop) with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow
+(match k0 in K return (\lambda (_: K).Prop) with [(Bind b) \Rightarrow (match
+b in B return (\lambda (_: B).Prop) with [Abbr \Rightarrow True | Abst
+\Rightarrow False | Void \Rightarrow False]) | (Flat _) \Rightarrow
+False])])) I (THead (Bind Abst) u t3) H28) in (False_ind ((eq T (THead (Bind
+Abbr) u3 w) t6) \to ((pr0 u0 u3) \to ((pr0 t7 t8) \to ((subst0 O u3 t8 w) \to
+(ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9:
+T).(pr0 (THead (Flat Appl) u2 t6) t9))))))) H30)) H29 H25 H26 H27))) |
+(pr0_zeta b H25 t7 t8 H26 u0) \Rightarrow (\lambda (H27: (eq T (THead (Bind
+b) u0 (lift (S O) O t7)) (THead (Bind Abst) u t3))).(\lambda (H28: (eq T t8
+t6)).((let H29 \def (f_equal T T (\lambda (e: T).(match e in T return
+(\lambda (_: T).T) with [(TSort _) \Rightarrow ((let rec lref_map (f: ((nat
+\to nat))) (d: nat) (t9: T) on t9: T \def (match t9 with [(TSort n)
+\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with
+[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k0 u3 t10)
+\Rightarrow (THead k0 (lref_map f d u3) (lref_map f (s k0 d) t10))]) in
+lref_map) (\lambda (x: nat).(plus x (S O))) O t7) | (TLRef _) \Rightarrow
+((let rec lref_map (f: ((nat \to nat))) (d: nat) (t9: T) on t9: T \def (match
+t9 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef
+(match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) |
+(THead k0 u3 t10) \Rightarrow (THead k0 (lref_map f d u3) (lref_map f (s k0
+d) t10))]) in lref_map) (\lambda (x: nat).(plus x (S O))) O t7) | (THead _ _
+t9) \Rightarrow t9])) (THead (Bind b) u0 (lift (S O) O t7)) (THead (Bind
+Abst) u t3) H27) in ((let H30 \def (f_equal T T (\lambda (e: T).(match e in T
+return (\lambda (_: T).T) with [(TSort _) \Rightarrow u0 | (TLRef _)
+\Rightarrow u0 | (THead _ t9 _) \Rightarrow t9])) (THead (Bind b) u0 (lift (S
+O) O t7)) (THead (Bind Abst) u t3) H27) in ((let H31 \def (f_equal T B
+(\lambda (e: T).(match e in T return (\lambda (_: T).B) with [(TSort _)
+\Rightarrow b | (TLRef _) \Rightarrow b | (THead k0 _ _) \Rightarrow (match
+k0 in K return (\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _)
+\Rightarrow b])])) (THead (Bind b) u0 (lift (S O) O t7)) (THead (Bind Abst) u
+t3) H27) in (eq_ind B Abst (\lambda (b0: B).((eq T u0 u) \to ((eq T (lift (S
+O) O t7) t3) \to ((eq T t8 t6) \to ((not (eq B b0 Abst)) \to ((pr0 t7 t8) \to
+(ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9:
+T).(pr0 (THead (Flat Appl) u2 t6) t9))))))))) (\lambda (H32: (eq T u0
+u)).(eq_ind T u (\lambda (_: T).((eq T (lift (S O) O t7) t3) \to ((eq T t8
+t6) \to ((not (eq B Abst Abst)) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t10:
+T).(pr0 (THead (Bind Abbr) v2 t4) t10)) (\lambda (t10: T).(pr0 (THead (Flat
+Appl) u2 t6) t10)))))))) (\lambda (H33: (eq T (lift (S O) O t7) t3)).(eq_ind
+T (lift (S O) O t7) (\lambda (_: T).((eq T t8 t6) \to ((not (eq B Abst Abst))
+\to ((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t4)
+t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t6) t10))))))) (\lambda
+(H34: (eq T t8 t6)).(eq_ind T t6 (\lambda (t9: T).((not (eq B Abst Abst)) \to
+((pr0 t7 t9) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Bind Abbr) v2 t4)
+t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u2 t6) t10)))))) (\lambda
+(H35: (not (eq B Abst Abst))).(\lambda (_: (pr0 t7 t6)).(let H37 \def (match
+(H35 (refl_equal B Abst)) in False return (\lambda (_: False).(ex2 T (\lambda
+(t9: T).(pr0 (THead (Bind Abbr) v2 t4) t9)) (\lambda (t9: T).(pr0 (THead
+(Flat Appl) u2 t6) t9)))) with []) in H37))) t8 (sym_eq T t8 t6 H34))) t3
+H33)) u0 (sym_eq T u0 u H32))) b (sym_eq B b Abst H31))) H30)) H29)) H28 H25
+H26))) | (pr0_epsilon t7 t8 H25 u0) \Rightarrow (\lambda (H26: (eq T (THead
+(Flat Cast) u0 t7) (THead (Bind Abst) u t3))).(\lambda (H27: (eq T t8
+t6)).((let H28 \def (eq_ind T (THead (Flat Cast) u0 t7) (\lambda (e:
+T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
+False | (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in
+K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _)
+\Rightarrow True])])) I (THead (Bind Abst) u t3) H26) in (False_ind ((eq T t8
+t6) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) v2
+t4) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u2 t6) t9))))) H28)) H27
+H25)))]) in (H25 (refl_equal T (THead (Bind Abst) u t3)) (refl_equal T
+t6))))) t5 H22)) v1 (sym_eq T v1 u1 H21))) k H20)) H19)) H18)))]) in (H17
+(refl_equal T (THead k u1 t5))))))) t2 H13)) t H11 H12 H9 H10))) | (pr0_beta
+u0 v0 v3 H9 t5 t6 H10) \Rightarrow (\lambda (H11: (eq T (THead (Flat Appl) v0
+(THead (Bind Abst) u0 t5)) t)).(\lambda (H12: (eq T (THead (Bind Abbr) v3 t6)
+t2)).(eq_ind T (THead (Flat Appl) v0 (THead (Bind Abst) u0 t5)) (\lambda (_:
+T).((eq T (THead (Bind Abbr) v3 t6) t2) \to ((pr0 v0 v3) \to ((pr0 t5 t6) \to
+(ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8:
+T).(pr0 t2 t8))))))) (\lambda (H13: (eq T (THead (Bind Abbr) v3 t6)
+t2)).(eq_ind T (THead (Bind Abbr) v3 t6) (\lambda (t7: T).((pr0 v0 v3) \to
+((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8))
+(\lambda (t8: T).(pr0 t7 t8)))))) (\lambda (H14: (pr0 v0 v3)).(\lambda (H15:
+(pr0 t5 t6)).(let H16 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat
+Appl) v1 (THead (Bind Abst) u t3)) t7)) H4 (THead (Flat Appl) v0 (THead (Bind
+Abst) u0 t5)) H11) in (let H17 \def (match H16 in eq return (\lambda (t7:
+T).(\lambda (_: (eq ? ? t7)).((eq T t7 (THead (Flat Appl) v0 (THead (Bind
+Abst) u0 t5))) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4)
+t8)) (\lambda (t8: T).(pr0 (THead (Bind Abbr) v3 t6) t8)))))) with
+[refl_equal \Rightarrow (\lambda (H17: (eq T (THead (Flat Appl) v1 (THead
+(Bind Abst) u t3)) (THead (Flat Appl) v0 (THead (Bind Abst) u0 t5)))).(let
+H18 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T)
+with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t7)
+\Rightarrow (match t7 in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t8) \Rightarrow
+t8])])) (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (THead (Flat Appl) v0
+(THead (Bind Abst) u0 t5)) H17) in ((let H19 \def (f_equal T T (\lambda (e:
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u |
+(TLRef _) \Rightarrow u | (THead _ _ t7) \Rightarrow (match t7 in T return
+(\lambda (_: T).T) with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u |
+(THead _ t8 _) \Rightarrow t8])])) (THead (Flat Appl) v1 (THead (Bind Abst) u
+t3)) (THead (Flat Appl) v0 (THead (Bind Abst) u0 t5)) H17) in ((let H20 \def
+(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
+[(TSort _) \Rightarrow v1 | (TLRef _) \Rightarrow v1 | (THead _ t7 _)
+\Rightarrow t7])) (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (THead
+(Flat Appl) v0 (THead (Bind Abst) u0 t5)) H17) in (eq_ind T v0 (\lambda (_:
+T).((eq T u u0) \to ((eq T t3 t5) \to (ex2 T (\lambda (t8: T).(pr0 (THead
+(Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 (THead (Bind Abbr) v3 t6)
+t8)))))) (\lambda (H21: (eq T u u0)).(eq_ind T u0 (\lambda (_: T).((eq T t3
+t5) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda
+(t8: T).(pr0 (THead (Bind Abbr) v3 t6) t8))))) (\lambda (H22: (eq T t3
+t5)).(eq_ind T t5 (\lambda (_: T).(ex2 T (\lambda (t8: T).(pr0 (THead (Bind
+Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 (THead (Bind Abbr) v3 t6) t8)))) (let
+H23 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v t7) \to
+(\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to (ex2 T
+(\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 t10)))))))))) H
+(THead (Flat Appl) v0 (THead (Bind Abst) u0 t5)) H11) in (let H24 \def
+(eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H8 t5 H22) in (let H25 \def
+(eq_ind T v1 (\lambda (t7: T).(pr0 t7 v2)) H7 v0 H20) in (ex2_ind T (\lambda
+(t7: T).(pr0 v2 t7)) (\lambda (t7: T).(pr0 v3 t7)) (ex2 T (\lambda (t7:
+T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind
+Abbr) v3 t6) t7))) (\lambda (x: T).(\lambda (H26: (pr0 v2 x)).(\lambda (H27:
+(pr0 v3 x)).(ex2_ind T (\lambda (t7: T).(pr0 t4 t7)) (\lambda (t7: T).(pr0 t6
+t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7)) (\lambda
+(t7: T).(pr0 (THead (Bind Abbr) v3 t6) t7))) (\lambda (x0: T).(\lambda (H28:
+(pr0 t4 x0)).(\lambda (H29: (pr0 t6 x0)).(ex_intro2 T (\lambda (t7: T).(pr0
+(THead (Bind Abbr) v2 t4) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) v3
+t6) t7)) (THead (Bind Abbr) x x0) (pr0_comp v2 x H26 t4 x0 H28 (Bind Abbr))
+(pr0_comp v3 x H27 t6 x0 H29 (Bind Abbr)))))) (H23 t5 (tlt_trans (THead (Bind
+Abst) u0 t5) t5 (THead (Flat Appl) v0 (THead (Bind Abst) u0 t5)) (tlt_head_dx
+(Bind Abst) u0 t5) (tlt_head_dx (Flat Appl) v0 (THead (Bind Abst) u0 t5))) t4
+H24 t6 H15))))) (H23 v0 (tlt_head_sx (Flat Appl) v0 (THead (Bind Abst) u0
+t5)) v2 H25 v3 H14))))) t3 (sym_eq T t3 t5 H22))) u (sym_eq T u u0 H21))) v1
+(sym_eq T v1 v0 H20))) H19)) H18)))]) in (H17 (refl_equal T (THead (Flat
+Appl) v0 (THead (Bind Abst) u0 t5)))))))) t2 H13)) t H11 H12 H9 H10))) |
+(pr0_upsilon b H9 v0 v3 H10 u1 u2 H11 t5 t6 H12) \Rightarrow (\lambda (H13:
+(eq T (THead (Flat Appl) v0 (THead (Bind b) u1 t5)) t)).(\lambda (H14: (eq T
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v3) t6)) t2)).(eq_ind T
+(THead (Flat Appl) v0 (THead (Bind b) u1 t5)) (\lambda (_: T).((eq T (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v3) t6)) t2) \to ((not (eq B b
+Abst)) \to ((pr0 v0 v3) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda
+(t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t2
+t8))))))))) (\lambda (H15: (eq T (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O v3) t6)) t2)).(eq_ind T (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O v3) t6)) (\lambda (t7: T).((not (eq B b Abst)) \to ((pr0 v0 v3) \to
+((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind
+Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t7 t8)))))))) (\lambda (H16: (not (eq
+B b Abst))).(\lambda (_: (pr0 v0 v3)).(\lambda (_: (pr0 u1 u2)).(\lambda (_:
+(pr0 t5 t6)).(let H20 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat
+Appl) v1 (THead (Bind Abst) u t3)) t7)) H4 (THead (Flat Appl) v0 (THead (Bind
+b) u1 t5)) H13) in (let H21 \def (match H20 in eq return (\lambda (t7:
+T).(\lambda (_: (eq ? ? t7)).((eq T t7 (THead (Flat Appl) v0 (THead (Bind b)
+u1 t5))) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8))
+(\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v3)
+t6)) t8)))))) with [refl_equal \Rightarrow (\lambda (H21: (eq T (THead (Flat
+Appl) v1 (THead (Bind Abst) u t3)) (THead (Flat Appl) v0 (THead (Bind b) u1
+t5)))).(let H22 \def (f_equal T T (\lambda (e: T).(match e in T return
+(\lambda (_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3
+| (THead _ _ t7) \Rightarrow (match t7 in T return (\lambda (_: T).T) with
+[(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t8)
+\Rightarrow t8])])) (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (THead
+(Flat Appl) v0 (THead (Bind b) u1 t5)) H21) in ((let H23 \def (f_equal T T
+(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow u | (TLRef _) \Rightarrow u | (THead _ _ t7) \Rightarrow (match
+t7 in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u | (TLRef _)
+\Rightarrow u | (THead _ t8 _) \Rightarrow t8])])) (THead (Flat Appl) v1
+(THead (Bind Abst) u t3)) (THead (Flat Appl) v0 (THead (Bind b) u1 t5)) H21)
+in ((let H24 \def (f_equal T B (\lambda (e: T).(match e in T return (\lambda
+(_: T).B) with [(TSort _) \Rightarrow Abst | (TLRef _) \Rightarrow Abst |
+(THead _ _ t7) \Rightarrow (match t7 in T return (\lambda (_: T).B) with
+[(TSort _) \Rightarrow Abst | (TLRef _) \Rightarrow Abst | (THead k _ _)
+\Rightarrow (match k in K return (\lambda (_: K).B) with [(Bind b0)
+\Rightarrow b0 | (Flat _) \Rightarrow Abst])])])) (THead (Flat Appl) v1
+(THead (Bind Abst) u t3)) (THead (Flat Appl) v0 (THead (Bind b) u1 t5)) H21)
+in ((let H25 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda
+(_: T).T) with [(TSort _) \Rightarrow v1 | (TLRef _) \Rightarrow v1 | (THead
+_ t7 _) \Rightarrow t7])) (THead (Flat Appl) v1 (THead (Bind Abst) u t3))
+(THead (Flat Appl) v0 (THead (Bind b) u1 t5)) H21) in (eq_ind T v0 (\lambda
+(_: T).((eq B Abst b) \to ((eq T u u1) \to ((eq T t3 t5) \to (ex2 T (\lambda
+(t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v3) t6)) t8))))))) (\lambda
+(H26: (eq B Abst b)).(eq_ind B Abst (\lambda (b0: B).((eq T u u1) \to ((eq T
+t3 t5) \to (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7))
+(\lambda (t7: T).(pr0 (THead (Bind b0) u2 (THead (Flat Appl) (lift (S O) O
+v3) t6)) t7)))))) (\lambda (H27: (eq T u u1)).(eq_ind T u1 (\lambda (_:
+T).((eq T t3 t5) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4)
+t8)) (\lambda (t8: T).(pr0 (THead (Bind Abst) u2 (THead (Flat Appl) (lift (S
+O) O v3) t6)) t8))))) (\lambda (H28: (eq T t3 t5)).(eq_ind T t5 (\lambda (_:
+T).(ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8:
+T).(pr0 (THead (Bind Abst) u2 (THead (Flat Appl) (lift (S O) O v3) t6))
+t8)))) (let H29 \def (eq_ind_r B b (\lambda (b0: B).(not (eq B b0 Abst))) H16
+Abst H26) in (let H30 \def (match (H29 (refl_equal B Abst)) in False return
+(\lambda (_: False).(ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4)
+t7)) (\lambda (t7: T).(pr0 (THead (Bind Abst) u2 (THead (Flat Appl) (lift (S
+O) O v3) t6)) t7)))) with []) in H30)) t3 (sym_eq T t3 t5 H28))) u (sym_eq T
+u u1 H27))) b H26)) v1 (sym_eq T v1 v0 H25))) H24)) H23)) H22)))]) in (H21
+(refl_equal T (THead (Flat Appl) v0 (THead (Bind b) u1 t5)))))))))) t2 H15))
+t H13 H14 H9 H10 H11 H12))) | (pr0_delta u1 u2 H9 t5 t6 H10 w H11)
+\Rightarrow (\lambda (H12: (eq T (THead (Bind Abbr) u1 t5) t)).(\lambda (H13:
+(eq T (THead (Bind Abbr) u2 w) t2)).(eq_ind T (THead (Bind Abbr) u1 t5)
+(\lambda (_: T).((eq T (THead (Bind Abbr) u2 w) t2) \to ((pr0 u1 u2) \to
+((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to (ex2 T (\lambda (t8: T).(pr0 (THead
+(Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8)))))))) (\lambda (H14:
+(eq T (THead (Bind Abbr) u2 w) t2)).(eq_ind T (THead (Bind Abbr) u2 w)
+(\lambda (t7: T).((pr0 u1 u2) \to ((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to
+(ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8:
+T).(pr0 t7 t8))))))) (\lambda (_: (pr0 u1 u2)).(\lambda (_: (pr0 t5
+t6)).(\lambda (_: (subst0 O u2 t6 w)).(let H18 \def (eq_ind_r T t (\lambda
+(t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) t7)) H4 (THead
+(Bind Abbr) u1 t5) H12) in (let H19 \def (match H18 in eq return (\lambda
+(t7: T).(\lambda (_: (eq ? ? t7)).((eq T t7 (THead (Bind Abbr) u1 t5)) \to
+(ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8:
+T).(pr0 (THead (Bind Abbr) u2 w) t8)))))) with [refl_equal \Rightarrow
+(\lambda (H19: (eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (THead
+(Bind Abbr) u1 t5))).(let H20 \def (eq_ind T (THead (Flat Appl) v1 (THead
+(Bind Abst) u t3)) (\lambda (e: T).(match e in T return (\lambda (_: T).Prop)
+with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _
+_) \Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
+\Rightarrow False | (Flat _) \Rightarrow True])])) I (THead (Bind Abbr) u1
+t5) H19) in (False_ind (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4)
+t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7))) H20)))]) in (H19
+(refl_equal T (THead (Bind Abbr) u1 t5)))))))) t2 H14)) t H12 H13 H9 H10
+H11))) | (pr0_zeta b H9 t5 t6 H10 u0) \Rightarrow (\lambda (H11: (eq T (THead
+(Bind b) u0 (lift (S O) O t5)) t)).(\lambda (H12: (eq T t6 t2)).(eq_ind T
+(THead (Bind b) u0 (lift (S O) O t5)) (\lambda (_: T).((eq T t6 t2) \to ((not
+(eq B b Abst)) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind
+Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H13: (eq T t6
+t2)).(eq_ind T t2 (\lambda (t7: T).((not (eq B b Abst)) \to ((pr0 t5 t7) \to
+(ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8:
+T).(pr0 t2 t8)))))) (\lambda (_: (not (eq B b Abst))).(\lambda (_: (pr0 t5
+t2)).(let H16 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) v1
+(THead (Bind Abst) u t3)) t7)) H4 (THead (Bind b) u0 (lift (S O) O t5)) H11)
+in (let H17 \def (match H16 in eq return (\lambda (t7: T).(\lambda (_: (eq ?
+? t7)).((eq T t7 (THead (Bind b) u0 (lift (S O) O t5))) \to (ex2 T (\lambda
+(t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))))
+with [refl_equal \Rightarrow (\lambda (H17: (eq T (THead (Flat Appl) v1
+(THead (Bind Abst) u t3)) (THead (Bind b) u0 (lift (S O) O t5)))).(let H18
+\def (eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (\lambda (e:
+T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
+False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K
+return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _)
+\Rightarrow True])])) I (THead (Bind b) u0 (lift (S O) O t5)) H17) in
+(False_ind (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4) t7))
+(\lambda (t7: T).(pr0 t2 t7))) H18)))]) in (H17 (refl_equal T (THead (Bind b)
+u0 (lift (S O) O t5)))))))) t6 (sym_eq T t6 t2 H13))) t H11 H12 H9 H10))) |
+(pr0_epsilon t5 t6 H9 u0) \Rightarrow (\lambda (H10: (eq T (THead (Flat Cast)
+u0 t5) t)).(\lambda (H11: (eq T t6 t2)).(eq_ind T (THead (Flat Cast) u0 t5)
+(\lambda (_: T).((eq T t6 t2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8:
+T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8: T).(pr0 t2 t8))))))
+(\lambda (H12: (eq T t6 t2)).(eq_ind T t2 (\lambda (t7: T).((pr0 t5 t7) \to
+(ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda (t8:
+T).(pr0 t2 t8))))) (\lambda (_: (pr0 t5 t2)).(let H14 \def (eq_ind_r T t
+(\lambda (t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t3)) t7))
+H4 (THead (Flat Cast) u0 t5) H10) in (let H15 \def (match H14 in eq return
+(\lambda (t7: T).(\lambda (_: (eq ? ? t7)).((eq T t7 (THead (Flat Cast) u0
+t5)) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t4) t8)) (\lambda
+(t8: T).(pr0 t2 t8)))))) with [refl_equal \Rightarrow (\lambda (H15: (eq T
+(THead (Flat Appl) v1 (THead (Bind Abst) u t3)) (THead (Flat Cast) u0
+t5))).(let H16 \def (eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u t3))
+(\lambda (e: T).(match e in T return (\lambda (_: T).Prop) with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow
+(match k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False |
+(Flat f) \Rightarrow (match f in F return (\lambda (_: F).Prop) with [Appl
+\Rightarrow True | Cast \Rightarrow False])])])) I (THead (Flat Cast) u0 t5)
+H15) in (False_ind (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t4)
+t7)) (\lambda (t7: T).(pr0 t2 t7))) H16)))]) in (H15 (refl_equal T (THead
+(Flat Cast) u0 t5)))))) t6 (sym_eq T t6 t2 H12))) t H10 H11 H9)))]) in (H9
+(refl_equal T t) (refl_equal T t2))))) t1 H6)) t H4 H5 H2 H3))) |
+(pr0_upsilon b H2 v1 v2 H3 u1 u2 H4 t3 t4 H5) \Rightarrow (\lambda (H6: (eq T
+(THead (Flat Appl) v1 (THead (Bind b) u1 t3)) t)).(\lambda (H7: (eq T (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t1)).(eq_ind T (THead
+(Flat Appl) v1 (THead (Bind b) u1 t3)) (\lambda (_: T).((eq T (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t1) \to ((not (eq B b Abst)) \to
+((pr0 v1 v2) \to ((pr0 u1 u2) \to ((pr0 t3 t4) \to (ex2 T (\lambda (t6:
+T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t2 t6))))))))) (\lambda (H8: (eq T
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t1)).(eq_ind T
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) (\lambda (t5:
+T).((not (eq B b Abst)) \to ((pr0 v1 v2) \to ((pr0 u1 u2) \to ((pr0 t3 t4)
+\to (ex2 T (\lambda (t6: T).(pr0 t5 t6)) (\lambda (t6: T).(pr0 t2 t6))))))))
+(\lambda (H9: (not (eq B b Abst))).(\lambda (H10: (pr0 v1 v2)).(\lambda (H11:
+(pr0 u1 u2)).(\lambda (H12: (pr0 t3 t4)).(let H13 \def (match H1 in pr0
+return (\lambda (t5: T).(\lambda (t6: T).(\lambda (_: (pr0 t5 t6)).((eq T t5
+t) \to ((eq T t6 t2) \to (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0 t2
+t7)))))))) with [(pr0_refl t5) \Rightarrow (\lambda (H13: (eq T t5
+t)).(\lambda (H14: (eq T t5 t2)).(eq_ind T t (\lambda (t6: T).((eq T t6 t2)
+\to (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0 t2 t7))))) (\lambda (H15: (eq T t
+t2)).(eq_ind T t2 (\lambda (_: T).(ex2 T (\lambda (t7: T).(pr0 (THead (Bind
+b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0 t2
+t7)))) (let H16 \def (eq_ind_r T t (\lambda (t6: T).(eq T t6 t2)) H15 (THead
+(Flat Appl) v1 (THead (Bind b) u1 t3)) H6) in (eq_ind T (THead (Flat Appl) v1
+(THead (Bind b) u1 t3)) (\lambda (t6: T).(ex2 T (\lambda (t7: T).(pr0 (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t7)) (\lambda (t7:
+T).(pr0 t6 t7)))) (let H17 \def (eq_ind_r T t (\lambda (t6: T).(eq T t5 t6))
+H13 (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) H6) in (let H18 \def
+(eq_ind_r T t (\lambda (t6: T).(\forall (v: T).((tlt v t6) \to (\forall (t7:
+T).((pr0 v t7) \to (\forall (t8: T).((pr0 v t8) \to (ex2 T (\lambda (t9:
+T).(pr0 t7 t9)) (\lambda (t9: T).(pr0 t8 t9)))))))))) H (THead (Flat Appl) v1
+(THead (Bind b) u1 t3)) H6) in (ex2_sym T (pr0 (THead (Flat Appl) v1 (THead
+(Bind b) u1 t3))) (pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
+v2) t4))) (pr0_confluence__pr0_cong_upsilon_refl b H9 u1 u2 H11 t3 t4 H12 v1
+v2 v2 H10 (pr0_refl v2))))) t2 H16)) t (sym_eq T t t2 H15))) t5 (sym_eq T t5
+t H13) H14))) | (pr0_comp u0 u3 H13 t5 t6 H14 k) \Rightarrow (\lambda (H15:
+(eq T (THead k u0 t5) t)).(\lambda (H16: (eq T (THead k u3 t6) t2)).(eq_ind T
+(THead k u0 t5) (\lambda (_: T).((eq T (THead k u3 t6) t2) \to ((pr0 u0 u3)
+\to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 t2 t8)))))))
+(\lambda (H17: (eq T (THead k u3 t6) t2)).(eq_ind T (THead k u3 t6) (\lambda
+(t7: T).((pr0 u0 u3) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8:
+T).(pr0 t7 t8)))))) (\lambda (H18: (pr0 u0 u3)).(\lambda (H19: (pr0 t5
+t6)).(let H20 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) v1
+(THead (Bind b) u1 t3)) t7)) H6 (THead k u0 t5) H15) in (let H21 \def (match
+H20 in eq return (\lambda (t7: T).(\lambda (_: (eq ? ? t7)).((eq T t7 (THead
+k u0 t5)) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 (THead k u3 t6)
+t8)))))) with [refl_equal \Rightarrow (\lambda (H21: (eq T (THead (Flat Appl)
+v1 (THead (Bind b) u1 t3)) (THead k u0 t5))).(let H22 \def (f_equal T T
+(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow (THead (Bind b) u1 t3) | (TLRef _) \Rightarrow (THead (Bind b) u1
+t3) | (THead _ _ t7) \Rightarrow t7])) (THead (Flat Appl) v1 (THead (Bind b)
+u1 t3)) (THead k u0 t5) H21) in ((let H23 \def (f_equal T T (\lambda (e:
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow v1 |
+(TLRef _) \Rightarrow v1 | (THead _ t7 _) \Rightarrow t7])) (THead (Flat
+Appl) v1 (THead (Bind b) u1 t3)) (THead k u0 t5) H21) in ((let H24 \def
+(f_equal T K (\lambda (e: T).(match e in T return (\lambda (_: T).K) with
+[(TSort _) \Rightarrow (Flat Appl) | (TLRef _) \Rightarrow (Flat Appl) |
+(THead k0 _ _) \Rightarrow k0])) (THead (Flat Appl) v1 (THead (Bind b) u1
+t3)) (THead k u0 t5) H21) in (eq_ind K (Flat Appl) (\lambda (k0: K).((eq T v1
+u0) \to ((eq T (THead (Bind b) u1 t3) t5) \to (ex2 T (\lambda (t7: T).(pr0
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t7)) (\lambda
+(t7: T).(pr0 (THead k0 u3 t6) t7)))))) (\lambda (H25: (eq T v1 u0)).(eq_ind T
+u0 (\lambda (_: T).((eq T (THead (Bind b) u1 t3) t5) \to (ex2 T (\lambda (t8:
+T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8))
+(\lambda (t8: T).(pr0 (THead (Flat Appl) u3 t6) t8))))) (\lambda (H26: (eq T
+(THead (Bind b) u1 t3) t5)).(eq_ind T (THead (Bind b) u1 t3) (\lambda (_:
+T).(ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 (THead (Flat Appl) u3 t6) t8))))
+(let H27 \def (eq_ind_r K k (\lambda (k0: K).(eq T (THead k0 u0 t5) t)) H15
+(Flat Appl) H24) in (let H28 \def (eq_ind_r T t5 (\lambda (t7: T).(pr0 t7
+t6)) H19 (THead (Bind b) u1 t3) H26) in (let H29 \def (match H28 in pr0
+return (\lambda (t7: T).(\lambda (t8: T).(\lambda (_: (pr0 t7 t8)).((eq T t7
+(THead (Bind b) u1 t3)) \to ((eq T t8 t6) \to (ex2 T (\lambda (t9: T).(pr0
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t9)) (\lambda
+(t9: T).(pr0 (THead (Flat Appl) u3 t6) t9)))))))) with [(pr0_refl t7)
+\Rightarrow (\lambda (H29: (eq T t7 (THead (Bind b) u1 t3))).(\lambda (H30:
+(eq T t7 t6)).(eq_ind T (THead (Bind b) u1 t3) (\lambda (t8: T).((eq T t8 t6)
+\to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O v2) t4)) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9)))))
+(\lambda (H31: (eq T (THead (Bind b) u1 t3) t6)).(eq_ind T (THead (Bind b) u1
+t3) (\lambda (t8: T).(ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4)) t9)) (\lambda (t9: T).(pr0 (THead (Flat
+Appl) u3 t8) t9)))) (let H32 \def (eq_ind_r T t5 (\lambda (t8: T).(eq T
+(THead (Flat Appl) u0 t8) t)) H27 (THead (Bind b) u1 t3) H26) in (let H33
+\def (eq_ind_r T t (\lambda (t8: T).(\forall (v: T).((tlt v t8) \to (\forall
+(t9: T).((pr0 v t9) \to (\forall (t10: T).((pr0 v t10) \to (ex2 T (\lambda
+(t11: T).(pr0 t9 t11)) (\lambda (t11: T).(pr0 t10 t11)))))))))) H (THead
+(Flat Appl) u0 (THead (Bind b) u1 t3)) H32) in (let H34 \def (eq_ind T v1
+(\lambda (t8: T).(pr0 t8 v2)) H10 u0 H25) in (ex2_ind T (\lambda (t8: T).(pr0
+v2 t8)) (\lambda (t8: T).(pr0 u3 t8)) (ex2 T (\lambda (t8: T).(pr0 (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8:
+T).(pr0 (THead (Flat Appl) u3 (THead (Bind b) u1 t3)) t8))) (\lambda (x:
+T).(\lambda (H35: (pr0 v2 x)).(\lambda (H36: (pr0 u3 x)).(ex2_sym T (pr0
+(THead (Flat Appl) u3 (THead (Bind b) u1 t3))) (pr0 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4))) (pr0_confluence__pr0_cong_upsilon_refl b
+H9 u1 u2 H11 t3 t4 H12 u3 v2 x H36 H35))))) (H33 u0 (tlt_head_sx (Flat Appl)
+u0 (THead (Bind b) u1 t3)) v2 H34 u3 H18))))) t6 H31)) t7 (sym_eq T t7 (THead
+(Bind b) u1 t3) H29) H30))) | (pr0_comp u4 u5 H29 t7 t8 H30 k0) \Rightarrow
+(\lambda (H31: (eq T (THead k0 u4 t7) (THead (Bind b) u1 t3))).(\lambda (H32:
+(eq T (THead k0 u5 t8) t6)).((let H33 \def (f_equal T T (\lambda (e:
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t7 |
+(TLRef _) \Rightarrow t7 | (THead _ _ t9) \Rightarrow t9])) (THead k0 u4 t7)
+(THead (Bind b) u1 t3) H31) in ((let H34 \def (f_equal T T (\lambda (e:
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u4 |
+(TLRef _) \Rightarrow u4 | (THead _ t9 _) \Rightarrow t9])) (THead k0 u4 t7)
+(THead (Bind b) u1 t3) H31) in ((let H35 \def (f_equal T K (\lambda (e:
+T).(match e in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow k0 |
+(TLRef _) \Rightarrow k0 | (THead k1 _ _) \Rightarrow k1])) (THead k0 u4 t7)
+(THead (Bind b) u1 t3) H31) in (eq_ind K (Bind b) (\lambda (k1: K).((eq T u4
+u1) \to ((eq T t7 t3) \to ((eq T (THead k1 u5 t8) t6) \to ((pr0 u4 u5) \to
+((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3
+t6) t9))))))))) (\lambda (H36: (eq T u4 u1)).(eq_ind T u1 (\lambda (t9:
+T).((eq T t7 t3) \to ((eq T (THead (Bind b) u5 t8) t6) \to ((pr0 t9 u5) \to
+((pr0 t7 t8) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4)) t10)) (\lambda (t10: T).(pr0 (THead (Flat
+Appl) u3 t6) t10)))))))) (\lambda (H37: (eq T t7 t3)).(eq_ind T t3 (\lambda
+(t9: T).((eq T (THead (Bind b) u5 t8) t6) \to ((pr0 u1 u5) \to ((pr0 t9 t8)
+\to (ex2 T (\lambda (t10: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O v2) t4)) t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u3 t6)
+t10))))))) (\lambda (H38: (eq T (THead (Bind b) u5 t8) t6)).(eq_ind T (THead
+(Bind b) u5 t8) (\lambda (t9: T).((pr0 u1 u5) \to ((pr0 t3 t8) \to (ex2 T
+(\lambda (t10: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
+v2) t4)) t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u3 t9) t10))))))
+(\lambda (H39: (pr0 u1 u5)).(\lambda (H40: (pr0 t3 t8)).(let H41 \def
+(eq_ind_r T t5 (\lambda (t9: T).(eq T (THead (Flat Appl) u0 t9) t)) H27
+(THead (Bind b) u1 t3) H26) in (let H42 \def (eq_ind_r T t (\lambda (t9:
+T).(\forall (v: T).((tlt v t9) \to (\forall (t10: T).((pr0 v t10) \to
+(\forall (t11: T).((pr0 v t11) \to (ex2 T (\lambda (t12: T).(pr0 t10 t12))
+(\lambda (t12: T).(pr0 t11 t12)))))))))) H (THead (Flat Appl) u0 (THead (Bind
+b) u1 t3)) H41) in (let H43 \def (eq_ind T v1 (\lambda (t9: T).(pr0 t9 v2))
+H10 u0 H25) in (ex2_ind T (\lambda (t9: T).(pr0 v2 t9)) (\lambda (t9: T).(pr0
+u3 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4)) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3
+(THead (Bind b) u5 t8)) t9))) (\lambda (x: T).(\lambda (H44: (pr0 v2
+x)).(\lambda (H45: (pr0 u3 x)).(ex2_ind T (\lambda (t9: T).(pr0 t8 t9))
+(\lambda (t9: T).(pr0 t4 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4)) t9)) (\lambda (t9: T).(pr0 (THead
+(Flat Appl) u3 (THead (Bind b) u5 t8)) t9))) (\lambda (x0: T).(\lambda (H46:
+(pr0 t8 x0)).(\lambda (H47: (pr0 t4 x0)).(ex2_ind T (\lambda (t9: T).(pr0 u5
+t9)) (\lambda (t9: T).(pr0 u2 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead (Bind
+b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t9)) (\lambda (t9: T).(pr0
+(THead (Flat Appl) u3 (THead (Bind b) u5 t8)) t9))) (\lambda (x1: T).(\lambda
+(H48: (pr0 u5 x1)).(\lambda (H49: (pr0 u2 x1)).(ex2_sym T (pr0 (THead (Flat
+Appl) u3 (THead (Bind b) u5 t8))) (pr0 (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4))) (pr0_confluence__pr0_cong_upsilon_cong b H9 u3 v2 x
+H45 H44 t8 t4 x0 H46 H47 u5 u2 x1 H48 H49))))) (H42 u1 (tlt_trans (THead
+(Bind b) u1 t3) u1 (THead (Flat Appl) u0 (THead (Bind b) u1 t3)) (tlt_head_sx
+(Bind b) u1 t3) (tlt_head_dx (Flat Appl) u0 (THead (Bind b) u1 t3))) u5 H39
+u2 H11))))) (H42 t3 (tlt_trans (THead (Bind b) u1 t3) t3 (THead (Flat Appl)
+u0 (THead (Bind b) u1 t3)) (tlt_head_dx (Bind b) u1 t3) (tlt_head_dx (Flat
+Appl) u0 (THead (Bind b) u1 t3))) t8 H40 t4 H12))))) (H42 u0 (tlt_head_sx
+(Flat Appl) u0 (THead (Bind b) u1 t3)) v2 H43 u3 H18))))))) t6 H38)) t7
+(sym_eq T t7 t3 H37))) u4 (sym_eq T u4 u1 H36))) k0 (sym_eq K k0 (Bind b)
+H35))) H34)) H33)) H32 H29 H30))) | (pr0_beta u v0 v3 H29 t7 t8 H30)
+\Rightarrow (\lambda (H31: (eq T (THead (Flat Appl) v0 (THead (Bind Abst) u
+t7)) (THead (Bind b) u1 t3))).(\lambda (H32: (eq T (THead (Bind Abbr) v3 t8)
+t6)).((let H33 \def (eq_ind T (THead (Flat Appl) v0 (THead (Bind Abst) u t7))
+(\lambda (e: T).(match e in T return (\lambda (_: T).Prop) with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow
+(match k0 in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False
+| (Flat _) \Rightarrow True])])) I (THead (Bind b) u1 t3) H31) in (False_ind
+((eq T (THead (Bind Abbr) v3 t8) t6) \to ((pr0 v0 v3) \to ((pr0 t7 t8) \to
+(ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9))))))
+H33)) H32 H29 H30))) | (pr0_upsilon b0 H29 v0 v3 H30 u4 u5 H31 t7 t8 H32)
+\Rightarrow (\lambda (H33: (eq T (THead (Flat Appl) v0 (THead (Bind b0) u4
+t7)) (THead (Bind b) u1 t3))).(\lambda (H34: (eq T (THead (Bind b0) u5 (THead
+(Flat Appl) (lift (S O) O v3) t8)) t6)).((let H35 \def (eq_ind T (THead (Flat
+Appl) v0 (THead (Bind b0) u4 t7)) (\lambda (e: T).(match e in T return
+(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in K return (\lambda
+(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow
+True])])) I (THead (Bind b) u1 t3) H33) in (False_ind ((eq T (THead (Bind b0)
+u5 (THead (Flat Appl) (lift (S O) O v3) t8)) t6) \to ((not (eq B b0 Abst))
+\to ((pr0 v0 v3) \to ((pr0 u4 u5) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9:
+T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t9))
+(\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9)))))))) H35)) H34 H29 H30
+H31 H32))) | (pr0_delta u4 u5 H29 t7 t8 H30 w H31) \Rightarrow (\lambda (H32:
+(eq T (THead (Bind Abbr) u4 t7) (THead (Bind b) u1 t3))).(\lambda (H33: (eq T
+(THead (Bind Abbr) u5 w) t6)).((let H34 \def (f_equal T T (\lambda (e:
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t7 |
+(TLRef _) \Rightarrow t7 | (THead _ _ t9) \Rightarrow t9])) (THead (Bind
+Abbr) u4 t7) (THead (Bind b) u1 t3) H32) in ((let H35 \def (f_equal T T
+(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow u4 | (TLRef _) \Rightarrow u4 | (THead _ t9 _) \Rightarrow t9]))
+(THead (Bind Abbr) u4 t7) (THead (Bind b) u1 t3) H32) in ((let H36 \def
+(f_equal T B (\lambda (e: T).(match e in T return (\lambda (_: T).B) with
+[(TSort _) \Rightarrow Abbr | (TLRef _) \Rightarrow Abbr | (THead k0 _ _)
+\Rightarrow (match k0 in K return (\lambda (_: K).B) with [(Bind b0)
+\Rightarrow b0 | (Flat _) \Rightarrow Abbr])])) (THead (Bind Abbr) u4 t7)
+(THead (Bind b) u1 t3) H32) in (eq_ind B Abbr (\lambda (b0: B).((eq T u4 u1)
+\to ((eq T t7 t3) \to ((eq T (THead (Bind Abbr) u5 w) t6) \to ((pr0 u4 u5)
+\to ((pr0 t7 t8) \to ((subst0 O u5 t8 w) \to (ex2 T (\lambda (t9: T).(pr0
+(THead (Bind b0) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t9)) (\lambda
+(t9: T).(pr0 (THead (Flat Appl) u3 t6) t9)))))))))) (\lambda (H37: (eq T u4
+u1)).(eq_ind T u1 (\lambda (t9: T).((eq T t7 t3) \to ((eq T (THead (Bind
+Abbr) u5 w) t6) \to ((pr0 t9 u5) \to ((pr0 t7 t8) \to ((subst0 O u5 t8 w) \to
+(ex2 T (\lambda (t10: T).(pr0 (THead (Bind Abbr) u2 (THead (Flat Appl) (lift
+(S O) O v2) t4)) t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u3 t6)
+t10))))))))) (\lambda (H38: (eq T t7 t3)).(eq_ind T t3 (\lambda (t9: T).((eq
+T (THead (Bind Abbr) u5 w) t6) \to ((pr0 u1 u5) \to ((pr0 t9 t8) \to ((subst0
+O u5 t8 w) \to (ex2 T (\lambda (t10: T).(pr0 (THead (Bind Abbr) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4)) t10)) (\lambda (t10: T).(pr0 (THead (Flat
+Appl) u3 t6) t10)))))))) (\lambda (H39: (eq T (THead (Bind Abbr) u5 w)
+t6)).(eq_ind T (THead (Bind Abbr) u5 w) (\lambda (t9: T).((pr0 u1 u5) \to
+((pr0 t3 t8) \to ((subst0 O u5 t8 w) \to (ex2 T (\lambda (t10: T).(pr0 (THead
+(Bind Abbr) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t10)) (\lambda (t10:
+T).(pr0 (THead (Flat Appl) u3 t9) t10))))))) (\lambda (H40: (pr0 u1
+u5)).(\lambda (H41: (pr0 t3 t8)).(\lambda (H42: (subst0 O u5 t8 w)).(let H43
+\def (eq_ind_r B b (\lambda (b0: B).(eq T (THead (Bind b0) u1 t3) t5)) H26
+Abbr H36) in (let H44 \def (eq_ind_r B b (\lambda (b0: B).(not (eq B b0
+Abst))) H9 Abbr H36) in (let H45 \def (eq_ind_r B b (\lambda (b0: B).(eq T
+(THead (Bind b0) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t1)) H8 Abbr
+H36) in (let H46 \def (eq_ind_r T t5 (\lambda (t9: T).(eq T (THead (Flat
+Appl) u0 t9) t)) H27 (THead (Bind Abbr) u1 t3) H43) in (let H47 \def
+(eq_ind_r T t (\lambda (t9: T).(\forall (v: T).((tlt v t9) \to (\forall (t10:
+T).((pr0 v t10) \to (\forall (t11: T).((pr0 v t11) \to (ex2 T (\lambda (t12:
+T).(pr0 t10 t12)) (\lambda (t12: T).(pr0 t11 t12)))))))))) H (THead (Flat
+Appl) u0 (THead (Bind Abbr) u1 t3)) H46) in (let H48 \def (eq_ind T v1
+(\lambda (t9: T).(pr0 t9 v2)) H10 u0 H25) in (ex2_ind T (\lambda (t9: T).(pr0
+v2 t9)) (\lambda (t9: T).(pr0 u3 t9)) (ex2 T (\lambda (t9: T).(pr0 (THead
+(Bind Abbr) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t9)) (\lambda (t9:
+T).(pr0 (THead (Flat Appl) u3 (THead (Bind Abbr) u5 w)) t9))) (\lambda (x:
+T).(\lambda (H49: (pr0 v2 x)).(\lambda (H50: (pr0 u3 x)).(ex2_ind T (\lambda
+(t9: T).(pr0 t8 t9)) (\lambda (t9: T).(pr0 t4 t9)) (ex2 T (\lambda (t9:
+T).(pr0 (THead (Bind Abbr) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t9))
+(\lambda (t9: T).(pr0 (THead (Flat Appl) u3 (THead (Bind Abbr) u5 w)) t9)))
+(\lambda (x0: T).(\lambda (H51: (pr0 t8 x0)).(\lambda (H52: (pr0 t4
+x0)).(ex2_ind T (\lambda (t9: T).(pr0 u5 t9)) (\lambda (t9: T).(pr0 u2 t9))
+(ex2 T (\lambda (t9: T).(pr0 (THead (Bind Abbr) u2 (THead (Flat Appl) (lift
+(S O) O v2) t4)) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 (THead
+(Bind Abbr) u5 w)) t9))) (\lambda (x1: T).(\lambda (H53: (pr0 u5
+x1)).(\lambda (H54: (pr0 u2 x1)).(ex2_sym T (pr0 (THead (Flat Appl) u3 (THead
+(Bind Abbr) u5 w))) (pr0 (THead (Bind Abbr) u2 (THead (Flat Appl) (lift (S O)
+O v2) t4))) (pr0_confluence__pr0_cong_upsilon_delta H44 u5 t8 w H42 u3 v2 x
+H50 H49 t4 x0 H51 H52 u2 x1 H53 H54))))) (H47 u1 (tlt_trans (THead (Bind
+Abbr) u1 t3) u1 (THead (Flat Appl) u0 (THead (Bind Abbr) u1 t3)) (tlt_head_sx
+(Bind Abbr) u1 t3) (tlt_head_dx (Flat Appl) u0 (THead (Bind Abbr) u1 t3))) u5
+H40 u2 H11))))) (H47 t3 (tlt_trans (THead (Bind Abbr) u1 t3) t3 (THead (Flat
+Appl) u0 (THead (Bind Abbr) u1 t3)) (tlt_head_dx (Bind Abbr) u1 t3)
+(tlt_head_dx (Flat Appl) u0 (THead (Bind Abbr) u1 t3))) t8 H41 t4 H12)))))
+(H47 u0 (tlt_head_sx (Flat Appl) u0 (THead (Bind Abbr) u1 t3)) v2 H48 u3
+H18))))))))))) t6 H39)) t7 (sym_eq T t7 t3 H38))) u4 (sym_eq T u4 u1 H37))) b
+H36)) H35)) H34)) H33 H29 H30 H31))) | (pr0_zeta b0 H29 t7 t8 H30 u)
+\Rightarrow (\lambda (H31: (eq T (THead (Bind b0) u (lift (S O) O t7)) (THead
+(Bind b) u1 t3))).(\lambda (H32: (eq T t8 t6)).((let H33 \def (f_equal T T
+(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat) (t9: T) on t9: T
+\def (match t9 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow
+(TLRef (match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)]))
+| (THead k0 u4 t10) \Rightarrow (THead k0 (lref_map f d u4) (lref_map f (s k0
+d) t10))]) in lref_map) (\lambda (x: nat).(plus x (S O))) O t7) | (TLRef _)
+\Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat) (t9: T) on t9: T
+\def (match t9 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow
+(TLRef (match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)]))
+| (THead k0 u4 t10) \Rightarrow (THead k0 (lref_map f d u4) (lref_map f (s k0
+d) t10))]) in lref_map) (\lambda (x: nat).(plus x (S O))) O t7) | (THead _ _
+t9) \Rightarrow t9])) (THead (Bind b0) u (lift (S O) O t7)) (THead (Bind b)
+u1 t3) H31) in ((let H34 \def (f_equal T T (\lambda (e: T).(match e in T
+return (\lambda (_: T).T) with [(TSort _) \Rightarrow u | (TLRef _)
+\Rightarrow u | (THead _ t9 _) \Rightarrow t9])) (THead (Bind b0) u (lift (S
+O) O t7)) (THead (Bind b) u1 t3) H31) in ((let H35 \def (f_equal T B (\lambda
+(e: T).(match e in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow b0
+| (TLRef _) \Rightarrow b0 | (THead k0 _ _) \Rightarrow (match k0 in K return
+(\lambda (_: K).B) with [(Bind b1) \Rightarrow b1 | (Flat _) \Rightarrow
+b0])])) (THead (Bind b0) u (lift (S O) O t7)) (THead (Bind b) u1 t3) H31) in
+(eq_ind B b (\lambda (b1: B).((eq T u u1) \to ((eq T (lift (S O) O t7) t3)
+\to ((eq T t8 t6) \to ((not (eq B b1 Abst)) \to ((pr0 t7 t8) \to (ex2 T
+(\lambda (t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4)) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9)))))))))
+(\lambda (H36: (eq T u u1)).(eq_ind T u1 (\lambda (_: T).((eq T (lift (S O) O
+t7) t3) \to ((eq T t8 t6) \to ((not (eq B b Abst)) \to ((pr0 t7 t8) \to (ex2
+T (\lambda (t10: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
+v2) t4)) t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u3 t6) t10))))))))
+(\lambda (H37: (eq T (lift (S O) O t7) t3)).(eq_ind T (lift (S O) O t7)
+(\lambda (_: T).((eq T t8 t6) \to ((not (eq B b Abst)) \to ((pr0 t7 t8) \to
+(ex2 T (\lambda (t10: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) t10)) (\lambda (t10: T).(pr0 (THead (Flat Appl) u3 t6)
+t10))))))) (\lambda (H38: (eq T t8 t6)).(eq_ind T t6 (\lambda (t9: T).((not
+(eq B b Abst)) \to ((pr0 t7 t9) \to (ex2 T (\lambda (t10: T).(pr0 (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t10)) (\lambda (t10:
+T).(pr0 (THead (Flat Appl) u3 t6) t10)))))) (\lambda (H39: (not (eq B b
+Abst))).(\lambda (H40: (pr0 t7 t6)).(let H41 \def (eq_ind_r T t3 (\lambda
+(t9: T).(eq T (THead (Bind b) u1 t9) t5)) H26 (lift (S O) O t7) H37) in (let
+H42 \def (eq_ind_r T t5 (\lambda (t9: T).(eq T (THead (Flat Appl) u0 t9) t))
+H27 (THead (Bind b) u1 (lift (S O) O t7)) H41) in (let H43 \def (eq_ind_r T t
+(\lambda (t9: T).(\forall (v: T).((tlt v t9) \to (\forall (t10: T).((pr0 v
+t10) \to (\forall (t11: T).((pr0 v t11) \to (ex2 T (\lambda (t12: T).(pr0 t10
+t12)) (\lambda (t12: T).(pr0 t11 t12)))))))))) H (THead (Flat Appl) u0 (THead
+(Bind b) u1 (lift (S O) O t7))) H42) in (let H44 \def (eq_ind_r T t3 (\lambda
+(t9: T).(pr0 t9 t4)) H12 (lift (S O) O t7) H37) in (ex2_ind T (\lambda (t9:
+T).(eq T t4 (lift (S O) O t9))) (\lambda (t9: T).(pr0 t7 t9)) (ex2 T (\lambda
+(t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9))) (\lambda (x:
+T).(\lambda (H45: (eq T t4 (lift (S O) O x))).(\lambda (H46: (pr0 t7
+x)).(eq_ind_r T (lift (S O) O x) (\lambda (t9: T).(ex2 T (\lambda (t10:
+T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t9)) t10))
+(\lambda (t10: T).(pr0 (THead (Flat Appl) u3 t6) t10)))) (let H47 \def
+(eq_ind T v1 (\lambda (t9: T).(pr0 t9 v2)) H10 u0 H25) in (ex2_ind T (\lambda
+(t9: T).(pr0 v2 t9)) (\lambda (t9: T).(pr0 u3 t9)) (ex2 T (\lambda (t9:
+T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) (lift (S O) O
+x))) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9))) (\lambda (x0:
+T).(\lambda (H48: (pr0 v2 x0)).(\lambda (H49: (pr0 u3 x0)).(ex2_ind T
+(\lambda (t9: T).(pr0 x t9)) (\lambda (t9: T).(pr0 t6 t9)) (ex2 T (\lambda
+(t9: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) (lift (S
+O) O x))) t9)) (\lambda (t9: T).(pr0 (THead (Flat Appl) u3 t6) t9))) (\lambda
+(x1: T).(\lambda (H50: (pr0 x x1)).(\lambda (H51: (pr0 t6 x1)).(ex2_sym T
+(pr0 (THead (Flat Appl) u3 t6)) (pr0 (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) (lift (S O) O x)))) (pr0_confluence__pr0_cong_upsilon_zeta
+b H39 u1 u2 H11 u3 v2 x0 H49 H48 x t6 x1 H50 H51))))) (H43 t7 (tlt_trans
+(THead (Bind b) u1 (lift (S O) O t7)) t7 (THead (Flat Appl) u0 (THead (Bind
+b) u1 (lift (S O) O t7))) (lift_tlt_dx (Bind b) u1 t7 (S O) O) (tlt_head_dx
+(Flat Appl) u0 (THead (Bind b) u1 (lift (S O) O t7)))) x H46 t6 H40))))) (H43
+u0 (tlt_head_sx (Flat Appl) u0 (THead (Bind b) u1 (lift (S O) O t7))) v2 H47
+u3 H18))) t4 H45)))) (pr0_gen_lift t7 t4 (S O) O H44)))))))) t8 (sym_eq T t8
+t6 H38))) t3 H37)) u (sym_eq T u u1 H36))) b0 (sym_eq B b0 b H35))) H34))
+H33)) H32 H29 H30))) | (pr0_epsilon t7 t8 H29 u) \Rightarrow (\lambda (H30:
+(eq T (THead (Flat Cast) u t7) (THead (Bind b) u1 t3))).(\lambda (H31: (eq T
+t8 t6)).((let H32 \def (eq_ind T (THead (Flat Cast) u t7) (\lambda (e:
+T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
+False | (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in
+K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _)
+\Rightarrow True])])) I (THead (Bind b) u1 t3) H30) in (False_ind ((eq T t8
+t6) \to ((pr0 t7 t8) \to (ex2 T (\lambda (t9: T).(pr0 (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4)) t9)) (\lambda (t9: T).(pr0 (THead
+(Flat Appl) u3 t6) t9))))) H32)) H31 H29)))]) in (H29 (refl_equal T (THead
+(Bind b) u1 t3)) (refl_equal T t6))))) t5 H26)) v1 (sym_eq T v1 u0 H25))) k
+H24)) H23)) H22)))]) in (H21 (refl_equal T (THead k u0 t5))))))) t2 H17)) t
+H15 H16 H13 H14))) | (pr0_beta u v0 v3 H13 t5 t6 H14) \Rightarrow (\lambda
+(H15: (eq T (THead (Flat Appl) v0 (THead (Bind Abst) u t5)) t)).(\lambda
+(H16: (eq T (THead (Bind Abbr) v3 t6) t2)).(eq_ind T (THead (Flat Appl) v0
+(THead (Bind Abst) u t5)) (\lambda (_: T).((eq T (THead (Bind Abbr) v3 t6)
+t2) \to ((pr0 v0 v3) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8:
+T).(pr0 t2 t8))))))) (\lambda (H17: (eq T (THead (Bind Abbr) v3 t6)
+t2)).(eq_ind T (THead (Bind Abbr) v3 t6) (\lambda (t7: T).((pr0 v0 v3) \to
+((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 t7 t8)))))) (\lambda
+(_: (pr0 v0 v3)).(\lambda (_: (pr0 t5 t6)).(let H20 \def (eq_ind_r T t
+(\lambda (t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) t7)) H6
+(THead (Flat Appl) v0 (THead (Bind Abst) u t5)) H15) in (let H21 \def (match
+H20 in eq return (\lambda (t7: T).(\lambda (_: (eq ? ? t7)).((eq T t7 (THead
+(Flat Appl) v0 (THead (Bind Abst) u t5))) \to (ex2 T (\lambda (t8: T).(pr0
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8)) (\lambda
+(t8: T).(pr0 (THead (Bind Abbr) v3 t6) t8)))))) with [refl_equal \Rightarrow
+(\lambda (H21: (eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (THead
+(Flat Appl) v0 (THead (Bind Abst) u t5)))).(let H22 \def (f_equal T T
+(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t7) \Rightarrow (match
+t7 in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _)
+\Rightarrow t3 | (THead _ _ t8) \Rightarrow t8])])) (THead (Flat Appl) v1
+(THead (Bind b) u1 t3)) (THead (Flat Appl) v0 (THead (Bind Abst) u t5)) H21)
+in ((let H23 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda
+(_: T).T) with [(TSort _) \Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead
+_ _ t7) \Rightarrow (match t7 in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead _ t8 _) \Rightarrow
+t8])])) (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (THead (Flat Appl) v0
+(THead (Bind Abst) u t5)) H21) in ((let H24 \def (f_equal T B (\lambda (e:
+T).(match e in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow b |
+(TLRef _) \Rightarrow b | (THead _ _ t7) \Rightarrow (match t7 in T return
+(\lambda (_: T).B) with [(TSort _) \Rightarrow b | (TLRef _) \Rightarrow b |
+(THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).B) with [(Bind
+b0) \Rightarrow b0 | (Flat _) \Rightarrow b])])])) (THead (Flat Appl) v1
+(THead (Bind b) u1 t3)) (THead (Flat Appl) v0 (THead (Bind Abst) u t5)) H21)
+in ((let H25 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda
+(_: T).T) with [(TSort _) \Rightarrow v1 | (TLRef _) \Rightarrow v1 | (THead
+_ t7 _) \Rightarrow t7])) (THead (Flat Appl) v1 (THead (Bind b) u1 t3))
+(THead (Flat Appl) v0 (THead (Bind Abst) u t5)) H21) in (eq_ind T v0 (\lambda
+(_: T).((eq B b Abst) \to ((eq T u1 u) \to ((eq T t3 t5) \to (ex2 T (\lambda
+(t8: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+t8)) (\lambda (t8: T).(pr0 (THead (Bind Abbr) v3 t6) t8))))))) (\lambda (H26:
+(eq B b Abst)).(eq_ind B Abst (\lambda (b0: B).((eq T u1 u) \to ((eq T t3 t5)
+\to (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b0) u2 (THead (Flat Appl) (lift
+(S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) v3 t6)
+t7)))))) (\lambda (H27: (eq T u1 u)).(eq_ind T u (\lambda (_: T).((eq T t3
+t5) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abst) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 (THead (Bind Abbr) v3 t6)
+t8))))) (\lambda (H28: (eq T t3 t5)).(eq_ind T t5 (\lambda (_: T).(ex2 T
+(\lambda (t8: T).(pr0 (THead (Bind Abst) u2 (THead (Flat Appl) (lift (S O) O
+v2) t4)) t8)) (\lambda (t8: T).(pr0 (THead (Bind Abbr) v3 t6) t8)))) (let H29
+\def (eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall
+(t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda
+(t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Flat
+Appl) v0 (THead (Bind Abst) u t5)) H15) in (let H30 \def (eq_ind T t3
+(\lambda (t7: T).(pr0 t7 t4)) H12 t5 H28) in (let H31 \def (eq_ind T u1
+(\lambda (t7: T).(pr0 t7 u2)) H11 u H27) in (let H32 \def (eq_ind B b
+(\lambda (b0: B).(not (eq B b0 Abst))) H9 Abst H26) in (let H33 \def (match
+(H32 (refl_equal B Abst)) in False return (\lambda (_: False).(ex2 T (\lambda
+(t7: T).(pr0 (THead (Bind Abst) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) v3 t6) t7)))) with []) in
+H33))))) t3 (sym_eq T t3 t5 H28))) u1 (sym_eq T u1 u H27))) b (sym_eq B b
+Abst H26))) v1 (sym_eq T v1 v0 H25))) H24)) H23)) H22)))]) in (H21
+(refl_equal T (THead (Flat Appl) v0 (THead (Bind Abst) u t5)))))))) t2 H17))
+t H15 H16 H13 H14))) | (pr0_upsilon b0 H13 v0 v3 H14 u0 u3 H15 t5 t6 H16)
+\Rightarrow (\lambda (H17: (eq T (THead (Flat Appl) v0 (THead (Bind b0) u0
+t5)) t)).(\lambda (H18: (eq T (THead (Bind b0) u3 (THead (Flat Appl) (lift (S
+O) O v3) t6)) t2)).(eq_ind T (THead (Flat Appl) v0 (THead (Bind b0) u0 t5))
+(\lambda (_: T).((eq T (THead (Bind b0) u3 (THead (Flat Appl) (lift (S O) O
+v3) t6)) t2) \to ((not (eq B b0 Abst)) \to ((pr0 v0 v3) \to ((pr0 u0 u3) \to
+((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 t2 t8)))))))))
+(\lambda (H19: (eq T (THead (Bind b0) u3 (THead (Flat Appl) (lift (S O) O v3)
+t6)) t2)).(eq_ind T (THead (Bind b0) u3 (THead (Flat Appl) (lift (S O) O v3)
+t6)) (\lambda (t7: T).((not (eq B b0 Abst)) \to ((pr0 v0 v3) \to ((pr0 u0 u3)
+\to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 t7 t8))))))))
+(\lambda (_: (not (eq B b0 Abst))).(\lambda (H21: (pr0 v0 v3)).(\lambda (H22:
+(pr0 u0 u3)).(\lambda (H23: (pr0 t5 t6)).(let H24 \def (eq_ind_r T t (\lambda
+(t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) t7)) H6 (THead
+(Flat Appl) v0 (THead (Bind b0) u0 t5)) H17) in (let H25 \def (match H24 in
+eq return (\lambda (t7: T).(\lambda (_: (eq ? ? t7)).((eq T t7 (THead (Flat
+Appl) v0 (THead (Bind b0) u0 t5))) \to (ex2 T (\lambda (t8: T).(pr0 (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8:
+T).(pr0 (THead (Bind b0) u3 (THead (Flat Appl) (lift (S O) O v3) t6))
+t8)))))) with [refl_equal \Rightarrow (\lambda (H25: (eq T (THead (Flat Appl)
+v1 (THead (Bind b) u1 t3)) (THead (Flat Appl) v0 (THead (Bind b0) u0
+t5)))).(let H26 \def (f_equal T T (\lambda (e: T).(match e in T return
+(\lambda (_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3
+| (THead _ _ t7) \Rightarrow (match t7 in T return (\lambda (_: T).T) with
+[(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t8)
+\Rightarrow t8])])) (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (THead
+(Flat Appl) v0 (THead (Bind b0) u0 t5)) H25) in ((let H27 \def (f_equal T T
+(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead _ _ t7) \Rightarrow (match
+t7 in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u1 | (TLRef _)
+\Rightarrow u1 | (THead _ t8 _) \Rightarrow t8])])) (THead (Flat Appl) v1
+(THead (Bind b) u1 t3)) (THead (Flat Appl) v0 (THead (Bind b0) u0 t5)) H25)
+in ((let H28 \def (f_equal T B (\lambda (e: T).(match e in T return (\lambda
+(_: T).B) with [(TSort _) \Rightarrow b | (TLRef _) \Rightarrow b | (THead _
+_ t7) \Rightarrow (match t7 in T return (\lambda (_: T).B) with [(TSort _)
+\Rightarrow b | (TLRef _) \Rightarrow b | (THead k _ _) \Rightarrow (match k
+in K return (\lambda (_: K).B) with [(Bind b1) \Rightarrow b1 | (Flat _)
+\Rightarrow b])])])) (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (THead
+(Flat Appl) v0 (THead (Bind b0) u0 t5)) H25) in ((let H29 \def (f_equal T T
+(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow v1 | (TLRef _) \Rightarrow v1 | (THead _ t7 _) \Rightarrow t7]))
+(THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (THead (Flat Appl) v0 (THead
+(Bind b0) u0 t5)) H25) in (eq_ind T v0 (\lambda (_: T).((eq B b b0) \to ((eq
+T u1 u0) \to ((eq T t3 t5) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8: T).(pr0
+(THead (Bind b0) u3 (THead (Flat Appl) (lift (S O) O v3) t6)) t8)))))))
+(\lambda (H30: (eq B b b0)).(eq_ind B b0 (\lambda (b1: B).((eq T u1 u0) \to
+((eq T t3 t5) \to (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b1) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0 (THead (Bind
+b0) u3 (THead (Flat Appl) (lift (S O) O v3) t6)) t7)))))) (\lambda (H31: (eq
+T u1 u0)).(eq_ind T u0 (\lambda (_: T).((eq T t3 t5) \to (ex2 T (\lambda (t8:
+T).(pr0 (THead (Bind b0) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8))
+(\lambda (t8: T).(pr0 (THead (Bind b0) u3 (THead (Flat Appl) (lift (S O) O
+v3) t6)) t8))))) (\lambda (H32: (eq T t3 t5)).(eq_ind T t5 (\lambda (_:
+T).(ex2 T (\lambda (t8: T).(pr0 (THead (Bind b0) u2 (THead (Flat Appl) (lift
+(S O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 (THead (Bind b0) u3 (THead (Flat
+Appl) (lift (S O) O v3) t6)) t8)))) (let H33 \def (eq_ind_r T t (\lambda (t7:
+T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall
+(t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10:
+T).(pr0 t9 t10)))))))))) H (THead (Flat Appl) v0 (THead (Bind b0) u0 t5))
+H17) in (let H34 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H12 t5 H32)
+in (let H35 \def (eq_ind T u1 (\lambda (t7: T).(pr0 t7 u2)) H11 u0 H31) in
+(let H36 \def (eq_ind B b (\lambda (b1: B).(not (eq B b1 Abst))) H9 b0 H30)
+in (let H37 \def (eq_ind T v1 (\lambda (t7: T).(pr0 t7 v2)) H10 v0 H29) in
+(ex2_ind T (\lambda (t7: T).(pr0 v2 t7)) (\lambda (t7: T).(pr0 v3 t7)) (ex2 T
+(\lambda (t7: T).(pr0 (THead (Bind b0) u2 (THead (Flat Appl) (lift (S O) O
+v2) t4)) t7)) (\lambda (t7: T).(pr0 (THead (Bind b0) u3 (THead (Flat Appl)
+(lift (S O) O v3) t6)) t7))) (\lambda (x: T).(\lambda (H38: (pr0 v2
+x)).(\lambda (H39: (pr0 v3 x)).(ex2_ind T (\lambda (t7: T).(pr0 u2 t7))
+(\lambda (t7: T).(pr0 u3 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b0)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0
+(THead (Bind b0) u3 (THead (Flat Appl) (lift (S O) O v3) t6)) t7))) (\lambda
+(x0: T).(\lambda (H40: (pr0 u2 x0)).(\lambda (H41: (pr0 u3 x0)).(ex2_ind T
+(\lambda (t7: T).(pr0 t4 t7)) (\lambda (t7: T).(pr0 t6 t7)) (ex2 T (\lambda
+(t7: T).(pr0 (THead (Bind b0) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+t7)) (\lambda (t7: T).(pr0 (THead (Bind b0) u3 (THead (Flat Appl) (lift (S O)
+O v3) t6)) t7))) (\lambda (x1: T).(\lambda (H42: (pr0 t4 x1)).(\lambda (H43:
+(pr0 t6 x1)).(pr0_confluence__pr0_upsilon_upsilon b0 H36 v2 v3 x H38 H39 u2
+u3 x0 H40 H41 t4 t6 x1 H42 H43)))) (H33 t5 (tlt_trans (THead (Bind b0) u0 t5)
+t5 (THead (Flat Appl) v0 (THead (Bind b0) u0 t5)) (tlt_head_dx (Bind b0) u0
+t5) (tlt_head_dx (Flat Appl) v0 (THead (Bind b0) u0 t5))) t4 H34 t6 H23)))))
+(H33 u0 (tlt_trans (THead (Bind b0) u0 t5) u0 (THead (Flat Appl) v0 (THead
+(Bind b0) u0 t5)) (tlt_head_sx (Bind b0) u0 t5) (tlt_head_dx (Flat Appl) v0
+(THead (Bind b0) u0 t5))) u2 H35 u3 H22))))) (H33 v0 (tlt_head_sx (Flat Appl)
+v0 (THead (Bind b0) u0 t5)) v2 H37 v3 H21))))))) t3 (sym_eq T t3 t5 H32))) u1
+(sym_eq T u1 u0 H31))) b (sym_eq B b b0 H30))) v1 (sym_eq T v1 v0 H29)))
+H28)) H27)) H26)))]) in (H25 (refl_equal T (THead (Flat Appl) v0 (THead (Bind
+b0) u0 t5)))))))))) t2 H19)) t H17 H18 H13 H14 H15 H16))) | (pr0_delta u0 u3
+H13 t5 t6 H14 w H15) \Rightarrow (\lambda (H16: (eq T (THead (Bind Abbr) u0
+t5) t)).(\lambda (H17: (eq T (THead (Bind Abbr) u3 w) t2)).(eq_ind T (THead
+(Bind Abbr) u0 t5) (\lambda (_: T).((eq T (THead (Bind Abbr) u3 w) t2) \to
+((pr0 u0 u3) \to ((pr0 t5 t6) \to ((subst0 O u3 t6 w) \to (ex2 T (\lambda
+(t8: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+t8)) (\lambda (t8: T).(pr0 t2 t8)))))))) (\lambda (H18: (eq T (THead (Bind
+Abbr) u3 w) t2)).(eq_ind T (THead (Bind Abbr) u3 w) (\lambda (t7: T).((pr0 u0
+u3) \to ((pr0 t5 t6) \to ((subst0 O u3 t6 w) \to (ex2 T (\lambda (t8: T).(pr0
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8)) (\lambda
+(t8: T).(pr0 t7 t8))))))) (\lambda (_: (pr0 u0 u3)).(\lambda (_: (pr0 t5
+t6)).(\lambda (_: (subst0 O u3 t6 w)).(let H22 \def (eq_ind_r T t (\lambda
+(t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) t7)) H6 (THead
+(Bind Abbr) u0 t5) H16) in (let H23 \def (match H22 in eq return (\lambda
+(t7: T).(\lambda (_: (eq ? ? t7)).((eq T t7 (THead (Bind Abbr) u0 t5)) \to
+(ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 (THead (Bind Abbr) u3 w) t8))))))
+with [refl_equal \Rightarrow (\lambda (H23: (eq T (THead (Flat Appl) v1
+(THead (Bind b) u1 t3)) (THead (Bind Abbr) u0 t5))).(let H24 \def (eq_ind T
+(THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (\lambda (e: T).(match e in T
+return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda
+(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow
+True])])) I (THead (Bind Abbr) u0 t5) H23) in (False_ind (ex2 T (\lambda (t7:
+T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t7))
+(\lambda (t7: T).(pr0 (THead (Bind Abbr) u3 w) t7))) H24)))]) in (H23
+(refl_equal T (THead (Bind Abbr) u0 t5)))))))) t2 H18)) t H16 H17 H13 H14
+H15))) | (pr0_zeta b0 H13 t5 t6 H14 u) \Rightarrow (\lambda (H15: (eq T
+(THead (Bind b0) u (lift (S O) O t5)) t)).(\lambda (H16: (eq T t6
+t2)).(eq_ind T (THead (Bind b0) u (lift (S O) O t5)) (\lambda (_: T).((eq T
+t6 t2) \to ((not (eq B b0 Abst)) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8:
+T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8))
+(\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H17: (eq T t6 t2)).(eq_ind T t2
+(\lambda (t7: T).((not (eq B b0 Abst)) \to ((pr0 t5 t7) \to (ex2 T (\lambda
+(t8: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+t8)) (\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (_: (not (eq B b0
+Abst))).(\lambda (_: (pr0 t5 t2)).(let H20 \def (eq_ind_r T t (\lambda (t7:
+T).(eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) t7)) H6 (THead (Bind
+b0) u (lift (S O) O t5)) H15) in (let H21 \def (match H20 in eq return
+(\lambda (t7: T).(\lambda (_: (eq ? ? t7)).((eq T t7 (THead (Bind b0) u (lift
+(S O) O t5))) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 t2 t8))))))
+with [refl_equal \Rightarrow (\lambda (H21: (eq T (THead (Flat Appl) v1
+(THead (Bind b) u1 t3)) (THead (Bind b0) u (lift (S O) O t5)))).(let H22 \def
+(eq_ind T (THead (Flat Appl) v1 (THead (Bind b) u1 t3)) (\lambda (e:
+T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
+False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K
+return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _)
+\Rightarrow True])])) I (THead (Bind b0) u (lift (S O) O t5)) H21) in
+(False_ind (ex2 T (\lambda (t7: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4)) t7)) (\lambda (t7: T).(pr0 t2 t7))) H22)))]) in (H21
+(refl_equal T (THead (Bind b0) u (lift (S O) O t5)))))))) t6 (sym_eq T t6 t2
+H17))) t H15 H16 H13 H14))) | (pr0_epsilon t5 t6 H13 u) \Rightarrow (\lambda
+(H14: (eq T (THead (Flat Cast) u t5) t)).(\lambda (H15: (eq T t6 t2)).(eq_ind
+T (THead (Flat Cast) u t5) (\lambda (_: T).((eq T t6 t2) \to ((pr0 t5 t6) \to
+(ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (H16: (eq T t6
+t2)).(eq_ind T t2 (\lambda (t7: T).((pr0 t5 t7) \to (ex2 T (\lambda (t8:
+T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) t8))
+(\lambda (t8: T).(pr0 t2 t8))))) (\lambda (_: (pr0 t5 t2)).(let H18 \def
+(eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Appl) v1 (THead (Bind b) u1
+t3)) t7)) H6 (THead (Flat Cast) u t5) H14) in (let H19 \def (match H18 in eq
+return (\lambda (t7: T).(\lambda (_: (eq ? ? t7)).((eq T t7 (THead (Flat
+Cast) u t5)) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) t8)) (\lambda (t8: T).(pr0 t2 t8)))))) with
+[refl_equal \Rightarrow (\lambda (H19: (eq T (THead (Flat Appl) v1 (THead
+(Bind b) u1 t3)) (THead (Flat Cast) u t5))).(let H20 \def (eq_ind T (THead
+(Flat Appl) v1 (THead (Bind b) u1 t3)) (\lambda (e: T).(match e in T return
+(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda
+(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat f) \Rightarrow (match f
+in F return (\lambda (_: F).Prop) with [Appl \Rightarrow True | Cast
+\Rightarrow False])])])) I (THead (Flat Cast) u t5) H19) in (False_ind (ex2 T
+(\lambda (t7: T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4)) t7)) (\lambda (t7: T).(pr0 t2 t7))) H20)))]) in (H19 (refl_equal T
+(THead (Flat Cast) u t5)))))) t6 (sym_eq T t6 t2 H16))) t H14 H15 H13)))]) in
+(H13 (refl_equal T t) (refl_equal T t2))))))) t1 H8)) t H6 H7 H2 H3 H4 H5)))
+| (pr0_delta u1 u2 H2 t3 t4 H3 w H4) \Rightarrow (\lambda (H5: (eq T (THead
+(Bind Abbr) u1 t3) t)).(\lambda (H6: (eq T (THead (Bind Abbr) u2 w)
+t1)).(eq_ind T (THead (Bind Abbr) u1 t3) (\lambda (_: T).((eq T (THead (Bind
+Abbr) u2 w) t1) \to ((pr0 u1 u2) \to ((pr0 t3 t4) \to ((subst0 O u2 t4 w) \to
+(ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t2 t6))))))))
+(\lambda (H7: (eq T (THead (Bind Abbr) u2 w) t1)).(eq_ind T (THead (Bind
+Abbr) u2 w) (\lambda (t5: T).((pr0 u1 u2) \to ((pr0 t3 t4) \to ((subst0 O u2
+t4 w) \to (ex2 T (\lambda (t6: T).(pr0 t5 t6)) (\lambda (t6: T).(pr0 t2
+t6))))))) (\lambda (H8: (pr0 u1 u2)).(\lambda (H9: (pr0 t3 t4)).(\lambda
+(H10: (subst0 O u2 t4 w)).(let H11 \def (match H1 in pr0 return (\lambda (t5:
+T).(\lambda (t6: T).(\lambda (_: (pr0 t5 t6)).((eq T t5 t) \to ((eq T t6 t2)
+\to (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7:
+T).(pr0 t2 t7)))))))) with [(pr0_refl t5) \Rightarrow (\lambda (H11: (eq T t5
+t)).(\lambda (H12: (eq T t5 t2)).(eq_ind T t (\lambda (t6: T).((eq T t6 t2)
+\to (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7:
+T).(pr0 t2 t7))))) (\lambda (H13: (eq T t t2)).(eq_ind T t2 (\lambda (_:
+T).(ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7:
+T).(pr0 t2 t7)))) (let H14 \def (eq_ind_r T t (\lambda (t6: T).(eq T t6 t2))
+H13 (THead (Bind Abbr) u1 t3) H5) in (eq_ind T (THead (Bind Abbr) u1 t3)
+(\lambda (t6: T).(ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7))
+(\lambda (t7: T).(pr0 t6 t7)))) (let H15 \def (eq_ind_r T t (\lambda (t6:
+T).(eq T t5 t6)) H11 (THead (Bind Abbr) u1 t3) H5) in (let H16 \def (eq_ind_r
+T t (\lambda (t6: T).(\forall (v: T).((tlt v t6) \to (\forall (t7: T).((pr0 v
+t7) \to (\forall (t8: T).((pr0 v t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9))
+(\lambda (t9: T).(pr0 t8 t9)))))))))) H (THead (Bind Abbr) u1 t3) H5) in
+(ex_intro2 T (\lambda (t6: T).(pr0 (THead (Bind Abbr) u2 w) t6)) (\lambda
+(t6: T).(pr0 (THead (Bind Abbr) u1 t3) t6)) (THead (Bind Abbr) u2 w)
+(pr0_refl (THead (Bind Abbr) u2 w)) (pr0_delta u1 u2 H8 t3 t4 H9 w H10)))) t2
+H14)) t (sym_eq T t t2 H13))) t5 (sym_eq T t5 t H11) H12))) | (pr0_comp u0 u3
+H11 t5 t6 H12 k) \Rightarrow (\lambda (H13: (eq T (THead k u0 t5)
+t)).(\lambda (H14: (eq T (THead k u3 t6) t2)).(eq_ind T (THead k u0 t5)
+(\lambda (_: T).((eq T (THead k u3 t6) t2) \to ((pr0 u0 u3) \to ((pr0 t5 t6)
+\to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) u2 w) t8)) (\lambda (t8:
+T).(pr0 t2 t8))))))) (\lambda (H15: (eq T (THead k u3 t6) t2)).(eq_ind T
+(THead k u3 t6) (\lambda (t7: T).((pr0 u0 u3) \to ((pr0 t5 t6) \to (ex2 T
+(\lambda (t8: T).(pr0 (THead (Bind Abbr) u2 w) t8)) (\lambda (t8: T).(pr0 t7
+t8)))))) (\lambda (H16: (pr0 u0 u3)).(\lambda (H17: (pr0 t5 t6)).(let H18
+\def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Bind Abbr) u1 t3) t7)) H5
+(THead k u0 t5) H13) in (let H19 \def (match H18 in eq return (\lambda (t7:
+T).(\lambda (_: (eq ? ? t7)).((eq T t7 (THead k u0 t5)) \to (ex2 T (\lambda
+(t8: T).(pr0 (THead (Bind Abbr) u2 w) t8)) (\lambda (t8: T).(pr0 (THead k u3
+t6) t8)))))) with [refl_equal \Rightarrow (\lambda (H19: (eq T (THead (Bind
+Abbr) u1 t3) (THead k u0 t5))).(let H20 \def (f_equal T T (\lambda (e:
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t3 |
+(TLRef _) \Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead (Bind
+Abbr) u1 t3) (THead k u0 t5) H19) in ((let H21 \def (f_equal T T (\lambda (e:
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u1 |
+(TLRef _) \Rightarrow u1 | (THead _ t7 _) \Rightarrow t7])) (THead (Bind
+Abbr) u1 t3) (THead k u0 t5) H19) in ((let H22 \def (f_equal T K (\lambda (e:
+T).(match e in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow (Bind
+Abbr) | (TLRef _) \Rightarrow (Bind Abbr) | (THead k0 _ _) \Rightarrow k0]))
+(THead (Bind Abbr) u1 t3) (THead k u0 t5) H19) in (eq_ind K (Bind Abbr)
+(\lambda (k0: K).((eq T u1 u0) \to ((eq T t3 t5) \to (ex2 T (\lambda (t7:
+T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 (THead k0 u3 t6)
+t7)))))) (\lambda (H23: (eq T u1 u0)).(eq_ind T u0 (\lambda (_: T).((eq T t3
+t5) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) u2 w) t8)) (\lambda
+(t8: T).(pr0 (THead (Bind Abbr) u3 t6) t8))))) (\lambda (H24: (eq T t3
+t5)).(eq_ind T t5 (\lambda (_: T).(ex2 T (\lambda (t8: T).(pr0 (THead (Bind
+Abbr) u2 w) t8)) (\lambda (t8: T).(pr0 (THead (Bind Abbr) u3 t6) t8)))) (let
+H25 \def (eq_ind_r K k (\lambda (k0: K).(eq T (THead k0 u0 t5) t)) H13 (Bind
+Abbr) H22) in (let H26 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v:
+T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v
+t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9
+t10)))))))))) H (THead (Bind Abbr) u0 t5) H25) in (let H27 \def (eq_ind T t3
+(\lambda (t7: T).(pr0 t7 t4)) H9 t5 H24) in (let H28 \def (eq_ind T u1
+(\lambda (t7: T).(pr0 t7 u2)) H8 u0 H23) in (ex2_ind T (\lambda (t7: T).(pr0
+u2 t7)) (\lambda (t7: T).(pr0 u3 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead
+(Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) u3 t6) t7)))
+(\lambda (x: T).(\lambda (H29: (pr0 u2 x)).(\lambda (H30: (pr0 u3
+x)).(ex2_ind T (\lambda (t7: T).(pr0 t4 t7)) (\lambda (t7: T).(pr0 t6 t7))
+(ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7:
+T).(pr0 (THead (Bind Abbr) u3 t6) t7))) (\lambda (x0: T).(\lambda (H31: (pr0
+t4 x0)).(\lambda (H32: (pr0 t6 x0)).(ex2_sym T (pr0 (THead (Bind Abbr) u3
+t6)) (pr0 (THead (Bind Abbr) u2 w)) (pr0_confluence__pr0_cong_delta u2 t4 w
+H10 u3 x H30 H29 t6 x0 H32 H31))))) (H26 t5 (tlt_head_dx (Bind Abbr) u0 t5)
+t4 H27 t6 H17))))) (H26 u0 (tlt_head_sx (Bind Abbr) u0 t5) u2 H28 u3
+H16)))))) t3 (sym_eq T t3 t5 H24))) u1 (sym_eq T u1 u0 H23))) k H22)) H21))
+H20)))]) in (H19 (refl_equal T (THead k u0 t5))))))) t2 H15)) t H13 H14 H11
+H12))) | (pr0_beta u v1 v2 H11 t5 t6 H12) \Rightarrow (\lambda (H13: (eq T
+(THead (Flat Appl) v1 (THead (Bind Abst) u t5)) t)).(\lambda (H14: (eq T
+(THead (Bind Abbr) v2 t6) t2)).(eq_ind T (THead (Flat Appl) v1 (THead (Bind
+Abst) u t5)) (\lambda (_: T).((eq T (THead (Bind Abbr) v2 t6) t2) \to ((pr0
+v1 v2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr)
+u2 w) t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H15: (eq T (THead
+(Bind Abbr) v2 t6) t2)).(eq_ind T (THead (Bind Abbr) v2 t6) (\lambda (t7:
+T).((pr0 v1 v2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead
+(Bind Abbr) u2 w) t8)) (\lambda (t8: T).(pr0 t7 t8)))))) (\lambda (_: (pr0 v1
+v2)).(\lambda (_: (pr0 t5 t6)).(let H18 \def (eq_ind_r T t (\lambda (t7:
+T).(eq T (THead (Bind Abbr) u1 t3) t7)) H5 (THead (Flat Appl) v1 (THead (Bind
+Abst) u t5)) H13) in (let H19 \def (match H18 in eq return (\lambda (t7:
+T).(\lambda (_: (eq ? ? t7)).((eq T t7 (THead (Flat Appl) v1 (THead (Bind
+Abst) u t5))) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) u2 w) t8))
+(\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t6) t8)))))) with [refl_equal
+\Rightarrow (\lambda (H19: (eq T (THead (Bind Abbr) u1 t3) (THead (Flat Appl)
+v1 (THead (Bind Abst) u t5)))).(let H20 \def (eq_ind T (THead (Bind Abbr) u1
+t3) (\lambda (e: T).(match e in T return (\lambda (_: T).Prop) with [(TSort
+_) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _)
+\Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
+\Rightarrow True | (Flat _) \Rightarrow False])])) I (THead (Flat Appl) v1
+(THead (Bind Abst) u t5)) H19) in (False_ind (ex2 T (\lambda (t7: T).(pr0
+(THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t6)
+t7))) H20)))]) in (H19 (refl_equal T (THead (Flat Appl) v1 (THead (Bind Abst)
+u t5)))))))) t2 H15)) t H13 H14 H11 H12))) | (pr0_upsilon b H11 v1 v2 H12 u0
+u3 H13 t5 t6 H14) \Rightarrow (\lambda (H15: (eq T (THead (Flat Appl) v1
+(THead (Bind b) u0 t5)) t)).(\lambda (H16: (eq T (THead (Bind b) u3 (THead
+(Flat Appl) (lift (S O) O v2) t6)) t2)).(eq_ind T (THead (Flat Appl) v1
+(THead (Bind b) u0 t5)) (\lambda (_: T).((eq T (THead (Bind b) u3 (THead
+(Flat Appl) (lift (S O) O v2) t6)) t2) \to ((not (eq B b Abst)) \to ((pr0 v1
+v2) \to ((pr0 u0 u3) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead
+(Bind Abbr) u2 w) t8)) (\lambda (t8: T).(pr0 t2 t8))))))))) (\lambda (H17:
+(eq T (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6))
+t2)).(eq_ind T (THead (Bind b) u3 (THead (Flat Appl) (lift (S O) O v2) t6))
+(\lambda (t7: T).((not (eq B b Abst)) \to ((pr0 v1 v2) \to ((pr0 u0 u3) \to
+((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) u2 w) t8))
+(\lambda (t8: T).(pr0 t7 t8)))))))) (\lambda (_: (not (eq B b
+Abst))).(\lambda (_: (pr0 v1 v2)).(\lambda (_: (pr0 u0 u3)).(\lambda (_: (pr0
+t5 t6)).(let H22 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Bind Abbr)
+u1 t3) t7)) H5 (THead (Flat Appl) v1 (THead (Bind b) u0 t5)) H15) in (let H23
+\def (match H22 in eq return (\lambda (t7: T).(\lambda (_: (eq ? ? t7)).((eq
+T t7 (THead (Flat Appl) v1 (THead (Bind b) u0 t5))) \to (ex2 T (\lambda (t8:
+T).(pr0 (THead (Bind Abbr) u2 w) t8)) (\lambda (t8: T).(pr0 (THead (Bind b)
+u3 (THead (Flat Appl) (lift (S O) O v2) t6)) t8)))))) with [refl_equal
+\Rightarrow (\lambda (H23: (eq T (THead (Bind Abbr) u1 t3) (THead (Flat Appl)
+v1 (THead (Bind b) u0 t5)))).(let H24 \def (eq_ind T (THead (Bind Abbr) u1
+t3) (\lambda (e: T).(match e in T return (\lambda (_: T).Prop) with [(TSort
+_) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _)
+\Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
+\Rightarrow True | (Flat _) \Rightarrow False])])) I (THead (Flat Appl) v1
+(THead (Bind b) u0 t5)) H23) in (False_ind (ex2 T (\lambda (t7: T).(pr0
+(THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 (THead (Bind b) u3 (THead
+(Flat Appl) (lift (S O) O v2) t6)) t7))) H24)))]) in (H23 (refl_equal T
+(THead (Flat Appl) v1 (THead (Bind b) u0 t5)))))))))) t2 H17)) t H15 H16 H11
+H12 H13 H14))) | (pr0_delta u0 u3 H11 t5 t6 H12 w0 H13) \Rightarrow (\lambda
+(H14: (eq T (THead (Bind Abbr) u0 t5) t)).(\lambda (H15: (eq T (THead (Bind
+Abbr) u3 w0) t2)).(eq_ind T (THead (Bind Abbr) u0 t5) (\lambda (_: T).((eq T
+(THead (Bind Abbr) u3 w0) t2) \to ((pr0 u0 u3) \to ((pr0 t5 t6) \to ((subst0
+O u3 t6 w0) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) u2 w) t8))
+(\lambda (t8: T).(pr0 t2 t8)))))))) (\lambda (H16: (eq T (THead (Bind Abbr)
+u3 w0) t2)).(eq_ind T (THead (Bind Abbr) u3 w0) (\lambda (t7: T).((pr0 u0 u3)
+\to ((pr0 t5 t6) \to ((subst0 O u3 t6 w0) \to (ex2 T (\lambda (t8: T).(pr0
+(THead (Bind Abbr) u2 w) t8)) (\lambda (t8: T).(pr0 t7 t8))))))) (\lambda
+(H17: (pr0 u0 u3)).(\lambda (H18: (pr0 t5 t6)).(\lambda (H19: (subst0 O u3 t6
+w0)).(let H20 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Bind Abbr) u1
+t3) t7)) H5 (THead (Bind Abbr) u0 t5) H14) in (let H21 \def (match H20 in eq
+return (\lambda (t7: T).(\lambda (_: (eq ? ? t7)).((eq T t7 (THead (Bind
+Abbr) u0 t5)) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) u2 w) t8))
+(\lambda (t8: T).(pr0 (THead (Bind Abbr) u3 w0) t8)))))) with [refl_equal
+\Rightarrow (\lambda (H21: (eq T (THead (Bind Abbr) u1 t3) (THead (Bind Abbr)
+u0 t5))).(let H22 \def (f_equal T T (\lambda (e: T).(match e in T return
+(\lambda (_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3
+| (THead _ _ t7) \Rightarrow t7])) (THead (Bind Abbr) u1 t3) (THead (Bind
+Abbr) u0 t5) H21) in ((let H23 \def (f_equal T T (\lambda (e: T).(match e in
+T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u1 | (TLRef _)
+\Rightarrow u1 | (THead _ t7 _) \Rightarrow t7])) (THead (Bind Abbr) u1 t3)
+(THead (Bind Abbr) u0 t5) H21) in (eq_ind T u0 (\lambda (_: T).((eq T t3 t5)
+\to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) u2 w) t8)) (\lambda (t8:
+T).(pr0 (THead (Bind Abbr) u3 w0) t8))))) (\lambda (H24: (eq T t3
+t5)).(eq_ind T t5 (\lambda (_: T).(ex2 T (\lambda (t8: T).(pr0 (THead (Bind
+Abbr) u2 w) t8)) (\lambda (t8: T).(pr0 (THead (Bind Abbr) u3 w0) t8)))) (let
+H25 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v t7) \to
+(\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to (ex2 T
+(\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 t10)))))))))) H
+(THead (Bind Abbr) u0 t5) H14) in (let H26 \def (eq_ind T t3 (\lambda (t7:
+T).(pr0 t7 t4)) H9 t5 H24) in (let H27 \def (eq_ind T u1 (\lambda (t7:
+T).(pr0 t7 u2)) H8 u0 H23) in (ex2_ind T (\lambda (t7: T).(pr0 u2 t7))
+(\lambda (t7: T).(pr0 u3 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr)
+u2 w) t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) u3 w0) t7))) (\lambda (x:
+T).(\lambda (H28: (pr0 u2 x)).(\lambda (H29: (pr0 u3 x)).(ex2_ind T (\lambda
+(t7: T).(pr0 t4 t7)) (\lambda (t7: T).(pr0 t6 t7)) (ex2 T (\lambda (t7:
+T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 (THead (Bind
+Abbr) u3 w0) t7))) (\lambda (x0: T).(\lambda (H30: (pr0 t4 x0)).(\lambda
+(H31: (pr0 t6 x0)).(pr0_confluence__pr0_delta_delta u2 t4 w H10 u3 t6 w0 H19
+x H28 H29 x0 H30 H31)))) (H25 t5 (tlt_head_dx (Bind Abbr) u0 t5) t4 H26 t6
+H18))))) (H25 u0 (tlt_head_sx (Bind Abbr) u0 t5) u2 H27 u3 H17))))) t3
+(sym_eq T t3 t5 H24))) u1 (sym_eq T u1 u0 H23))) H22)))]) in (H21 (refl_equal
+T (THead (Bind Abbr) u0 t5)))))))) t2 H16)) t H14 H15 H11 H12 H13))) |
+(pr0_zeta b H11 t5 t6 H12 u) \Rightarrow (\lambda (H13: (eq T (THead (Bind b)
+u (lift (S O) O t5)) t)).(\lambda (H14: (eq T t6 t2)).(eq_ind T (THead (Bind
+b) u (lift (S O) O t5)) (\lambda (_: T).((eq T t6 t2) \to ((not (eq B b
+Abst)) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr)
+u2 w) t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H15: (eq T t6
+t2)).(eq_ind T t2 (\lambda (t7: T).((not (eq B b Abst)) \to ((pr0 t5 t7) \to
+(ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) u2 w) t8)) (\lambda (t8:
+T).(pr0 t2 t8)))))) (\lambda (H16: (not (eq B b Abst))).(\lambda (H17: (pr0
+t5 t2)).(let H18 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Bind Abbr)
+u1 t3) t7)) H5 (THead (Bind b) u (lift (S O) O t5)) H13) in (let H19 \def
+(match H18 in eq return (\lambda (t7: T).(\lambda (_: (eq ? ? t7)).((eq T t7
+(THead (Bind b) u (lift (S O) O t5))) \to (ex2 T (\lambda (t8: T).(pr0 (THead
+(Bind Abbr) u2 w) t8)) (\lambda (t8: T).(pr0 t2 t8)))))) with [refl_equal
+\Rightarrow (\lambda (H19: (eq T (THead (Bind Abbr) u1 t3) (THead (Bind b) u
+(lift (S O) O t5)))).(let H20 \def (f_equal T T (\lambda (e: T).(match e in T
+return (\lambda (_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _)
+\Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead (Bind Abbr) u1 t3)
+(THead (Bind b) u (lift (S O) O t5)) H19) in ((let H21 \def (f_equal T T
+(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow u1 | (TLRef _) \Rightarrow u1 | (THead _ t7 _) \Rightarrow t7]))
+(THead (Bind Abbr) u1 t3) (THead (Bind b) u (lift (S O) O t5)) H19) in ((let
+H22 \def (f_equal T B (\lambda (e: T).(match e in T return (\lambda (_: T).B)
+with [(TSort _) \Rightarrow Abbr | (TLRef _) \Rightarrow Abbr | (THead k _ _)
+\Rightarrow (match k in K return (\lambda (_: K).B) with [(Bind b0)
+\Rightarrow b0 | (Flat _) \Rightarrow Abbr])])) (THead (Bind Abbr) u1 t3)
+(THead (Bind b) u (lift (S O) O t5)) H19) in (eq_ind B Abbr (\lambda (_:
+B).((eq T u1 u) \to ((eq T t3 (lift (S O) O t5)) \to (ex2 T (\lambda (t7:
+T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 t2 t7))))))
+(\lambda (H23: (eq T u1 u)).(eq_ind T u (\lambda (_: T).((eq T t3 (lift (S O)
+O t5)) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) u2 w) t8))
+(\lambda (t8: T).(pr0 t2 t8))))) (\lambda (H24: (eq T t3 (lift (S O) O
+t5))).(eq_ind T (lift (S O) O t5) (\lambda (_: T).(ex2 T (\lambda (t8:
+T).(pr0 (THead (Bind Abbr) u2 w) t8)) (\lambda (t8: T).(pr0 t2 t8)))) (let
+H25 \def (eq_ind_r B b (\lambda (b0: B).(not (eq B b0 Abst))) H16 Abbr H22)
+in (let H26 \def (eq_ind_r B b (\lambda (b0: B).(eq T (THead (Bind b0) u
+(lift (S O) O t5)) t)) H13 Abbr H22) in (let H27 \def (eq_ind_r T t (\lambda
+(t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) \to
+(\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10))
+(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Bind Abbr) u (lift (S O) O
+t5)) H26) in (let H28 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t4)) H9
+(lift (S O) O t5) H24) in (ex2_ind T (\lambda (t7: T).(eq T t4 (lift (S O) O
+t7))) (\lambda (t7: T).(pr0 t5 t7)) (ex2 T (\lambda (t7: T).(pr0 (THead (Bind
+Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 t2 t7))) (\lambda (x: T).(\lambda
+(H29: (eq T t4 (lift (S O) O x))).(\lambda (H30: (pr0 t5 x)).(let H31 \def
+(eq_ind T t4 (\lambda (t7: T).(subst0 O u2 t7 w)) H10 (lift (S O) O x) H29)
+in (let H32 \def (eq_ind T u1 (\lambda (t7: T).(pr0 t7 u2)) H8 u H23) in
+(ex2_ind T (\lambda (t7: T).(pr0 x t7)) (\lambda (t7: T).(pr0 t2 t7)) (ex2 T
+(\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7)) (\lambda (t7: T).(pr0 t2
+t7))) (\lambda (x0: T).(\lambda (_: (pr0 x x0)).(\lambda (_: (pr0 t2
+x0)).(pr0_confluence__pr0_delta_epsilon u2 (lift (S O) O x) w H31 x (pr0_refl
+(lift (S O) O x)) t2)))) (H27 t5 (lift_tlt_dx (Bind Abbr) u t5 (S O) O) x H30
+t2 H17))))))) (pr0_gen_lift t5 t4 (S O) O H28)))))) t3 (sym_eq T t3 (lift (S
+O) O t5) H24))) u1 (sym_eq T u1 u H23))) b H22)) H21)) H20)))]) in (H19
+(refl_equal T (THead (Bind b) u (lift (S O) O t5)))))))) t6 (sym_eq T t6 t2
+H15))) t H13 H14 H11 H12))) | (pr0_epsilon t5 t6 H11 u) \Rightarrow (\lambda
+(H12: (eq T (THead (Flat Cast) u t5) t)).(\lambda (H13: (eq T t6 t2)).(eq_ind
+T (THead (Flat Cast) u t5) (\lambda (_: T).((eq T t6 t2) \to ((pr0 t5 t6) \to
+(ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) u2 w) t8)) (\lambda (t8:
+T).(pr0 t2 t8)))))) (\lambda (H14: (eq T t6 t2)).(eq_ind T t2 (\lambda (t7:
+T).((pr0 t5 t7) \to (ex2 T (\lambda (t8: T).(pr0 (THead (Bind Abbr) u2 w)
+t8)) (\lambda (t8: T).(pr0 t2 t8))))) (\lambda (_: (pr0 t5 t2)).(let H16 \def
+(eq_ind_r T t (\lambda (t7: T).(eq T (THead (Bind Abbr) u1 t3) t7)) H5 (THead
+(Flat Cast) u t5) H12) in (let H17 \def (match H16 in eq return (\lambda (t7:
+T).(\lambda (_: (eq ? ? t7)).((eq T t7 (THead (Flat Cast) u t5)) \to (ex2 T
+(\lambda (t8: T).(pr0 (THead (Bind Abbr) u2 w) t8)) (\lambda (t8: T).(pr0 t2
+t8)))))) with [refl_equal \Rightarrow (\lambda (H17: (eq T (THead (Bind Abbr)
+u1 t3) (THead (Flat Cast) u t5))).(let H18 \def (eq_ind T (THead (Bind Abbr)
+u1 t3) (\lambda (e: T).(match e in T return (\lambda (_: T).Prop) with
+[(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _)
+\Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
+\Rightarrow True | (Flat _) \Rightarrow False])])) I (THead (Flat Cast) u t5)
+H17) in (False_ind (ex2 T (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w) t7))
+(\lambda (t7: T).(pr0 t2 t7))) H18)))]) in (H17 (refl_equal T (THead (Flat
+Cast) u t5)))))) t6 (sym_eq T t6 t2 H14))) t H12 H13 H11)))]) in (H11
+(refl_equal T t) (refl_equal T t2)))))) t1 H7)) t H5 H6 H2 H3 H4))) |
+(pr0_zeta b H2 t3 t4 H3 u) \Rightarrow (\lambda (H4: (eq T (THead (Bind b) u
+(lift (S O) O t3)) t)).(\lambda (H5: (eq T t4 t1)).(eq_ind T (THead (Bind b)
+u (lift (S O) O t3)) (\lambda (_: T).((eq T t4 t1) \to ((not (eq B b Abst))
+\to ((pr0 t3 t4) \to (ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6:
+T).(pr0 t2 t6))))))) (\lambda (H6: (eq T t4 t1)).(eq_ind T t1 (\lambda (t5:
+T).((not (eq B b Abst)) \to ((pr0 t3 t5) \to (ex2 T (\lambda (t6: T).(pr0 t1
+t6)) (\lambda (t6: T).(pr0 t2 t6)))))) (\lambda (H7: (not (eq B b
+Abst))).(\lambda (H8: (pr0 t3 t1)).(let H9 \def (match H1 in pr0 return
+(\lambda (t5: T).(\lambda (t6: T).(\lambda (_: (pr0 t5 t6)).((eq T t5 t) \to
+((eq T t6 t2) \to (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0
+t2 t7)))))))) with [(pr0_refl t5) \Rightarrow (\lambda (H9: (eq T t5
+t)).(\lambda (H10: (eq T t5 t2)).(eq_ind T t (\lambda (t6: T).((eq T t6 t2)
+\to (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7)))))
+(\lambda (H11: (eq T t t2)).(eq_ind T t2 (\lambda (_: T).(ex2 T (\lambda (t7:
+T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7)))) (let H12 \def (eq_ind_r T t
+(\lambda (t6: T).(eq T t6 t2)) H11 (THead (Bind b) u (lift (S O) O t3)) H4)
+in (eq_ind T (THead (Bind b) u (lift (S O) O t3)) (\lambda (t6: T).(ex2 T
+(\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t6 t7)))) (let H13 \def
+(eq_ind_r T t (\lambda (t6: T).(eq T t5 t6)) H9 (THead (Bind b) u (lift (S O)
+O t3)) H4) in (let H14 \def (eq_ind_r T t (\lambda (t6: T).(\forall (v:
+T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7) \to (\forall (t8: T).((pr0 v
+t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9)) (\lambda (t9: T).(pr0 t8
+t9)))))))))) H (THead (Bind b) u (lift (S O) O t3)) H4) in (ex_intro2 T
+(\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 (THead (Bind b) u (lift
+(S O) O t3)) t6)) t1 (pr0_refl t1) (pr0_zeta b H7 t3 t1 H8 u)))) t2 H12)) t
+(sym_eq T t t2 H11))) t5 (sym_eq T t5 t H9) H10))) | (pr0_comp u1 u2 H9 t5 t6
+H10 k) \Rightarrow (\lambda (H11: (eq T (THead k u1 t5) t)).(\lambda (H12:
+(eq T (THead k u2 t6) t2)).(eq_ind T (THead k u1 t5) (\lambda (_: T).((eq T
+(THead k u2 t6) t2) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda
+(t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H13: (eq T
+(THead k u2 t6) t2)).(eq_ind T (THead k u2 t6) (\lambda (t7: T).((pr0 u1 u2)
+\to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8:
+T).(pr0 t7 t8)))))) (\lambda (_: (pr0 u1 u2)).(\lambda (H15: (pr0 t5
+t6)).(let H16 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Bind b) u
+(lift (S O) O t3)) t7)) H4 (THead k u1 t5) H11) in (let H17 \def (match H16
+in eq return (\lambda (t7: T).(\lambda (_: (eq ? ? t7)).((eq T t7 (THead k u1
+t5)) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 (THead k
+u2 t6) t8)))))) with [refl_equal \Rightarrow (\lambda (H17: (eq T (THead
+(Bind b) u (lift (S O) O t3)) (THead k u1 t5))).(let H18 \def (f_equal T T
+(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat) (t7: T) on t7: T
+\def (match t7 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow
+(TLRef (match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)]))
+| (THead k0 u0 t8) \Rightarrow (THead k0 (lref_map f d u0) (lref_map f (s k0
+d) t8))]) in lref_map) (\lambda (x: nat).(plus x (S O))) O t3) | (TLRef _)
+\Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat) (t7: T) on t7: T
+\def (match t7 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow
+(TLRef (match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)]))
+| (THead k0 u0 t8) \Rightarrow (THead k0 (lref_map f d u0) (lref_map f (s k0
+d) t8))]) in lref_map) (\lambda (x: nat).(plus x (S O))) O t3) | (THead _ _
+t7) \Rightarrow t7])) (THead (Bind b) u (lift (S O) O t3)) (THead k u1 t5)
+H17) in ((let H19 \def (f_equal T T (\lambda (e: T).(match e in T return
+(\lambda (_: T).T) with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u |
+(THead _ t7 _) \Rightarrow t7])) (THead (Bind b) u (lift (S O) O t3)) (THead
+k u1 t5) H17) in ((let H20 \def (f_equal T K (\lambda (e: T).(match e in T
+return (\lambda (_: T).K) with [(TSort _) \Rightarrow (Bind b) | (TLRef _)
+\Rightarrow (Bind b) | (THead k0 _ _) \Rightarrow k0])) (THead (Bind b) u
+(lift (S O) O t3)) (THead k u1 t5) H17) in (eq_ind K (Bind b) (\lambda (k0:
+K).((eq T u u1) \to ((eq T (lift (S O) O t3) t5) \to (ex2 T (\lambda (t7:
+T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 (THead k0 u2 t6) t7)))))) (\lambda
+(H21: (eq T u u1)).(eq_ind T u1 (\lambda (_: T).((eq T (lift (S O) O t3) t5)
+\to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 (THead (Bind
+b) u2 t6) t8))))) (\lambda (H22: (eq T (lift (S O) O t3) t5)).(eq_ind T (lift
+(S O) O t3) (\lambda (_: T).(ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda
+(t8: T).(pr0 (THead (Bind b) u2 t6) t8)))) (let H23 \def (eq_ind_r K k
+(\lambda (k0: K).(eq T (THead k0 u1 t5) t)) H11 (Bind b) H20) in (let H24
+\def (eq_ind_r T t5 (\lambda (t7: T).(pr0 t7 t6)) H15 (lift (S O) O t3) H22)
+in (ex2_ind T (\lambda (t7: T).(eq T t6 (lift (S O) O t7))) (\lambda (t7:
+T).(pr0 t3 t7)) (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0
+(THead (Bind b) u2 t6) t7))) (\lambda (x: T).(\lambda (H25: (eq T t6 (lift (S
+O) O x))).(\lambda (H26: (pr0 t3 x)).(let H27 \def (eq_ind_r T t5 (\lambda
+(t7: T).(eq T (THead (Bind b) u1 t7) t)) H23 (lift (S O) O t3) H22) in (let
+H28 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v t7) \to
+(\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to (ex2 T
+(\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9 t10)))))))))) H
+(THead (Bind b) u1 (lift (S O) O t3)) H27) in (eq_ind_r T (lift (S O) O x)
+(\lambda (t7: T).(ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0
+(THead (Bind b) u2 t7) t8)))) (ex2_ind T (\lambda (t7: T).(pr0 x t7))
+(\lambda (t7: T).(pr0 t1 t7)) (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda
+(t7: T).(pr0 (THead (Bind b) u2 (lift (S O) O x)) t7))) (\lambda (x0:
+T).(\lambda (H29: (pr0 x x0)).(\lambda (H30: (pr0 t1 x0)).(ex_intro2 T
+(\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 (THead (Bind b) u2 (lift
+(S O) O x)) t7)) x0 H30 (pr0_zeta b H7 x x0 H29 u2))))) (H28 t3 (lift_tlt_dx
+(Bind b) u1 t3 (S O) O) x H26 t1 H8)) t6 H25)))))) (pr0_gen_lift t3 t6 (S O)
+O H24)))) t5 H22)) u (sym_eq T u u1 H21))) k H20)) H19)) H18)))]) in (H17
+(refl_equal T (THead k u1 t5))))))) t2 H13)) t H11 H12 H9 H10))) | (pr0_beta
+u0 v1 v2 H9 t5 t6 H10) \Rightarrow (\lambda (H11: (eq T (THead (Flat Appl) v1
+(THead (Bind Abst) u0 t5)) t)).(\lambda (H12: (eq T (THead (Bind Abbr) v2 t6)
+t2)).(eq_ind T (THead (Flat Appl) v1 (THead (Bind Abst) u0 t5)) (\lambda (_:
+T).((eq T (THead (Bind Abbr) v2 t6) t2) \to ((pr0 v1 v2) \to ((pr0 t5 t6) \to
+(ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8)))))))
+(\lambda (H13: (eq T (THead (Bind Abbr) v2 t6) t2)).(eq_ind T (THead (Bind
+Abbr) v2 t6) (\lambda (t7: T).((pr0 v1 v2) \to ((pr0 t5 t6) \to (ex2 T
+(\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t7 t8)))))) (\lambda (_:
+(pr0 v1 v2)).(\lambda (_: (pr0 t5 t6)).(let H16 \def (eq_ind_r T t (\lambda
+(t7: T).(eq T (THead (Bind b) u (lift (S O) O t3)) t7)) H4 (THead (Flat Appl)
+v1 (THead (Bind Abst) u0 t5)) H11) in (let H17 \def (match H16 in eq return
+(\lambda (t7: T).(\lambda (_: (eq ? ? t7)).((eq T t7 (THead (Flat Appl) v1
+(THead (Bind Abst) u0 t5))) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda
+(t8: T).(pr0 (THead (Bind Abbr) v2 t6) t8)))))) with [refl_equal \Rightarrow
+(\lambda (H17: (eq T (THead (Bind b) u (lift (S O) O t3)) (THead (Flat Appl)
+v1 (THead (Bind Abst) u0 t5)))).(let H18 \def (eq_ind T (THead (Bind b) u
+(lift (S O) O t3)) (\lambda (e: T).(match e in T return (\lambda (_: T).Prop)
+with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _
+_) \Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
+\Rightarrow True | (Flat _) \Rightarrow False])])) I (THead (Flat Appl) v1
+(THead (Bind Abst) u0 t5)) H17) in (False_ind (ex2 T (\lambda (t7: T).(pr0 t1
+t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t6) t7))) H18)))]) in (H17
+(refl_equal T (THead (Flat Appl) v1 (THead (Bind Abst) u0 t5)))))))) t2 H13))
+t H11 H12 H9 H10))) | (pr0_upsilon b0 H9 v1 v2 H10 u1 u2 H11 t5 t6 H12)
+\Rightarrow (\lambda (H13: (eq T (THead (Flat Appl) v1 (THead (Bind b0) u1
+t5)) t)).(\lambda (H14: (eq T (THead (Bind b0) u2 (THead (Flat Appl) (lift (S
+O) O v2) t6)) t2)).(eq_ind T (THead (Flat Appl) v1 (THead (Bind b0) u1 t5))
+(\lambda (_: T).((eq T (THead (Bind b0) u2 (THead (Flat Appl) (lift (S O) O
+v2) t6)) t2) \to ((not (eq B b0 Abst)) \to ((pr0 v1 v2) \to ((pr0 u1 u2) \to
+((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0
+t2 t8))))))))) (\lambda (H15: (eq T (THead (Bind b0) u2 (THead (Flat Appl)
+(lift (S O) O v2) t6)) t2)).(eq_ind T (THead (Bind b0) u2 (THead (Flat Appl)
+(lift (S O) O v2) t6)) (\lambda (t7: T).((not (eq B b0 Abst)) \to ((pr0 v1
+v2) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1
+t8)) (\lambda (t8: T).(pr0 t7 t8)))))))) (\lambda (_: (not (eq B b0
+Abst))).(\lambda (_: (pr0 v1 v2)).(\lambda (_: (pr0 u1 u2)).(\lambda (_: (pr0
+t5 t6)).(let H20 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Bind b) u
+(lift (S O) O t3)) t7)) H4 (THead (Flat Appl) v1 (THead (Bind b0) u1 t5))
+H13) in (let H21 \def (match H20 in eq return (\lambda (t7: T).(\lambda (_:
+(eq ? ? t7)).((eq T t7 (THead (Flat Appl) v1 (THead (Bind b0) u1 t5))) \to
+(ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 (THead (Bind b0)
+u2 (THead (Flat Appl) (lift (S O) O v2) t6)) t8)))))) with [refl_equal
+\Rightarrow (\lambda (H21: (eq T (THead (Bind b) u (lift (S O) O t3)) (THead
+(Flat Appl) v1 (THead (Bind b0) u1 t5)))).(let H22 \def (eq_ind T (THead
+(Bind b) u (lift (S O) O t3)) (\lambda (e: T).(match e in T return (\lambda
+(_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False
+| (THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).Prop) with
+[(Bind _) \Rightarrow True | (Flat _) \Rightarrow False])])) I (THead (Flat
+Appl) v1 (THead (Bind b0) u1 t5)) H21) in (False_ind (ex2 T (\lambda (t7:
+T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 (THead (Bind b0) u2 (THead (Flat Appl)
+(lift (S O) O v2) t6)) t7))) H22)))]) in (H21 (refl_equal T (THead (Flat
+Appl) v1 (THead (Bind b0) u1 t5)))))))))) t2 H15)) t H13 H14 H9 H10 H11
+H12))) | (pr0_delta u1 u2 H9 t5 t6 H10 w H11) \Rightarrow (\lambda (H12: (eq
+T (THead (Bind Abbr) u1 t5) t)).(\lambda (H13: (eq T (THead (Bind Abbr) u2 w)
+t2)).(eq_ind T (THead (Bind Abbr) u1 t5) (\lambda (_: T).((eq T (THead (Bind
+Abbr) u2 w) t2) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to
+(ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8))))))))
+(\lambda (H14: (eq T (THead (Bind Abbr) u2 w) t2)).(eq_ind T (THead (Bind
+Abbr) u2 w) (\lambda (t7: T).((pr0 u1 u2) \to ((pr0 t5 t6) \to ((subst0 O u2
+t6 w) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t7
+t8))))))) (\lambda (_: (pr0 u1 u2)).(\lambda (H16: (pr0 t5 t6)).(\lambda
+(H17: (subst0 O u2 t6 w)).(let H18 \def (eq_ind_r T t (\lambda (t7: T).(eq T
+(THead (Bind b) u (lift (S O) O t3)) t7)) H4 (THead (Bind Abbr) u1 t5) H12)
+in (let H19 \def (match H18 in eq return (\lambda (t7: T).(\lambda (_: (eq ?
+? t7)).((eq T t7 (THead (Bind Abbr) u1 t5)) \to (ex2 T (\lambda (t8: T).(pr0
+t1 t8)) (\lambda (t8: T).(pr0 (THead (Bind Abbr) u2 w) t8)))))) with
+[refl_equal \Rightarrow (\lambda (H19: (eq T (THead (Bind b) u (lift (S O) O
+t3)) (THead (Bind Abbr) u1 t5))).(let H20 \def (f_equal T T (\lambda (e:
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow ((let
+rec lref_map (f: ((nat \to nat))) (d: nat) (t7: T) on t7: T \def (match t7
+with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match
+(blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) | (THead k u0
+t8) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) t8))]) in
+lref_map) (\lambda (x: nat).(plus x (S O))) O t3) | (TLRef _) \Rightarrow
+((let rec lref_map (f: ((nat \to nat))) (d: nat) (t7: T) on t7: T \def (match
+t7 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef
+(match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) |
+(THead k u0 t8) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d)
+t8))]) in lref_map) (\lambda (x: nat).(plus x (S O))) O t3) | (THead _ _ t7)
+\Rightarrow t7])) (THead (Bind b) u (lift (S O) O t3)) (THead (Bind Abbr) u1
+t5) H19) in ((let H21 \def (f_equal T T (\lambda (e: T).(match e in T return
+(\lambda (_: T).T) with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u |
+(THead _ t7 _) \Rightarrow t7])) (THead (Bind b) u (lift (S O) O t3)) (THead
+(Bind Abbr) u1 t5) H19) in ((let H22 \def (f_equal T B (\lambda (e: T).(match
+e in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow b | (TLRef _)
+\Rightarrow b | (THead k _ _) \Rightarrow (match k in K return (\lambda (_:
+K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow b])])) (THead
+(Bind b) u (lift (S O) O t3)) (THead (Bind Abbr) u1 t5) H19) in (eq_ind B
+Abbr (\lambda (_: B).((eq T u u1) \to ((eq T (lift (S O) O t3) t5) \to (ex2 T
+(\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) u2 w)
+t7)))))) (\lambda (H23: (eq T u u1)).(eq_ind T u1 (\lambda (_: T).((eq T
+(lift (S O) O t3) t5) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8:
+T).(pr0 (THead (Bind Abbr) u2 w) t8))))) (\lambda (H24: (eq T (lift (S O) O
+t3) t5)).(eq_ind T (lift (S O) O t3) (\lambda (_: T).(ex2 T (\lambda (t8:
+T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 (THead (Bind Abbr) u2 w) t8)))) (let
+H25 \def (eq_ind_r T t5 (\lambda (t7: T).(pr0 t7 t6)) H16 (lift (S O) O t3)
+H24) in (ex2_ind T (\lambda (t7: T).(eq T t6 (lift (S O) O t7))) (\lambda
+(t7: T).(pr0 t3 t7)) (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7:
+T).(pr0 (THead (Bind Abbr) u2 w) t7))) (\lambda (x: T).(\lambda (H26: (eq T
+t6 (lift (S O) O x))).(\lambda (H27: (pr0 t3 x)).(let H28 \def (eq_ind_r T t5
+(\lambda (t7: T).(eq T (THead (Bind Abbr) u1 t7) t)) H12 (lift (S O) O t3)
+H24) in (let H29 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v: T).((tlt v
+t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v t9) \to
+(ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9
+t10)))))))))) H (THead (Bind Abbr) u1 (lift (S O) O t3)) H28) in (let H30
+\def (eq_ind T t6 (\lambda (t7: T).(subst0 O u2 t7 w)) H17 (lift (S O) O x)
+H26) in (let H31 \def (eq_ind B b (\lambda (b0: B).(not (eq B b0 Abst))) H7
+Abbr H22) in (ex2_ind T (\lambda (t7: T).(pr0 x t7)) (\lambda (t7: T).(pr0 t1
+t7)) (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 (THead (Bind
+Abbr) u2 w) t7))) (\lambda (x0: T).(\lambda (_: (pr0 x x0)).(\lambda (_: (pr0
+t1 x0)).(ex2_sym T (pr0 (THead (Bind Abbr) u2 w)) (pr0 t1)
+(pr0_confluence__pr0_delta_epsilon u2 (lift (S O) O x) w H30 x (pr0_refl
+(lift (S O) O x)) t1))))) (H29 t3 (lift_tlt_dx (Bind Abbr) u1 t3 (S O) O) x
+H27 t1 H8))))))))) (pr0_gen_lift t3 t6 (S O) O H25))) t5 H24)) u (sym_eq T u
+u1 H23))) b (sym_eq B b Abbr H22))) H21)) H20)))]) in (H19 (refl_equal T
+(THead (Bind Abbr) u1 t5)))))))) t2 H14)) t H12 H13 H9 H10 H11))) | (pr0_zeta
+b0 H9 t5 t6 H10 u0) \Rightarrow (\lambda (H11: (eq T (THead (Bind b0) u0
+(lift (S O) O t5)) t)).(\lambda (H12: (eq T t6 t2)).(eq_ind T (THead (Bind
+b0) u0 (lift (S O) O t5)) (\lambda (_: T).((eq T t6 t2) \to ((not (eq B b0
+Abst)) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda
+(t8: T).(pr0 t2 t8))))))) (\lambda (H13: (eq T t6 t2)).(eq_ind T t2 (\lambda
+(t7: T).((not (eq B b0 Abst)) \to ((pr0 t5 t7) \to (ex2 T (\lambda (t8:
+T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8)))))) (\lambda (_: (not (eq B b0
+Abst))).(\lambda (H15: (pr0 t5 t2)).(let H16 \def (eq_ind_r T t (\lambda (t7:
+T).(eq T (THead (Bind b) u (lift (S O) O t3)) t7)) H4 (THead (Bind b0) u0
+(lift (S O) O t5)) H11) in (let H17 \def (match H16 in eq return (\lambda
+(t7: T).(\lambda (_: (eq ? ? t7)).((eq T t7 (THead (Bind b0) u0 (lift (S O) O
+t5))) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2
+t8)))))) with [refl_equal \Rightarrow (\lambda (H17: (eq T (THead (Bind b) u
+(lift (S O) O t3)) (THead (Bind b0) u0 (lift (S O) O t5)))).(let H18 \def
+(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
+[(TSort _) \Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat) (t7:
+T) on t7: T \def (match t7 with [(TSort n) \Rightarrow (TSort n) | (TLRef i)
+\Rightarrow (TLRef (match (blt i d) with [true \Rightarrow i | false
+\Rightarrow (f i)])) | (THead k u1 t8) \Rightarrow (THead k (lref_map f d u1)
+(lref_map f (s k d) t8))]) in lref_map) (\lambda (x: nat).(plus x (S O))) O
+t3) | (TLRef _) \Rightarrow ((let rec lref_map (f: ((nat \to nat))) (d: nat)
+(t7: T) on t7: T \def (match t7 with [(TSort n) \Rightarrow (TSort n) |
+(TLRef i) \Rightarrow (TLRef (match (blt i d) with [true \Rightarrow i |
+false \Rightarrow (f i)])) | (THead k u1 t8) \Rightarrow (THead k (lref_map f
+d u1) (lref_map f (s k d) t8))]) in lref_map) (\lambda (x: nat).(plus x (S
+O))) O t3) | (THead _ _ t7) \Rightarrow t7])) (THead (Bind b) u (lift (S O) O
+t3)) (THead (Bind b0) u0 (lift (S O) O t5)) H17) in ((let H19 \def (f_equal T
+T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _)
+\Rightarrow u | (TLRef _) \Rightarrow u | (THead _ t7 _) \Rightarrow t7]))
+(THead (Bind b) u (lift (S O) O t3)) (THead (Bind b0) u0 (lift (S O) O t5))
+H17) in ((let H20 \def (f_equal T B (\lambda (e: T).(match e in T return
+(\lambda (_: T).B) with [(TSort _) \Rightarrow b | (TLRef _) \Rightarrow b |
+(THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).B) with [(Bind
+b1) \Rightarrow b1 | (Flat _) \Rightarrow b])])) (THead (Bind b) u (lift (S
+O) O t3)) (THead (Bind b0) u0 (lift (S O) O t5)) H17) in (eq_ind B b0
+(\lambda (_: B).((eq T u u0) \to ((eq T (lift (S O) O t3) (lift (S O) O t5))
+\to (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))))))
+(\lambda (H21: (eq T u u0)).(eq_ind T u0 (\lambda (_: T).((eq T (lift (S O) O
+t3) (lift (S O) O t5)) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8:
+T).(pr0 t2 t8))))) (\lambda (H22: (eq T (lift (S O) O t3) (lift (S O) O
+t5))).(eq_ind T (lift (S O) O t3) (\lambda (_: T).(ex2 T (\lambda (t8:
+T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8)))) (let H23 \def (eq_ind_r T t
+(\lambda (t7: T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8)
+\to (\forall (t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10))
+(\lambda (t10: T).(pr0 t9 t10)))))))))) H (THead (Bind b0) u0 (lift (S O) O
+t5)) H11) in (let H24 \def (eq_ind T t3 (\lambda (t7: T).(pr0 t7 t1)) H8 t5
+(lift_inj t3 t5 (S O) O H22)) in (let H25 \def (eq_ind B b (\lambda (b1:
+B).(not (eq B b1 Abst))) H7 b0 H20) in (ex2_ind T (\lambda (t7: T).(pr0 t1
+t7)) (\lambda (t7: T).(pr0 t2 t7)) (ex2 T (\lambda (t7: T).(pr0 t1 t7))
+(\lambda (t7: T).(pr0 t2 t7))) (\lambda (x: T).(\lambda (H26: (pr0 t1
+x)).(\lambda (H27: (pr0 t2 x)).(ex_intro2 T (\lambda (t7: T).(pr0 t1 t7))
+(\lambda (t7: T).(pr0 t2 t7)) x H26 H27)))) (H23 t5 (lift_tlt_dx (Bind b0) u0
+t5 (S O) O) t1 H24 t2 H15))))) (lift (S O) O t5) H22)) u (sym_eq T u u0
+H21))) b (sym_eq B b b0 H20))) H19)) H18)))]) in (H17 (refl_equal T (THead
+(Bind b0) u0 (lift (S O) O t5)))))))) t6 (sym_eq T t6 t2 H13))) t H11 H12 H9
+H10))) | (pr0_epsilon t5 t6 H9 u0) \Rightarrow (\lambda (H10: (eq T (THead
+(Flat Cast) u0 t5) t)).(\lambda (H11: (eq T t6 t2)).(eq_ind T (THead (Flat
+Cast) u0 t5) (\lambda (_: T).((eq T t6 t2) \to ((pr0 t5 t6) \to (ex2 T
+(\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8)))))) (\lambda
+(H12: (eq T t6 t2)).(eq_ind T t2 (\lambda (t7: T).((pr0 t5 t7) \to (ex2 T
+(\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8))))) (\lambda (_:
+(pr0 t5 t2)).(let H14 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Bind
+b) u (lift (S O) O t3)) t7)) H4 (THead (Flat Cast) u0 t5) H10) in (let H15
+\def (match H14 in eq return (\lambda (t7: T).(\lambda (_: (eq ? ? t7)).((eq
+T t7 (THead (Flat Cast) u0 t5)) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8))
+(\lambda (t8: T).(pr0 t2 t8)))))) with [refl_equal \Rightarrow (\lambda (H15:
+(eq T (THead (Bind b) u (lift (S O) O t3)) (THead (Flat Cast) u0 t5))).(let
+H16 \def (eq_ind T (THead (Bind b) u (lift (S O) O t3)) (\lambda (e:
+T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
+False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K
+return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow True | (Flat _)
+\Rightarrow False])])) I (THead (Flat Cast) u0 t5) H15) in (False_ind (ex2 T
+(\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))) H16)))]) in (H15
+(refl_equal T (THead (Flat Cast) u0 t5)))))) t6 (sym_eq T t6 t2 H12))) t H10
+H11 H9)))]) in (H9 (refl_equal T t) (refl_equal T t2))))) t4 (sym_eq T t4 t1
+H6))) t H4 H5 H2 H3))) | (pr0_epsilon t3 t4 H2 u) \Rightarrow (\lambda (H3:
+(eq T (THead (Flat Cast) u t3) t)).(\lambda (H4: (eq T t4 t1)).(eq_ind T
+(THead (Flat Cast) u t3) (\lambda (_: T).((eq T t4 t1) \to ((pr0 t3 t4) \to
+(ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t2 t6))))))
+(\lambda (H5: (eq T t4 t1)).(eq_ind T t1 (\lambda (t5: T).((pr0 t3 t5) \to
+(ex2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 t2 t6)))))
+(\lambda (H6: (pr0 t3 t1)).(let H7 \def (match H1 in pr0 return (\lambda (t5:
+T).(\lambda (t6: T).(\lambda (_: (pr0 t5 t6)).((eq T t5 t) \to ((eq T t6 t2)
+\to (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))))))))
+with [(pr0_refl t5) \Rightarrow (\lambda (H7: (eq T t5 t)).(\lambda (H8: (eq
+T t5 t2)).(eq_ind T t (\lambda (t6: T).((eq T t6 t2) \to (ex2 T (\lambda (t7:
+T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))))) (\lambda (H9: (eq T t
+t2)).(eq_ind T t2 (\lambda (_: T).(ex2 T (\lambda (t7: T).(pr0 t1 t7))
+(\lambda (t7: T).(pr0 t2 t7)))) (let H10 \def (eq_ind_r T t (\lambda (t6:
+T).(eq T t6 t2)) H9 (THead (Flat Cast) u t3) H3) in (eq_ind T (THead (Flat
+Cast) u t3) (\lambda (t6: T).(ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda
+(t7: T).(pr0 t6 t7)))) (let H11 \def (eq_ind_r T t (\lambda (t6: T).(eq T t5
+t6)) H7 (THead (Flat Cast) u t3) H3) in (let H12 \def (eq_ind_r T t (\lambda
+(t6: T).(\forall (v: T).((tlt v t6) \to (\forall (t7: T).((pr0 v t7) \to
+(\forall (t8: T).((pr0 v t8) \to (ex2 T (\lambda (t9: T).(pr0 t7 t9))
+(\lambda (t9: T).(pr0 t8 t9)))))))))) H (THead (Flat Cast) u t3) H3) in
+(ex_intro2 T (\lambda (t6: T).(pr0 t1 t6)) (\lambda (t6: T).(pr0 (THead (Flat
+Cast) u t3) t6)) t1 (pr0_refl t1) (pr0_epsilon t3 t1 H6 u)))) t2 H10)) t
+(sym_eq T t t2 H9))) t5 (sym_eq T t5 t H7) H8))) | (pr0_comp u1 u2 H7 t5 t6
+H8 k) \Rightarrow (\lambda (H9: (eq T (THead k u1 t5) t)).(\lambda (H10: (eq
+T (THead k u2 t6) t2)).(eq_ind T (THead k u1 t5) (\lambda (_: T).((eq T
+(THead k u2 t6) t2) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda
+(t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda (H11: (eq T
+(THead k u2 t6) t2)).(eq_ind T (THead k u2 t6) (\lambda (t7: T).((pr0 u1 u2)
+\to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8:
+T).(pr0 t7 t8)))))) (\lambda (_: (pr0 u1 u2)).(\lambda (H13: (pr0 t5
+t6)).(let H14 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Cast) u
+t3) t7)) H3 (THead k u1 t5) H9) in (let H15 \def (match H14 in eq return
+(\lambda (t7: T).(\lambda (_: (eq ? ? t7)).((eq T t7 (THead k u1 t5)) \to
+(ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 (THead k u2 t6)
+t8)))))) with [refl_equal \Rightarrow (\lambda (H15: (eq T (THead (Flat Cast)
+u t3) (THead k u1 t5))).(let H16 \def (f_equal T T (\lambda (e: T).(match e
+in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t3 | (TLRef _)
+\Rightarrow t3 | (THead _ _ t7) \Rightarrow t7])) (THead (Flat Cast) u t3)
+(THead k u1 t5) H15) in ((let H17 \def (f_equal T T (\lambda (e: T).(match e
+in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u | (TLRef _)
+\Rightarrow u | (THead _ t7 _) \Rightarrow t7])) (THead (Flat Cast) u t3)
+(THead k u1 t5) H15) in ((let H18 \def (f_equal T K (\lambda (e: T).(match e
+in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow (Flat Cast) |
+(TLRef _) \Rightarrow (Flat Cast) | (THead k0 _ _) \Rightarrow k0])) (THead
+(Flat Cast) u t3) (THead k u1 t5) H15) in (eq_ind K (Flat Cast) (\lambda (k0:
+K).((eq T u u1) \to ((eq T t3 t5) \to (ex2 T (\lambda (t7: T).(pr0 t1 t7))
+(\lambda (t7: T).(pr0 (THead k0 u2 t6) t7)))))) (\lambda (H19: (eq T u
+u1)).(eq_ind T u1 (\lambda (_: T).((eq T t3 t5) \to (ex2 T (\lambda (t8:
+T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 (THead (Flat Cast) u2 t6) t8)))))
+(\lambda (H20: (eq T t3 t5)).(eq_ind T t5 (\lambda (_: T).(ex2 T (\lambda
+(t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 (THead (Flat Cast) u2 t6) t8))))
+(let H21 \def (eq_ind_r K k (\lambda (k0: K).(eq T (THead k0 u1 t5) t)) H9
+(Flat Cast) H18) in (let H22 \def (eq_ind_r T t (\lambda (t7: T).(\forall (v:
+T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall (t9: T).((pr0 v
+t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10: T).(pr0 t9
+t10)))))))))) H (THead (Flat Cast) u1 t5) H21) in (let H23 \def (eq_ind T t3
+(\lambda (t7: T).(pr0 t7 t1)) H6 t5 H20) in (ex2_ind T (\lambda (t7: T).(pr0
+t1 t7)) (\lambda (t7: T).(pr0 t6 t7)) (ex2 T (\lambda (t7: T).(pr0 t1 t7))
+(\lambda (t7: T).(pr0 (THead (Flat Cast) u2 t6) t7))) (\lambda (x:
+T).(\lambda (H24: (pr0 t1 x)).(\lambda (H25: (pr0 t6 x)).(ex_intro2 T
+(\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 (THead (Flat Cast) u2 t6)
+t7)) x H24 (pr0_epsilon t6 x H25 u2))))) (H22 t5 (tlt_head_dx (Flat Cast) u1
+t5) t1 H23 t6 H13))))) t3 (sym_eq T t3 t5 H20))) u (sym_eq T u u1 H19))) k
+H18)) H17)) H16)))]) in (H15 (refl_equal T (THead k u1 t5))))))) t2 H11)) t
+H9 H10 H7 H8))) | (pr0_beta u0 v1 v2 H7 t5 t6 H8) \Rightarrow (\lambda (H9:
+(eq T (THead (Flat Appl) v1 (THead (Bind Abst) u0 t5)) t)).(\lambda (H10: (eq
+T (THead (Bind Abbr) v2 t6) t2)).(eq_ind T (THead (Flat Appl) v1 (THead (Bind
+Abst) u0 t5)) (\lambda (_: T).((eq T (THead (Bind Abbr) v2 t6) t2) \to ((pr0
+v1 v2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda
+(t8: T).(pr0 t2 t8))))))) (\lambda (H11: (eq T (THead (Bind Abbr) v2 t6)
+t2)).(eq_ind T (THead (Bind Abbr) v2 t6) (\lambda (t7: T).((pr0 v1 v2) \to
+((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0
+t7 t8)))))) (\lambda (_: (pr0 v1 v2)).(\lambda (_: (pr0 t5 t6)).(let H14 \def
+(eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Cast) u t3) t7)) H3 (THead
+(Flat Appl) v1 (THead (Bind Abst) u0 t5)) H9) in (let H15 \def (match H14 in
+eq return (\lambda (t7: T).(\lambda (_: (eq ? ? t7)).((eq T t7 (THead (Flat
+Appl) v1 (THead (Bind Abst) u0 t5))) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8))
+(\lambda (t8: T).(pr0 (THead (Bind Abbr) v2 t6) t8)))))) with [refl_equal
+\Rightarrow (\lambda (H15: (eq T (THead (Flat Cast) u t3) (THead (Flat Appl)
+v1 (THead (Bind Abst) u0 t5)))).(let H16 \def (eq_ind T (THead (Flat Cast) u
+t3) (\lambda (e: T).(match e in T return (\lambda (_: T).Prop) with [(TSort
+_) \Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _)
+\Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
+\Rightarrow False | (Flat f) \Rightarrow (match f in F return (\lambda (_:
+F).Prop) with [Appl \Rightarrow False | Cast \Rightarrow True])])])) I (THead
+(Flat Appl) v1 (THead (Bind Abst) u0 t5)) H15) in (False_ind (ex2 T (\lambda
+(t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr) v2 t6) t7)))
+H16)))]) in (H15 (refl_equal T (THead (Flat Appl) v1 (THead (Bind Abst) u0
+t5)))))))) t2 H11)) t H9 H10 H7 H8))) | (pr0_upsilon b H7 v1 v2 H8 u1 u2 H9
+t5 t6 H10) \Rightarrow (\lambda (H11: (eq T (THead (Flat Appl) v1 (THead
+(Bind b) u1 t5)) t)).(\lambda (H12: (eq T (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t6)) t2)).(eq_ind T (THead (Flat Appl) v1 (THead
+(Bind b) u1 t5)) (\lambda (_: T).((eq T (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t6)) t2) \to ((not (eq B b Abst)) \to ((pr0 v1 v2) \to
+((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8))
+(\lambda (t8: T).(pr0 t2 t8))))))))) (\lambda (H13: (eq T (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t6)) t2)).(eq_ind T (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t6)) (\lambda (t7: T).((not (eq B b
+Abst)) \to ((pr0 v1 v2) \to ((pr0 u1 u2) \to ((pr0 t5 t6) \to (ex2 T (\lambda
+(t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t7 t8)))))))) (\lambda (_: (not
+(eq B b Abst))).(\lambda (_: (pr0 v1 v2)).(\lambda (_: (pr0 u1 u2)).(\lambda
+(_: (pr0 t5 t6)).(let H18 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead
+(Flat Cast) u t3) t7)) H3 (THead (Flat Appl) v1 (THead (Bind b) u1 t5)) H11)
+in (let H19 \def (match H18 in eq return (\lambda (t7: T).(\lambda (_: (eq ?
+? t7)).((eq T t7 (THead (Flat Appl) v1 (THead (Bind b) u1 t5))) \to (ex2 T
+(\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t6)) t8)))))) with [refl_equal \Rightarrow
+(\lambda (H19: (eq T (THead (Flat Cast) u t3) (THead (Flat Appl) v1 (THead
+(Bind b) u1 t5)))).(let H20 \def (eq_ind T (THead (Flat Cast) u t3) (\lambda
+(e: T).(match e in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow
+False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow (match k in K
+return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat f)
+\Rightarrow (match f in F return (\lambda (_: F).Prop) with [Appl \Rightarrow
+False | Cast \Rightarrow True])])])) I (THead (Flat Appl) v1 (THead (Bind b)
+u1 t5)) H19) in (False_ind (ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7:
+T).(pr0 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t6)) t7)))
+H20)))]) in (H19 (refl_equal T (THead (Flat Appl) v1 (THead (Bind b) u1
+t5)))))))))) t2 H13)) t H11 H12 H7 H8 H9 H10))) | (pr0_delta u1 u2 H7 t5 t6
+H8 w H9) \Rightarrow (\lambda (H10: (eq T (THead (Bind Abbr) u1 t5)
+t)).(\lambda (H11: (eq T (THead (Bind Abbr) u2 w) t2)).(eq_ind T (THead (Bind
+Abbr) u1 t5) (\lambda (_: T).((eq T (THead (Bind Abbr) u2 w) t2) \to ((pr0 u1
+u2) \to ((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to (ex2 T (\lambda (t8: T).(pr0
+t1 t8)) (\lambda (t8: T).(pr0 t2 t8)))))))) (\lambda (H12: (eq T (THead (Bind
+Abbr) u2 w) t2)).(eq_ind T (THead (Bind Abbr) u2 w) (\lambda (t7: T).((pr0 u1
+u2) \to ((pr0 t5 t6) \to ((subst0 O u2 t6 w) \to (ex2 T (\lambda (t8: T).(pr0
+t1 t8)) (\lambda (t8: T).(pr0 t7 t8))))))) (\lambda (_: (pr0 u1 u2)).(\lambda
+(_: (pr0 t5 t6)).(\lambda (_: (subst0 O u2 t6 w)).(let H16 \def (eq_ind_r T t
+(\lambda (t7: T).(eq T (THead (Flat Cast) u t3) t7)) H3 (THead (Bind Abbr) u1
+t5) H10) in (let H17 \def (match H16 in eq return (\lambda (t7: T).(\lambda
+(_: (eq ? ? t7)).((eq T t7 (THead (Bind Abbr) u1 t5)) \to (ex2 T (\lambda
+(t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 (THead (Bind Abbr) u2 w) t8))))))
+with [refl_equal \Rightarrow (\lambda (H17: (eq T (THead (Flat Cast) u t3)
+(THead (Bind Abbr) u1 t5))).(let H18 \def (eq_ind T (THead (Flat Cast) u t3)
+(\lambda (e: T).(match e in T return (\lambda (_: T).Prop) with [(TSort _)
+\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow
+(match k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False |
+(Flat _) \Rightarrow True])])) I (THead (Bind Abbr) u1 t5) H17) in (False_ind
+(ex2 T (\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 (THead (Bind Abbr)
+u2 w) t7))) H18)))]) in (H17 (refl_equal T (THead (Bind Abbr) u1 t5))))))))
+t2 H12)) t H10 H11 H7 H8 H9))) | (pr0_zeta b H7 t5 t6 H8 u0) \Rightarrow
+(\lambda (H9: (eq T (THead (Bind b) u0 (lift (S O) O t5)) t)).(\lambda (H10:
+(eq T t6 t2)).(eq_ind T (THead (Bind b) u0 (lift (S O) O t5)) (\lambda (_:
+T).((eq T t6 t2) \to ((not (eq B b Abst)) \to ((pr0 t5 t6) \to (ex2 T
+(\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8))))))) (\lambda
+(H11: (eq T t6 t2)).(eq_ind T t2 (\lambda (t7: T).((not (eq B b Abst)) \to
+((pr0 t5 t7) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0
+t2 t8)))))) (\lambda (_: (not (eq B b Abst))).(\lambda (_: (pr0 t5 t2)).(let
+H14 \def (eq_ind_r T t (\lambda (t7: T).(eq T (THead (Flat Cast) u t3) t7))
+H3 (THead (Bind b) u0 (lift (S O) O t5)) H9) in (let H15 \def (match H14 in
+eq return (\lambda (t7: T).(\lambda (_: (eq ? ? t7)).((eq T t7 (THead (Bind
+b) u0 (lift (S O) O t5))) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda
+(t8: T).(pr0 t2 t8)))))) with [refl_equal \Rightarrow (\lambda (H15: (eq T
+(THead (Flat Cast) u t3) (THead (Bind b) u0 (lift (S O) O t5)))).(let H16
+\def (eq_ind T (THead (Flat Cast) u t3) (\lambda (e: T).(match e in T return
+(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _)
+\Rightarrow False | (THead k _ _) \Rightarrow (match k in K return (\lambda
+(_: K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow
+True])])) I (THead (Bind b) u0 (lift (S O) O t5)) H15) in (False_ind (ex2 T
+(\lambda (t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))) H16)))]) in (H15
+(refl_equal T (THead (Bind b) u0 (lift (S O) O t5)))))))) t6 (sym_eq T t6 t2
+H11))) t H9 H10 H7 H8))) | (pr0_epsilon t5 t6 H7 u0) \Rightarrow (\lambda
+(H8: (eq T (THead (Flat Cast) u0 t5) t)).(\lambda (H9: (eq T t6 t2)).(eq_ind
+T (THead (Flat Cast) u0 t5) (\lambda (_: T).((eq T t6 t2) \to ((pr0 t5 t6)
+\to (ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8))))))
+(\lambda (H10: (eq T t6 t2)).(eq_ind T t2 (\lambda (t7: T).((pr0 t5 t7) \to
+(ex2 T (\lambda (t8: T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8)))))
+(\lambda (H11: (pr0 t5 t2)).(let H12 \def (eq_ind_r T t (\lambda (t7: T).(eq
+T (THead (Flat Cast) u t3) t7)) H3 (THead (Flat Cast) u0 t5) H8) in (let H13
+\def (match H12 in eq return (\lambda (t7: T).(\lambda (_: (eq ? ? t7)).((eq
+T t7 (THead (Flat Cast) u0 t5)) \to (ex2 T (\lambda (t8: T).(pr0 t1 t8))
+(\lambda (t8: T).(pr0 t2 t8)))))) with [refl_equal \Rightarrow (\lambda (H13:
+(eq T (THead (Flat Cast) u t3) (THead (Flat Cast) u0 t5))).(let H14 \def
+(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with
+[(TSort _) \Rightarrow t3 | (TLRef _) \Rightarrow t3 | (THead _ _ t7)
+\Rightarrow t7])) (THead (Flat Cast) u t3) (THead (Flat Cast) u0 t5) H13) in
+((let H15 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_:
+T).T) with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | (THead _ t7
+_) \Rightarrow t7])) (THead (Flat Cast) u t3) (THead (Flat Cast) u0 t5) H13)
+in (eq_ind T u0 (\lambda (_: T).((eq T t3 t5) \to (ex2 T (\lambda (t8:
+T).(pr0 t1 t8)) (\lambda (t8: T).(pr0 t2 t8))))) (\lambda (H16: (eq T t3
+t5)).(eq_ind T t5 (\lambda (_: T).(ex2 T (\lambda (t8: T).(pr0 t1 t8))
+(\lambda (t8: T).(pr0 t2 t8)))) (let H17 \def (eq_ind_r T t (\lambda (t7:
+T).(\forall (v: T).((tlt v t7) \to (\forall (t8: T).((pr0 v t8) \to (\forall
+(t9: T).((pr0 v t9) \to (ex2 T (\lambda (t10: T).(pr0 t8 t10)) (\lambda (t10:
+T).(pr0 t9 t10)))))))))) H (THead (Flat Cast) u0 t5) H8) in (let H18 \def
+(eq_ind T t3 (\lambda (t7: T).(pr0 t7 t1)) H6 t5 H16) in (ex2_ind T (\lambda
+(t7: T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7)) (ex2 T (\lambda (t7:
+T).(pr0 t1 t7)) (\lambda (t7: T).(pr0 t2 t7))) (\lambda (x: T).(\lambda (H19:
+(pr0 t1 x)).(\lambda (H20: (pr0 t2 x)).(ex_intro2 T (\lambda (t7: T).(pr0 t1
+t7)) (\lambda (t7: T).(pr0 t2 t7)) x H19 H20)))) (H17 t5 (tlt_head_dx (Flat
+Cast) u0 t5) t1 H18 t2 H11)))) t3 (sym_eq T t3 t5 H16))) u (sym_eq T u u0
+H15))) H14)))]) in (H13 (refl_equal T (THead (Flat Cast) u0 t5)))))) t6
+(sym_eq T t6 t2 H10))) t H8 H9 H7)))]) in (H7 (refl_equal T t) (refl_equal T
+t2)))) t4 (sym_eq T t4 t1 H5))) t H3 H4 H2)))]) in (H2 (refl_equal T t)
+(refl_equal T t1))))))))) t0).
+
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/LambdaDelta/pr0/props".
+
+include "pr0/defs.ma".
+
+include "subst0/subst0.ma".
+
+theorem pr0_lift:
+ \forall (t1: T).(\forall (t2: T).((pr0 t1 t2) \to (\forall (h: nat).(\forall
+(d: nat).(pr0 (lift h d t1) (lift h d t2))))))
+\def
+ \lambda (t1: T).(\lambda (t2: T).(\lambda (H: (pr0 t1 t2)).(pr0_ind (\lambda
+(t: T).(\lambda (t0: T).(\forall (h: nat).(\forall (d: nat).(pr0 (lift h d t)
+(lift h d t0)))))) (\lambda (t: T).(\lambda (h: nat).(\lambda (d:
+nat).(pr0_refl (lift h d t))))) (\lambda (u1: T).(\lambda (u2: T).(\lambda
+(_: (pr0 u1 u2)).(\lambda (H1: ((\forall (h: nat).(\forall (d: nat).(pr0
+(lift h d u1) (lift h d u2)))))).(\lambda (t0: T).(\lambda (t3: T).(\lambda
+(_: (pr0 t0 t3)).(\lambda (H3: ((\forall (h: nat).(\forall (d: nat).(pr0
+(lift h d t0) (lift h d t3)))))).(\lambda (k: K).(\lambda (h: nat).(\lambda
+(d: nat).(eq_ind_r T (THead k (lift h d u1) (lift h (s k d) t0)) (\lambda (t:
+T).(pr0 t (lift h d (THead k u2 t3)))) (eq_ind_r T (THead k (lift h d u2)
+(lift h (s k d) t3)) (\lambda (t: T).(pr0 (THead k (lift h d u1) (lift h (s k
+d) t0)) t)) (pr0_comp (lift h d u1) (lift h d u2) (H1 h d) (lift h (s k d)
+t0) (lift h (s k d) t3) (H3 h (s k d)) k) (lift h d (THead k u2 t3))
+(lift_head k u2 t3 h d)) (lift h d (THead k u1 t0)) (lift_head k u1 t0 h
+d))))))))))))) (\lambda (u: T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (_:
+(pr0 v1 v2)).(\lambda (H1: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h
+d v1) (lift h d v2)))))).(\lambda (t0: T).(\lambda (t3: T).(\lambda (_: (pr0
+t0 t3)).(\lambda (H3: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h d t0)
+(lift h d t3)))))).(\lambda (h: nat).(\lambda (d: nat).(eq_ind_r T (THead
+(Flat Appl) (lift h d v1) (lift h (s (Flat Appl) d) (THead (Bind Abst) u
+t0))) (\lambda (t: T).(pr0 t (lift h d (THead (Bind Abbr) v2 t3)))) (eq_ind_r
+T (THead (Bind Abst) (lift h (s (Flat Appl) d) u) (lift h (s (Bind Abst) (s
+(Flat Appl) d)) t0)) (\lambda (t: T).(pr0 (THead (Flat Appl) (lift h d v1) t)
+(lift h d (THead (Bind Abbr) v2 t3)))) (eq_ind_r T (THead (Bind Abbr) (lift h
+d v2) (lift h (s (Bind Abbr) d) t3)) (\lambda (t: T).(pr0 (THead (Flat Appl)
+(lift h d v1) (THead (Bind Abst) (lift h (s (Flat Appl) d) u) (lift h (s
+(Bind Abst) (s (Flat Appl) d)) t0))) t)) (pr0_beta (lift h (s (Flat Appl) d)
+u) (lift h d v1) (lift h d v2) (H1 h d) (lift h (s (Bind Abst) (s (Flat Appl)
+d)) t0) (lift h (s (Bind Abbr) d) t3) (H3 h (s (Bind Abbr) d))) (lift h d
+(THead (Bind Abbr) v2 t3)) (lift_head (Bind Abbr) v2 t3 h d)) (lift h (s
+(Flat Appl) d) (THead (Bind Abst) u t0)) (lift_head (Bind Abst) u t0 h (s
+(Flat Appl) d))) (lift h d (THead (Flat Appl) v1 (THead (Bind Abst) u t0)))
+(lift_head (Flat Appl) v1 (THead (Bind Abst) u t0) h d))))))))))))) (\lambda
+(b: B).(\lambda (H0: (not (eq B b Abst))).(\lambda (v1: T).(\lambda (v2:
+T).(\lambda (_: (pr0 v1 v2)).(\lambda (H2: ((\forall (h: nat).(\forall (d:
+nat).(pr0 (lift h d v1) (lift h d v2)))))).(\lambda (u1: T).(\lambda (u2:
+T).(\lambda (_: (pr0 u1 u2)).(\lambda (H4: ((\forall (h: nat).(\forall (d:
+nat).(pr0 (lift h d u1) (lift h d u2)))))).(\lambda (t0: T).(\lambda (t3:
+T).(\lambda (_: (pr0 t0 t3)).(\lambda (H6: ((\forall (h: nat).(\forall (d:
+nat).(pr0 (lift h d t0) (lift h d t3)))))).(\lambda (h: nat).(\lambda (d:
+nat).(eq_ind_r T (THead (Flat Appl) (lift h d v1) (lift h (s (Flat Appl) d)
+(THead (Bind b) u1 t0))) (\lambda (t: T).(pr0 t (lift h d (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t3))))) (eq_ind_r T (THead (Bind b)
+(lift h (s (Flat Appl) d) u1) (lift h (s (Bind b) (s (Flat Appl) d)) t0))
+(\lambda (t: T).(pr0 (THead (Flat Appl) (lift h d v1) t) (lift h d (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t3))))) (eq_ind_r T (THead
+(Bind b) (lift h d u2) (lift h (s (Bind b) d) (THead (Flat Appl) (lift (S O)
+O v2) t3))) (\lambda (t: T).(pr0 (THead (Flat Appl) (lift h d v1) (THead
+(Bind b) (lift h (s (Flat Appl) d) u1) (lift h (s (Bind b) (s (Flat Appl) d))
+t0))) t)) (eq_ind_r T (THead (Flat Appl) (lift h (s (Bind b) d) (lift (S O) O
+v2)) (lift h (s (Flat Appl) (s (Bind b) d)) t3)) (\lambda (t: T).(pr0 (THead
+(Flat Appl) (lift h d v1) (THead (Bind b) (lift h (s (Flat Appl) d) u1) (lift
+h (s (Bind b) (s (Flat Appl) d)) t0))) (THead (Bind b) (lift h d u2) t)))
+(eq_ind nat (plus (S O) d) (\lambda (n: nat).(pr0 (THead (Flat Appl) (lift h
+d v1) (THead (Bind b) (lift h d u1) (lift h n t0))) (THead (Bind b) (lift h d
+u2) (THead (Flat Appl) (lift h n (lift (S O) O v2)) (lift h n t3)))))
+(eq_ind_r T (lift (S O) O (lift h d v2)) (\lambda (t: T).(pr0 (THead (Flat
+Appl) (lift h d v1) (THead (Bind b) (lift h d u1) (lift h (plus (S O) d)
+t0))) (THead (Bind b) (lift h d u2) (THead (Flat Appl) t (lift h (plus (S O)
+d) t3))))) (pr0_upsilon b H0 (lift h d v1) (lift h d v2) (H2 h d) (lift h d
+u1) (lift h d u2) (H4 h d) (lift h (plus (S O) d) t0) (lift h (plus (S O) d)
+t3) (H6 h (plus (S O) d))) (lift h (plus (S O) d) (lift (S O) O v2)) (lift_d
+v2 h (S O) d O (le_O_n d))) (S d) (refl_equal nat (S d))) (lift h (s (Bind b)
+d) (THead (Flat Appl) (lift (S O) O v2) t3)) (lift_head (Flat Appl) (lift (S
+O) O v2) t3 h (s (Bind b) d))) (lift h d (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t3))) (lift_head (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O v2) t3) h d)) (lift h (s (Flat Appl) d) (THead (Bind b) u1 t0))
+(lift_head (Bind b) u1 t0 h (s (Flat Appl) d))) (lift h d (THead (Flat Appl)
+v1 (THead (Bind b) u1 t0))) (lift_head (Flat Appl) v1 (THead (Bind b) u1 t0)
+h d)))))))))))))))))) (\lambda (u1: T).(\lambda (u2: T).(\lambda (_: (pr0 u1
+u2)).(\lambda (H1: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h d u1)
+(lift h d u2)))))).(\lambda (t0: T).(\lambda (t3: T).(\lambda (_: (pr0 t0
+t3)).(\lambda (H3: ((\forall (h: nat).(\forall (d: nat).(pr0 (lift h d t0)
+(lift h d t3)))))).(\lambda (w: T).(\lambda (H4: (subst0 O u2 t3 w)).(\lambda
+(h: nat).(\lambda (d: nat).(eq_ind_r T (THead (Bind Abbr) (lift h d u1) (lift
+h (s (Bind Abbr) d) t0)) (\lambda (t: T).(pr0 t (lift h d (THead (Bind Abbr)
+u2 w)))) (eq_ind_r T (THead (Bind Abbr) (lift h d u2) (lift h (s (Bind Abbr)
+d) w)) (\lambda (t: T).(pr0 (THead (Bind Abbr) (lift h d u1) (lift h (s (Bind
+Abbr) d) t0)) t)) (pr0_delta (lift h d u1) (lift h d u2) (H1 h d) (lift h (S
+d) t0) (lift h (S d) t3) (H3 h (S d)) (lift h (S d) w) (let d' \def (S d) in
+(eq_ind nat (minus (S d) (S O)) (\lambda (n: nat).(subst0 O (lift h n u2)
+(lift h d' t3) (lift h d' w))) (subst0_lift_lt t3 w u2 O H4 (S d) (lt_le_S O
+(S d) (le_lt_n_Sm O d (le_O_n d))) h) d (eq_ind nat d (\lambda (n: nat).(eq
+nat n d)) (refl_equal nat d) (minus d O) (minus_n_O d))))) (lift h d (THead
+(Bind Abbr) u2 w)) (lift_head (Bind Abbr) u2 w h d)) (lift h d (THead (Bind
+Abbr) u1 t0)) (lift_head (Bind Abbr) u1 t0 h d)))))))))))))) (\lambda (b:
+B).(\lambda (H0: (not (eq B b Abst))).(\lambda (t0: T).(\lambda (t3:
+T).(\lambda (_: (pr0 t0 t3)).(\lambda (H2: ((\forall (h: nat).(\forall (d:
+nat).(pr0 (lift h d t0) (lift h d t3)))))).(\lambda (u: T).(\lambda (h:
+nat).(\lambda (d: nat).(eq_ind_r T (THead (Bind b) (lift h d u) (lift h (s
+(Bind b) d) (lift (S O) O t0))) (\lambda (t: T).(pr0 t (lift h d t3)))
+(eq_ind nat (plus (S O) d) (\lambda (n: nat).(pr0 (THead (Bind b) (lift h d
+u) (lift h n (lift (S O) O t0))) (lift h d t3))) (eq_ind_r T (lift (S O) O
+(lift h d t0)) (\lambda (t: T).(pr0 (THead (Bind b) (lift h d u) t) (lift h d
+t3))) (pr0_zeta b H0 (lift h d t0) (lift h d t3) (H2 h d) (lift h d u)) (lift
+h (plus (S O) d) (lift (S O) O t0)) (lift_d t0 h (S O) d O (le_O_n d))) (S d)
+(refl_equal nat (S d))) (lift h d (THead (Bind b) u (lift (S O) O t0)))
+(lift_head (Bind b) u (lift (S O) O t0) h d))))))))))) (\lambda (t0:
+T).(\lambda (t3: T).(\lambda (_: (pr0 t0 t3)).(\lambda (H1: ((\forall (h:
+nat).(\forall (d: nat).(pr0 (lift h d t0) (lift h d t3)))))).(\lambda (u:
+T).(\lambda (h: nat).(\lambda (d: nat).(eq_ind_r T (THead (Flat Cast) (lift h
+d u) (lift h (s (Flat Cast) d) t0)) (\lambda (t: T).(pr0 t (lift h d t3)))
+(pr0_epsilon (lift h (s (Flat Cast) d) t0) (lift h d t3) (H1 h d) (lift h d
+u)) (lift h d (THead (Flat Cast) u t0)) (lift_head (Flat Cast) u t0 h
+d))))))))) t1 t2 H))).
+
+theorem pr0_subst0_back:
+ \forall (u2: T).(\forall (t1: T).(\forall (t2: T).(\forall (i: nat).((subst0
+i u2 t1 t2) \to (\forall (u1: T).((pr0 u1 u2) \to (ex2 T (\lambda (t:
+T).(subst0 i u1 t1 t)) (\lambda (t: T).(pr0 t t2)))))))))
+\def
+ \lambda (u2: T).(\lambda (t1: T).(\lambda (t2: T).(\lambda (i: nat).(\lambda
+(H: (subst0 i u2 t1 t2)).(subst0_ind (\lambda (n: nat).(\lambda (t:
+T).(\lambda (t0: T).(\lambda (t3: T).(\forall (u1: T).((pr0 u1 t) \to (ex2 T
+(\lambda (t4: T).(subst0 n u1 t0 t4)) (\lambda (t4: T).(pr0 t4 t3)))))))))
+(\lambda (v: T).(\lambda (i0: nat).(\lambda (u1: T).(\lambda (H0: (pr0 u1
+v)).(ex_intro2 T (\lambda (t: T).(subst0 i0 u1 (TLRef i0) t)) (\lambda (t:
+T).(pr0 t (lift (S i0) O v))) (lift (S i0) O u1) (subst0_lref u1 i0)
+(pr0_lift u1 v H0 (S i0) O)))))) (\lambda (v: T).(\lambda (u0: T).(\lambda
+(u1: T).(\lambda (i0: nat).(\lambda (_: (subst0 i0 v u1 u0)).(\lambda (H1:
+((\forall (u3: T).((pr0 u3 v) \to (ex2 T (\lambda (t: T).(subst0 i0 u3 u1 t))
+(\lambda (t: T).(pr0 t u0))))))).(\lambda (t: T).(\lambda (k: K).(\lambda
+(u3: T).(\lambda (H2: (pr0 u3 v)).(ex2_ind T (\lambda (t0: T).(subst0 i0 u3
+u1 t0)) (\lambda (t0: T).(pr0 t0 u0)) (ex2 T (\lambda (t0: T).(subst0 i0 u3
+(THead k u1 t) t0)) (\lambda (t0: T).(pr0 t0 (THead k u0 t)))) (\lambda (x:
+T).(\lambda (H3: (subst0 i0 u3 u1 x)).(\lambda (H4: (pr0 x u0)).(ex_intro2 T
+(\lambda (t0: T).(subst0 i0 u3 (THead k u1 t) t0)) (\lambda (t0: T).(pr0 t0
+(THead k u0 t))) (THead k x t) (subst0_fst u3 x u1 i0 H3 t k) (pr0_comp x u0
+H4 t t (pr0_refl t) k))))) (H1 u3 H2)))))))))))) (\lambda (k: K).(\lambda (v:
+T).(\lambda (t0: T).(\lambda (t3: T).(\lambda (i0: nat).(\lambda (_: (subst0
+(s k i0) v t3 t0)).(\lambda (H1: ((\forall (u1: T).((pr0 u1 v) \to (ex2 T
+(\lambda (t: T).(subst0 (s k i0) u1 t3 t)) (\lambda (t: T).(pr0 t
+t0))))))).(\lambda (u: T).(\lambda (u1: T).(\lambda (H2: (pr0 u1 v)).(ex2_ind
+T (\lambda (t: T).(subst0 (s k i0) u1 t3 t)) (\lambda (t: T).(pr0 t t0)) (ex2
+T (\lambda (t: T).(subst0 i0 u1 (THead k u t3) t)) (\lambda (t: T).(pr0 t
+(THead k u t0)))) (\lambda (x: T).(\lambda (H3: (subst0 (s k i0) u1 t3
+x)).(\lambda (H4: (pr0 x t0)).(ex_intro2 T (\lambda (t: T).(subst0 i0 u1
+(THead k u t3) t)) (\lambda (t: T).(pr0 t (THead k u t0))) (THead k u x)
+(subst0_snd k u1 x t3 i0 H3 u) (pr0_comp u u (pr0_refl u) x t0 H4 k))))) (H1
+u1 H2)))))))))))) (\lambda (v: T).(\lambda (u1: T).(\lambda (u0: T).(\lambda
+(i0: nat).(\lambda (_: (subst0 i0 v u1 u0)).(\lambda (H1: ((\forall (u3:
+T).((pr0 u3 v) \to (ex2 T (\lambda (t: T).(subst0 i0 u3 u1 t)) (\lambda (t:
+T).(pr0 t u0))))))).(\lambda (k: K).(\lambda (t0: T).(\lambda (t3:
+T).(\lambda (_: (subst0 (s k i0) v t0 t3)).(\lambda (H3: ((\forall (u3:
+T).((pr0 u3 v) \to (ex2 T (\lambda (t: T).(subst0 (s k i0) u3 t0 t)) (\lambda
+(t: T).(pr0 t t3))))))).(\lambda (u3: T).(\lambda (H4: (pr0 u3 v)).(ex2_ind T
+(\lambda (t: T).(subst0 (s k i0) u3 t0 t)) (\lambda (t: T).(pr0 t t3)) (ex2 T
+(\lambda (t: T).(subst0 i0 u3 (THead k u1 t0) t)) (\lambda (t: T).(pr0 t
+(THead k u0 t3)))) (\lambda (x: T).(\lambda (H5: (subst0 (s k i0) u3 t0
+x)).(\lambda (H6: (pr0 x t3)).(ex2_ind T (\lambda (t: T).(subst0 i0 u3 u1 t))
+(\lambda (t: T).(pr0 t u0)) (ex2 T (\lambda (t: T).(subst0 i0 u3 (THead k u1
+t0) t)) (\lambda (t: T).(pr0 t (THead k u0 t3)))) (\lambda (x0: T).(\lambda
+(H7: (subst0 i0 u3 u1 x0)).(\lambda (H8: (pr0 x0 u0)).(ex_intro2 T (\lambda
+(t: T).(subst0 i0 u3 (THead k u1 t0) t)) (\lambda (t: T).(pr0 t (THead k u0
+t3))) (THead k x0 x) (subst0_both u3 u1 x0 i0 H7 k t0 x H5) (pr0_comp x0 u0
+H8 x t3 H6 k))))) (H1 u3 H4))))) (H3 u3 H4))))))))))))))) i u2 t1 t2 H))))).
+
+theorem pr0_subst0_fwd:
+ \forall (u2: T).(\forall (t1: T).(\forall (t2: T).(\forall (i: nat).((subst0
+i u2 t1 t2) \to (\forall (u1: T).((pr0 u2 u1) \to (ex2 T (\lambda (t:
+T).(subst0 i u1 t1 t)) (\lambda (t: T).(pr0 t2 t)))))))))
+\def
+ \lambda (u2: T).(\lambda (t1: T).(\lambda (t2: T).(\lambda (i: nat).(\lambda
+(H: (subst0 i u2 t1 t2)).(subst0_ind (\lambda (n: nat).(\lambda (t:
+T).(\lambda (t0: T).(\lambda (t3: T).(\forall (u1: T).((pr0 t u1) \to (ex2 T
+(\lambda (t4: T).(subst0 n u1 t0 t4)) (\lambda (t4: T).(pr0 t3 t4)))))))))
+(\lambda (v: T).(\lambda (i0: nat).(\lambda (u1: T).(\lambda (H0: (pr0 v
+u1)).(ex_intro2 T (\lambda (t: T).(subst0 i0 u1 (TLRef i0) t)) (\lambda (t:
+T).(pr0 (lift (S i0) O v) t)) (lift (S i0) O u1) (subst0_lref u1 i0)
+(pr0_lift v u1 H0 (S i0) O)))))) (\lambda (v: T).(\lambda (u0: T).(\lambda
+(u1: T).(\lambda (i0: nat).(\lambda (_: (subst0 i0 v u1 u0)).(\lambda (H1:
+((\forall (u3: T).((pr0 v u3) \to (ex2 T (\lambda (t: T).(subst0 i0 u3 u1 t))
+(\lambda (t: T).(pr0 u0 t))))))).(\lambda (t: T).(\lambda (k: K).(\lambda
+(u3: T).(\lambda (H2: (pr0 v u3)).(ex2_ind T (\lambda (t0: T).(subst0 i0 u3
+u1 t0)) (\lambda (t0: T).(pr0 u0 t0)) (ex2 T (\lambda (t0: T).(subst0 i0 u3
+(THead k u1 t) t0)) (\lambda (t0: T).(pr0 (THead k u0 t) t0))) (\lambda (x:
+T).(\lambda (H3: (subst0 i0 u3 u1 x)).(\lambda (H4: (pr0 u0 x)).(ex_intro2 T
+(\lambda (t0: T).(subst0 i0 u3 (THead k u1 t) t0)) (\lambda (t0: T).(pr0
+(THead k u0 t) t0)) (THead k x t) (subst0_fst u3 x u1 i0 H3 t k) (pr0_comp u0
+x H4 t t (pr0_refl t) k))))) (H1 u3 H2)))))))))))) (\lambda (k: K).(\lambda
+(v: T).(\lambda (t0: T).(\lambda (t3: T).(\lambda (i0: nat).(\lambda (_:
+(subst0 (s k i0) v t3 t0)).(\lambda (H1: ((\forall (u1: T).((pr0 v u1) \to
+(ex2 T (\lambda (t: T).(subst0 (s k i0) u1 t3 t)) (\lambda (t: T).(pr0 t0
+t))))))).(\lambda (u: T).(\lambda (u1: T).(\lambda (H2: (pr0 v u1)).(ex2_ind
+T (\lambda (t: T).(subst0 (s k i0) u1 t3 t)) (\lambda (t: T).(pr0 t0 t)) (ex2
+T (\lambda (t: T).(subst0 i0 u1 (THead k u t3) t)) (\lambda (t: T).(pr0
+(THead k u t0) t))) (\lambda (x: T).(\lambda (H3: (subst0 (s k i0) u1 t3
+x)).(\lambda (H4: (pr0 t0 x)).(ex_intro2 T (\lambda (t: T).(subst0 i0 u1
+(THead k u t3) t)) (\lambda (t: T).(pr0 (THead k u t0) t)) (THead k u x)
+(subst0_snd k u1 x t3 i0 H3 u) (pr0_comp u u (pr0_refl u) t0 x H4 k))))) (H1
+u1 H2)))))))))))) (\lambda (v: T).(\lambda (u1: T).(\lambda (u0: T).(\lambda
+(i0: nat).(\lambda (_: (subst0 i0 v u1 u0)).(\lambda (H1: ((\forall (u3:
+T).((pr0 v u3) \to (ex2 T (\lambda (t: T).(subst0 i0 u3 u1 t)) (\lambda (t:
+T).(pr0 u0 t))))))).(\lambda (k: K).(\lambda (t0: T).(\lambda (t3:
+T).(\lambda (_: (subst0 (s k i0) v t0 t3)).(\lambda (H3: ((\forall (u3:
+T).((pr0 v u3) \to (ex2 T (\lambda (t: T).(subst0 (s k i0) u3 t0 t)) (\lambda
+(t: T).(pr0 t3 t))))))).(\lambda (u3: T).(\lambda (H4: (pr0 v u3)).(ex2_ind T
+(\lambda (t: T).(subst0 (s k i0) u3 t0 t)) (\lambda (t: T).(pr0 t3 t)) (ex2 T
+(\lambda (t: T).(subst0 i0 u3 (THead k u1 t0) t)) (\lambda (t: T).(pr0 (THead
+k u0 t3) t))) (\lambda (x: T).(\lambda (H5: (subst0 (s k i0) u3 t0
+x)).(\lambda (H6: (pr0 t3 x)).(ex2_ind T (\lambda (t: T).(subst0 i0 u3 u1 t))
+(\lambda (t: T).(pr0 u0 t)) (ex2 T (\lambda (t: T).(subst0 i0 u3 (THead k u1
+t0) t)) (\lambda (t: T).(pr0 (THead k u0 t3) t))) (\lambda (x0: T).(\lambda
+(H7: (subst0 i0 u3 u1 x0)).(\lambda (H8: (pr0 u0 x0)).(ex_intro2 T (\lambda
+(t: T).(subst0 i0 u3 (THead k u1 t0) t)) (\lambda (t: T).(pr0 (THead k u0 t3)
+t)) (THead k x0 x) (subst0_both u3 u1 x0 i0 H7 k t0 x H5) (pr0_comp u0 x0 H8
+t3 x H6 k))))) (H1 u3 H4))))) (H3 u3 H4))))))))))))))) i u2 t1 t2 H))))).
+
+theorem pr0_subst0:
+ \forall (t1: T).(\forall (t2: T).((pr0 t1 t2) \to (\forall (v1: T).(\forall
+(w1: T).(\forall (i: nat).((subst0 i v1 t1 w1) \to (\forall (v2: T).((pr0 v1
+v2) \to (or (pr0 w1 t2) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v2 t2 w2))))))))))))
+\def
+ \lambda (t1: T).(\lambda (t2: T).(\lambda (H: (pr0 t1 t2)).(pr0_ind (\lambda
+(t: T).(\lambda (t0: T).(\forall (v1: T).(\forall (w1: T).(\forall (i:
+nat).((subst0 i v1 t w1) \to (\forall (v2: T).((pr0 v1 v2) \to (or (pr0 w1
+t0) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t0
+w2)))))))))))) (\lambda (t: T).(\lambda (v1: T).(\lambda (w1: T).(\lambda (i:
+nat).(\lambda (H0: (subst0 i v1 t w1)).(\lambda (v2: T).(\lambda (H1: (pr0 v1
+v2)).(or_intror (pr0 w1 t) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v2 t w2))) (ex2_sym T (subst0 i v2 t) (pr0 w1) (pr0_subst0_fwd
+v1 t w1 i H0 v2 H1)))))))))) (\lambda (u1: T).(\lambda (u2: T).(\lambda (H0:
+(pr0 u1 u2)).(\lambda (H1: ((\forall (v1: T).(\forall (w1: T).(\forall (i:
+nat).((subst0 i v1 u1 w1) \to (\forall (v2: T).((pr0 v1 v2) \to (or (pr0 w1
+u2) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 u2
+w2)))))))))))).(\lambda (t3: T).(\lambda (t4: T).(\lambda (H2: (pr0 t3
+t4)).(\lambda (H3: ((\forall (v1: T).(\forall (w1: T).(\forall (i:
+nat).((subst0 i v1 t3 w1) \to (\forall (v2: T).((pr0 v1 v2) \to (or (pr0 w1
+t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4
+w2)))))))))))).(\lambda (k: K).(\lambda (v1: T).(\lambda (w1: T).(\lambda (i:
+nat).(\lambda (H4: (subst0 i v1 (THead k u1 t3) w1)).(\lambda (v2:
+T).(\lambda (H5: (pr0 v1 v2)).(or3_ind (ex2 T (\lambda (u3: T).(eq T w1
+(THead k u3 t3))) (\lambda (u3: T).(subst0 i v1 u1 u3))) (ex2 T (\lambda (t5:
+T).(eq T w1 (THead k u1 t5))) (\lambda (t5: T).(subst0 (s k i) v1 t3 t5)))
+(ex3_2 T T (\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead k u3 t5))))
+(\lambda (u3: T).(\lambda (_: T).(subst0 i v1 u1 u3))) (\lambda (_:
+T).(\lambda (t5: T).(subst0 (s k i) v1 t3 t5)))) (or (pr0 w1 (THead k u2 t4))
+(ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 (THead k
+u2 t4) w2)))) (\lambda (H6: (ex2 T (\lambda (u3: T).(eq T w1 (THead k u3
+t3))) (\lambda (u3: T).(subst0 i v1 u1 u3)))).(ex2_ind T (\lambda (u3: T).(eq
+T w1 (THead k u3 t3))) (\lambda (u3: T).(subst0 i v1 u1 u3)) (or (pr0 w1
+(THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x: T).(\lambda (H7: (eq T w1
+(THead k x t3))).(\lambda (H8: (subst0 i v1 u1 x)).(eq_ind_r T (THead k x t3)
+(\lambda (t: T).(or (pr0 t (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 t
+w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))))) (or_ind (pr0 x u2)
+(ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v2 u2 w2)))
+(or (pr0 (THead k x t3) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead
+k x t3) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda
+(H9: (pr0 x u2)).(or_introl (pr0 (THead k x t3) (THead k u2 t4)) (ex2 T
+(\lambda (w2: T).(pr0 (THead k x t3) w2)) (\lambda (w2: T).(subst0 i v2
+(THead k u2 t4) w2))) (pr0_comp x u2 H9 t3 t4 H2 k))) (\lambda (H9: (ex2 T
+(\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v2 u2 w2)))).(ex2_ind
+T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v2 u2 w2)) (or (pr0
+(THead k x t3) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x t3)
+w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x0:
+T).(\lambda (H10: (pr0 x x0)).(\lambda (H11: (subst0 i v2 u2 x0)).(or_intror
+(pr0 (THead k x t3) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x
+t3) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))) (ex_intro2 T
+(\lambda (w2: T).(pr0 (THead k x t3) w2)) (\lambda (w2: T).(subst0 i v2
+(THead k u2 t4) w2)) (THead k x0 t4) (pr0_comp x x0 H10 t3 t4 H2 k)
+(subst0_fst v2 x0 u2 i H11 t4 k)))))) H9)) (H1 v1 x i H8 v2 H5)) w1 H7))))
+H6)) (\lambda (H6: (ex2 T (\lambda (t5: T).(eq T w1 (THead k u1 t5)))
+(\lambda (t5: T).(subst0 (s k i) v1 t3 t5)))).(ex2_ind T (\lambda (t5: T).(eq
+T w1 (THead k u1 t5))) (\lambda (t5: T).(subst0 (s k i) v1 t3 t5)) (or (pr0
+w1 (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x: T).(\lambda (H7: (eq T w1
+(THead k u1 x))).(\lambda (H8: (subst0 (s k i) v1 t3 x)).(eq_ind_r T (THead k
+u1 x) (\lambda (t: T).(or (pr0 t (THead k u2 t4)) (ex2 T (\lambda (w2:
+T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))))) (or_ind
+(pr0 x t4) (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s k
+i) v2 t4 w2))) (or (pr0 (THead k u1 x) (THead k u2 t4)) (ex2 T (\lambda (w2:
+T).(pr0 (THead k u1 x) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4)
+w2)))) (\lambda (H9: (pr0 x t4)).(or_introl (pr0 (THead k u1 x) (THead k u2
+t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k u1 x) w2)) (\lambda (w2:
+T).(subst0 i v2 (THead k u2 t4) w2))) (pr0_comp u1 u2 H0 x t4 H9 k)))
+(\lambda (H9: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s
+k i) v2 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2:
+T).(subst0 (s k i) v2 t4 w2)) (or (pr0 (THead k u1 x) (THead k u2 t4)) (ex2 T
+(\lambda (w2: T).(pr0 (THead k u1 x) w2)) (\lambda (w2: T).(subst0 i v2
+(THead k u2 t4) w2)))) (\lambda (x0: T).(\lambda (H10: (pr0 x x0)).(\lambda
+(H11: (subst0 (s k i) v2 t4 x0)).(or_intror (pr0 (THead k u1 x) (THead k u2
+t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k u1 x) w2)) (\lambda (w2:
+T).(subst0 i v2 (THead k u2 t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0
+(THead k u1 x) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)) (THead
+k u2 x0) (pr0_comp u1 u2 H0 x x0 H10 k) (subst0_snd k v2 x0 t4 i H11 u2))))))
+H9)) (H3 v1 x (s k i) H8 v2 H5)) w1 H7)))) H6)) (\lambda (H6: (ex3_2 T T
+(\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead k u3 t5)))) (\lambda (u3:
+T).(\lambda (_: T).(subst0 i v1 u1 u3))) (\lambda (_: T).(\lambda (t5:
+T).(subst0 (s k i) v1 t3 t5))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda
+(t5: T).(eq T w1 (THead k u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0
+i v1 u1 u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s k i) v1 t3 t5)))
+(or (pr0 w1 (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda
+(w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x0: T).(\lambda (x1:
+T).(\lambda (H7: (eq T w1 (THead k x0 x1))).(\lambda (H8: (subst0 i v1 u1
+x0)).(\lambda (H9: (subst0 (s k i) v1 t3 x1)).(eq_ind_r T (THead k x0 x1)
+(\lambda (t: T).(or (pr0 t (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 t
+w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))))) (or_ind (pr0 x1
+t4) (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s k i) v2
+t4 w2))) (or (pr0 (THead k x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2:
+T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4)
+w2)))) (\lambda (H10: (pr0 x1 t4)).(or_ind (pr0 x0 u2) (ex2 T (\lambda (w2:
+T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 u2 w2))) (or (pr0 (THead k x0
+x1) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2))
+(\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (H11: (pr0 x0
+u2)).(or_introl (pr0 (THead k x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2:
+T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4)
+w2))) (pr0_comp x0 u2 H11 x1 t4 H10 k))) (\lambda (H11: (ex2 T (\lambda (w2:
+T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 u2 w2)))).(ex2_ind T (\lambda
+(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 u2 w2)) (or (pr0 (THead k
+x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2))
+(\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x: T).(\lambda
+(H12: (pr0 x0 x)).(\lambda (H13: (subst0 i v2 u2 x)).(or_intror (pr0 (THead k
+x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2))
+(\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))) (ex_intro2 T (\lambda
+(w2: T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2
+t4) w2)) (THead k x t4) (pr0_comp x0 x H12 x1 t4 H10 k) (subst0_fst v2 x u2 i
+H13 t4 k)))))) H11)) (H1 v1 x0 i H8 v2 H5))) (\lambda (H10: (ex2 T (\lambda
+(w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s k i) v2 t4 w2)))).(ex2_ind T
+(\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s k i) v2 t4 w2)) (or
+(pr0 (THead k x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k
+x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x:
+T).(\lambda (H11: (pr0 x1 x)).(\lambda (H12: (subst0 (s k i) v2 t4
+x)).(or_ind (pr0 x0 u2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
+T).(subst0 i v2 u2 w2))) (or (pr0 (THead k x0 x1) (THead k u2 t4)) (ex2 T
+(\lambda (w2: T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2
+(THead k u2 t4) w2)))) (\lambda (H13: (pr0 x0 u2)).(or_intror (pr0 (THead k
+x0 x1) (THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2))
+(\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))) (ex_intro2 T (\lambda
+(w2: T).(pr0 (THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2
+t4) w2)) (THead k u2 x) (pr0_comp x0 u2 H13 x1 x H11 k) (subst0_snd k v2 x t4
+i H12 u2)))) (\lambda (H13: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda
+(w2: T).(subst0 i v2 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2))
+(\lambda (w2: T).(subst0 i v2 u2 w2)) (or (pr0 (THead k x0 x1) (THead k u2
+t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2)) (\lambda (w2:
+T).(subst0 i v2 (THead k u2 t4) w2)))) (\lambda (x2: T).(\lambda (H14: (pr0
+x0 x2)).(\lambda (H15: (subst0 i v2 u2 x2)).(or_intror (pr0 (THead k x0 x1)
+(THead k u2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead k x0 x1) w2)) (\lambda
+(w2: T).(subst0 i v2 (THead k u2 t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0
+(THead k x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead k u2 t4) w2))
+(THead k x2 x) (pr0_comp x0 x2 H14 x1 x H11 k) (subst0_both v2 u2 x2 i H15 k
+t4 x H12)))))) H13)) (H1 v1 x0 i H8 v2 H5))))) H10)) (H3 v1 x1 (s k i) H9 v2
+H5)) w1 H7)))))) H6)) (subst0_gen_head k v1 u1 t3 w1 i H4)))))))))))))))))
+(\lambda (u: T).(\lambda (v1: T).(\lambda (v2: T).(\lambda (H0: (pr0 v1
+v2)).(\lambda (H1: ((\forall (v3: T).(\forall (w1: T).(\forall (i:
+nat).((subst0 i v3 v1 w1) \to (\forall (v4: T).((pr0 v3 v4) \to (or (pr0 w1
+v2) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v4 v2
+w2)))))))))))).(\lambda (t3: T).(\lambda (t4: T).(\lambda (H2: (pr0 t3
+t4)).(\lambda (H3: ((\forall (v3: T).(\forall (w1: T).(\forall (i:
+nat).((subst0 i v3 t3 w1) \to (\forall (v4: T).((pr0 v3 v4) \to (or (pr0 w1
+t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v4 t4
+w2)))))))))))).(\lambda (v0: T).(\lambda (w1: T).(\lambda (i: nat).(\lambda
+(H4: (subst0 i v0 (THead (Flat Appl) v1 (THead (Bind Abst) u t3))
+w1)).(\lambda (v3: T).(\lambda (H5: (pr0 v0 v3)).(or3_ind (ex2 T (\lambda
+(u2: T).(eq T w1 (THead (Flat Appl) u2 (THead (Bind Abst) u t3)))) (\lambda
+(u2: T).(subst0 i v0 v1 u2))) (ex2 T (\lambda (t5: T).(eq T w1 (THead (Flat
+Appl) v1 t5))) (\lambda (t5: T).(subst0 (s (Flat Appl) i) v0 (THead (Bind
+Abst) u t3) t5))) (ex3_2 T T (\lambda (u2: T).(\lambda (t5: T).(eq T w1
+(THead (Flat Appl) u2 t5)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i v0 v1
+u2))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Flat Appl) i) v0 (THead
+(Bind Abst) u t3) t5)))) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T
+(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind
+Abbr) v2 t4) w2)))) (\lambda (H6: (ex2 T (\lambda (u2: T).(eq T w1 (THead
+(Flat Appl) u2 (THead (Bind Abst) u t3)))) (\lambda (u2: T).(subst0 i v0 v1
+u2)))).(ex2_ind T (\lambda (u2: T).(eq T w1 (THead (Flat Appl) u2 (THead
+(Bind Abst) u t3)))) (\lambda (u2: T).(subst0 i v0 v1 u2)) (or (pr0 w1 (THead
+(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (x: T).(\lambda
+(H7: (eq T w1 (THead (Flat Appl) x (THead (Bind Abst) u t3)))).(\lambda (H8:
+(subst0 i v0 v1 x)).(eq_ind_r T (THead (Flat Appl) x (THead (Bind Abst) u
+t3)) (\lambda (t: T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda
+(w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4)
+w2))))) (or_ind (pr0 x v2) (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2:
+T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat Appl) x (THead (Bind Abst) u
+t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat
+Appl) x (THead (Bind Abst) u t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
+(Bind Abbr) v2 t4) w2)))) (\lambda (H9: (pr0 x v2)).(or_introl (pr0 (THead
+(Flat Appl) x (THead (Bind Abst) u t3)) (THead (Bind Abbr) v2 t4)) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) x (THead (Bind Abst) u t3)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (pr0_beta u x
+v2 H9 t3 t4 H2))) (\lambda (H9: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda
+(w2: T).(subst0 i v3 v2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2))
+(\lambda (w2: T).(subst0 i v3 v2 w2)) (or (pr0 (THead (Flat Appl) x (THead
+(Bind Abst) u t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) x (THead (Bind Abst) u t3)) w2)) (\lambda (w2: T).(subst0
+i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (x0: T).(\lambda (H10: (pr0 x
+x0)).(\lambda (H11: (subst0 i v3 v2 x0)).(or_intror (pr0 (THead (Flat Appl) x
+(THead (Bind Abst) u t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x (THead (Bind Abst) u t3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x (THead (Bind Abst) u t3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)) (THead (Bind Abbr) x0 t4)
+(pr0_beta u x x0 H10 t3 t4 H2) (subst0_fst v3 x0 v2 i H11 t4 (Bind
+Abbr))))))) H9)) (H1 v0 x i H8 v3 H5)) w1 H7)))) H6)) (\lambda (H6: (ex2 T
+(\lambda (t5: T).(eq T w1 (THead (Flat Appl) v1 t5))) (\lambda (t5:
+T).(subst0 (s (Flat Appl) i) v0 (THead (Bind Abst) u t3) t5)))).(ex2_ind T
+(\lambda (t5: T).(eq T w1 (THead (Flat Appl) v1 t5))) (\lambda (t5:
+T).(subst0 (s (Flat Appl) i) v0 (THead (Bind Abst) u t3) t5)) (or (pr0 w1
+(THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (x: T).(\lambda
+(H7: (eq T w1 (THead (Flat Appl) v1 x))).(\lambda (H8: (subst0 (s (Flat Appl)
+i) v0 (THead (Bind Abst) u t3) x)).(or3_ind (ex2 T (\lambda (u2: T).(eq T x
+(THead (Bind Abst) u2 t3))) (\lambda (u2: T).(subst0 (s (Flat Appl) i) v0 u
+u2))) (ex2 T (\lambda (t5: T).(eq T x (THead (Bind Abst) u t5))) (\lambda
+(t5: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5))) (ex3_2 T T
+(\lambda (u2: T).(\lambda (t5: T).(eq T x (THead (Bind Abst) u2 t5))))
+(\lambda (u2: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u u2)))
+(\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0
+t3 t5)))) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0
+w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))))
+(\lambda (H9: (ex2 T (\lambda (u2: T).(eq T x (THead (Bind Abst) u2 t3)))
+(\lambda (u2: T).(subst0 (s (Flat Appl) i) v0 u u2)))).(ex2_ind T (\lambda
+(u2: T).(eq T x (THead (Bind Abst) u2 t3))) (\lambda (u2: T).(subst0 (s (Flat
+Appl) i) v0 u u2)) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda
+(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4)
+w2)))) (\lambda (x0: T).(\lambda (H10: (eq T x (THead (Bind Abst) x0
+t3))).(\lambda (_: (subst0 (s (Flat Appl) i) v0 u x0)).(eq_ind_r T (THead
+(Flat Appl) v1 x) (\lambda (t: T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2
+T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind
+Abbr) v2 t4) w2))))) (eq_ind_r T (THead (Bind Abst) x0 t3) (\lambda (t:
+T).(or (pr0 (THead (Flat Appl) v1 t) (THead (Bind Abbr) v2 t4)) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) v1 t) w2)) (\lambda (w2: T).(subst0
+i v3 (THead (Bind Abbr) v2 t4) w2))))) (or_introl (pr0 (THead (Flat Appl) v1
+(THead (Bind Abst) x0 t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 t3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (pr0_beta x0 v1 v2 H0 t3 t4
+H2)) x H10) w1 H7)))) H9)) (\lambda (H9: (ex2 T (\lambda (t5: T).(eq T x
+(THead (Bind Abst) u t5))) (\lambda (t5: T).(subst0 (s (Bind Abst) (s (Flat
+Appl) i)) v0 t3 t5)))).(ex2_ind T (\lambda (t5: T).(eq T x (THead (Bind Abst)
+u t5))) (\lambda (t5: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5))
+(or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (x0:
+T).(\lambda (H10: (eq T x (THead (Bind Abst) u x0))).(\lambda (H11: (subst0
+(s (Bind Abst) (s (Flat Appl) i)) v0 t3 x0)).(eq_ind_r T (THead (Flat Appl)
+v1 x) (\lambda (t: T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda
+(w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4)
+w2))))) (eq_ind_r T (THead (Bind Abst) u x0) (\lambda (t: T).(or (pr0 (THead
+(Flat Appl) v1 t) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) v1 t) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind
+Abbr) v2 t4) w2))))) (or_ind (pr0 x0 t4) (ex2 T (\lambda (w2: T).(pr0 x0 w2))
+(\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2))) (or
+(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u x0)) (THead (Bind Abbr) v2
+t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u
+x0)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))))
+(\lambda (H12: (pr0 x0 t4)).(or_introl (pr0 (THead (Flat Appl) v1 (THead
+(Bind Abst) u x0)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) v1 (THead (Bind Abst) u x0)) w2)) (\lambda (w2: T).(subst0
+i v3 (THead (Bind Abbr) v2 t4) w2))) (pr0_beta u v1 v2 H0 x0 t4 H12)))
+(\lambda (H12: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0
+(s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda (w2:
+T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3
+t4 w2)) (or (pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u x0)) (THead (Bind
+Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind
+Abst) u x0)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4)
+w2)))) (\lambda (x1: T).(\lambda (H13: (pr0 x0 x1)).(\lambda (H14: (subst0 (s
+(Bind Abst) (s (Flat Appl) i)) v3 t4 x1)).(or_intror (pr0 (THead (Flat Appl)
+v1 (THead (Bind Abst) u x0)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u x0)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) u x0)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)) (THead (Bind Abbr) v2 x1)
+(pr0_beta u v1 v2 H0 x0 x1 H13) (subst0_snd (Bind Abbr) v3 x1 t4 i H14
+v2)))))) H12)) (H3 v0 x0 (s (Bind Abst) (s (Flat Appl) i)) H11 v3 H5)) x H10)
+w1 H7)))) H9)) (\lambda (H9: (ex3_2 T T (\lambda (u2: T).(\lambda (t5: T).(eq
+T x (THead (Bind Abst) u2 t5)))) (\lambda (u2: T).(\lambda (_: T).(subst0 (s
+(Flat Appl) i) v0 u u2))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind
+Abst) (s (Flat Appl) i)) v0 t3 t5))))).(ex3_2_ind T T (\lambda (u2:
+T).(\lambda (t5: T).(eq T x (THead (Bind Abst) u2 t5)))) (\lambda (u2:
+T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u u2))) (\lambda (_:
+T).(\lambda (t5: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5))) (or
+(pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (x0:
+T).(\lambda (x1: T).(\lambda (H10: (eq T x (THead (Bind Abst) x0
+x1))).(\lambda (_: (subst0 (s (Flat Appl) i) v0 u x0)).(\lambda (H12: (subst0
+(s (Bind Abst) (s (Flat Appl) i)) v0 t3 x1)).(eq_ind_r T (THead (Flat Appl)
+v1 x) (\lambda (t: T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda
+(w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4)
+w2))))) (eq_ind_r T (THead (Bind Abst) x0 x1) (\lambda (t: T).(or (pr0 (THead
+(Flat Appl) v1 t) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) v1 t) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind
+Abbr) v2 t4) w2))))) (or_ind (pr0 x1 t4) (ex2 T (\lambda (w2: T).(pr0 x1 w2))
+(\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2))) (or
+(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1)) (THead (Bind Abbr) v2
+t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0
+x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))))
+(\lambda (H13: (pr0 x1 t4)).(or_introl (pr0 (THead (Flat Appl) v1 (THead
+(Bind Abst) x0 x1)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) v1 (THead (Bind Abst) x0 x1)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (pr0_beta x0 v1 v2 H0 x1 t4
+H13))) (\lambda (H13: (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2:
+T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda
+(w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl)
+i)) v3 t4 w2)) (or (pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1))
+(THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1
+(THead (Bind Abst) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind
+Abbr) v2 t4) w2)))) (\lambda (x2: T).(\lambda (H14: (pr0 x1 x2)).(\lambda
+(H15: (subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 t4 x2)).(or_intror (pr0
+(THead (Flat Appl) v1 (THead (Bind Abst) x0 x1)) (THead (Bind Abbr) v2 t4))
+(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1))
+w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))) (ex_intro2
+T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind Abst) x0 x1)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)) (THead (Bind
+Abbr) v2 x2) (pr0_beta x0 v1 v2 H0 x1 x2 H14) (subst0_snd (Bind Abbr) v3 x2
+t4 i H15 v2)))))) H13)) (H3 v0 x1 (s (Bind Abst) (s (Flat Appl) i)) H12 v3
+H5)) x H10) w1 H7)))))) H9)) (subst0_gen_head (Bind Abst) v0 u t3 x (s (Flat
+Appl) i) H8))))) H6)) (\lambda (H6: (ex3_2 T T (\lambda (u2: T).(\lambda (t5:
+T).(eq T w1 (THead (Flat Appl) u2 t5)))) (\lambda (u2: T).(\lambda (_:
+T).(subst0 i v0 v1 u2))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Flat
+Appl) i) v0 (THead (Bind Abst) u t3) t5))))).(ex3_2_ind T T (\lambda (u2:
+T).(\lambda (t5: T).(eq T w1 (THead (Flat Appl) u2 t5)))) (\lambda (u2:
+T).(\lambda (_: T).(subst0 i v0 v1 u2))) (\lambda (_: T).(\lambda (t5:
+T).(subst0 (s (Flat Appl) i) v0 (THead (Bind Abst) u t3) t5))) (or (pr0 w1
+(THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (x0: T).(\lambda
+(x1: T).(\lambda (H7: (eq T w1 (THead (Flat Appl) x0 x1))).(\lambda (H8:
+(subst0 i v0 v1 x0)).(\lambda (H9: (subst0 (s (Flat Appl) i) v0 (THead (Bind
+Abst) u t3) x1)).(or3_ind (ex2 T (\lambda (u2: T).(eq T x1 (THead (Bind Abst)
+u2 t3))) (\lambda (u2: T).(subst0 (s (Flat Appl) i) v0 u u2))) (ex2 T
+(\lambda (t5: T).(eq T x1 (THead (Bind Abst) u t5))) (\lambda (t5: T).(subst0
+(s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5))) (ex3_2 T T (\lambda (u2:
+T).(\lambda (t5: T).(eq T x1 (THead (Bind Abst) u2 t5)))) (\lambda (u2:
+T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u u2))) (\lambda (_:
+T).(\lambda (t5: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5))))
+(or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H10:
+(ex2 T (\lambda (u2: T).(eq T x1 (THead (Bind Abst) u2 t3))) (\lambda (u2:
+T).(subst0 (s (Flat Appl) i) v0 u u2)))).(ex2_ind T (\lambda (u2: T).(eq T x1
+(THead (Bind Abst) u2 t3))) (\lambda (u2: T).(subst0 (s (Flat Appl) i) v0 u
+u2)) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1
+w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda
+(x: T).(\lambda (H11: (eq T x1 (THead (Bind Abst) x t3))).(\lambda (_:
+(subst0 (s (Flat Appl) i) v0 u x)).(eq_ind_r T (THead (Flat Appl) x0 x1)
+(\lambda (t: T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2:
+T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4)
+w2))))) (eq_ind_r T (THead (Bind Abst) x t3) (\lambda (t: T).(or (pr0 (THead
+(Flat Appl) x0 t) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) x0 t) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind
+Abbr) v2 t4) w2))))) (or_ind (pr0 x0 v2) (ex2 T (\lambda (w2: T).(pr0 x0 w2))
+(\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat Appl) x0 (THead
+(Bind Abst) x t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) x0 (THead (Bind Abst) x t3)) w2)) (\lambda (w2: T).(subst0
+i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H13: (pr0 x0 v2)).(or_introl
+(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x t3)) (THead (Bind Abbr) v2
+t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x
+t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))
+(pr0_beta x x0 v2 H13 t3 t4 H2))) (\lambda (H13: (ex2 T (\lambda (w2: T).(pr0
+x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)))).(ex2_ind T (\lambda (w2:
+T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)) (or (pr0 (THead (Flat
+Appl) x0 (THead (Bind Abst) x t3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda
+(w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x t3)) w2)) (\lambda
+(w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (x2:
+T).(\lambda (H14: (pr0 x0 x2)).(\lambda (H15: (subst0 i v3 v2 x2)).(or_intror
+(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x t3)) (THead (Bind Abbr) v2
+t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x
+t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))
+(ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x
+t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)) (THead
+(Bind Abbr) x2 t4) (pr0_beta x x0 x2 H14 t3 t4 H2) (subst0_fst v3 x2 v2 i H15
+t4 (Bind Abbr))))))) H13)) (H1 v0 x0 i H8 v3 H5)) x1 H11) w1 H7)))) H10))
+(\lambda (H10: (ex2 T (\lambda (t5: T).(eq T x1 (THead (Bind Abst) u t5)))
+(\lambda (t5: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3
+t5)))).(ex2_ind T (\lambda (t5: T).(eq T x1 (THead (Bind Abst) u t5)))
+(\lambda (t5: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5)) (or
+(pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 w1 w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (x:
+T).(\lambda (H11: (eq T x1 (THead (Bind Abst) u x))).(\lambda (H12: (subst0
+(s (Bind Abst) (s (Flat Appl) i)) v0 t3 x)).(eq_ind_r T (THead (Flat Appl) x0
+x1) (\lambda (t: T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda
+(w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4)
+w2))))) (eq_ind_r T (THead (Bind Abst) u x) (\lambda (t: T).(or (pr0 (THead
+(Flat Appl) x0 t) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) x0 t) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind
+Abbr) v2 t4) w2))))) (or_ind (pr0 x t4) (ex2 T (\lambda (w2: T).(pr0 x w2))
+(\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2))) (or
+(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead (Bind Abbr) v2
+t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u
+x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))))
+(\lambda (H13: (pr0 x t4)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2: T).(pr0
+x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat Appl) x0
+(THead (Bind Abst) u x)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H14: (pr0 x0
+v2)).(or_introl (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead
+(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
+(Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
+t4) w2))) (pr0_beta u x0 v2 H14 x t4 H13))) (\lambda (H14: (ex2 T (\lambda
+(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)))).(ex2_ind T
+(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)) (or (pr0
+(THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead (Bind Abbr) v2 t4))
+(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x))
+w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda
+(x2: T).(\lambda (H15: (pr0 x0 x2)).(\lambda (H16: (subst0 i v3 v2
+x2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead
+(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
+(Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
+t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
+(Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
+t4) w2)) (THead (Bind Abbr) x2 t4) (pr0_beta u x0 x2 H15 x t4 H13)
+(subst0_fst v3 x2 v2 i H16 t4 (Bind Abbr))))))) H14)) (H1 v0 x0 i H8 v3 H5)))
+(\lambda (H13: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0
+(s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda (w2:
+T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3
+t4 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead (Bind
+Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
+Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4)
+w2)))) (\lambda (x2: T).(\lambda (H14: (pr0 x x2)).(\lambda (H15: (subst0 (s
+(Bind Abst) (s (Flat Appl) i)) v3 t4 x2)).(or_ind (pr0 x0 v2) (ex2 T (\lambda
+(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead
+(Flat Appl) x0 (THead (Bind Abst) u x)) (THead (Bind Abbr) v2 t4)) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H16:
+(pr0 x0 v2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x))
+(THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0
+(THead (Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind
+Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0
+(THead (Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind
+Abbr) v2 t4) w2)) (THead (Bind Abbr) v2 x2) (pr0_beta u x0 v2 H16 x x2 H14)
+(subst0_snd (Bind Abbr) v3 x2 t4 i H15 v2)))) (\lambda (H16: (ex2 T (\lambda
+(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)))).(ex2_ind T
+(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)) (or (pr0
+(THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead (Bind Abbr) v2 t4))
+(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x))
+w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda
+(x3: T).(\lambda (H17: (pr0 x0 x3)).(\lambda (H18: (subst0 i v3 v2
+x3)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) u x)) (THead
+(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
+(Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
+t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
+(Bind Abst) u x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
+t4) w2)) (THead (Bind Abbr) x3 x2) (pr0_beta u x0 x3 H17 x x2 H14)
+(subst0_both v3 v2 x3 i H18 (Bind Abbr) t4 x2 H15)))))) H16)) (H1 v0 x0 i H8
+v3 H5))))) H13)) (H3 v0 x (s (Bind Abst) (s (Flat Appl) i)) H12 v3 H5)) x1
+H11) w1 H7)))) H10)) (\lambda (H10: (ex3_2 T T (\lambda (u2: T).(\lambda (t5:
+T).(eq T x1 (THead (Bind Abst) u2 t5)))) (\lambda (u2: T).(\lambda (_:
+T).(subst0 (s (Flat Appl) i) v0 u u2))) (\lambda (_: T).(\lambda (t5:
+T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 t5))))).(ex3_2_ind T T
+(\lambda (u2: T).(\lambda (t5: T).(eq T x1 (THead (Bind Abst) u2 t5))))
+(\lambda (u2: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u u2)))
+(\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0
+t3 t5))) (or (pr0 w1 (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0
+w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2))))
+(\lambda (x2: T).(\lambda (x3: T).(\lambda (H11: (eq T x1 (THead (Bind Abst)
+x2 x3))).(\lambda (_: (subst0 (s (Flat Appl) i) v0 u x2)).(\lambda (H13:
+(subst0 (s (Bind Abst) (s (Flat Appl) i)) v0 t3 x3)).(eq_ind_r T (THead (Flat
+Appl) x0 x1) (\lambda (t: T).(or (pr0 t (THead (Bind Abbr) v2 t4)) (ex2 T
+(\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr)
+v2 t4) w2))))) (eq_ind_r T (THead (Bind Abst) x2 x3) (\lambda (t: T).(or (pr0
+(THead (Flat Appl) x0 t) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x0 t) w2)) (\lambda (w2: T).(subst0 i v3 (THead
+(Bind Abbr) v2 t4) w2))))) (or_ind (pr0 x3 t4) (ex2 T (\lambda (w2: T).(pr0
+x3 w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3 t4
+w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead (Bind
+Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
+Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4)
+w2)))) (\lambda (H14: (pr0 x3 t4)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2:
+T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat
+Appl) x0 (THead (Bind Abst) x2 x3)) (THead (Bind Abbr) v2 t4)) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda (H15:
+(pr0 x0 v2)).(or_introl (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3))
+(THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0
+(THead (Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind
+Abbr) v2 t4) w2))) (pr0_beta x2 x0 v2 H15 x3 t4 H14))) (\lambda (H15: (ex2 T
+(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2
+w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3
+v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead
+(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
+(Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
+t4) w2)))) (\lambda (x: T).(\lambda (H16: (pr0 x0 x)).(\lambda (H17: (subst0
+i v3 v2 x)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3))
+(THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0
+(THead (Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind
+Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0
+(THead (Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind
+Abbr) v2 t4) w2)) (THead (Bind Abbr) x t4) (pr0_beta x2 x0 x H16 x3 t4 H14)
+(subst0_fst v3 x v2 i H17 t4 (Bind Abbr))))))) H15)) (H1 v0 x0 i H8 v3 H5)))
+(\lambda (H14: (ex2 T (\lambda (w2: T).(pr0 x3 w2)) (\lambda (w2: T).(subst0
+(s (Bind Abst) (s (Flat Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda (w2:
+T).(pr0 x3 w2)) (\lambda (w2: T).(subst0 (s (Bind Abst) (s (Flat Appl) i)) v3
+t4 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead
+(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
+(Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
+t4) w2)))) (\lambda (x: T).(\lambda (H15: (pr0 x3 x)).(\lambda (H16: (subst0
+(s (Bind Abst) (s (Flat Appl) i)) v3 t4 x)).(or_ind (pr0 x0 v2) (ex2 T
+(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0
+(THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead (Bind Abbr) v2 t4))
+(ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3))
+w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2 t4) w2)))) (\lambda
+(H17: (pr0 x0 v2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst)
+x2 x3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat
+Appl) x0 (THead (Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
+(Bind Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat
+Appl) x0 (THead (Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
+(Bind Abbr) v2 t4) w2)) (THead (Bind Abbr) v2 x) (pr0_beta x2 x0 v2 H17 x3 x
+H15) (subst0_snd (Bind Abbr) v3 x t4 i H16 v2)))) (\lambda (H17: (ex2 T
+(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2
+w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3
+v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind Abst) x2 x3)) (THead
+(Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
+(Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind Abbr) v2
+t4) w2)))) (\lambda (x4: T).(\lambda (H18: (pr0 x0 x4)).(\lambda (H19:
+(subst0 i v3 v2 x4)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind Abst)
+x2 x3)) (THead (Bind Abbr) v2 t4)) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat
+Appl) x0 (THead (Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
+(Bind Abbr) v2 t4) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat
+Appl) x0 (THead (Bind Abst) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
+(Bind Abbr) v2 t4) w2)) (THead (Bind Abbr) x4 x) (pr0_beta x2 x0 x4 H18 x3 x
+H15) (subst0_both v3 v2 x4 i H19 (Bind Abbr) t4 x H16)))))) H17)) (H1 v0 x0 i
+H8 v3 H5))))) H14)) (H3 v0 x3 (s (Bind Abst) (s (Flat Appl) i)) H13 v3 H5))
+x1 H11) w1 H7)))))) H10)) (subst0_gen_head (Bind Abst) v0 u t3 x1 (s (Flat
+Appl) i) H9))))))) H6)) (subst0_gen_head (Flat Appl) v0 v1 (THead (Bind Abst)
+u t3) w1 i H4))))))))))))))))) (\lambda (b: B).(\lambda (H0: (not (eq B b
+Abst))).(\lambda (v1: T).(\lambda (v2: T).(\lambda (H1: (pr0 v1 v2)).(\lambda
+(H2: ((\forall (v3: T).(\forall (w1: T).(\forall (i: nat).((subst0 i v3 v1
+w1) \to (\forall (v4: T).((pr0 v3 v4) \to (or (pr0 w1 v2) (ex2 T (\lambda
+(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v4 v2 w2)))))))))))).(\lambda
+(u1: T).(\lambda (u2: T).(\lambda (H3: (pr0 u1 u2)).(\lambda (H4: ((\forall
+(v3: T).(\forall (w1: T).(\forall (i: nat).((subst0 i v3 u1 w1) \to (\forall
+(v4: T).((pr0 v3 v4) \to (or (pr0 w1 u2) (ex2 T (\lambda (w2: T).(pr0 w1 w2))
+(\lambda (w2: T).(subst0 i v4 u2 w2)))))))))))).(\lambda (t3: T).(\lambda
+(t4: T).(\lambda (H5: (pr0 t3 t4)).(\lambda (H6: ((\forall (v3: T).(\forall
+(w1: T).(\forall (i: nat).((subst0 i v3 t3 w1) \to (\forall (v4: T).((pr0 v3
+v4) \to (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v4 t4 w2)))))))))))).(\lambda (v0: T).(\lambda (w1: T).(\lambda
+(i: nat).(\lambda (H7: (subst0 i v0 (THead (Flat Appl) v1 (THead (Bind b) u1
+t3)) w1)).(\lambda (v3: T).(\lambda (H8: (pr0 v0 v3)).(or3_ind (ex2 T
+(\lambda (u3: T).(eq T w1 (THead (Flat Appl) u3 (THead (Bind b) u1 t3))))
+(\lambda (u3: T).(subst0 i v0 v1 u3))) (ex2 T (\lambda (t5: T).(eq T w1
+(THead (Flat Appl) v1 t5))) (\lambda (t5: T).(subst0 (s (Flat Appl) i) v0
+(THead (Bind b) u1 t3) t5))) (ex3_2 T T (\lambda (u3: T).(\lambda (t5: T).(eq
+T w1 (THead (Flat Appl) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 i
+v0 v1 u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Flat Appl) i) v0
+(THead (Bind b) u1 t3) t5)))) (or (pr0 w1 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda
+(w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4)) w2)))) (\lambda (H9: (ex2 T (\lambda (u3: T).(eq T w1 (THead (Flat Appl)
+u3 (THead (Bind b) u1 t3)))) (\lambda (u3: T).(subst0 i v0 v1 u3)))).(ex2_ind
+T (\lambda (u3: T).(eq T w1 (THead (Flat Appl) u3 (THead (Bind b) u1 t3))))
+(\lambda (u3: T).(subst0 i v0 v1 u3)) (or (pr0 w1 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2)))) (\lambda (x: T).(\lambda (H10: (eq T w1 (THead (Flat
+Appl) x (THead (Bind b) u1 t3)))).(\lambda (H11: (subst0 i v0 v1
+x)).(eq_ind_r T (THead (Flat Appl) x (THead (Bind b) u1 t3)) (\lambda (t:
+T).(or (pr0 t (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)))
+(ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))) (or_ind (pr0 x
+v2) (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v3 v2
+w2))) (or (pr0 (THead (Flat Appl) x (THead (Bind b) u1 t3)) (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) x (THead (Bind b) u1 t3)) w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
+(\lambda (H12: (pr0 x v2)).(or_introl (pr0 (THead (Flat Appl) x (THead (Bind
+b) u1 t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2
+T (\lambda (w2: T).(pr0 (THead (Flat Appl) x (THead (Bind b) u1 t3)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2))) (pr0_upsilon b H0 x v2 H12 u1 u2 H3 t3 t4 H5))) (\lambda
+(H12: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v3 v2
+w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v3
+v2 w2)) (or (pr0 (THead (Flat Appl) x (THead (Bind b) u1 t3)) (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) x (THead (Bind b) u1 t3)) w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
+(\lambda (x0: T).(\lambda (H13: (pr0 x x0)).(\lambda (H14: (subst0 i v3 v2
+x0)).(or_intror (pr0 (THead (Flat Appl) x (THead (Bind b) u1 t3)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x (THead (Bind b) u1 t3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x (THead (Bind b)
+u1 t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O x0) t4)) (pr0_upsilon b H0 x x0 H13 u1 u2 H3 t3 t4 H5) (subst0_snd
+(Bind b) v3 (THead (Flat Appl) (lift (S O) O x0) t4) (THead (Flat Appl) (lift
+(S O) O v2) t4) i (subst0_fst v3 (lift (S O) O x0) (lift (S O) O v2) (s (Bind
+b) i) (subst0_lift_ge_s v2 x0 v3 i H14 O (le_O_n i) b) t4 (Flat Appl))
+u2)))))) H12)) (H2 v0 x i H11 v3 H8)) w1 H10)))) H9)) (\lambda (H9: (ex2 T
+(\lambda (t5: T).(eq T w1 (THead (Flat Appl) v1 t5))) (\lambda (t5:
+T).(subst0 (s (Flat Appl) i) v0 (THead (Bind b) u1 t3) t5)))).(ex2_ind T
+(\lambda (t5: T).(eq T w1 (THead (Flat Appl) v1 t5))) (\lambda (t5:
+T).(subst0 (s (Flat Appl) i) v0 (THead (Bind b) u1 t3) t5)) (or (pr0 w1
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda
+(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x: T).(\lambda (H10: (eq
+T w1 (THead (Flat Appl) v1 x))).(\lambda (H11: (subst0 (s (Flat Appl) i) v0
+(THead (Bind b) u1 t3) x)).(or3_ind (ex2 T (\lambda (u3: T).(eq T x (THead
+(Bind b) u3 t3))) (\lambda (u3: T).(subst0 (s (Flat Appl) i) v0 u1 u3))) (ex2
+T (\lambda (t5: T).(eq T x (THead (Bind b) u1 t5))) (\lambda (t5: T).(subst0
+(s (Bind b) (s (Flat Appl) i)) v0 t3 t5))) (ex3_2 T T (\lambda (u3:
+T).(\lambda (t5: T).(eq T x (THead (Bind b) u3 t5)))) (\lambda (u3:
+T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u1 u3))) (\lambda (_:
+T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 t5)))) (or
+(pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
+(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H12: (ex2 T
+(\lambda (u3: T).(eq T x (THead (Bind b) u3 t3))) (\lambda (u3: T).(subst0 (s
+(Flat Appl) i) v0 u1 u3)))).(ex2_ind T (\lambda (u3: T).(eq T x (THead (Bind
+b) u3 t3))) (\lambda (u3: T).(subst0 (s (Flat Appl) i) v0 u1 u3)) (or (pr0 w1
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda
+(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x0: T).(\lambda (H13: (eq
+T x (THead (Bind b) x0 t3))).(\lambda (H14: (subst0 (s (Flat Appl) i) v0 u1
+x0)).(eq_ind_r T (THead (Flat Appl) v1 x) (\lambda (t: T).(or (pr0 t (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2))))) (eq_ind_r T (THead (Bind b) x0 t3)
+(\lambda (t: T).(or (pr0 (THead (Flat Appl) v1 t) (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat
+Appl) v1 t) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4)) w2))))) (or_ind (pr0 x0 u2) (ex2 T
+(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3
+u2 w2))) (or (pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 t3)) (THead (Bind
+b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) v1 (THead (Bind b) x0 t3)) w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
+(\lambda (H15: (pr0 x0 u2)).(or_introl (pr0 (THead (Flat Appl) v1 (THead
+(Bind b) x0 t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0
+t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4)) w2))) (pr0_upsilon b H0 v1 v2 H1 x0 u2 H15 t3 t4 H5)))
+(\lambda (H15: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0
+(s (Flat Appl) i) v3 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2))
+(\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2 w2)) (or (pr0 (THead (Flat
+Appl) v1 (THead (Bind b) x0 t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead
+(Bind b) x0 t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x1: T).(\lambda (H16:
+(pr0 x0 x1)).(\lambda (H17: (subst0 (s (Flat Appl) i) v3 u2 x1)).(or_intror
+(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 t3)) (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat
+Appl) v1 (THead (Bind b) x0 t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))) (ex_intro2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 t3)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2)) (THead (Bind b) x1 (THead (Flat Appl) (lift (S O) O v2)
+t4)) (pr0_upsilon b H0 v1 v2 H1 x0 x1 H16 t3 t4 H5) (subst0_fst v3 x1 u2 i
+H17 (THead (Flat Appl) (lift (S O) O v2) t4) (Bind b))))))) H15)) (H4 v0 x0
+(s (Flat Appl) i) H14 v3 H8)) x H13) w1 H10)))) H12)) (\lambda (H12: (ex2 T
+(\lambda (t5: T).(eq T x (THead (Bind b) u1 t5))) (\lambda (t5: T).(subst0 (s
+(Bind b) (s (Flat Appl) i)) v0 t3 t5)))).(ex2_ind T (\lambda (t5: T).(eq T x
+(THead (Bind b) u1 t5))) (\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl)
+i)) v0 t3 t5)) (or (pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O)
+O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
+(\lambda (x0: T).(\lambda (H13: (eq T x (THead (Bind b) u1 x0))).(\lambda
+(H14: (subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 x0)).(eq_ind_r T (THead
+(Flat Appl) v1 x) (\lambda (t: T).(or (pr0 t (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda
+(w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4)) w2))))) (eq_ind_r T (THead (Bind b) u1 x0) (\lambda (t: T).(or (pr0
+(THead (Flat Appl) v1 t) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
+v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 t) w2)) (\lambda
+(w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4)) w2))))) (or_ind (pr0 x0 t4) (ex2 T (\lambda (w2: T).(pr0 x0 w2))
+(\lambda (w2: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 w2))) (or (pr0
+(THead (Flat Appl) v1 (THead (Bind b) u1 x0)) (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl)
+v1 (THead (Bind b) u1 x0)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H15: (pr0 x0
+t4)).(or_introl (pr0 (THead (Flat Appl) v1 (THead (Bind b) u1 x0)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) u1 x0)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2))) (pr0_upsilon b H0 v1 v2 H1 u1 u2 H3 x0 t4 H15))) (\lambda (H15: (ex2 T
+(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat
+Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
+T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 w2)) (or (pr0 (THead (Flat
+Appl) v1 (THead (Bind b) u1 x0)) (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead
+(Bind b) u1 x0)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x1: T).(\lambda (H16:
+(pr0 x0 x1)).(\lambda (H17: (subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4
+x1)).(or_intror (pr0 (THead (Flat Appl) v1 (THead (Bind b) u1 x0)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) u1 x0)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind
+b) u1 x0)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O v2) x1)) (pr0_upsilon b H0 v1 v2 H1 u1 u2 H3 x0 x1 H16) (subst0_snd
+(Bind b) v3 (THead (Flat Appl) (lift (S O) O v2) x1) (THead (Flat Appl) (lift
+(S O) O v2) t4) i (subst0_snd (Flat Appl) v3 x1 t4 (s (Bind b) i) H17 (lift
+(S O) O v2)) u2)))))) H15)) (H6 v0 x0 (s (Bind b) (s (Flat Appl) i)) H14 v3
+H8)) x H13) w1 H10)))) H12)) (\lambda (H12: (ex3_2 T T (\lambda (u3:
+T).(\lambda (t5: T).(eq T x (THead (Bind b) u3 t5)))) (\lambda (u3:
+T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u1 u3))) (\lambda (_:
+T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3
+t5))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda (t5: T).(eq T x (THead (Bind
+b) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u1
+u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i))
+v0 t3 t5))) (or (pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
+v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda
+(x0: T).(\lambda (x1: T).(\lambda (H13: (eq T x (THead (Bind b) x0
+x1))).(\lambda (H14: (subst0 (s (Flat Appl) i) v0 u1 x0)).(\lambda (H15:
+(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 x1)).(eq_ind_r T (THead (Flat
+Appl) v1 x) (\lambda (t: T).(or (pr0 t (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2))))) (eq_ind_r T (THead (Bind b) x0 x1) (\lambda (t: T).(or (pr0 (THead
+(Flat Appl) v1 t) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 t) w2)) (\lambda
+(w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4)) w2))))) (or_ind (pr0 x1 t4) (ex2 T (\lambda (w2: T).(pr0 x1 w2))
+(\lambda (w2: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 w2))) (or (pr0
+(THead (Flat Appl) v1 (THead (Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl)
+v1 (THead (Bind b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H16: (pr0 x1
+t4)).(or_ind (pr0 x0 u2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
+T).(subst0 (s (Flat Appl) i) v3 u2 w2))) (or (pr0 (THead (Flat Appl) v1
+(THead (Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
+v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b)
+x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H17: (pr0 x0 u2)).(or_introl
+(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat
+Appl) v1 (THead (Bind b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))) (pr0_upsilon b H0
+v1 v2 H1 x0 u2 H17 x1 t4 H16))) (\lambda (H17: (ex2 T (\lambda (w2: T).(pr0
+x0 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2 w2)))).(ex2_ind T
+(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3
+u2 w2)) (or (pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) (THead (Bind
+b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) v1 (THead (Bind b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
+(\lambda (x2: T).(\lambda (H18: (pr0 x0 x2)).(\lambda (H19: (subst0 (s (Flat
+Appl) i) v3 u2 x2)).(or_intror (pr0 (THead (Flat Appl) v1 (THead (Bind b) x0
+x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1
+(THead (Bind b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x2 (THead
+(Flat Appl) (lift (S O) O v2) t4)) (pr0_upsilon b H0 v1 v2 H1 x0 x2 H18 x1 t4
+H16) (subst0_fst v3 x2 u2 i H19 (THead (Flat Appl) (lift (S O) O v2) t4)
+(Bind b))))))) H17)) (H4 v0 x0 (s (Flat Appl) i) H14 v3 H8))) (\lambda (H16:
+(ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s
+(Flat Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x1 w2))
+(\lambda (w2: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 w2)) (or (pr0
+(THead (Flat Appl) v1 (THead (Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl)
+v1 (THead (Bind b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x2: T).(\lambda
+(H17: (pr0 x1 x2)).(\lambda (H18: (subst0 (s (Bind b) (s (Flat Appl) i)) v3
+t4 x2)).(or_ind (pr0 x0 u2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda
+(w2: T).(subst0 (s (Flat Appl) i) v3 u2 w2))) (or (pr0 (THead (Flat Appl) v1
+(THead (Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
+v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b)
+x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H19: (pr0 x0 u2)).(or_intror
+(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat
+Appl) v1 (THead (Bind b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))) (ex_intro2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+x2)) (pr0_upsilon b H0 v1 v2 H1 x0 u2 H19 x1 x2 H17) (subst0_snd (Bind b) v3
+(THead (Flat Appl) (lift (S O) O v2) x2) (THead (Flat Appl) (lift (S O) O v2)
+t4) i (subst0_snd (Flat Appl) v3 x2 t4 (s (Bind b) i) H18 (lift (S O) O v2))
+u2)))) (\lambda (H19: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
+T).(subst0 (s (Flat Appl) i) v3 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0
+w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2 w2)) (or (pr0 (THead
+(Flat Appl) v1 (THead (Bind b) x0 x1)) (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1
+(THead (Bind b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x3: T).(\lambda
+(H20: (pr0 x0 x3)).(\lambda (H21: (subst0 (s (Flat Appl) i) v3 u2
+x3)).(or_intror (pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) v1 (THead (Bind b) x0 x1)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) v1 (THead (Bind
+b) x0 x1)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x3 (THead (Flat Appl) (lift
+(S O) O v2) x2)) (pr0_upsilon b H0 v1 v2 H1 x0 x3 H20 x1 x2 H17) (subst0_both
+v3 u2 x3 i H21 (Bind b) (THead (Flat Appl) (lift (S O) O v2) t4) (THead (Flat
+Appl) (lift (S O) O v2) x2) (subst0_snd (Flat Appl) v3 x2 t4 (s (Bind b) i)
+H18 (lift (S O) O v2)))))))) H19)) (H4 v0 x0 (s (Flat Appl) i) H14 v3 H8)))))
+H16)) (H6 v0 x1 (s (Bind b) (s (Flat Appl) i)) H15 v3 H8)) x H13) w1
+H10)))))) H12)) (subst0_gen_head (Bind b) v0 u1 t3 x (s (Flat Appl) i)
+H11))))) H9)) (\lambda (H9: (ex3_2 T T (\lambda (u3: T).(\lambda (t5: T).(eq
+T w1 (THead (Flat Appl) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 i
+v0 v1 u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Flat Appl) i) v0
+(THead (Bind b) u1 t3) t5))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda (t5:
+T).(eq T w1 (THead (Flat Appl) u3 t5)))) (\lambda (u3: T).(\lambda (_:
+T).(subst0 i v0 v1 u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Flat
+Appl) i) v0 (THead (Bind b) u1 t3) t5))) (or (pr0 w1 (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1
+w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4)) w2)))) (\lambda (x0: T).(\lambda (x1: T).(\lambda
+(H10: (eq T w1 (THead (Flat Appl) x0 x1))).(\lambda (H11: (subst0 i v0 v1
+x0)).(\lambda (H12: (subst0 (s (Flat Appl) i) v0 (THead (Bind b) u1 t3)
+x1)).(or3_ind (ex2 T (\lambda (u3: T).(eq T x1 (THead (Bind b) u3 t3)))
+(\lambda (u3: T).(subst0 (s (Flat Appl) i) v0 u1 u3))) (ex2 T (\lambda (t5:
+T).(eq T x1 (THead (Bind b) u1 t5))) (\lambda (t5: T).(subst0 (s (Bind b) (s
+(Flat Appl) i)) v0 t3 t5))) (ex3_2 T T (\lambda (u3: T).(\lambda (t5: T).(eq
+T x1 (THead (Bind b) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 (s
+(Flat Appl) i) v0 u1 u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind
+b) (s (Flat Appl) i)) v0 t3 t5)))) (or (pr0 w1 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2)))) (\lambda (H13: (ex2 T (\lambda (u3: T).(eq T x1 (THead
+(Bind b) u3 t3))) (\lambda (u3: T).(subst0 (s (Flat Appl) i) v0 u1
+u3)))).(ex2_ind T (\lambda (u3: T).(eq T x1 (THead (Bind b) u3 t3))) (\lambda
+(u3: T).(subst0 (s (Flat Appl) i) v0 u1 u3)) (or (pr0 w1 (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1
+w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4)) w2)))) (\lambda (x: T).(\lambda (H14: (eq T x1 (THead
+(Bind b) x t3))).(\lambda (H15: (subst0 (s (Flat Appl) i) v0 u1 x)).(eq_ind_r
+T (THead (Flat Appl) x0 x1) (\lambda (t: T).(or (pr0 t (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 t
+w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4)) w2))))) (eq_ind_r T (THead (Bind b) x t3) (\lambda (t:
+T).(or (pr0 (THead (Flat Appl) x0 t) (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 t)
+w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4)) w2))))) (or_ind (pr0 x u2) (ex2 T (\lambda (w2:
+T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2 w2))) (or
+(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat
+Appl) x0 (THead (Bind b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H16:
+(pr0 x u2)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda
+(w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b)
+x t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2)))) (\lambda (H17: (pr0 x0 v2)).(or_introl (pr0 (THead (Flat
+Appl) x0 (THead (Bind b) x t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
+(Bind b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4)) w2))) (pr0_upsilon b H0 x0 v2 H17 x u2 H16
+t3 t4 H5))) (\lambda (H17: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
+T).(subst0 i v3 v2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda
+(w2: T).(subst0 i v3 v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x
+t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2)))) (\lambda (x2: T).(\lambda (H18: (pr0 x0 x2)).(\lambda
+(H19: (subst0 i v3 v2 x2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind
+b) x t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2
+T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0
+(THead (Bind b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O x2) t4)) (pr0_upsilon b H0 x0 x2 H18 x u2 H16 t3 t4
+H5) (subst0_snd (Bind b) v3 (THead (Flat Appl) (lift (S O) O x2) t4) (THead
+(Flat Appl) (lift (S O) O v2) t4) i (subst0_fst v3 (lift (S O) O x2) (lift (S
+O) O v2) (s (Bind b) i) (subst0_lift_ge_s v2 x2 v3 i H19 O (le_O_n i) b) t4
+(Flat Appl)) u2)))))) H17)) (H2 v0 x0 i H11 v3 H8))) (\lambda (H16: (ex2 T
+(\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2
+w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s
+(Flat Appl) i) v3 u2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x
+t3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2)))) (\lambda (x2: T).(\lambda (H17: (pr0 x x2)).(\lambda
+(H18: (subst0 (s (Flat Appl) i) v3 u2 x2)).(or_ind (pr0 x0 v2) (ex2 T
+(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0
+(THead (Flat Appl) x0 (THead (Bind b) x t3)) (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl)
+x0 (THead (Bind b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H19: (pr0 x0
+v2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
+b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x2 (THead (Flat Appl) (lift
+(S O) O v2) t4)) (pr0_upsilon b H0 x0 v2 H19 x x2 H17 t3 t4 H5) (subst0_fst
+v3 x2 u2 i H18 (THead (Flat Appl) (lift (S O) O v2) t4) (Bind b))))) (\lambda
+(H19: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2
+w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3
+v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) x0 (THead (Bind b) x t3)) w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
+(\lambda (x3: T).(\lambda (H20: (pr0 x0 x3)).(\lambda (H21: (subst0 i v3 v2
+x3)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x t3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
+b) x t3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x2 (THead (Flat Appl) (lift
+(S O) O x3) t4)) (pr0_upsilon b H0 x0 x3 H20 x x2 H17 t3 t4 H5) (subst0_both
+v3 u2 x2 i H18 (Bind b) (THead (Flat Appl) (lift (S O) O v2) t4) (THead (Flat
+Appl) (lift (S O) O x3) t4) (subst0_fst v3 (lift (S O) O x3) (lift (S O) O
+v2) (s (Bind b) i) (subst0_lift_ge_s v2 x3 v3 i H21 O (le_O_n i) b) t4 (Flat
+Appl)))))))) H19)) (H2 v0 x0 i H11 v3 H8))))) H16)) (H4 v0 x (s (Flat Appl)
+i) H15 v3 H8)) x1 H14) w1 H10)))) H13)) (\lambda (H13: (ex2 T (\lambda (t5:
+T).(eq T x1 (THead (Bind b) u1 t5))) (\lambda (t5: T).(subst0 (s (Bind b) (s
+(Flat Appl) i)) v0 t3 t5)))).(ex2_ind T (\lambda (t5: T).(eq T x1 (THead
+(Bind b) u1 t5))) (\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0
+t3 t5)) (or (pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v3
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda
+(x: T).(\lambda (H14: (eq T x1 (THead (Bind b) u1 x))).(\lambda (H15: (subst0
+(s (Bind b) (s (Flat Appl) i)) v0 t3 x)).(eq_ind_r T (THead (Flat Appl) x0
+x1) (\lambda (t: T).(or (pr0 t (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))))
+(eq_ind_r T (THead (Bind b) u1 x) (\lambda (t: T).(or (pr0 (THead (Flat Appl)
+x0 t) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 t) w2)) (\lambda (w2: T).(subst0
+i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))))
+(or_ind (pr0 x t4) (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2:
+T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 w2))) (or (pr0 (THead (Flat
+Appl) x0 (THead (Bind b) u1 x)) (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
+(Bind b) u1 x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H16: (pr0 x t4)).(or_ind
+(pr0 x0 v2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i
+v3 v2 w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2)))) (\lambda (H17: (pr0 x0 v2)).(or_introl (pr0 (THead (Flat Appl) x0
+(THead (Bind b) u1 x)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
+v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b)
+u1 x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2))) (pr0_upsilon b H0 x0 v2 H17 u1 u2 H3 x t4
+H16))) (\lambda (H17: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
+T).(subst0 i v3 v2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda
+(w2: T).(subst0 i v3 v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b)
+u1 x)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2)))) (\lambda (x2: T).(\lambda (H18: (pr0 x0 x2)).(\lambda
+(H19: (subst0 i v3 v2 x2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind
+b) u1 x)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2
+T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0
+(THead (Bind b) u1 x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O x2) t4)) (pr0_upsilon b H0 x0 x2 H18 u1 u2 H3 x t4
+H16) (subst0_snd (Bind b) v3 (THead (Flat Appl) (lift (S O) O x2) t4) (THead
+(Flat Appl) (lift (S O) O v2) t4) i (subst0_fst v3 (lift (S O) O x2) (lift (S
+O) O v2) (s (Bind b) i) (subst0_lift_ge_s v2 x2 v3 i H19 O (le_O_n i) b) t4
+(Flat Appl)) u2)))))) H17)) (H2 v0 x0 i H11 v3 H8))) (\lambda (H16: (ex2 T
+(\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat
+Appl) i)) v3 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2:
+T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 w2)) (or (pr0 (THead (Flat
+Appl) x0 (THead (Bind b) u1 x)) (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
+(Bind b) u1 x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (x2: T).(\lambda (H17:
+(pr0 x x2)).(\lambda (H18: (subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4
+x2)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
+T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1
+x)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2)))) (\lambda (H19: (pr0 x0 v2)).(or_intror (pr0 (THead (Flat
+Appl) x0 (THead (Bind b) u1 x)) (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead
+(Bind b) u1 x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) x2)) (pr0_upsilon b H0 x0 v2
+H19 u1 u2 H3 x x2 H17) (subst0_snd (Bind b) v3 (THead (Flat Appl) (lift (S O)
+O v2) x2) (THead (Flat Appl) (lift (S O) O v2) t4) i (subst0_snd (Flat Appl)
+v3 x2 t4 (s (Bind b) i) H18 (lift (S O) O v2)) u2)))) (\lambda (H19: (ex2 T
+(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2
+w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3
+v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
+(\lambda (x3: T).(\lambda (H20: (pr0 x0 x3)).(\lambda (H21: (subst0 i v3 v2
+x3)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) u1 x)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
+b) u1 x)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O x3) x2)) (pr0_upsilon b H0 x0 x3 H20 u1 u2 H3 x x2 H17) (subst0_snd
+(Bind b) v3 (THead (Flat Appl) (lift (S O) O x3) x2) (THead (Flat Appl) (lift
+(S O) O v2) t4) i (subst0_both v3 (lift (S O) O v2) (lift (S O) O x3) (s
+(Bind b) i) (subst0_lift_ge_s v2 x3 v3 i H21 O (le_O_n i) b) (Flat Appl) t4
+x2 H18) u2)))))) H19)) (H2 v0 x0 i H11 v3 H8))))) H16)) (H6 v0 x (s (Bind b)
+(s (Flat Appl) i)) H15 v3 H8)) x1 H14) w1 H10)))) H13)) (\lambda (H13: (ex3_2
+T T (\lambda (u3: T).(\lambda (t5: T).(eq T x1 (THead (Bind b) u3 t5))))
+(\lambda (u3: T).(\lambda (_: T).(subst0 (s (Flat Appl) i) v0 u1 u3)))
+(\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3
+t5))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda (t5: T).(eq T x1 (THead
+(Bind b) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 (s (Flat Appl) i)
+v0 u1 u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind b) (s (Flat
+Appl) i)) v0 t3 t5))) (or (pr0 w1 (THead (Bind b) u2 (THead (Flat Appl) (lift
+(S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2)))) (\lambda (x2: T).(\lambda (x3: T).(\lambda (H14: (eq T x1 (THead (Bind
+b) x2 x3))).(\lambda (H15: (subst0 (s (Flat Appl) i) v0 u1 x2)).(\lambda
+(H16: (subst0 (s (Bind b) (s (Flat Appl) i)) v0 t3 x3)).(eq_ind_r T (THead
+(Flat Appl) x0 x1) (\lambda (t: T).(or (pr0 t (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda
+(w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4)) w2))))) (eq_ind_r T (THead (Bind b) x2 x3) (\lambda (t: T).(or (pr0
+(THead (Flat Appl) x0 t) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
+v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 t) w2)) (\lambda
+(w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4)) w2))))) (or_ind (pr0 x3 t4) (ex2 T (\lambda (w2: T).(pr0 x3 w2))
+(\lambda (w2: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 w2))) (or (pr0
+(THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl)
+x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H17: (pr0 x3
+t4)).(or_ind (pr0 x2 u2) (ex2 T (\lambda (w2: T).(pr0 x2 w2)) (\lambda (w2:
+T).(subst0 (s (Flat Appl) i) v3 u2 w2))) (or (pr0 (THead (Flat Appl) x0
+(THead (Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
+v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b)
+x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H18: (pr0 x2 u2)).(or_ind (pr0
+x0 v2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2
+w2))) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind b)
+u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
+(\lambda (H19: (pr0 x0 v2)).(or_introl (pr0 (THead (Flat Appl) x0 (THead
+(Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2
+x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4)) w2))) (pr0_upsilon b H0 x0 v2 H19 x2 u2 H18 x3 t4
+H17))) (\lambda (H19: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
+T).(subst0 i v3 v2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda
+(w2: T).(subst0 i v3 v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b)
+x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2)))) (\lambda (x: T).(\lambda (H20: (pr0 x0 x)).(\lambda
+(H21: (subst0 i v3 v2 x)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind
+b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2
+T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0
+(THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O x) t4)) (pr0_upsilon b H0 x0 x H20 x2 u2 H18 x3 t4
+H17) (subst0_snd (Bind b) v3 (THead (Flat Appl) (lift (S O) O x) t4) (THead
+(Flat Appl) (lift (S O) O v2) t4) i (subst0_fst v3 (lift (S O) O x) (lift (S
+O) O v2) (s (Bind b) i) (subst0_lift_ge_s v2 x v3 i H21 O (le_O_n i) b) t4
+(Flat Appl)) u2)))))) H19)) (H2 v0 x0 i H11 v3 H8))) (\lambda (H18: (ex2 T
+(\lambda (w2: T).(pr0 x2 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3
+u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x2 w2)) (\lambda (w2: T).(subst0
+(s (Flat Appl) i) v3 u2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b)
+x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2)))) (\lambda (x: T).(\lambda (H19: (pr0 x2 x)).(\lambda
+(H20: (subst0 (s (Flat Appl) i) v3 u2 x)).(or_ind (pr0 x0 v2) (ex2 T (\lambda
+(w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead
+(Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0
+(THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H21: (pr0 x0
+v2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
+b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x (THead (Flat Appl) (lift
+(S O) O v2) t4)) (pr0_upsilon b H0 x0 v2 H21 x2 x H19 x3 t4 H17) (subst0_fst
+v3 x u2 i H20 (THead (Flat Appl) (lift (S O) O v2) t4) (Bind b))))) (\lambda
+(H21: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2
+w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3
+v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind
+b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
+(\lambda (x4: T).(\lambda (H22: (pr0 x0 x4)).(\lambda (H23: (subst0 i v3 v2
+x4)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
+b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x (THead (Flat Appl) (lift
+(S O) O x4) t4)) (pr0_upsilon b H0 x0 x4 H22 x2 x H19 x3 t4 H17) (subst0_both
+v3 u2 x i H20 (Bind b) (THead (Flat Appl) (lift (S O) O v2) t4) (THead (Flat
+Appl) (lift (S O) O x4) t4) (subst0_fst v3 (lift (S O) O x4) (lift (S O) O
+v2) (s (Bind b) i) (subst0_lift_ge_s v2 x4 v3 i H23 O (le_O_n i) b) t4 (Flat
+Appl)))))))) H21)) (H2 v0 x0 i H11 v3 H8))))) H18)) (H4 v0 x2 (s (Flat Appl)
+i) H15 v3 H8))) (\lambda (H17: (ex2 T (\lambda (w2: T).(pr0 x3 w2)) (\lambda
+(w2: T).(subst0 (s (Bind b) (s (Flat Appl) i)) v3 t4 w2)))).(ex2_ind T
+(\lambda (w2: T).(pr0 x3 w2)) (\lambda (w2: T).(subst0 (s (Bind b) (s (Flat
+Appl) i)) v3 t4 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3))
+(THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda
+(w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2)))) (\lambda (x: T).(\lambda (H18: (pr0 x3 x)).(\lambda (H19: (subst0 (s
+(Bind b) (s (Flat Appl) i)) v3 t4 x)).(or_ind (pr0 x2 u2) (ex2 T (\lambda
+(w2: T).(pr0 x2 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl) i) v3 u2 w2)))
+(or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
+(\lambda (H20: (pr0 x2 u2)).(or_ind (pr0 x0 v2) (ex2 T (\lambda (w2: T).(pr0
+x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2))) (or (pr0 (THead (Flat Appl) x0
+(THead (Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O
+v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b)
+x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2)))) (\lambda (H21: (pr0 x0 v2)).(or_intror
+(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat
+Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))) (ex_intro2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+x)) (pr0_upsilon b H0 x0 v2 H21 x2 u2 H20 x3 x H18) (subst0_snd (Bind b) v3
+(THead (Flat Appl) (lift (S O) O v2) x) (THead (Flat Appl) (lift (S O) O v2)
+t4) i (subst0_snd (Flat Appl) v3 x t4 (s (Bind b) i) H19 (lift (S O) O v2))
+u2)))) (\lambda (H21: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
+T).(subst0 i v3 v2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda
+(w2: T).(subst0 i v3 v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b)
+x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2)))) (\lambda (x4: T).(\lambda (H22: (pr0 x0 x4)).(\lambda
+(H23: (subst0 i v3 v2 x4)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind
+b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2
+T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2))
+(\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S
+O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0
+(THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) u2 (THead
+(Flat Appl) (lift (S O) O x4) x)) (pr0_upsilon b H0 x0 x4 H22 x2 u2 H20 x3 x
+H18) (subst0_snd (Bind b) v3 (THead (Flat Appl) (lift (S O) O x4) x) (THead
+(Flat Appl) (lift (S O) O v2) t4) i (subst0_both v3 (lift (S O) O v2) (lift
+(S O) O x4) (s (Bind b) i) (subst0_lift_ge_s v2 x4 v3 i H23 O (le_O_n i) b)
+(Flat Appl) t4 x H19) u2)))))) H21)) (H2 v0 x0 i H11 v3 H8))) (\lambda (H20:
+(ex2 T (\lambda (w2: T).(pr0 x2 w2)) (\lambda (w2: T).(subst0 (s (Flat Appl)
+i) v3 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x2 w2)) (\lambda (w2:
+T).(subst0 (s (Flat Appl) i) v3 u2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead
+(Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2
+x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4)) w2)))) (\lambda (x4: T).(\lambda (H21: (pr0 x2
+x4)).(\lambda (H22: (subst0 (s (Flat Appl) i) v3 u2 x4)).(or_ind (pr0 x0 v2)
+(ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2 w2)))
+(or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind b) u2
+(THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
+(\lambda (H23: (pr0 x0 v2)).(or_intror (pr0 (THead (Flat Appl) x0 (THead
+(Bind b) x2 x3)) (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2)
+t4))) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2
+x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl)
+(lift (S O) O v2) t4)) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat
+Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x4
+(THead (Flat Appl) (lift (S O) O v2) x)) (pr0_upsilon b H0 x0 v2 H23 x2 x4
+H21 x3 x H18) (subst0_both v3 u2 x4 i H22 (Bind b) (THead (Flat Appl) (lift
+(S O) O v2) t4) (THead (Flat Appl) (lift (S O) O v2) x) (subst0_snd (Flat
+Appl) v3 x t4 (s (Bind b) i) H19 (lift (S O) O v2)))))) (\lambda (H23: (ex2 T
+(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3 v2
+w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v3
+v2 w2)) (or (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead (Bind
+b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i
+v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4)) w2))))
+(\lambda (x5: T).(\lambda (H24: (pr0 x0 x5)).(\lambda (H25: (subst0 i v3 v2
+x5)).(or_intror (pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) (THead
+(Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Flat Appl) x0 (THead (Bind b) x2 x3)) w2)) (\lambda (w2:
+T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat Appl) (lift (S O) O v2) t4))
+w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Appl) x0 (THead (Bind
+b) x2 x3)) w2)) (\lambda (w2: T).(subst0 i v3 (THead (Bind b) u2 (THead (Flat
+Appl) (lift (S O) O v2) t4)) w2)) (THead (Bind b) x4 (THead (Flat Appl) (lift
+(S O) O x5) x)) (pr0_upsilon b H0 x0 x5 H24 x2 x4 H21 x3 x H18) (subst0_both
+v3 u2 x4 i H22 (Bind b) (THead (Flat Appl) (lift (S O) O v2) t4) (THead (Flat
+Appl) (lift (S O) O x5) x) (subst0_both v3 (lift (S O) O v2) (lift (S O) O
+x5) (s (Bind b) i) (subst0_lift_ge_s v2 x5 v3 i H25 O (le_O_n i) b) (Flat
+Appl) t4 x H19))))))) H23)) (H2 v0 x0 i H11 v3 H8))))) H20)) (H4 v0 x2 (s
+(Flat Appl) i) H15 v3 H8))))) H17)) (H6 v0 x3 (s (Bind b) (s (Flat Appl) i))
+H16 v3 H8)) x1 H14) w1 H10)))))) H13)) (subst0_gen_head (Bind b) v0 u1 t3 x1
+(s (Flat Appl) i) H12))))))) H9)) (subst0_gen_head (Flat Appl) v0 v1 (THead
+(Bind b) u1 t3) w1 i H7)))))))))))))))))))))) (\lambda (u1: T).(\lambda (u2:
+T).(\lambda (H0: (pr0 u1 u2)).(\lambda (H1: ((\forall (v1: T).(\forall (w1:
+T).(\forall (i: nat).((subst0 i v1 u1 w1) \to (\forall (v2: T).((pr0 v1 v2)
+\to (or (pr0 w1 u2) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v2 u2 w2)))))))))))).(\lambda (t3: T).(\lambda (t4: T).(\lambda
+(H2: (pr0 t3 t4)).(\lambda (H3: ((\forall (v1: T).(\forall (w1: T).(\forall
+(i: nat).((subst0 i v1 t3 w1) \to (\forall (v2: T).((pr0 v1 v2) \to (or (pr0
+w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4
+w2)))))))))))).(\lambda (w: T).(\lambda (H4: (subst0 O u2 t4 w)).(\lambda
+(v1: T).(\lambda (w1: T).(\lambda (i: nat).(\lambda (H5: (subst0 i v1 (THead
+(Bind Abbr) u1 t3) w1)).(\lambda (v2: T).(\lambda (H6: (pr0 v1 v2)).(or3_ind
+(ex2 T (\lambda (u3: T).(eq T w1 (THead (Bind Abbr) u3 t3))) (\lambda (u3:
+T).(subst0 i v1 u1 u3))) (ex2 T (\lambda (t5: T).(eq T w1 (THead (Bind Abbr)
+u1 t5))) (\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3 t5))) (ex3_2 T T
+(\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead (Bind Abbr) u3 t5))))
+(\lambda (u3: T).(\lambda (_: T).(subst0 i v1 u1 u3))) (\lambda (_:
+T).(\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3 t5)))) (or (pr0 w1 (THead
+(Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (H7: (ex2 T (\lambda
+(u3: T).(eq T w1 (THead (Bind Abbr) u3 t3))) (\lambda (u3: T).(subst0 i v1 u1
+u3)))).(ex2_ind T (\lambda (u3: T).(eq T w1 (THead (Bind Abbr) u3 t3)))
+(\lambda (u3: T).(subst0 i v1 u1 u3)) (or (pr0 w1 (THead (Bind Abbr) u2 w))
+(ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 (THead
+(Bind Abbr) u2 w) w2)))) (\lambda (x: T).(\lambda (H8: (eq T w1 (THead (Bind
+Abbr) x t3))).(\lambda (H9: (subst0 i v1 u1 x)).(eq_ind_r T (THead (Bind
+Abbr) x t3) (\lambda (t: T).(or (pr0 t (THead (Bind Abbr) u2 w)) (ex2 T
+(\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr)
+u2 w) w2))))) (or_ind (pr0 x u2) (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda
+(w2: T).(subst0 i v2 u2 w2))) (or (pr0 (THead (Bind Abbr) x t3) (THead (Bind
+Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2))
+(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (H10:
+(pr0 x u2)).(or_introl (pr0 (THead (Bind Abbr) x t3) (THead (Bind Abbr) u2
+w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2)) (\lambda (w2:
+T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (pr0_delta x u2 H10 t3 t4 H2 w
+H4))) (\lambda (H10: (ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2:
+T).(subst0 i v2 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda
+(w2: T).(subst0 i v2 u2 w2)) (or (pr0 (THead (Bind Abbr) x t3) (THead (Bind
+Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2))
+(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x0:
+T).(\lambda (H11: (pr0 x x0)).(\lambda (H12: (subst0 i v2 u2 x0)).(ex2_ind T
+(\lambda (t: T).(subst0 O x0 t4 t)) (\lambda (t: T).(subst0 (S (plus i O)) v2
+w t)) (or (pr0 (THead (Bind Abbr) x t3) (THead (Bind Abbr) u2 w)) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2)) (\lambda (w2: T).(subst0
+i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x1: T).(\lambda (H13: (subst0
+O x0 t4 x1)).(\lambda (H14: (subst0 (S (plus i O)) v2 w x1)).(let H15 \def
+(f_equal nat nat S (plus i O) i (sym_eq nat i (plus i O) (plus_n_O i))) in
+(let H16 \def (eq_ind nat (S (plus i O)) (\lambda (n: nat).(subst0 n v2 w
+x1)) H14 (S i) H15) in (or_intror (pr0 (THead (Bind Abbr) x t3) (THead (Bind
+Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2))
+(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (ex_intro2 T
+(\lambda (w2: T).(pr0 (THead (Bind Abbr) x t3) w2)) (\lambda (w2: T).(subst0
+i v2 (THead (Bind Abbr) u2 w) w2)) (THead (Bind Abbr) x0 x1) (pr0_delta x x0
+H11 t3 t4 H2 x1 H13) (subst0_both v2 u2 x0 i H12 (Bind Abbr) w x1 H16))))))))
+(subst0_subst0_back t4 w u2 O H4 x0 v2 i H12))))) H10)) (H1 v1 x i H9 v2 H6))
+w1 H8)))) H7)) (\lambda (H7: (ex2 T (\lambda (t5: T).(eq T w1 (THead (Bind
+Abbr) u1 t5))) (\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3
+t5)))).(ex2_ind T (\lambda (t5: T).(eq T w1 (THead (Bind Abbr) u1 t5)))
+(\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3 t5)) (or (pr0 w1 (THead
+(Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x: T).(\lambda (H8:
+(eq T w1 (THead (Bind Abbr) u1 x))).(\lambda (H9: (subst0 (s (Bind Abbr) i)
+v1 t3 x)).(eq_ind_r T (THead (Bind Abbr) u1 x) (\lambda (t: T).(or (pr0 t
+(THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2:
+T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))))) (or_ind (pr0 x t4) (ex2 T
+(\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind Abbr) i) v2 t4
+w2))) (or (pr0 (THead (Bind Abbr) u1 x) (THead (Bind Abbr) u2 w)) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Bind Abbr) u1 x) w2)) (\lambda (w2: T).(subst0
+i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (H10: (pr0 x t4)).(or_introl
+(pr0 (THead (Bind Abbr) u1 x) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Bind Abbr) u1 x) w2)) (\lambda (w2: T).(subst0 i v2 (THead
+(Bind Abbr) u2 w) w2))) (pr0_delta u1 u2 H0 x t4 H10 w H4))) (\lambda (H10:
+(ex2 T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Bind Abbr)
+i) v2 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2:
+T).(subst0 (s (Bind Abbr) i) v2 t4 w2)) (or (pr0 (THead (Bind Abbr) u1 x)
+(THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) u1
+x) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))))
+(\lambda (x0: T).(\lambda (H11: (pr0 x x0)).(\lambda (H12: (subst0 (s (Bind
+Abbr) i) v2 t4 x0)).(ex2_ind T (\lambda (t: T).(subst0 O u2 x0 t)) (\lambda
+(t: T).(subst0 (s (Bind Abbr) i) v2 w t)) (or (pr0 (THead (Bind Abbr) u1 x)
+(THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) u1
+x) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))))
+(\lambda (x1: T).(\lambda (H13: (subst0 O u2 x0 x1)).(\lambda (H14: (subst0
+(s (Bind Abbr) i) v2 w x1)).(or_intror (pr0 (THead (Bind Abbr) u1 x) (THead
+(Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) u1 x) w2))
+(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (ex_intro2 T
+(\lambda (w2: T).(pr0 (THead (Bind Abbr) u1 x) w2)) (\lambda (w2: T).(subst0
+i v2 (THead (Bind Abbr) u2 w) w2)) (THead (Bind Abbr) u2 x1) (pr0_delta u1 u2
+H0 x x0 H11 x1 H13) (subst0_snd (Bind Abbr) v2 x1 w i H14 u2))))))
+(subst0_confluence_neq t4 x0 v2 (s (Bind Abbr) i) H12 w u2 O H4 (sym_not_eq
+nat O (S i) (O_S i))))))) H10)) (H3 v1 x (s (Bind Abbr) i) H9 v2 H6)) w1
+H8)))) H7)) (\lambda (H7: (ex3_2 T T (\lambda (u3: T).(\lambda (t5: T).(eq T
+w1 (THead (Bind Abbr) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 i v1
+u1 u3))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3
+t5))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda (t5: T).(eq T w1 (THead
+(Bind Abbr) u3 t5)))) (\lambda (u3: T).(\lambda (_: T).(subst0 i v1 u1 u3)))
+(\lambda (_: T).(\lambda (t5: T).(subst0 (s (Bind Abbr) i) v1 t3 t5))) (or
+(pr0 w1 (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 w1 w2))
+(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x0:
+T).(\lambda (x1: T).(\lambda (H8: (eq T w1 (THead (Bind Abbr) x0
+x1))).(\lambda (H9: (subst0 i v1 u1 x0)).(\lambda (H10: (subst0 (s (Bind
+Abbr) i) v1 t3 x1)).(eq_ind_r T (THead (Bind Abbr) x0 x1) (\lambda (t: T).(or
+(pr0 t (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda
+(w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))))) (or_ind (pr0 x1 t4)
+(ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2: T).(subst0 (s (Bind Abbr)
+i) v2 t4 w2))) (or (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w))
+(ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2:
+T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (H11: (pr0 x1
+t4)).(or_ind (pr0 x0 u2) (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
+T).(subst0 i v2 u2 w2))) (or (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind
+Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2))
+(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (H12:
+(pr0 x0 u2)).(or_introl (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2
+w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2:
+T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (pr0_delta x0 u2 H12 x1 t4 H11
+w H4))) (\lambda (H12: (ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2:
+T).(subst0 i v2 u2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda
+(w2: T).(subst0 i v2 u2 w2)) (or (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind
+Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2))
+(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x:
+T).(\lambda (H13: (pr0 x0 x)).(\lambda (H14: (subst0 i v2 u2 x)).(ex2_ind T
+(\lambda (t: T).(subst0 O x t4 t)) (\lambda (t: T).(subst0 (S (plus i O)) v2
+w t)) (or (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0
+i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x2: T).(\lambda (H15: (subst0
+O x t4 x2)).(\lambda (H16: (subst0 (S (plus i O)) v2 w x2)).(let H17 \def
+(f_equal nat nat S (plus i O) i (sym_eq nat i (plus i O) (plus_n_O i))) in
+(let H18 \def (eq_ind nat (S (plus i O)) (\lambda (n: nat).(subst0 n v2 w
+x2)) H16 (S i) H17) in (or_intror (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind
+Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2))
+(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (ex_intro2 T
+(\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0
+i v2 (THead (Bind Abbr) u2 w) w2)) (THead (Bind Abbr) x x2) (pr0_delta x0 x
+H13 x1 t4 H11 x2 H15) (subst0_both v2 u2 x i H14 (Bind Abbr) w x2 H18))))))))
+(subst0_subst0_back t4 w u2 O H4 x v2 i H14))))) H12)) (H1 v1 x0 i H9 v2
+H6))) (\lambda (H11: (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2:
+T).(subst0 (s (Bind Abbr) i) v2 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x1
+w2)) (\lambda (w2: T).(subst0 (s (Bind Abbr) i) v2 t4 w2)) (or (pr0 (THead
+(Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0
+(THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind
+Abbr) u2 w) w2)))) (\lambda (x: T).(\lambda (H12: (pr0 x1 x)).(\lambda (H13:
+(subst0 (s (Bind Abbr) i) v2 t4 x)).(or_ind (pr0 x0 u2) (ex2 T (\lambda (w2:
+T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 u2 w2))) (or (pr0 (THead (Bind
+Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead
+(Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2
+w) w2)))) (\lambda (H14: (pr0 x0 u2)).(ex2_ind T (\lambda (t: T).(subst0 O u2
+x t)) (\lambda (t: T).(subst0 (s (Bind Abbr) i) v2 w t)) (or (pr0 (THead
+(Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0
+(THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind
+Abbr) u2 w) w2)))) (\lambda (x2: T).(\lambda (H15: (subst0 O u2 x
+x2)).(\lambda (H16: (subst0 (s (Bind Abbr) i) v2 w x2)).(or_intror (pr0
+(THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead
+(Bind Abbr) u2 w) w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr)
+x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))
+(THead (Bind Abbr) u2 x2) (pr0_delta x0 u2 H14 x1 x H12 x2 H15) (subst0_snd
+(Bind Abbr) v2 x2 w i H16 u2)))))) (subst0_confluence_neq t4 x v2 (s (Bind
+Abbr) i) H13 w u2 O H4 (sym_not_eq nat O (S i) (O_S i))))) (\lambda (H14:
+(ex2 T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 u2
+w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2
+u2 w2)) (or (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0
+i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda (x2: T).(\lambda (H15: (pr0 x0
+x2)).(\lambda (H16: (subst0 i v2 u2 x2)).(ex2_ind T (\lambda (t: T).(subst0 O
+x2 t4 t)) (\lambda (t: T).(subst0 (S (plus i O)) v2 w t)) (or (pr0 (THead
+(Bind Abbr) x0 x1) (THead (Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0
+(THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind
+Abbr) u2 w) w2)))) (\lambda (x3: T).(\lambda (H17: (subst0 O x2 t4
+x3)).(\lambda (H18: (subst0 (S (plus i O)) v2 w x3)).(let H19 \def (f_equal
+nat nat S (plus i O) i (sym_eq nat i (plus i O) (plus_n_O i))) in (let H20
+\def (eq_ind nat (S (plus i O)) (\lambda (n: nat).(subst0 n v2 w x3)) H18 (S
+i) H19) in (ex2_ind T (\lambda (t: T).(subst0 (s (Bind Abbr) i) v2 x3 t))
+(\lambda (t: T).(subst0 O x2 x t)) (or (pr0 (THead (Bind Abbr) x0 x1) (THead
+(Bind Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1)
+w2)) (\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2)))) (\lambda
+(x4: T).(\lambda (H21: (subst0 (s (Bind Abbr) i) v2 x3 x4)).(\lambda (H22:
+(subst0 O x2 x x4)).(or_intror (pr0 (THead (Bind Abbr) x0 x1) (THead (Bind
+Abbr) u2 w)) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2))
+(\lambda (w2: T).(subst0 i v2 (THead (Bind Abbr) u2 w) w2))) (ex_intro2 T
+(\lambda (w2: T).(pr0 (THead (Bind Abbr) x0 x1) w2)) (\lambda (w2: T).(subst0
+i v2 (THead (Bind Abbr) u2 w) w2)) (THead (Bind Abbr) x2 x4) (pr0_delta x0 x2
+H15 x1 x H12 x4 H22) (subst0_both v2 u2 x2 i H16 (Bind Abbr) w x4
+(subst0_trans x3 w v2 (s (Bind Abbr) i) H20 x4 H21)))))))
+(subst0_confluence_neq t4 x3 x2 O H17 x v2 (s (Bind Abbr) i) H13 (O_S
+i)))))))) (subst0_subst0_back t4 w u2 O H4 x2 v2 i H16))))) H14)) (H1 v1 x0 i
+H9 v2 H6))))) H11)) (H3 v1 x1 (s (Bind Abbr) i) H10 v2 H6)) w1 H8)))))) H7))
+(subst0_gen_head (Bind Abbr) v1 u1 t3 w1 i H5)))))))))))))))))) (\lambda (b:
+B).(\lambda (H0: (not (eq B b Abst))).(\lambda (t3: T).(\lambda (t4:
+T).(\lambda (H1: (pr0 t3 t4)).(\lambda (H2: ((\forall (v1: T).(\forall (w1:
+T).(\forall (i: nat).((subst0 i v1 t3 w1) \to (\forall (v2: T).((pr0 v1 v2)
+\to (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst0 i v2 t4 w2)))))))))))).(\lambda (u: T).(\lambda (v1: T).(\lambda
+(w1: T).(\lambda (i: nat).(\lambda (H3: (subst0 i v1 (THead (Bind b) u (lift
+(S O) O t3)) w1)).(\lambda (v2: T).(\lambda (H4: (pr0 v1 v2)).(or3_ind (ex2 T
+(\lambda (u2: T).(eq T w1 (THead (Bind b) u2 (lift (S O) O t3)))) (\lambda
+(u2: T).(subst0 i v1 u u2))) (ex2 T (\lambda (t5: T).(eq T w1 (THead (Bind b)
+u t5))) (\lambda (t5: T).(subst0 (s (Bind b) i) v1 (lift (S O) O t3) t5)))
+(ex3_2 T T (\lambda (u2: T).(\lambda (t5: T).(eq T w1 (THead (Bind b) u2
+t5)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_:
+T).(\lambda (t5: T).(subst0 (s (Bind b) i) v1 (lift (S O) O t3) t5)))) (or
+(pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i
+v2 t4 w2)))) (\lambda (H5: (ex2 T (\lambda (u2: T).(eq T w1 (THead (Bind b)
+u2 (lift (S O) O t3)))) (\lambda (u2: T).(subst0 i v1 u u2)))).(ex2_ind T
+(\lambda (u2: T).(eq T w1 (THead (Bind b) u2 (lift (S O) O t3)))) (\lambda
+(u2: T).(subst0 i v1 u u2)) (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1
+w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (x: T).(\lambda (H6:
+(eq T w1 (THead (Bind b) x (lift (S O) O t3)))).(\lambda (_: (subst0 i v1 u
+x)).(eq_ind_r T (THead (Bind b) x (lift (S O) O t3)) (\lambda (t: T).(or (pr0
+t t4) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 t4
+w2))))) (or_introl (pr0 (THead (Bind b) x (lift (S O) O t3)) t4) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Bind b) x (lift (S O) O t3)) w2)) (\lambda (w2:
+T).(subst0 i v2 t4 w2))) (pr0_zeta b H0 t3 t4 H1 x)) w1 H6)))) H5)) (\lambda
+(H5: (ex2 T (\lambda (t5: T).(eq T w1 (THead (Bind b) u t5))) (\lambda (t5:
+T).(subst0 (s (Bind b) i) v1 (lift (S O) O t3) t5)))).(ex2_ind T (\lambda
+(t5: T).(eq T w1 (THead (Bind b) u t5))) (\lambda (t5: T).(subst0 (s (Bind b)
+i) v1 (lift (S O) O t3) t5)) (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1
+w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (x: T).(\lambda (H6:
+(eq T w1 (THead (Bind b) u x))).(\lambda (H7: (subst0 (s (Bind b) i) v1 (lift
+(S O) O t3) x)).(ex2_ind T (\lambda (t5: T).(eq T x (lift (S O) O t5)))
+(\lambda (t5: T).(subst0 (minus (s (Bind b) i) (S O)) v1 t3 t5)) (or (pr0 w1
+t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4
+w2)))) (\lambda (x0: T).(\lambda (H8: (eq T x (lift (S O) O x0))).(\lambda
+(H9: (subst0 (minus (s (Bind b) i) (S O)) v1 t3 x0)).(eq_ind_r T (THead (Bind
+b) u x) (\lambda (t: T).(or (pr0 t t4) (ex2 T (\lambda (w2: T).(pr0 t w2))
+(\lambda (w2: T).(subst0 i v2 t4 w2))))) (eq_ind_r T (lift (S O) O x0)
+(\lambda (t: T).(or (pr0 (THead (Bind b) u t) t4) (ex2 T (\lambda (w2:
+T).(pr0 (THead (Bind b) u t) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))))
+(let H10 \def (eq_ind_r nat (minus i O) (\lambda (n: nat).(subst0 n v1 t3
+x0)) H9 i (minus_n_O i)) in (or_ind (pr0 x0 t4) (ex2 T (\lambda (w2: T).(pr0
+x0 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (or (pr0 (THead (Bind b) u
+(lift (S O) O x0)) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind b) u (lift
+(S O) O x0)) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (H11: (pr0
+x0 t4)).(or_introl (pr0 (THead (Bind b) u (lift (S O) O x0)) t4) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Bind b) u (lift (S O) O x0)) w2)) (\lambda (w2:
+T).(subst0 i v2 t4 w2))) (pr0_zeta b H0 x0 t4 H11 u))) (\lambda (H11: (ex2 T
+(\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2 t4
+w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x0 w2)) (\lambda (w2: T).(subst0 i v2
+t4 w2)) (or (pr0 (THead (Bind b) u (lift (S O) O x0)) t4) (ex2 T (\lambda
+(w2: T).(pr0 (THead (Bind b) u (lift (S O) O x0)) w2)) (\lambda (w2:
+T).(subst0 i v2 t4 w2)))) (\lambda (x1: T).(\lambda (H12: (pr0 x0
+x1)).(\lambda (H13: (subst0 i v2 t4 x1)).(or_intror (pr0 (THead (Bind b) u
+(lift (S O) O x0)) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind b) u (lift
+(S O) O x0)) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (ex_intro2 T
+(\lambda (w2: T).(pr0 (THead (Bind b) u (lift (S O) O x0)) w2)) (\lambda (w2:
+T).(subst0 i v2 t4 w2)) x1 (pr0_zeta b H0 x0 x1 H12 u) H13))))) H11)) (H2 v1
+x0 i H10 v2 H4))) x H8) w1 H6)))) (subst0_gen_lift_ge v1 t3 x (s (Bind b) i)
+(S O) O H7 (le_S_n (S O) (S i) (lt_le_S (S O) (S (S i)) (lt_n_S O (S i)
+(le_lt_n_Sm O i (le_O_n i)))))))))) H5)) (\lambda (H5: (ex3_2 T T (\lambda
+(u2: T).(\lambda (t5: T).(eq T w1 (THead (Bind b) u2 t5)))) (\lambda (u2:
+T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_: T).(\lambda (t5:
+T).(subst0 (s (Bind b) i) v1 (lift (S O) O t3) t5))))).(ex3_2_ind T T
+(\lambda (u2: T).(\lambda (t5: T).(eq T w1 (THead (Bind b) u2 t5)))) (\lambda
+(u2: T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_: T).(\lambda (t5:
+T).(subst0 (s (Bind b) i) v1 (lift (S O) O t3) t5))) (or (pr0 w1 t4) (ex2 T
+(\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))))
+(\lambda (x0: T).(\lambda (x1: T).(\lambda (H6: (eq T w1 (THead (Bind b) x0
+x1))).(\lambda (_: (subst0 i v1 u x0)).(\lambda (H8: (subst0 (s (Bind b) i)
+v1 (lift (S O) O t3) x1)).(ex2_ind T (\lambda (t5: T).(eq T x1 (lift (S O) O
+t5))) (\lambda (t5: T).(subst0 (minus (s (Bind b) i) (S O)) v1 t3 t5)) (or
+(pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i
+v2 t4 w2)))) (\lambda (x: T).(\lambda (H9: (eq T x1 (lift (S O) O
+x))).(\lambda (H10: (subst0 (minus (s (Bind b) i) (S O)) v1 t3 x)).(eq_ind_r
+T (THead (Bind b) x0 x1) (\lambda (t: T).(or (pr0 t t4) (ex2 T (\lambda (w2:
+T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))))) (eq_ind_r T (lift (S
+O) O x) (\lambda (t: T).(or (pr0 (THead (Bind b) x0 t) t4) (ex2 T (\lambda
+(w2: T).(pr0 (THead (Bind b) x0 t) w2)) (\lambda (w2: T).(subst0 i v2 t4
+w2))))) (let H11 \def (eq_ind_r nat (minus i O) (\lambda (n: nat).(subst0 n
+v1 t3 x)) H10 i (minus_n_O i)) in (or_ind (pr0 x t4) (ex2 T (\lambda (w2:
+T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (or (pr0 (THead (Bind
+b) x0 (lift (S O) O x)) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Bind b) x0
+(lift (S O) O x)) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (H12:
+(pr0 x t4)).(or_introl (pr0 (THead (Bind b) x0 (lift (S O) O x)) t4) (ex2 T
+(\lambda (w2: T).(pr0 (THead (Bind b) x0 (lift (S O) O x)) w2)) (\lambda (w2:
+T).(subst0 i v2 t4 w2))) (pr0_zeta b H0 x t4 H12 x0))) (\lambda (H12: (ex2 T
+(\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))).(ex2_ind
+T (\lambda (w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)) (or (pr0
+(THead (Bind b) x0 (lift (S O) O x)) t4) (ex2 T (\lambda (w2: T).(pr0 (THead
+(Bind b) x0 (lift (S O) O x)) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))))
+(\lambda (x2: T).(\lambda (H13: (pr0 x x2)).(\lambda (H14: (subst0 i v2 t4
+x2)).(or_intror (pr0 (THead (Bind b) x0 (lift (S O) O x)) t4) (ex2 T (\lambda
+(w2: T).(pr0 (THead (Bind b) x0 (lift (S O) O x)) w2)) (\lambda (w2:
+T).(subst0 i v2 t4 w2))) (ex_intro2 T (\lambda (w2: T).(pr0 (THead (Bind b)
+x0 (lift (S O) O x)) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)) x2 (pr0_zeta
+b H0 x x2 H13 x0) H14))))) H12)) (H2 v1 x i H11 v2 H4))) x1 H9) w1 H6))))
+(subst0_gen_lift_ge v1 t3 x1 (s (Bind b) i) (S O) O H8 (le_S_n (S O) (S i)
+(lt_le_S (S O) (S (S i)) (lt_n_S O (S i) (le_lt_n_Sm O i (le_O_n
+i)))))))))))) H5)) (subst0_gen_head (Bind b) v1 u (lift (S O) O t3) w1 i
+H3))))))))))))))) (\lambda (t3: T).(\lambda (t4: T).(\lambda (H0: (pr0 t3
+t4)).(\lambda (H1: ((\forall (v1: T).(\forall (w1: T).(\forall (i:
+nat).((subst0 i v1 t3 w1) \to (\forall (v2: T).((pr0 v1 v2) \to (or (pr0 w1
+t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4
+w2)))))))))))).(\lambda (u: T).(\lambda (v1: T).(\lambda (w1: T).(\lambda (i:
+nat).(\lambda (H2: (subst0 i v1 (THead (Flat Cast) u t3) w1)).(\lambda (v2:
+T).(\lambda (H3: (pr0 v1 v2)).(or3_ind (ex2 T (\lambda (u2: T).(eq T w1
+(THead (Flat Cast) u2 t3))) (\lambda (u2: T).(subst0 i v1 u u2))) (ex2 T
+(\lambda (t5: T).(eq T w1 (THead (Flat Cast) u t5))) (\lambda (t5: T).(subst0
+(s (Flat Cast) i) v1 t3 t5))) (ex3_2 T T (\lambda (u2: T).(\lambda (t5:
+T).(eq T w1 (THead (Flat Cast) u2 t5)))) (\lambda (u2: T).(\lambda (_:
+T).(subst0 i v1 u u2))) (\lambda (_: T).(\lambda (t5: T).(subst0 (s (Flat
+Cast) i) v1 t3 t5)))) (or (pr0 w1 t4) (ex2 T (\lambda (w2: T).(pr0 w1 w2))
+(\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (H4: (ex2 T (\lambda (u2:
+T).(eq T w1 (THead (Flat Cast) u2 t3))) (\lambda (u2: T).(subst0 i v1 u
+u2)))).(ex2_ind T (\lambda (u2: T).(eq T w1 (THead (Flat Cast) u2 t3)))
+(\lambda (u2: T).(subst0 i v1 u u2)) (or (pr0 w1 t4) (ex2 T (\lambda (w2:
+T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (x:
+T).(\lambda (H5: (eq T w1 (THead (Flat Cast) x t3))).(\lambda (_: (subst0 i
+v1 u x)).(eq_ind_r T (THead (Flat Cast) x t3) (\lambda (t: T).(or (pr0 t t4)
+(ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))))
+(or_introl (pr0 (THead (Flat Cast) x t3) t4) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Cast) x t3) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))
+(pr0_epsilon t3 t4 H0 x)) w1 H5)))) H4)) (\lambda (H4: (ex2 T (\lambda (t5:
+T).(eq T w1 (THead (Flat Cast) u t5))) (\lambda (t5: T).(subst0 (s (Flat
+Cast) i) v1 t3 t5)))).(ex2_ind T (\lambda (t5: T).(eq T w1 (THead (Flat Cast)
+u t5))) (\lambda (t5: T).(subst0 (s (Flat Cast) i) v1 t3 t5)) (or (pr0 w1 t4)
+(ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))))
+(\lambda (x: T).(\lambda (H5: (eq T w1 (THead (Flat Cast) u x))).(\lambda
+(H6: (subst0 (s (Flat Cast) i) v1 t3 x)).(eq_ind_r T (THead (Flat Cast) u x)
+(\lambda (t: T).(or (pr0 t t4) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda
+(w2: T).(subst0 i v2 t4 w2))))) (or_ind (pr0 x t4) (ex2 T (\lambda (w2:
+T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Flat Cast) i) v2 t4 w2))) (or
+(pr0 (THead (Flat Cast) u x) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat
+Cast) u x) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (H7: (pr0 x
+t4)).(or_introl (pr0 (THead (Flat Cast) u x) t4) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Cast) u x) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))
+(pr0_epsilon x t4 H7 u))) (\lambda (H7: (ex2 T (\lambda (w2: T).(pr0 x w2))
+(\lambda (w2: T).(subst0 (s (Flat Cast) i) v2 t4 w2)))).(ex2_ind T (\lambda
+(w2: T).(pr0 x w2)) (\lambda (w2: T).(subst0 (s (Flat Cast) i) v2 t4 w2)) (or
+(pr0 (THead (Flat Cast) u x) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat
+Cast) u x) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (x0:
+T).(\lambda (H8: (pr0 x x0)).(\lambda (H9: (subst0 (s (Flat Cast) i) v2 t4
+x0)).(or_intror (pr0 (THead (Flat Cast) u x) t4) (ex2 T (\lambda (w2: T).(pr0
+(THead (Flat Cast) u x) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))
+(ex_intro2 T (\lambda (w2: T).(pr0 (THead (Flat Cast) u x) w2)) (\lambda (w2:
+T).(subst0 i v2 t4 w2)) x0 (pr0_epsilon x x0 H8 u) H9))))) H7)) (H1 v1 x (s
+(Flat Cast) i) H6 v2 H3)) w1 H5)))) H4)) (\lambda (H4: (ex3_2 T T (\lambda
+(u2: T).(\lambda (t5: T).(eq T w1 (THead (Flat Cast) u2 t5)))) (\lambda (u2:
+T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_: T).(\lambda (t5:
+T).(subst0 (s (Flat Cast) i) v1 t3 t5))))).(ex3_2_ind T T (\lambda (u2:
+T).(\lambda (t5: T).(eq T w1 (THead (Flat Cast) u2 t5)))) (\lambda (u2:
+T).(\lambda (_: T).(subst0 i v1 u u2))) (\lambda (_: T).(\lambda (t5:
+T).(subst0 (s (Flat Cast) i) v1 t3 t5))) (or (pr0 w1 t4) (ex2 T (\lambda (w2:
+T).(pr0 w1 w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (x0:
+T).(\lambda (x1: T).(\lambda (H5: (eq T w1 (THead (Flat Cast) x0
+x1))).(\lambda (_: (subst0 i v1 u x0)).(\lambda (H7: (subst0 (s (Flat Cast)
+i) v1 t3 x1)).(eq_ind_r T (THead (Flat Cast) x0 x1) (\lambda (t: T).(or (pr0
+t t4) (ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst0 i v2 t4
+w2))))) (or_ind (pr0 x1 t4) (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda
+(w2: T).(subst0 (s (Flat Cast) i) v2 t4 w2))) (or (pr0 (THead (Flat Cast) x0
+x1) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Cast) x0 x1) w2)) (\lambda
+(w2: T).(subst0 i v2 t4 w2)))) (\lambda (H8: (pr0 x1 t4)).(or_introl (pr0
+(THead (Flat Cast) x0 x1) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Cast)
+x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (pr0_epsilon x1 t4 H8
+x0))) (\lambda (H8: (ex2 T (\lambda (w2: T).(pr0 x1 w2)) (\lambda (w2:
+T).(subst0 (s (Flat Cast) i) v2 t4 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 x1
+w2)) (\lambda (w2: T).(subst0 (s (Flat Cast) i) v2 t4 w2)) (or (pr0 (THead
+(Flat Cast) x0 x1) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat Cast) x0 x1)
+w2)) (\lambda (w2: T).(subst0 i v2 t4 w2)))) (\lambda (x: T).(\lambda (H9:
+(pr0 x1 x)).(\lambda (H10: (subst0 (s (Flat Cast) i) v2 t4 x)).(or_intror
+(pr0 (THead (Flat Cast) x0 x1) t4) (ex2 T (\lambda (w2: T).(pr0 (THead (Flat
+Cast) x0 x1) w2)) (\lambda (w2: T).(subst0 i v2 t4 w2))) (ex_intro2 T
+(\lambda (w2: T).(pr0 (THead (Flat Cast) x0 x1) w2)) (\lambda (w2: T).(subst0
+i v2 t4 w2)) x (pr0_epsilon x1 x H9 x0) H10))))) H8)) (H1 v1 x1 (s (Flat
+Cast) i) H7 v2 H3)) w1 H5)))))) H4)) (subst0_gen_head (Flat Cast) v1 u t3 w1
+i H2))))))))))))) t1 t2 H))).
+
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/LambdaDelta/pr0/subst1".
+
+include "pr0/props.ma".
+
+include "subst1/defs.ma".
+
+theorem pr0_delta1:
+ \forall (u1: T).(\forall (u2: T).((pr0 u1 u2) \to (\forall (t1: T).(\forall
+(t2: T).((pr0 t1 t2) \to (\forall (w: T).((subst1 O u2 t2 w) \to (pr0 (THead
+(Bind Abbr) u1 t1) (THead (Bind Abbr) u2 w)))))))))
+\def
+ \lambda (u1: T).(\lambda (u2: T).(\lambda (H: (pr0 u1 u2)).(\lambda (t1:
+T).(\lambda (t2: T).(\lambda (H0: (pr0 t1 t2)).(\lambda (w: T).(\lambda (H1:
+(subst1 O u2 t2 w)).(subst1_ind O u2 t2 (\lambda (t: T).(pr0 (THead (Bind
+Abbr) u1 t1) (THead (Bind Abbr) u2 t))) (pr0_comp u1 u2 H t1 t2 H0 (Bind
+Abbr)) (\lambda (t0: T).(\lambda (H2: (subst0 O u2 t2 t0)).(pr0_delta u1 u2 H
+t1 t2 H0 t0 H2))) w H1)))))))).
+
+theorem pr0_subst1_back:
+ \forall (u2: T).(\forall (t1: T).(\forall (t2: T).(\forall (i: nat).((subst1
+i u2 t1 t2) \to (\forall (u1: T).((pr0 u1 u2) \to (ex2 T (\lambda (t:
+T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t t2)))))))))
+\def
+ \lambda (u2: T).(\lambda (t1: T).(\lambda (t2: T).(\lambda (i: nat).(\lambda
+(H: (subst1 i u2 t1 t2)).(subst1_ind i u2 t1 (\lambda (t: T).(\forall (u1:
+T).((pr0 u1 u2) \to (ex2 T (\lambda (t0: T).(subst1 i u1 t1 t0)) (\lambda
+(t0: T).(pr0 t0 t)))))) (\lambda (u1: T).(\lambda (_: (pr0 u1 u2)).(ex_intro2
+T (\lambda (t: T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t t1)) t1
+(subst1_refl i u1 t1) (pr0_refl t1)))) (\lambda (t0: T).(\lambda (H0: (subst0
+i u2 t1 t0)).(\lambda (u1: T).(\lambda (H1: (pr0 u1 u2)).(ex2_ind T (\lambda
+(t: T).(subst0 i u1 t1 t)) (\lambda (t: T).(pr0 t t0)) (ex2 T (\lambda (t:
+T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t t0))) (\lambda (x: T).(\lambda
+(H2: (subst0 i u1 t1 x)).(\lambda (H3: (pr0 x t0)).(ex_intro2 T (\lambda (t:
+T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t t0)) x (subst1_single i u1 t1 x
+H2) H3)))) (pr0_subst0_back u2 t1 t0 i H0 u1 H1)))))) t2 H))))).
+
+theorem pr0_subst1_fwd:
+ \forall (u2: T).(\forall (t1: T).(\forall (t2: T).(\forall (i: nat).((subst1
+i u2 t1 t2) \to (\forall (u1: T).((pr0 u2 u1) \to (ex2 T (\lambda (t:
+T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t2 t)))))))))
+\def
+ \lambda (u2: T).(\lambda (t1: T).(\lambda (t2: T).(\lambda (i: nat).(\lambda
+(H: (subst1 i u2 t1 t2)).(subst1_ind i u2 t1 (\lambda (t: T).(\forall (u1:
+T).((pr0 u2 u1) \to (ex2 T (\lambda (t0: T).(subst1 i u1 t1 t0)) (\lambda
+(t0: T).(pr0 t t0)))))) (\lambda (u1: T).(\lambda (_: (pr0 u2 u1)).(ex_intro2
+T (\lambda (t: T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t1 t)) t1
+(subst1_refl i u1 t1) (pr0_refl t1)))) (\lambda (t0: T).(\lambda (H0: (subst0
+i u2 t1 t0)).(\lambda (u1: T).(\lambda (H1: (pr0 u2 u1)).(ex2_ind T (\lambda
+(t: T).(subst0 i u1 t1 t)) (\lambda (t: T).(pr0 t0 t)) (ex2 T (\lambda (t:
+T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t0 t))) (\lambda (x: T).(\lambda
+(H2: (subst0 i u1 t1 x)).(\lambda (H3: (pr0 t0 x)).(ex_intro2 T (\lambda (t:
+T).(subst1 i u1 t1 t)) (\lambda (t: T).(pr0 t0 t)) x (subst1_single i u1 t1 x
+H2) H3)))) (pr0_subst0_fwd u2 t1 t0 i H0 u1 H1)))))) t2 H))))).
+
+theorem pr0_subst1:
+ \forall (t1: T).(\forall (t2: T).((pr0 t1 t2) \to (\forall (v1: T).(\forall
+(w1: T).(\forall (i: nat).((subst1 i v1 t1 w1) \to (\forall (v2: T).((pr0 v1
+v2) \to (ex2 T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst1 i v2 t2
+w2)))))))))))
+\def
+ \lambda (t1: T).(\lambda (t2: T).(\lambda (H: (pr0 t1 t2)).(\lambda (v1:
+T).(\lambda (w1: T).(\lambda (i: nat).(\lambda (H0: (subst1 i v1 t1
+w1)).(subst1_ind i v1 t1 (\lambda (t: T).(\forall (v2: T).((pr0 v1 v2) \to
+(ex2 T (\lambda (w2: T).(pr0 t w2)) (\lambda (w2: T).(subst1 i v2 t2 w2))))))
+(\lambda (v2: T).(\lambda (_: (pr0 v1 v2)).(ex_intro2 T (\lambda (w2: T).(pr0
+t1 w2)) (\lambda (w2: T).(subst1 i v2 t2 w2)) t2 H (subst1_refl i v2 t2))))
+(\lambda (t0: T).(\lambda (H1: (subst0 i v1 t1 t0)).(\lambda (v2: T).(\lambda
+(H2: (pr0 v1 v2)).(or_ind (pr0 t0 t2) (ex2 T (\lambda (w2: T).(pr0 t0 w2))
+(\lambda (w2: T).(subst0 i v2 t2 w2))) (ex2 T (\lambda (w2: T).(pr0 t0 w2))
+(\lambda (w2: T).(subst1 i v2 t2 w2))) (\lambda (H3: (pr0 t0 t2)).(ex_intro2
+T (\lambda (w2: T).(pr0 t0 w2)) (\lambda (w2: T).(subst1 i v2 t2 w2)) t2 H3
+(subst1_refl i v2 t2))) (\lambda (H3: (ex2 T (\lambda (w2: T).(pr0 t0 w2))
+(\lambda (w2: T).(subst0 i v2 t2 w2)))).(ex2_ind T (\lambda (w2: T).(pr0 t0
+w2)) (\lambda (w2: T).(subst0 i v2 t2 w2)) (ex2 T (\lambda (w2: T).(pr0 t0
+w2)) (\lambda (w2: T).(subst1 i v2 t2 w2))) (\lambda (x: T).(\lambda (H4:
+(pr0 t0 x)).(\lambda (H5: (subst0 i v2 t2 x)).(ex_intro2 T (\lambda (w2:
+T).(pr0 t0 w2)) (\lambda (w2: T).(subst1 i v2 t2 w2)) x H4 (subst1_single i
+v2 t2 x H5))))) H3)) (pr0_subst0 t1 t2 H v1 t0 i H1 v2 H2)))))) w1 H0))))))).
+
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/LambdaDelta/pr1/defs".
+
+include "pr0/defs.ma".
+
+inductive pr1: T \to (T \to Prop) \def
+| pr1_r: \forall (t: T).(pr1 t t)
+| pr1_u: \forall (t2: T).(\forall (t1: T).((pr0 t1 t2) \to (\forall (t3:
+T).((pr1 t2 t3) \to (pr1 t1 t3))))).
+
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/LambdaDelta/pr1/pr1".
+
+include "pr1/props.ma".
+
+include "pr0/pr0.ma".
+
+theorem pr1_strip:
+ \forall (t0: T).(\forall (t1: T).((pr1 t0 t1) \to (\forall (t2: T).((pr0 t0
+t2) \to (ex2 T (\lambda (t: T).(pr1 t1 t)) (\lambda (t: T).(pr1 t2 t)))))))
+\def
+ \lambda (t0: T).(\lambda (t1: T).(\lambda (H: (pr1 t0 t1)).(pr1_ind (\lambda
+(t: T).(\lambda (t2: T).(\forall (t3: T).((pr0 t t3) \to (ex2 T (\lambda (t4:
+T).(pr1 t2 t4)) (\lambda (t4: T).(pr1 t3 t4))))))) (\lambda (t: T).(\lambda
+(t2: T).(\lambda (H0: (pr0 t t2)).(ex_intro2 T (\lambda (t3: T).(pr1 t t3))
+(\lambda (t3: T).(pr1 t2 t3)) t2 (pr1_pr0 t t2 H0) (pr1_r t2))))) (\lambda
+(t2: T).(\lambda (t3: T).(\lambda (H0: (pr0 t3 t2)).(\lambda (t4: T).(\lambda
+(_: (pr1 t2 t4)).(\lambda (H2: ((\forall (t5: T).((pr0 t2 t5) \to (ex2 T
+(\lambda (t: T).(pr1 t4 t)) (\lambda (t: T).(pr1 t5 t))))))).(\lambda (t5:
+T).(\lambda (H3: (pr0 t3 t5)).(ex2_ind T (\lambda (t: T).(pr0 t5 t)) (\lambda
+(t: T).(pr0 t2 t)) (ex2 T (\lambda (t: T).(pr1 t4 t)) (\lambda (t: T).(pr1 t5
+t))) (\lambda (x: T).(\lambda (H4: (pr0 t5 x)).(\lambda (H5: (pr0 t2
+x)).(ex2_ind T (\lambda (t: T).(pr1 t4 t)) (\lambda (t: T).(pr1 x t)) (ex2 T
+(\lambda (t: T).(pr1 t4 t)) (\lambda (t: T).(pr1 t5 t))) (\lambda (x0:
+T).(\lambda (H6: (pr1 t4 x0)).(\lambda (H7: (pr1 x x0)).(ex_intro2 T (\lambda
+(t: T).(pr1 t4 t)) (\lambda (t: T).(pr1 t5 t)) x0 H6 (pr1_u x t5 H4 x0
+H7))))) (H2 x H5))))) (pr0_confluence t3 t5 H3 t2 H0)))))))))) t0 t1 H))).
+
+theorem pr1_confluence:
+ \forall (t0: T).(\forall (t1: T).((pr1 t0 t1) \to (\forall (t2: T).((pr1 t0
+t2) \to (ex2 T (\lambda (t: T).(pr1 t1 t)) (\lambda (t: T).(pr1 t2 t)))))))
+\def
+ \lambda (t0: T).(\lambda (t1: T).(\lambda (H: (pr1 t0 t1)).(pr1_ind (\lambda
+(t: T).(\lambda (t2: T).(\forall (t3: T).((pr1 t t3) \to (ex2 T (\lambda (t4:
+T).(pr1 t2 t4)) (\lambda (t4: T).(pr1 t3 t4))))))) (\lambda (t: T).(\lambda
+(t2: T).(\lambda (H0: (pr1 t t2)).(ex_intro2 T (\lambda (t3: T).(pr1 t t3))
+(\lambda (t3: T).(pr1 t2 t3)) t2 H0 (pr1_r t2))))) (\lambda (t2: T).(\lambda
+(t3: T).(\lambda (H0: (pr0 t3 t2)).(\lambda (t4: T).(\lambda (_: (pr1 t2
+t4)).(\lambda (H2: ((\forall (t5: T).((pr1 t2 t5) \to (ex2 T (\lambda (t:
+T).(pr1 t4 t)) (\lambda (t: T).(pr1 t5 t))))))).(\lambda (t5: T).(\lambda
+(H3: (pr1 t3 t5)).(ex2_ind T (\lambda (t: T).(pr1 t5 t)) (\lambda (t: T).(pr1
+t2 t)) (ex2 T (\lambda (t: T).(pr1 t4 t)) (\lambda (t: T).(pr1 t5 t)))
+(\lambda (x: T).(\lambda (H4: (pr1 t5 x)).(\lambda (H5: (pr1 t2 x)).(ex2_ind
+T (\lambda (t: T).(pr1 t4 t)) (\lambda (t: T).(pr1 x t)) (ex2 T (\lambda (t:
+T).(pr1 t4 t)) (\lambda (t: T).(pr1 t5 t))) (\lambda (x0: T).(\lambda (H6:
+(pr1 t4 x0)).(\lambda (H7: (pr1 x x0)).(ex_intro2 T (\lambda (t: T).(pr1 t4
+t)) (\lambda (t: T).(pr1 t5 t)) x0 H6 (pr1_t x t5 H4 x0 H7))))) (H2 x H5)))))
+(pr1_strip t3 t5 H3 t2 H0)))))))))) t0 t1 H))).
+
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/LambdaDelta/pr1/props".
+
+include "pr1/defs.ma".
+
+theorem pr1_pr0:
+ \forall (t1: T).(\forall (t2: T).((pr0 t1 t2) \to (pr1 t1 t2)))
+\def
+ \lambda (t1: T).(\lambda (t2: T).(\lambda (H: (pr0 t1 t2)).(pr1_u t2 t1 H t2
+(pr1_r t2)))).
+
+theorem pr1_t:
+ \forall (t2: T).(\forall (t1: T).((pr1 t1 t2) \to (\forall (t3: T).((pr1 t2
+t3) \to (pr1 t1 t3)))))
+\def
+ \lambda (t2: T).(\lambda (t1: T).(\lambda (H: (pr1 t1 t2)).(pr1_ind (\lambda
+(t: T).(\lambda (t0: T).(\forall (t3: T).((pr1 t0 t3) \to (pr1 t t3)))))
+(\lambda (t: T).(\lambda (t3: T).(\lambda (H0: (pr1 t t3)).H0))) (\lambda
+(t0: T).(\lambda (t3: T).(\lambda (H0: (pr0 t3 t0)).(\lambda (t4: T).(\lambda
+(_: (pr1 t0 t4)).(\lambda (H2: ((\forall (t5: T).((pr1 t4 t5) \to (pr1 t0
+t5))))).(\lambda (t5: T).(\lambda (H3: (pr1 t4 t5)).(pr1_u t0 t3 H0 t5 (H2 t5
+H3)))))))))) t1 t2 H))).
+
+theorem pr1_head_1:
+ \forall (u1: T).(\forall (u2: T).((pr1 u1 u2) \to (\forall (t: T).(\forall
+(k: K).(pr1 (THead k u1 t) (THead k u2 t))))))
+\def
+ \lambda (u1: T).(\lambda (u2: T).(\lambda (H: (pr1 u1 u2)).(\lambda (t:
+T).(\lambda (k: K).(pr1_ind (\lambda (t0: T).(\lambda (t1: T).(pr1 (THead k
+t0 t) (THead k t1 t)))) (\lambda (t0: T).(pr1_r (THead k t0 t))) (\lambda
+(t2: T).(\lambda (t1: T).(\lambda (H0: (pr0 t1 t2)).(\lambda (t3: T).(\lambda
+(_: (pr1 t2 t3)).(\lambda (H2: (pr1 (THead k t2 t) (THead k t3 t))).(pr1_u
+(THead k t2 t) (THead k t1 t) (pr0_comp t1 t2 H0 t t (pr0_refl t) k) (THead k
+t3 t) H2))))))) u1 u2 H))))).
+
+theorem pr1_head_2:
+ \forall (t1: T).(\forall (t2: T).((pr1 t1 t2) \to (\forall (u: T).(\forall
+(k: K).(pr1 (THead k u t1) (THead k u t2))))))
+\def
+ \lambda (t1: T).(\lambda (t2: T).(\lambda (H: (pr1 t1 t2)).(\lambda (u:
+T).(\lambda (k: K).(pr1_ind (\lambda (t: T).(\lambda (t0: T).(pr1 (THead k u
+t) (THead k u t0)))) (\lambda (t: T).(pr1_r (THead k u t))) (\lambda (t0:
+T).(\lambda (t3: T).(\lambda (H0: (pr0 t3 t0)).(\lambda (t4: T).(\lambda (_:
+(pr1 t0 t4)).(\lambda (H2: (pr1 (THead k u t0) (THead k u t4))).(pr1_u (THead
+k u t0) (THead k u t3) (pr0_comp u u (pr0_refl u) t3 t0 H0 k) (THead k u t4)
+H2))))))) t1 t2 H))))).
+
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/LambdaDelta/pr2/clen".
+
+include "pr2/props.ma".
+
+include "clen/getl.ma".
+
+theorem pr2_gen_ctail:
+ \forall (k: K).(\forall (c: C).(\forall (u: T).(\forall (t1: T).(\forall
+(t2: T).((pr2 (CTail k u c) t1 t2) \to (or (pr2 c t1 t2) (ex3 T (\lambda (_:
+T).(eq K k (Bind Abbr))) (\lambda (t: T).(pr0 t1 t)) (\lambda (t: T).(subst0
+(clen c) u t t2)))))))))
+\def
+ \lambda (k: K).(\lambda (c: C).(\lambda (u: T).(\lambda (t1: T).(\lambda
+(t2: T).(\lambda (H: (pr2 (CTail k u c) t1 t2)).(insert_eq C (CTail k u c)
+(\lambda (c0: C).(pr2 c0 t1 t2)) (or (pr2 c t1 t2) (ex3 T (\lambda (_: T).(eq
+K k (Bind Abbr))) (\lambda (t: T).(pr0 t1 t)) (\lambda (t: T).(subst0 (clen
+c) u t t2)))) (\lambda (y: C).(\lambda (H0: (pr2 y t1 t2)).(pr2_ind (\lambda
+(c0: C).(\lambda (t: T).(\lambda (t0: T).((eq C c0 (CTail k u c)) \to (or
+(pr2 c t t0) (ex3 T (\lambda (_: T).(eq K k (Bind Abbr))) (\lambda (t3:
+T).(pr0 t t3)) (\lambda (t3: T).(subst0 (clen c) u t3 t0)))))))) (\lambda
+(c0: C).(\lambda (t3: T).(\lambda (t4: T).(\lambda (H1: (pr0 t3 t4)).(\lambda
+(_: (eq C c0 (CTail k u c))).(or_introl (pr2 c t3 t4) (ex3 T (\lambda (_:
+T).(eq K k (Bind Abbr))) (\lambda (t: T).(pr0 t3 t)) (\lambda (t: T).(subst0
+(clen c) u t t4))) (pr2_free c t3 t4 H1))))))) (\lambda (c0: C).(\lambda (d:
+C).(\lambda (u0: T).(\lambda (i: nat).(\lambda (H1: (getl i c0 (CHead d (Bind
+Abbr) u0))).(\lambda (t3: T).(\lambda (t4: T).(\lambda (H2: (pr0 t3
+t4)).(\lambda (t: T).(\lambda (H3: (subst0 i u0 t4 t)).(\lambda (H4: (eq C c0
+(CTail k u c))).(let H5 \def (eq_ind C c0 (\lambda (c1: C).(getl i c1 (CHead
+d (Bind Abbr) u0))) H1 (CTail k u c) H4) in (let H_x \def (getl_gen_tail k
+Abbr u u0 d c i H5) in (let H6 \def H_x in (or_ind (ex2 C (\lambda (e: C).(eq
+C d (CTail k u e))) (\lambda (e: C).(getl i c (CHead e (Bind Abbr) u0))))
+(ex4 nat (\lambda (_: nat).(eq nat i (clen c))) (\lambda (_: nat).(eq K k
+(Bind Abbr))) (\lambda (_: nat).(eq T u u0)) (\lambda (n: nat).(eq C d (CSort
+n)))) (or (pr2 c t3 t) (ex3 T (\lambda (_: T).(eq K k (Bind Abbr))) (\lambda
+(t0: T).(pr0 t3 t0)) (\lambda (t0: T).(subst0 (clen c) u t0 t)))) (\lambda
+(H7: (ex2 C (\lambda (e: C).(eq C d (CTail k u e))) (\lambda (e: C).(getl i c
+(CHead e (Bind Abbr) u0))))).(ex2_ind C (\lambda (e: C).(eq C d (CTail k u
+e))) (\lambda (e: C).(getl i c (CHead e (Bind Abbr) u0))) (or (pr2 c t3 t)
+(ex3 T (\lambda (_: T).(eq K k (Bind Abbr))) (\lambda (t0: T).(pr0 t3 t0))
+(\lambda (t0: T).(subst0 (clen c) u t0 t)))) (\lambda (x: C).(\lambda (_: (eq
+C d (CTail k u x))).(\lambda (H9: (getl i c (CHead x (Bind Abbr)
+u0))).(or_introl (pr2 c t3 t) (ex3 T (\lambda (_: T).(eq K k (Bind Abbr)))
+(\lambda (t0: T).(pr0 t3 t0)) (\lambda (t0: T).(subst0 (clen c) u t0 t)))
+(pr2_delta c x u0 i H9 t3 t4 H2 t H3))))) H7)) (\lambda (H7: (ex4 nat
+(\lambda (_: nat).(eq nat i (clen c))) (\lambda (_: nat).(eq K k (Bind
+Abbr))) (\lambda (_: nat).(eq T u u0)) (\lambda (n: nat).(eq C d (CSort
+n))))).(ex4_ind nat (\lambda (_: nat).(eq nat i (clen c))) (\lambda (_:
+nat).(eq K k (Bind Abbr))) (\lambda (_: nat).(eq T u u0)) (\lambda (n:
+nat).(eq C d (CSort n))) (or (pr2 c t3 t) (ex3 T (\lambda (_: T).(eq K k
+(Bind Abbr))) (\lambda (t0: T).(pr0 t3 t0)) (\lambda (t0: T).(subst0 (clen c)
+u t0 t)))) (\lambda (x0: nat).(\lambda (H8: (eq nat i (clen c))).(\lambda
+(H9: (eq K k (Bind Abbr))).(\lambda (H10: (eq T u u0)).(\lambda (_: (eq C d
+(CSort x0))).(let H12 \def (eq_ind nat i (\lambda (n: nat).(subst0 n u0 t4
+t)) H3 (clen c) H8) in (let H13 \def (eq_ind_r T u0 (\lambda (t0: T).(subst0
+(clen c) t0 t4 t)) H12 u H10) in (eq_ind_r K (Bind Abbr) (\lambda (k0: K).(or
+(pr2 c t3 t) (ex3 T (\lambda (_: T).(eq K k0 (Bind Abbr))) (\lambda (t0:
+T).(pr0 t3 t0)) (\lambda (t0: T).(subst0 (clen c) u t0 t))))) (or_intror (pr2
+c t3 t) (ex3 T (\lambda (_: T).(eq K (Bind Abbr) (Bind Abbr))) (\lambda (t0:
+T).(pr0 t3 t0)) (\lambda (t0: T).(subst0 (clen c) u t0 t))) (ex3_intro T
+(\lambda (_: T).(eq K (Bind Abbr) (Bind Abbr))) (\lambda (t0: T).(pr0 t3 t0))
+(\lambda (t0: T).(subst0 (clen c) u t0 t)) t4 (refl_equal K (Bind Abbr)) H2
+H13)) k H9)))))))) H7)) H6))))))))))))))) y t1 t2 H0))) H)))))).
+
+theorem pr2_gen_cbind:
+ \forall (b: B).(\forall (c: C).(\forall (v: T).(\forall (t1: T).(\forall
+(t2: T).((pr2 (CHead c (Bind b) v) t1 t2) \to (pr2 c (THead (Bind b) v t1)
+(THead (Bind b) v t2)))))))
+\def
+ \lambda (b: B).(\lambda (c: C).(\lambda (v: T).(\lambda (t1: T).(\lambda
+(t2: T).(\lambda (H: (pr2 (CHead c (Bind b) v) t1 t2)).(let H0 \def (match H
+in pr2 return (\lambda (c0: C).(\lambda (t: T).(\lambda (t0: T).(\lambda (_:
+(pr2 c0 t t0)).((eq C c0 (CHead c (Bind b) v)) \to ((eq T t t1) \to ((eq T t0
+t2) \to (pr2 c (THead (Bind b) v t1) (THead (Bind b) v t2))))))))) with
+[(pr2_free c0 t0 t3 H0) \Rightarrow (\lambda (H1: (eq C c0 (CHead c (Bind b)
+v))).(\lambda (H2: (eq T t0 t1)).(\lambda (H3: (eq T t3 t2)).(eq_ind C (CHead
+c (Bind b) v) (\lambda (_: C).((eq T t0 t1) \to ((eq T t3 t2) \to ((pr0 t0
+t3) \to (pr2 c (THead (Bind b) v t1) (THead (Bind b) v t2)))))) (\lambda (H4:
+(eq T t0 t1)).(eq_ind T t1 (\lambda (t: T).((eq T t3 t2) \to ((pr0 t t3) \to
+(pr2 c (THead (Bind b) v t1) (THead (Bind b) v t2))))) (\lambda (H5: (eq T t3
+t2)).(eq_ind T t2 (\lambda (t: T).((pr0 t1 t) \to (pr2 c (THead (Bind b) v
+t1) (THead (Bind b) v t2)))) (\lambda (H6: (pr0 t1 t2)).(pr2_free c (THead
+(Bind b) v t1) (THead (Bind b) v t2) (pr0_comp v v (pr0_refl v) t1 t2 H6
+(Bind b)))) t3 (sym_eq T t3 t2 H5))) t0 (sym_eq T t0 t1 H4))) c0 (sym_eq C c0
+(CHead c (Bind b) v) H1) H2 H3 H0)))) | (pr2_delta c0 d u i H0 t0 t3 H1 t H2)
+\Rightarrow (\lambda (H3: (eq C c0 (CHead c (Bind b) v))).(\lambda (H4: (eq T
+t0 t1)).(\lambda (H5: (eq T t t2)).(eq_ind C (CHead c (Bind b) v) (\lambda
+(c1: C).((eq T t0 t1) \to ((eq T t t2) \to ((getl i c1 (CHead d (Bind Abbr)
+u)) \to ((pr0 t0 t3) \to ((subst0 i u t3 t) \to (pr2 c (THead (Bind b) v t1)
+(THead (Bind b) v t2)))))))) (\lambda (H6: (eq T t0 t1)).(eq_ind T t1
+(\lambda (t4: T).((eq T t t2) \to ((getl i (CHead c (Bind b) v) (CHead d
+(Bind Abbr) u)) \to ((pr0 t4 t3) \to ((subst0 i u t3 t) \to (pr2 c (THead
+(Bind b) v t1) (THead (Bind b) v t2))))))) (\lambda (H7: (eq T t t2)).(eq_ind
+T t2 (\lambda (t4: T).((getl i (CHead c (Bind b) v) (CHead d (Bind Abbr) u))
+\to ((pr0 t1 t3) \to ((subst0 i u t3 t4) \to (pr2 c (THead (Bind b) v t1)
+(THead (Bind b) v t2)))))) (\lambda (H8: (getl i (CHead c (Bind b) v) (CHead
+d (Bind Abbr) u))).(\lambda (H9: (pr0 t1 t3)).(\lambda (H10: (subst0 i u t3
+t2)).(let H_x \def (getl_gen_bind b c (CHead d (Bind Abbr) u) v i H8) in (let
+H11 \def H_x in (or_ind (land (eq nat i O) (eq C (CHead d (Bind Abbr) u)
+(CHead c (Bind b) v))) (ex2 nat (\lambda (j: nat).(eq nat i (S j))) (\lambda
+(j: nat).(getl j c (CHead d (Bind Abbr) u)))) (pr2 c (THead (Bind b) v t1)
+(THead (Bind b) v t2)) (\lambda (H12: (land (eq nat i O) (eq C (CHead d (Bind
+Abbr) u) (CHead c (Bind b) v)))).(and_ind (eq nat i O) (eq C (CHead d (Bind
+Abbr) u) (CHead c (Bind b) v)) (pr2 c (THead (Bind b) v t1) (THead (Bind b) v
+t2)) (\lambda (H13: (eq nat i O)).(\lambda (H14: (eq C (CHead d (Bind Abbr)
+u) (CHead c (Bind b) v))).(let H15 \def (f_equal C C (\lambda (e: C).(match e
+in C return (\lambda (_: C).C) with [(CSort _) \Rightarrow d | (CHead c1 _ _)
+\Rightarrow c1])) (CHead d (Bind Abbr) u) (CHead c (Bind b) v) H14) in ((let
+H16 \def (f_equal C B (\lambda (e: C).(match e in C return (\lambda (_: C).B)
+with [(CSort _) \Rightarrow Abbr | (CHead _ k _) \Rightarrow (match k in K
+return (\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _)
+\Rightarrow Abbr])])) (CHead d (Bind Abbr) u) (CHead c (Bind b) v) H14) in
+((let H17 \def (f_equal C T (\lambda (e: C).(match e in C return (\lambda (_:
+C).T) with [(CSort _) \Rightarrow u | (CHead _ _ t4) \Rightarrow t4])) (CHead
+d (Bind Abbr) u) (CHead c (Bind b) v) H14) in (\lambda (H18: (eq B Abbr
+b)).(\lambda (_: (eq C d c)).(let H20 \def (eq_ind nat i (\lambda (n:
+nat).(subst0 n u t3 t2)) H10 O H13) in (let H21 \def (eq_ind T u (\lambda
+(t4: T).(subst0 O t4 t3 t2)) H20 v H17) in (eq_ind B Abbr (\lambda (b0:
+B).(pr2 c (THead (Bind b0) v t1) (THead (Bind b0) v t2))) (pr2_free c (THead
+(Bind Abbr) v t1) (THead (Bind Abbr) v t2) (pr0_delta v v (pr0_refl v) t1 t3
+H9 t2 H21)) b H18)))))) H16)) H15)))) H12)) (\lambda (H12: (ex2 nat (\lambda
+(j: nat).(eq nat i (S j))) (\lambda (j: nat).(getl j c (CHead d (Bind Abbr)
+u))))).(ex2_ind nat (\lambda (j: nat).(eq nat i (S j))) (\lambda (j:
+nat).(getl j c (CHead d (Bind Abbr) u))) (pr2 c (THead (Bind b) v t1) (THead
+(Bind b) v t2)) (\lambda (x: nat).(\lambda (H13: (eq nat i (S x))).(\lambda
+(H14: (getl x c (CHead d (Bind Abbr) u))).(let H15 \def (f_equal nat nat
+(\lambda (e: nat).e) i (S x) H13) in (let H16 \def (eq_ind nat i (\lambda (n:
+nat).(subst0 n u t3 t2)) H10 (S x) H15) in (pr2_head_2 c v t1 t2 (Bind b)
+(pr2_delta (CHead c (Bind b) v) d u (S x) (getl_clear_bind b (CHead c (Bind
+b) v) c v (clear_bind b c v) (CHead d (Bind Abbr) u) x H14) t1 t3 H9 t2
+H16))))))) H12)) H11)))))) t (sym_eq T t t2 H7))) t0 (sym_eq T t0 t1 H6))) c0
+(sym_eq C c0 (CHead c (Bind b) v) H3) H4 H5 H0 H1 H2))))]) in (H0 (refl_equal
+C (CHead c (Bind b) v)) (refl_equal T t1) (refl_equal T t2)))))))).
+
+theorem pr2_gen_cflat:
+ \forall (f: F).(\forall (c: C).(\forall (v: T).(\forall (t1: T).(\forall
+(t2: T).((pr2 (CHead c (Flat f) v) t1 t2) \to (pr2 c t1 t2))))))
+\def
+ \lambda (f: F).(\lambda (c: C).(\lambda (v: T).(\lambda (t1: T).(\lambda
+(t2: T).(\lambda (H: (pr2 (CHead c (Flat f) v) t1 t2)).(let H0 \def (match H
+in pr2 return (\lambda (c0: C).(\lambda (t: T).(\lambda (t0: T).(\lambda (_:
+(pr2 c0 t t0)).((eq C c0 (CHead c (Flat f) v)) \to ((eq T t t1) \to ((eq T t0
+t2) \to (pr2 c t1 t2)))))))) with [(pr2_free c0 t0 t3 H0) \Rightarrow
+(\lambda (H1: (eq C c0 (CHead c (Flat f) v))).(\lambda (H2: (eq T t0
+t1)).(\lambda (H3: (eq T t3 t2)).(eq_ind C (CHead c (Flat f) v) (\lambda (_:
+C).((eq T t0 t1) \to ((eq T t3 t2) \to ((pr0 t0 t3) \to (pr2 c t1 t2)))))
+(\lambda (H4: (eq T t0 t1)).(eq_ind T t1 (\lambda (t: T).((eq T t3 t2) \to
+((pr0 t t3) \to (pr2 c t1 t2)))) (\lambda (H5: (eq T t3 t2)).(eq_ind T t2
+(\lambda (t: T).((pr0 t1 t) \to (pr2 c t1 t2))) (\lambda (H6: (pr0 t1
+t2)).(pr2_free c t1 t2 H6)) t3 (sym_eq T t3 t2 H5))) t0 (sym_eq T t0 t1 H4)))
+c0 (sym_eq C c0 (CHead c (Flat f) v) H1) H2 H3 H0)))) | (pr2_delta c0 d u i
+H0 t0 t3 H1 t H2) \Rightarrow (\lambda (H3: (eq C c0 (CHead c (Flat f)
+v))).(\lambda (H4: (eq T t0 t1)).(\lambda (H5: (eq T t t2)).(eq_ind C (CHead
+c (Flat f) v) (\lambda (c1: C).((eq T t0 t1) \to ((eq T t t2) \to ((getl i c1
+(CHead d (Bind Abbr) u)) \to ((pr0 t0 t3) \to ((subst0 i u t3 t) \to (pr2 c
+t1 t2))))))) (\lambda (H6: (eq T t0 t1)).(eq_ind T t1 (\lambda (t4: T).((eq T
+t t2) \to ((getl i (CHead c (Flat f) v) (CHead d (Bind Abbr) u)) \to ((pr0 t4
+t3) \to ((subst0 i u t3 t) \to (pr2 c t1 t2)))))) (\lambda (H7: (eq T t
+t2)).(eq_ind T t2 (\lambda (t4: T).((getl i (CHead c (Flat f) v) (CHead d
+(Bind Abbr) u)) \to ((pr0 t1 t3) \to ((subst0 i u t3 t4) \to (pr2 c t1
+t2))))) (\lambda (H8: (getl i (CHead c (Flat f) v) (CHead d (Bind Abbr)
+u))).(\lambda (H9: (pr0 t1 t3)).(\lambda (H10: (subst0 i u t3 t2)).(let H_y
+\def (getl_gen_flat f c (CHead d (Bind Abbr) u) v i H8) in (pr2_delta c d u i
+H_y t1 t3 H9 t2 H10))))) t (sym_eq T t t2 H7))) t0 (sym_eq T t0 t1 H6))) c0
+(sym_eq C c0 (CHead c (Flat f) v) H3) H4 H5 H0 H1 H2))))]) in (H0 (refl_equal
+C (CHead c (Flat f) v)) (refl_equal T t1) (refl_equal T t2)))))))).
+
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/LambdaDelta/pr2/defs".
+
+include "pr0/defs.ma".
+
+include "getl/defs.ma".
+
+inductive pr2: C \to (T \to (T \to Prop)) \def
+| pr2_free: \forall (c: C).(\forall (t1: T).(\forall (t2: T).((pr0 t1 t2) \to
+(pr2 c t1 t2))))
+| pr2_delta: \forall (c: C).(\forall (d: C).(\forall (u: T).(\forall (i:
+nat).((getl i c (CHead d (Bind Abbr) u)) \to (\forall (t1: T).(\forall (t2:
+T).((pr0 t1 t2) \to (\forall (t: T).((subst0 i u t2 t) \to (pr2 c t1
+t)))))))))).
+
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/LambdaDelta/pr2/fwd".
+
+include "pr2/defs.ma".
+
+include "pr0/fwd.ma".
+
+include "getl/drop.ma".
+
+include "getl/clear.ma".
+
+theorem pr2_gen_sort:
+ \forall (c: C).(\forall (x: T).(\forall (n: nat).((pr2 c (TSort n) x) \to
+(eq T x (TSort n)))))
+\def
+ \lambda (c: C).(\lambda (x: T).(\lambda (n: nat).(\lambda (H: (pr2 c (TSort
+n) x)).(let H0 \def (match H in pr2 return (\lambda (c0: C).(\lambda (t:
+T).(\lambda (t0: T).(\lambda (_: (pr2 c0 t t0)).((eq C c0 c) \to ((eq T t
+(TSort n)) \to ((eq T t0 x) \to (eq T x (TSort n))))))))) with [(pr2_free c0
+t1 t2 H0) \Rightarrow (\lambda (H1: (eq C c0 c)).(\lambda (H2: (eq T t1
+(TSort n))).(\lambda (H3: (eq T t2 x)).(eq_ind C c (\lambda (_: C).((eq T t1
+(TSort n)) \to ((eq T t2 x) \to ((pr0 t1 t2) \to (eq T x (TSort n))))))
+(\lambda (H4: (eq T t1 (TSort n))).(eq_ind T (TSort n) (\lambda (t: T).((eq T
+t2 x) \to ((pr0 t t2) \to (eq T x (TSort n))))) (\lambda (H5: (eq T t2
+x)).(eq_ind T x (\lambda (t: T).((pr0 (TSort n) t) \to (eq T x (TSort n))))
+(\lambda (H6: (pr0 (TSort n) x)).(let H7 \def (eq_ind T x (\lambda (t:
+T).(pr2 c (TSort n) t)) H (TSort n) (pr0_gen_sort x n H6)) in (eq_ind_r T
+(TSort n) (\lambda (t: T).(eq T t (TSort n))) (refl_equal T (TSort n)) x
+(pr0_gen_sort x n H6)))) t2 (sym_eq T t2 x H5))) t1 (sym_eq T t1 (TSort n)
+H4))) c0 (sym_eq C c0 c H1) H2 H3 H0)))) | (pr2_delta c0 d u i H0 t1 t2 H1 t
+H2) \Rightarrow (\lambda (H3: (eq C c0 c)).(\lambda (H4: (eq T t1 (TSort
+n))).(\lambda (H5: (eq T t x)).(eq_ind C c (\lambda (c1: C).((eq T t1 (TSort
+n)) \to ((eq T t x) \to ((getl i c1 (CHead d (Bind Abbr) u)) \to ((pr0 t1 t2)
+\to ((subst0 i u t2 t) \to (eq T x (TSort n)))))))) (\lambda (H6: (eq T t1
+(TSort n))).(eq_ind T (TSort n) (\lambda (t0: T).((eq T t x) \to ((getl i c
+(CHead d (Bind Abbr) u)) \to ((pr0 t0 t2) \to ((subst0 i u t2 t) \to (eq T x
+(TSort n))))))) (\lambda (H7: (eq T t x)).(eq_ind T x (\lambda (t0: T).((getl
+i c (CHead d (Bind Abbr) u)) \to ((pr0 (TSort n) t2) \to ((subst0 i u t2 t0)
+\to (eq T x (TSort n)))))) (\lambda (_: (getl i c (CHead d (Bind Abbr)
+u))).(\lambda (H9: (pr0 (TSort n) t2)).(\lambda (H10: (subst0 i u t2 x)).(let
+H11 \def (eq_ind T t2 (\lambda (t0: T).(subst0 i u t0 x)) H10 (TSort n)
+(pr0_gen_sort t2 n H9)) in (subst0_gen_sort u x i n H11 (eq T x (TSort
+n))))))) t (sym_eq T t x H7))) t1 (sym_eq T t1 (TSort n) H6))) c0 (sym_eq C
+c0 c H3) H4 H5 H0 H1 H2))))]) in (H0 (refl_equal C c) (refl_equal T (TSort
+n)) (refl_equal T x)))))).
+
+theorem pr2_gen_lref:
+ \forall (c: C).(\forall (x: T).(\forall (n: nat).((pr2 c (TLRef n) x) \to
+(or (eq T x (TLRef n)) (ex2_2 C T (\lambda (d: C).(\lambda (u: T).(getl n c
+(CHead d (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(eq T x (lift (S
+n) O u)))))))))
+\def
+ \lambda (c: C).(\lambda (x: T).(\lambda (n: nat).(\lambda (H: (pr2 c (TLRef
+n) x)).(let H0 \def (match H in pr2 return (\lambda (c0: C).(\lambda (t:
+T).(\lambda (t0: T).(\lambda (_: (pr2 c0 t t0)).((eq C c0 c) \to ((eq T t
+(TLRef n)) \to ((eq T t0 x) \to (or (eq T x (TLRef n)) (ex2_2 C T (\lambda
+(d: C).(\lambda (u: T).(getl n c (CHead d (Bind Abbr) u)))) (\lambda (_:
+C).(\lambda (u: T).(eq T x (lift (S n) O u))))))))))))) with [(pr2_free c0 t1
+t2 H0) \Rightarrow (\lambda (H1: (eq C c0 c)).(\lambda (H2: (eq T t1 (TLRef
+n))).(\lambda (H3: (eq T t2 x)).(eq_ind C c (\lambda (_: C).((eq T t1 (TLRef
+n)) \to ((eq T t2 x) \to ((pr0 t1 t2) \to (or (eq T x (TLRef n)) (ex2_2 C T
+(\lambda (d: C).(\lambda (u: T).(getl n c (CHead d (Bind Abbr) u)))) (\lambda
+(_: C).(\lambda (u: T).(eq T x (lift (S n) O u)))))))))) (\lambda (H4: (eq T
+t1 (TLRef n))).(eq_ind T (TLRef n) (\lambda (t: T).((eq T t2 x) \to ((pr0 t
+t2) \to (or (eq T x (TLRef n)) (ex2_2 C T (\lambda (d: C).(\lambda (u:
+T).(getl n c (CHead d (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(eq T
+x (lift (S n) O u))))))))) (\lambda (H5: (eq T t2 x)).(eq_ind T x (\lambda
+(t: T).((pr0 (TLRef n) t) \to (or (eq T x (TLRef n)) (ex2_2 C T (\lambda (d:
+C).(\lambda (u: T).(getl n c (CHead d (Bind Abbr) u)))) (\lambda (_:
+C).(\lambda (u: T).(eq T x (lift (S n) O u)))))))) (\lambda (H6: (pr0 (TLRef
+n) x)).(let H7 \def (eq_ind T x (\lambda (t: T).(pr2 c (TLRef n) t)) H (TLRef
+n) (pr0_gen_lref x n H6)) in (eq_ind_r T (TLRef n) (\lambda (t: T).(or (eq T
+t (TLRef n)) (ex2_2 C T (\lambda (d: C).(\lambda (u: T).(getl n c (CHead d
+(Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(eq T t (lift (S n) O
+u))))))) (or_introl (eq T (TLRef n) (TLRef n)) (ex2_2 C T (\lambda (d:
+C).(\lambda (u: T).(getl n c (CHead d (Bind Abbr) u)))) (\lambda (_:
+C).(\lambda (u: T).(eq T (TLRef n) (lift (S n) O u))))) (refl_equal T (TLRef
+n))) x (pr0_gen_lref x n H6)))) t2 (sym_eq T t2 x H5))) t1 (sym_eq T t1
+(TLRef n) H4))) c0 (sym_eq C c0 c H1) H2 H3 H0)))) | (pr2_delta c0 d u i H0
+t1 t2 H1 t H2) \Rightarrow (\lambda (H3: (eq C c0 c)).(\lambda (H4: (eq T t1
+(TLRef n))).(\lambda (H5: (eq T t x)).(eq_ind C c (\lambda (c1: C).((eq T t1
+(TLRef n)) \to ((eq T t x) \to ((getl i c1 (CHead d (Bind Abbr) u)) \to ((pr0
+t1 t2) \to ((subst0 i u t2 t) \to (or (eq T x (TLRef n)) (ex2_2 C T (\lambda
+(d0: C).(\lambda (u0: T).(getl n c (CHead d0 (Bind Abbr) u0)))) (\lambda (_:
+C).(\lambda (u0: T).(eq T x (lift (S n) O u0)))))))))))) (\lambda (H6: (eq T
+t1 (TLRef n))).(eq_ind T (TLRef n) (\lambda (t0: T).((eq T t x) \to ((getl i
+c (CHead d (Bind Abbr) u)) \to ((pr0 t0 t2) \to ((subst0 i u t2 t) \to (or
+(eq T x (TLRef n)) (ex2_2 C T (\lambda (d0: C).(\lambda (u0: T).(getl n c
+(CHead d0 (Bind Abbr) u0)))) (\lambda (_: C).(\lambda (u0: T).(eq T x (lift
+(S n) O u0))))))))))) (\lambda (H7: (eq T t x)).(eq_ind T x (\lambda (t0:
+T).((getl i c (CHead d (Bind Abbr) u)) \to ((pr0 (TLRef n) t2) \to ((subst0 i
+u t2 t0) \to (or (eq T x (TLRef n)) (ex2_2 C T (\lambda (d0: C).(\lambda (u0:
+T).(getl n c (CHead d0 (Bind Abbr) u0)))) (\lambda (_: C).(\lambda (u0:
+T).(eq T x (lift (S n) O u0)))))))))) (\lambda (H8: (getl i c (CHead d (Bind
+Abbr) u))).(\lambda (H9: (pr0 (TLRef n) t2)).(\lambda (H10: (subst0 i u t2
+x)).(let H11 \def (eq_ind T t2 (\lambda (t0: T).(subst0 i u t0 x)) H10 (TLRef
+n) (pr0_gen_lref t2 n H9)) in (and_ind (eq nat n i) (eq T x (lift (S n) O u))
+(or (eq T x (TLRef n)) (ex2_2 C T (\lambda (d0: C).(\lambda (u0: T).(getl n c
+(CHead d0 (Bind Abbr) u0)))) (\lambda (_: C).(\lambda (u0: T).(eq T x (lift
+(S n) O u0)))))) (\lambda (H12: (eq nat n i)).(\lambda (H13: (eq T x (lift (S
+n) O u))).(let H14 \def (eq_ind_r nat i (\lambda (n0: nat).(getl n0 c (CHead
+d (Bind Abbr) u))) H8 n H12) in (let H15 \def (eq_ind T x (\lambda (t0:
+T).(pr2 c (TLRef n) t0)) H (lift (S n) O u) H13) in (eq_ind_r T (lift (S n) O
+u) (\lambda (t0: T).(or (eq T t0 (TLRef n)) (ex2_2 C T (\lambda (d0:
+C).(\lambda (u0: T).(getl n c (CHead d0 (Bind Abbr) u0)))) (\lambda (_:
+C).(\lambda (u0: T).(eq T t0 (lift (S n) O u0))))))) (or_intror (eq T (lift
+(S n) O u) (TLRef n)) (ex2_2 C T (\lambda (d0: C).(\lambda (u0: T).(getl n c
+(CHead d0 (Bind Abbr) u0)))) (\lambda (_: C).(\lambda (u0: T).(eq T (lift (S
+n) O u) (lift (S n) O u0))))) (ex2_2_intro C T (\lambda (d0: C).(\lambda (u0:
+T).(getl n c (CHead d0 (Bind Abbr) u0)))) (\lambda (_: C).(\lambda (u0:
+T).(eq T (lift (S n) O u) (lift (S n) O u0)))) d u H14 (refl_equal T (lift (S
+n) O u)))) x H13))))) (subst0_gen_lref u x i n H11)))))) t (sym_eq T t x
+H7))) t1 (sym_eq T t1 (TLRef n) H6))) c0 (sym_eq C c0 c H3) H4 H5 H0 H1
+H2))))]) in (H0 (refl_equal C c) (refl_equal T (TLRef n)) (refl_equal T
+x)))))).
+
+theorem pr2_gen_abst:
+ \forall (c: C).(\forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr2 c
+(THead (Bind Abst) u1 t1) x) \to (ex3_2 T T (\lambda (u2: T).(\lambda (t2:
+T).(eq T x (THead (Bind Abst) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))) (\lambda (_: T).(\lambda (t2: T).(\forall (b: B).(\forall (u:
+T).(pr2 (CHead c (Bind b) u) t1 t2))))))))))
+\def
+ \lambda (c: C).(\lambda (u1: T).(\lambda (t1: T).(\lambda (x: T).(\lambda
+(H: (pr2 c (THead (Bind Abst) u1 t1) x)).(let H0 \def (match H in pr2 return
+(\lambda (c0: C).(\lambda (t: T).(\lambda (t0: T).(\lambda (_: (pr2 c0 t
+t0)).((eq C c0 c) \to ((eq T t (THead (Bind Abst) u1 t1)) \to ((eq T t0 x)
+\to (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead (Bind Abst)
+u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t2: T).(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u)
+t1 t2))))))))))))) with [(pr2_free c0 t0 t2 H0) \Rightarrow (\lambda (H1: (eq
+C c0 c)).(\lambda (H2: (eq T t0 (THead (Bind Abst) u1 t1))).(\lambda (H3: (eq
+T t2 x)).(eq_ind C c (\lambda (_: C).((eq T t0 (THead (Bind Abst) u1 t1)) \to
+((eq T t2 x) \to ((pr0 t0 t2) \to (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T x (THead (Bind Abst) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall (u:
+T).(pr2 (CHead c (Bind b) u) t1 t3)))))))))) (\lambda (H4: (eq T t0 (THead
+(Bind Abst) u1 t1))).(eq_ind T (THead (Bind Abst) u1 t1) (\lambda (t: T).((eq
+T t2 x) \to ((pr0 t t2) \to (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq
+T x (THead (Bind Abst) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))) (\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall (u: T).(pr2
+(CHead c (Bind b) u) t1 t3))))))))) (\lambda (H5: (eq T t2 x)).(eq_ind T x
+(\lambda (t: T).((pr0 (THead (Bind Abst) u1 t1) t) \to (ex3_2 T T (\lambda
+(u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abst) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(\forall
+(b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1 t3)))))))) (\lambda (H6:
+(pr0 (THead (Bind Abst) u1 t1) x)).(ex3_2_ind T T (\lambda (u2: T).(\lambda
+(t3: T).(eq T x (THead (Bind Abst) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3))) (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abst) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t3: T).(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1 t3))))))
+(\lambda (x0: T).(\lambda (x1: T).(\lambda (H7: (eq T x (THead (Bind Abst) x0
+x1))).(\lambda (H8: (pr0 u1 x0)).(\lambda (H9: (pr0 t1 x1)).(let H10 \def
+(eq_ind T x (\lambda (t: T).(pr2 c (THead (Bind Abst) u1 t1) t)) H (THead
+(Bind Abst) x0 x1) H7) in (eq_ind_r T (THead (Bind Abst) x0 x1) (\lambda (t:
+T).(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t (THead (Bind Abst) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u)
+t1 t3))))))) (ex3_2_intro T T (\lambda (u2: T).(\lambda (t3: T).(eq T (THead
+(Bind Abst) x0 x1) (THead (Bind Abst) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall
+(u: T).(pr2 (CHead c (Bind b) u) t1 t3))))) x0 x1 (refl_equal T (THead (Bind
+Abst) x0 x1)) (pr2_free c u1 x0 H8) (\lambda (b: B).(\lambda (u: T).(pr2_free
+(CHead c (Bind b) u) t1 x1 H9)))) x H7))))))) (pr0_gen_abst u1 t1 x H6))) t2
+(sym_eq T t2 x H5))) t0 (sym_eq T t0 (THead (Bind Abst) u1 t1) H4))) c0
+(sym_eq C c0 c H1) H2 H3 H0)))) | (pr2_delta c0 d u i H0 t0 t2 H1 t H2)
+\Rightarrow (\lambda (H3: (eq C c0 c)).(\lambda (H4: (eq T t0 (THead (Bind
+Abst) u1 t1))).(\lambda (H5: (eq T t x)).(eq_ind C c (\lambda (c1: C).((eq T
+t0 (THead (Bind Abst) u1 t1)) \to ((eq T t x) \to ((getl i c1 (CHead d (Bind
+Abbr) u)) \to ((pr0 t0 t2) \to ((subst0 i u t2 t) \to (ex3_2 T T (\lambda
+(u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abst) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(\forall
+(b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 t3)))))))))))) (\lambda
+(H6: (eq T t0 (THead (Bind Abst) u1 t1))).(eq_ind T (THead (Bind Abst) u1 t1)
+(\lambda (t3: T).((eq T t x) \to ((getl i c (CHead d (Bind Abbr) u)) \to
+((pr0 t3 t2) \to ((subst0 i u t2 t) \to (ex3_2 T T (\lambda (u2: T).(\lambda
+(t4: T).(eq T x (THead (Bind Abst) u2 t4)))) (\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t4: T).(\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) t1 t4))))))))))) (\lambda (H7: (eq T t
+x)).(eq_ind T x (\lambda (t3: T).((getl i c (CHead d (Bind Abbr) u)) \to
+((pr0 (THead (Bind Abst) u1 t1) t2) \to ((subst0 i u t2 t3) \to (ex3_2 T T
+(\lambda (u2: T).(\lambda (t4: T).(eq T x (THead (Bind Abst) u2 t4))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t4: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1
+t4)))))))))) (\lambda (H8: (getl i c (CHead d (Bind Abbr) u))).(\lambda (H9:
+(pr0 (THead (Bind Abst) u1 t1) t2)).(\lambda (H10: (subst0 i u t2
+x)).(ex3_2_ind T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind
+Abst) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr0 t1 t3))) (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T x (THead (Bind Abst) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall (u0:
+T).(pr2 (CHead c (Bind b) u0) t1 t3)))))) (\lambda (x0: T).(\lambda (x1:
+T).(\lambda (H11: (eq T t2 (THead (Bind Abst) x0 x1))).(\lambda (H12: (pr0 u1
+x0)).(\lambda (H13: (pr0 t1 x1)).(let H14 \def (eq_ind T t2 (\lambda (t3:
+T).(subst0 i u t3 x)) H10 (THead (Bind Abst) x0 x1) H11) in (or3_ind (ex2 T
+(\lambda (u2: T).(eq T x (THead (Bind Abst) u2 x1))) (\lambda (u2: T).(subst0
+i u x0 u2))) (ex2 T (\lambda (t3: T).(eq T x (THead (Bind Abst) x0 t3)))
+(\lambda (t3: T).(subst0 (s (Bind Abst) i) u x1 t3))) (ex3_2 T T (\lambda
+(u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abst) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(subst0 i u x0 u2))) (\lambda (_: T).(\lambda (t3:
+T).(subst0 (s (Bind Abst) i) u x1 t3)))) (ex3_2 T T (\lambda (u2: T).(\lambda
+(t3: T).(eq T x (THead (Bind Abst) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) t1 t3)))))) (\lambda (H15: (ex2 T (\lambda
+(u2: T).(eq T x (THead (Bind Abst) u2 x1))) (\lambda (u2: T).(subst0 i u x0
+u2)))).(ex2_ind T (\lambda (u2: T).(eq T x (THead (Bind Abst) u2 x1)))
+(\lambda (u2: T).(subst0 i u x0 u2)) (ex3_2 T T (\lambda (u2: T).(\lambda
+(t3: T).(eq T x (THead (Bind Abst) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) t1 t3)))))) (\lambda (x2: T).(\lambda
+(H16: (eq T x (THead (Bind Abst) x2 x1))).(\lambda (H17: (subst0 i u x0
+x2)).(let H18 \def (eq_ind T x (\lambda (t3: T).(pr2 c (THead (Bind Abst) u1
+t1) t3)) H (THead (Bind Abst) x2 x1) H16) in (eq_ind_r T (THead (Bind Abst)
+x2 x1) (\lambda (t3: T).(ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T t3
+(THead (Bind Abst) u2 t4)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))
+(\lambda (_: T).(\lambda (t4: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead
+c (Bind b) u0) t1 t4))))))) (ex3_2_intro T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T (THead (Bind Abst) x2 x1) (THead (Bind Abst) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(\forall
+(b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 t3))))) x2 x1
+(refl_equal T (THead (Bind Abst) x2 x1)) (pr2_delta c d u i H8 u1 x0 H12 x2
+H17) (\lambda (b: B).(\lambda (u0: T).(pr2_free (CHead c (Bind b) u0) t1 x1
+H13)))) x H16))))) H15)) (\lambda (H15: (ex2 T (\lambda (t3: T).(eq T x
+(THead (Bind Abst) x0 t3))) (\lambda (t3: T).(subst0 (s (Bind Abst) i) u x1
+t3)))).(ex2_ind T (\lambda (t3: T).(eq T x (THead (Bind Abst) x0 t3)))
+(\lambda (t3: T).(subst0 (s (Bind Abst) i) u x1 t3)) (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abst) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(\forall
+(b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 t3)))))) (\lambda (x2:
+T).(\lambda (H16: (eq T x (THead (Bind Abst) x0 x2))).(\lambda (H17: (subst0
+(s (Bind Abst) i) u x1 x2)).(let H18 \def (eq_ind T x (\lambda (t3: T).(pr2 c
+(THead (Bind Abst) u1 t1) t3)) H (THead (Bind Abst) x0 x2) H16) in (eq_ind_r
+T (THead (Bind Abst) x0 x2) (\lambda (t3: T).(ex3_2 T T (\lambda (u2:
+T).(\lambda (t4: T).(eq T t3 (THead (Bind Abst) u2 t4)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t4: T).(\forall
+(b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 t4))))))) (ex3_2_intro
+T T (\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind Abst) x0 x2) (THead
+(Bind Abst) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))
+(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead
+c (Bind b) u0) t1 t3))))) x0 x2 (refl_equal T (THead (Bind Abst) x0 x2))
+(pr2_free c u1 x0 H12) (\lambda (b: B).(\lambda (u0: T).(pr2_delta (CHead c
+(Bind b) u0) d u (S i) (getl_head (Bind b) i c (CHead d (Bind Abbr) u) H8 u0)
+t1 x1 H13 x2 H17)))) x H16))))) H15)) (\lambda (H15: (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abst) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(subst0 i u x0 u2))) (\lambda (_: T).(\lambda (t3:
+T).(subst0 (s (Bind Abst) i) u x1 t3))))).(ex3_2_ind T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abst) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(subst0 i u x0 u2))) (\lambda (_: T).(\lambda (t3:
+T).(subst0 (s (Bind Abst) i) u x1 t3))) (ex3_2 T T (\lambda (u2: T).(\lambda
+(t3: T).(eq T x (THead (Bind Abst) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) t1 t3)))))) (\lambda (x2: T).(\lambda (x3:
+T).(\lambda (H16: (eq T x (THead (Bind Abst) x2 x3))).(\lambda (H17: (subst0
+i u x0 x2)).(\lambda (H18: (subst0 (s (Bind Abst) i) u x1 x3)).(let H19 \def
+(eq_ind T x (\lambda (t3: T).(pr2 c (THead (Bind Abst) u1 t1) t3)) H (THead
+(Bind Abst) x2 x3) H16) in (eq_ind_r T (THead (Bind Abst) x2 x3) (\lambda
+(t3: T).(ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T t3 (THead (Bind
+Abst) u2 t4)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t4: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b)
+u0) t1 t4))))))) (ex3_2_intro T T (\lambda (u2: T).(\lambda (t3: T).(eq T
+(THead (Bind Abst) x2 x3) (THead (Bind Abst) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(\forall
+(b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 t3))))) x2 x3
+(refl_equal T (THead (Bind Abst) x2 x3)) (pr2_delta c d u i H8 u1 x0 H12 x2
+H17) (\lambda (b: B).(\lambda (u0: T).(pr2_delta (CHead c (Bind b) u0) d u (S
+i) (getl_head (Bind b) i c (CHead d (Bind Abbr) u) H8 u0) t1 x1 H13 x3
+H18)))) x H16))))))) H15)) (subst0_gen_head (Bind Abst) u x0 x1 x i
+H14)))))))) (pr0_gen_abst u1 t1 t2 H9))))) t (sym_eq T t x H7))) t0 (sym_eq T
+t0 (THead (Bind Abst) u1 t1) H6))) c0 (sym_eq C c0 c H3) H4 H5 H0 H1 H2))))])
+in (H0 (refl_equal C c) (refl_equal T (THead (Bind Abst) u1 t1)) (refl_equal
+T x))))))).
+
+theorem pr2_gen_cast:
+ \forall (c: C).(\forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr2 c
+(THead (Flat Cast) u1 t1) x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda
+(t2: T).(eq T x (THead (Flat Cast) u2 t2)))) (\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr2 c t1 t2)))) (pr2 c
+t1 x))))))
+\def
+ \lambda (c: C).(\lambda (u1: T).(\lambda (t1: T).(\lambda (x: T).(\lambda
+(H: (pr2 c (THead (Flat Cast) u1 t1) x)).(let H0 \def (match H in pr2 return
+(\lambda (c0: C).(\lambda (t: T).(\lambda (t0: T).(\lambda (_: (pr2 c0 t
+t0)).((eq C c0 c) \to ((eq T t (THead (Flat Cast) u1 t1)) \to ((eq T t0 x)
+\to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead (Flat
+Cast) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t2: T).(pr2 c t1 t2)))) (pr2 c t1 x))))))))) with [(pr2_free c0
+t0 t2 H0) \Rightarrow (\lambda (H1: (eq C c0 c)).(\lambda (H2: (eq T t0
+(THead (Flat Cast) u1 t1))).(\lambda (H3: (eq T t2 x)).(eq_ind C c (\lambda
+(_: C).((eq T t0 (THead (Flat Cast) u1 t1)) \to ((eq T t2 x) \to ((pr0 t0 t2)
+\to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat
+Cast) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr2 c t1 t3)))) (pr2 c t1 x)))))) (\lambda (H4: (eq T t0
+(THead (Flat Cast) u1 t1))).(eq_ind T (THead (Flat Cast) u1 t1) (\lambda (t:
+T).((eq T t2 x) \to ((pr0 t t2) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda
+(t3: T).(eq T x (THead (Flat Cast) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c t1 t3)))) (pr2 c
+t1 x))))) (\lambda (H5: (eq T t2 x)).(eq_ind T x (\lambda (t: T).((pr0 (THead
+(Flat Cast) u1 t1) t) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T x (THead (Flat Cast) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c t1 t3)))) (pr2 c t1 x))))
+(\lambda (H6: (pr0 (THead (Flat Cast) u1 t1) x)).(or_ind (ex3_2 T T (\lambda
+(u2: T).(\lambda (t3: T).(eq T x (THead (Flat Cast) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 x) (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x
+(THead (Flat Cast) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))
+(\lambda (_: T).(\lambda (t3: T).(pr2 c t1 t3)))) (pr2 c t1 x)) (\lambda (H7:
+(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat Cast) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr0 t1 t3))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda
+(t3: T).(eq T x (THead (Flat Cast) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3))) (or (ex3_2 T
+T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat Cast) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t3: T).(pr2 c t1 t3)))) (pr2 c t1 x)) (\lambda (x0: T).(\lambda (x1:
+T).(\lambda (H8: (eq T x (THead (Flat Cast) x0 x1))).(\lambda (H9: (pr0 u1
+x0)).(\lambda (H10: (pr0 t1 x1)).(let H11 \def (eq_ind T x (\lambda (t:
+T).(pr2 c (THead (Flat Cast) u1 t1) t)) H (THead (Flat Cast) x0 x1) H8) in
+(eq_ind_r T (THead (Flat Cast) x0 x1) (\lambda (t: T).(or (ex3_2 T T (\lambda
+(u2: T).(\lambda (t3: T).(eq T t (THead (Flat Cast) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c t1
+t3)))) (pr2 c t1 t))) (or_introl (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T (THead (Flat Cast) x0 x1) (THead (Flat Cast) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c t1
+t3)))) (pr2 c t1 (THead (Flat Cast) x0 x1)) (ex3_2_intro T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T (THead (Flat Cast) x0 x1) (THead (Flat Cast) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr2 c t1 t3))) x0 x1 (refl_equal T (THead (Flat Cast) x0
+x1)) (pr2_free c u1 x0 H9) (pr2_free c t1 x1 H10))) x H8))))))) H7)) (\lambda
+(H7: (pr0 t1 x)).(or_intror (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq
+T x (THead (Flat Cast) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c t1 t3)))) (pr2 c t1 x)
+(pr2_free c t1 x H7))) (pr0_gen_cast u1 t1 x H6))) t2 (sym_eq T t2 x H5))) t0
+(sym_eq T t0 (THead (Flat Cast) u1 t1) H4))) c0 (sym_eq C c0 c H1) H2 H3
+H0)))) | (pr2_delta c0 d u i H0 t0 t2 H1 t H2) \Rightarrow (\lambda (H3: (eq
+C c0 c)).(\lambda (H4: (eq T t0 (THead (Flat Cast) u1 t1))).(\lambda (H5: (eq
+T t x)).(eq_ind C c (\lambda (c1: C).((eq T t0 (THead (Flat Cast) u1 t1)) \to
+((eq T t x) \to ((getl i c1 (CHead d (Bind Abbr) u)) \to ((pr0 t0 t2) \to
+((subst0 i u t2 t) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T
+x (THead (Flat Cast) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c t1 t3)))) (pr2 c t1 x))))))))
+(\lambda (H6: (eq T t0 (THead (Flat Cast) u1 t1))).(eq_ind T (THead (Flat
+Cast) u1 t1) (\lambda (t3: T).((eq T t x) \to ((getl i c (CHead d (Bind Abbr)
+u)) \to ((pr0 t3 t2) \to ((subst0 i u t2 t) \to (or (ex3_2 T T (\lambda (u2:
+T).(\lambda (t4: T).(eq T x (THead (Flat Cast) u2 t4)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t4: T).(pr2 c t1
+t4)))) (pr2 c t1 x))))))) (\lambda (H7: (eq T t x)).(eq_ind T x (\lambda (t3:
+T).((getl i c (CHead d (Bind Abbr) u)) \to ((pr0 (THead (Flat Cast) u1 t1)
+t2) \to ((subst0 i u t2 t3) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t4:
+T).(eq T x (THead (Flat Cast) u2 t4)))) (\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))) (\lambda (_: T).(\lambda (t4: T).(pr2 c t1 t4)))) (pr2 c t1
+x)))))) (\lambda (H8: (getl i c (CHead d (Bind Abbr) u))).(\lambda (H9: (pr0
+(THead (Flat Cast) u1 t1) t2)).(\lambda (H10: (subst0 i u t2 x)).(or_ind
+(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 t2) (or (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Flat Cast) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c t1
+t3)))) (pr2 c t1 x)) (\lambda (H11: (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T t2 (THead (Flat Cast) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3))))).(ex3_2_ind
+T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Cast) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3:
+T).(pr0 t1 t3))) (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x
+(THead (Flat Cast) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))
+(\lambda (_: T).(\lambda (t3: T).(pr2 c t1 t3)))) (pr2 c t1 x)) (\lambda (x0:
+T).(\lambda (x1: T).(\lambda (H12: (eq T t2 (THead (Flat Cast) x0
+x1))).(\lambda (H13: (pr0 u1 x0)).(\lambda (H14: (pr0 t1 x1)).(let H15 \def
+(eq_ind T t2 (\lambda (t3: T).(subst0 i u t3 x)) H10 (THead (Flat Cast) x0
+x1) H12) in (or3_ind (ex2 T (\lambda (u2: T).(eq T x (THead (Flat Cast) u2
+x1))) (\lambda (u2: T).(subst0 i u x0 u2))) (ex2 T (\lambda (t3: T).(eq T x
+(THead (Flat Cast) x0 t3))) (\lambda (t3: T).(subst0 (s (Flat Cast) i) u x1
+t3))) (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat Cast)
+u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i u x0 u2))) (\lambda (_:
+T).(\lambda (t3: T).(subst0 (s (Flat Cast) i) u x1 t3)))) (or (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat Cast) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t3: T).(pr2 c t1 t3)))) (pr2 c t1 x)) (\lambda (H16: (ex2 T (\lambda (u2:
+T).(eq T x (THead (Flat Cast) u2 x1))) (\lambda (u2: T).(subst0 i u x0
+u2)))).(ex2_ind T (\lambda (u2: T).(eq T x (THead (Flat Cast) u2 x1)))
+(\lambda (u2: T).(subst0 i u x0 u2)) (or (ex3_2 T T (\lambda (u2: T).(\lambda
+(t3: T).(eq T x (THead (Flat Cast) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c t1 t3)))) (pr2 c
+t1 x)) (\lambda (x2: T).(\lambda (H17: (eq T x (THead (Flat Cast) x2
+x1))).(\lambda (H18: (subst0 i u x0 x2)).(or_introl (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Flat Cast) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c t1
+t3)))) (pr2 c t1 x) (ex3_2_intro T T (\lambda (u2: T).(\lambda (t3: T).(eq T
+x (THead (Flat Cast) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c t1 t3))) x2 x1 H17 (pr2_delta c
+d u i H8 u1 x0 H13 x2 H18) (pr2_free c t1 x1 H14)))))) H16)) (\lambda (H16:
+(ex2 T (\lambda (t3: T).(eq T x (THead (Flat Cast) x0 t3))) (\lambda (t3:
+T).(subst0 (s (Flat Cast) i) u x1 t3)))).(ex2_ind T (\lambda (t3: T).(eq T x
+(THead (Flat Cast) x0 t3))) (\lambda (t3: T).(subst0 (s (Flat Cast) i) u x1
+t3)) (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat
+Cast) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr2 c t1 t3)))) (pr2 c t1 x)) (\lambda (x2: T).(\lambda
+(H17: (eq T x (THead (Flat Cast) x0 x2))).(\lambda (H18: (subst0 (s (Flat
+Cast) i) u x1 x2)).(or_introl (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T x (THead (Flat Cast) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c t1 t3)))) (pr2 c t1 x)
+(ex3_2_intro T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat Cast)
+u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr2 c t1 t3))) x0 x2 H17 (pr2_free c u1 x0 H13)
+(pr2_delta c d u i H8 t1 x1 H14 x2 H18)))))) H16)) (\lambda (H16: (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat Cast) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(subst0 i u x0 u2))) (\lambda (_:
+T).(\lambda (t3: T).(subst0 (s (Flat Cast) i) u x1 t3))))).(ex3_2_ind T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat Cast) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(subst0 i u x0 u2))) (\lambda (_:
+T).(\lambda (t3: T).(subst0 (s (Flat Cast) i) u x1 t3))) (or (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat Cast) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t3: T).(pr2 c t1 t3)))) (pr2 c t1 x)) (\lambda (x2: T).(\lambda (x3:
+T).(\lambda (H17: (eq T x (THead (Flat Cast) x2 x3))).(\lambda (H18: (subst0
+i u x0 x2)).(\lambda (H19: (subst0 (s (Flat Cast) i) u x1 x3)).(or_introl
+(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat Cast) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr2 c t1 t3)))) (pr2 c t1 x) (ex3_2_intro T T (\lambda
+(u2: T).(\lambda (t3: T).(eq T x (THead (Flat Cast) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c t1
+t3))) x2 x3 H17 (pr2_delta c d u i H8 u1 x0 H13 x2 H18) (pr2_delta c d u i H8
+t1 x1 H14 x3 H19)))))))) H16)) (subst0_gen_head (Flat Cast) u x0 x1 x i
+H15)))))))) H11)) (\lambda (H11: (pr0 t1 t2)).(or_intror (ex3_2 T T (\lambda
+(u2: T).(\lambda (t3: T).(eq T x (THead (Flat Cast) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c t1
+t3)))) (pr2 c t1 x) (pr2_delta c d u i H8 t1 t2 H11 x H10))) (pr0_gen_cast u1
+t1 t2 H9))))) t (sym_eq T t x H7))) t0 (sym_eq T t0 (THead (Flat Cast) u1 t1)
+H6))) c0 (sym_eq C c0 c H3) H4 H5 H0 H1 H2))))]) in (H0 (refl_equal C c)
+(refl_equal T (THead (Flat Cast) u1 t1)) (refl_equal T x))))))).
+
+theorem pr2_gen_csort:
+ \forall (t1: T).(\forall (t2: T).(\forall (n: nat).((pr2 (CSort n) t1 t2)
+\to (pr0 t1 t2))))
+\def
+ \lambda (t1: T).(\lambda (t2: T).(\lambda (n: nat).(\lambda (H: (pr2 (CSort
+n) t1 t2)).(let H0 \def (match H in pr2 return (\lambda (c: C).(\lambda (t:
+T).(\lambda (t0: T).(\lambda (_: (pr2 c t t0)).((eq C c (CSort n)) \to ((eq T
+t t1) \to ((eq T t0 t2) \to (pr0 t1 t2)))))))) with [(pr2_free c t0 t3 H0)
+\Rightarrow (\lambda (H1: (eq C c (CSort n))).(\lambda (H2: (eq T t0
+t1)).(\lambda (H3: (eq T t3 t2)).(eq_ind C (CSort n) (\lambda (_: C).((eq T
+t0 t1) \to ((eq T t3 t2) \to ((pr0 t0 t3) \to (pr0 t1 t2))))) (\lambda (H4:
+(eq T t0 t1)).(eq_ind T t1 (\lambda (t: T).((eq T t3 t2) \to ((pr0 t t3) \to
+(pr0 t1 t2)))) (\lambda (H5: (eq T t3 t2)).(eq_ind T t2 (\lambda (t: T).((pr0
+t1 t) \to (pr0 t1 t2))) (\lambda (H6: (pr0 t1 t2)).H6) t3 (sym_eq T t3 t2
+H5))) t0 (sym_eq T t0 t1 H4))) c (sym_eq C c (CSort n) H1) H2 H3 H0)))) |
+(pr2_delta c d u i H0 t0 t3 H1 t H2) \Rightarrow (\lambda (H3: (eq C c (CSort
+n))).(\lambda (H4: (eq T t0 t1)).(\lambda (H5: (eq T t t2)).(eq_ind C (CSort
+n) (\lambda (c0: C).((eq T t0 t1) \to ((eq T t t2) \to ((getl i c0 (CHead d
+(Bind Abbr) u)) \to ((pr0 t0 t3) \to ((subst0 i u t3 t) \to (pr0 t1 t2)))))))
+(\lambda (H6: (eq T t0 t1)).(eq_ind T t1 (\lambda (t4: T).((eq T t t2) \to
+((getl i (CSort n) (CHead d (Bind Abbr) u)) \to ((pr0 t4 t3) \to ((subst0 i u
+t3 t) \to (pr0 t1 t2)))))) (\lambda (H7: (eq T t t2)).(eq_ind T t2 (\lambda
+(t4: T).((getl i (CSort n) (CHead d (Bind Abbr) u)) \to ((pr0 t1 t3) \to
+((subst0 i u t3 t4) \to (pr0 t1 t2))))) (\lambda (H8: (getl i (CSort n)
+(CHead d (Bind Abbr) u))).(\lambda (_: (pr0 t1 t3)).(\lambda (_: (subst0 i u
+t3 t2)).(getl_gen_sort n i (CHead d (Bind Abbr) u) H8 (pr0 t1 t2))))) t
+(sym_eq T t t2 H7))) t0 (sym_eq T t0 t1 H6))) c (sym_eq C c (CSort n) H3) H4
+H5 H0 H1 H2))))]) in (H0 (refl_equal C (CSort n)) (refl_equal T t1)
+(refl_equal T t2)))))).
+
+theorem pr2_gen_appl:
+ \forall (c: C).(\forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr2 c
+(THead (Flat Appl) u1 t1) x) \to (or3 (ex3_2 T T (\lambda (u2: T).(\lambda
+(t2: T).(eq T x (THead (Flat Appl) u2 t2)))) (\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr2 c t1 t2)))) (ex4_4 T
+T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T
+t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda
+(u2: T).(\lambda (t2: T).(eq T x (THead (Bind Abbr) u2 t2)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))
+(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t2: T).(\forall
+(b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) z1 t2)))))))) (ex6_6 B T T T
+T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda
+(y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq
+T t1 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T x (THead
+(Bind b) y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr2 c u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2)))))))
+(\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda
+(_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))))))))
+\def
+ \lambda (c: C).(\lambda (u1: T).(\lambda (t1: T).(\lambda (x: T).(\lambda
+(H: (pr2 c (THead (Flat Appl) u1 t1) x)).(let H0 \def (match H in pr2 return
+(\lambda (c0: C).(\lambda (t: T).(\lambda (t0: T).(\lambda (_: (pr2 c0 t
+t0)).((eq C c0 c) \to ((eq T t (THead (Flat Appl) u1 t1)) \to ((eq T t0 x)
+\to (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead (Flat
+Appl) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t2: T).(pr2 c t1 t2)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t2:
+T).(eq T x (THead (Bind Abbr) u2 t2)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t2: T).(\forall (b: B).(\forall
+(u: T).(pr2 (CHead c (Bind b) u) z1 t2)))))))) (ex6_6 B T T T T T (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T x (THead (Bind b)
+y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))))))))))) with [(pr2_free c0
+t0 t2 H0) \Rightarrow (\lambda (H1: (eq C c0 c)).(\lambda (H2: (eq T t0
+(THead (Flat Appl) u1 t1))).(\lambda (H3: (eq T t2 x)).(eq_ind C c (\lambda
+(_: C).((eq T t0 (THead (Flat Appl) u1 t1)) \to ((eq T t2 x) \to ((pr0 t0 t2)
+\to (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat
+Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr2 c t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3:
+T).(eq T x (THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall
+(u: T).(pr2 (CHead c (Bind b) u) z1 t3)))))))) (ex6_6 B T T T T T (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T x (THead (Bind b)
+y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2))))))))))))) (\lambda (H4: (eq T t0
+(THead (Flat Appl) u1 t1))).(eq_ind T (THead (Flat Appl) u1 t1) (\lambda (t:
+T).((eq T t2 x) \to ((pr0 t t2) \to (or3 (ex3_2 T T (\lambda (u2: T).(\lambda
+(t3: T).(eq T x (THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c t1 t3)))) (ex4_4 T
+T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T
+t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda
+(u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))
+(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(\forall
+(b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) z1 t3)))))))) (ex6_6 B T T T
+T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda
+(y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq
+T t1 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T x (THead
+(Bind b) y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr2 c u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2)))))))
+(\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda
+(_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))))))) (\lambda
+(H5: (eq T t2 x)).(eq_ind T x (\lambda (t: T).((pr0 (THead (Flat Appl) u1 t1)
+t) \to (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat
+Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr2 c t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3:
+T).(eq T x (THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall
+(u: T).(pr2 (CHead c (Bind b) u) z1 t3)))))))) (ex6_6 B T T T T T (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T x (THead (Bind b)
+y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2))))))))))) (\lambda (H6: (pr0 (THead
+(Flat Appl) u1 t1) x)).(or3_ind (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T x (THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0
+u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (ex4_4 T T T T
+(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))))) (\lambda
+(_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3))))))
+(ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T t1 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (v2: T).(\lambda (t3: T).(eq T x
+(THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O u2) t3))))))))) (\lambda
+(_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_:
+T).(\lambda (_: T).(pr0 u1 u2))))))) (\lambda (_: B).(\lambda (y1:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1
+v2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))))) (or3 (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat Appl) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t3: T).(pr2 c t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1))))))
+(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T x
+(THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall (u: T).(pr2
+(CHead c (Bind b) u) z1 t3)))))))) (ex6_6 B T T T T T (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T x (THead (Bind b) y2 (THead
+(Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2))))))))) (\lambda (H7: (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat Appl) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3:
+T).(pr0 t1 t3))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda (t3: T).(eq T x
+(THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2)))
+(\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3))) (or3 (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Flat Appl) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c t1
+t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind
+Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u)
+z1 t3)))))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst))))))))
+(\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(eq T t1 (THead (Bind b) y1 z1)))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda
+(y2: T).(eq T x (THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2)
+z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b)
+y2) z1 z2))))))))) (\lambda (x0: T).(\lambda (x1: T).(\lambda (H8: (eq T x
+(THead (Flat Appl) x0 x1))).(\lambda (H9: (pr0 u1 x0)).(\lambda (H10: (pr0 t1
+x1)).(eq_ind_r T (THead (Flat Appl) x0 x1) (\lambda (t: T).(or3 (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T t (THead (Flat Appl) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t3: T).(pr2 c t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1))))))
+(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T t
+(THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall (u: T).(pr2
+(CHead c (Bind b) u) z1 t3)))))))) (ex6_6 B T T T T T (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T t (THead (Bind b) y2 (THead
+(Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))))) (or3_intro0 (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Flat Appl) x0 x1) (THead
+(Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))
+(\lambda (_: T).(\lambda (t3: T).(pr2 c t1 t3)))) (ex4_4 T T T T (\lambda
+(y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead
+(Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (t3: T).(eq T (THead (Flat Appl) x0 x1) (THead (Bind Abbr) u2
+t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u)
+z1 t3)))))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst))))))))
+(\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(eq T t1 (THead (Bind b) y1 z1)))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda
+(y2: T).(eq T (THead (Flat Appl) x0 x1) (THead (Bind b) y2 (THead (Flat Appl)
+(lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))))
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2
+(CHead c (Bind b) y2) z1 z2)))))))) (ex3_2_intro T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T (THead (Flat Appl) x0 x1) (THead (Flat Appl) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr2 c t1 t3))) x0 x1 (refl_equal T (THead (Flat Appl) x0
+x1)) (pr2_free c u1 x0 H9) (pr2_free c t1 x1 H10))) x H8)))))) H7)) (\lambda
+(H7: (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind
+Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(pr0 z1 t3))))))).(ex4_4_ind T T T T (\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
+Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(t3: T).(eq T x (THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3))))) (or3 (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat Appl) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t3: T).(pr2 c t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1))))))
+(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T x
+(THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall (u: T).(pr2
+(CHead c (Bind b) u) z1 t3)))))))) (ex6_6 B T T T T T (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T x (THead (Bind b) y2 (THead
+(Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2))))))))) (\lambda (x0: T).(\lambda
+(x1: T).(\lambda (x2: T).(\lambda (x3: T).(\lambda (H8: (eq T t1 (THead (Bind
+Abst) x0 x1))).(\lambda (H9: (eq T x (THead (Bind Abbr) x2 x3))).(\lambda
+(H10: (pr0 u1 x2)).(\lambda (H11: (pr0 x1 x3)).(eq_ind_r T (THead (Bind Abbr)
+x2 x3) (\lambda (t: T).(or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq
+T t (THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c t1 t3)))) (ex4_4 T T T T
+(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (t3: T).(eq T t (THead (Bind Abbr) u2 t3)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))
+(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(\forall
+(b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) z1 t3)))))))) (ex6_6 B T T T
+T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda
+(y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq
+T t1 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T t (THead
+(Bind b) y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr2 c u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2)))))))
+(\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda
+(_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))))) (eq_ind_r
+T (THead (Bind Abst) x0 x1) (\lambda (t: T).(or3 (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T (THead (Bind Abbr) x2 x3) (THead (Flat Appl) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr2 c t t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3:
+T).(eq T (THead (Bind Abbr) x2 x3) (THead (Bind Abbr) u2 t3)))))) (\lambda
+(_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))
+(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(\forall
+(b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) z1 t3)))))))) (ex6_6 B T T T
+T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda
+(y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq
+T t (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T (THead (Bind
+Abbr) x2 x3) (THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2)
+z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b)
+y2) z1 z2)))))))))) (or3_intro1 (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T (THead (Bind Abbr) x2 x3) (THead (Flat Appl) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c
+(THead (Bind Abst) x0 x1) t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind Abst) x0 x1)
+(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (t3: T).(eq T (THead (Bind Abbr) x2 x3) (THead (Bind Abbr) u2
+t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u)
+z1 t3)))))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst))))))))
+(\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(eq T (THead (Bind Abst) x0 x1) (THead (Bind b) y1
+z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2:
+T).(\lambda (u2: T).(\lambda (y2: T).(eq T (THead (Bind Abbr) x2 x3) (THead
+(Bind b) y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr2 c u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2)))))))
+(\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda
+(_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))) (ex4_4_intro
+T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq
+T (THead (Bind Abst) x0 x1) (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind Abbr)
+x2 x3) (THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall
+(u: T).(pr2 (CHead c (Bind b) u) z1 t3))))))) x0 x1 x2 x3 (refl_equal T
+(THead (Bind Abst) x0 x1)) (refl_equal T (THead (Bind Abbr) x2 x3)) (pr2_free
+c u1 x2 H10) (\lambda (b: B).(\lambda (u: T).(pr2_free (CHead c (Bind b) u)
+x1 x3 H11))))) t1 H8) x H9))))))))) H7)) (\lambda (H7: (ex6_6 B T T T T T
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (v2: T).(\lambda (t3: T).(eq T x (THead (Bind b)
+v2 (THead (Flat Appl) (lift (S O) O u2) t3))))))))) (\lambda (_: B).(\lambda
+(_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0
+u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(t3: T).(pr0 z1 t3))))))))).(ex6_6_ind B T T T T T (\lambda (b: B).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not
+(eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind b)
+y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (v2: T).(\lambda (t3: T).(eq T x (THead (Bind b) v2 (THead (Flat
+Appl) (lift (S O) O u2) t3))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1 u2)))))))
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1
+t3))))))) (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead
+(Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))
+(\lambda (_: T).(\lambda (t3: T).(pr2 c t1 t3)))) (ex4_4 T T T T (\lambda
+(y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead
+(Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))
+(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(\forall
+(b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) z1 t3)))))))) (ex6_6 B T T T
+T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda
+(y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq
+T t1 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T x (THead
+(Bind b) y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr2 c u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2)))))))
+(\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda
+(_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b) y2) z1 z2))))))))) (\lambda
+(x0: B).(\lambda (x1: T).(\lambda (x2: T).(\lambda (x3: T).(\lambda (x4:
+T).(\lambda (x5: T).(\lambda (H8: (not (eq B x0 Abst))).(\lambda (H9: (eq T
+t1 (THead (Bind x0) x1 x2))).(\lambda (H10: (eq T x (THead (Bind x0) x4
+(THead (Flat Appl) (lift (S O) O x3) x5)))).(\lambda (H11: (pr0 u1
+x3)).(\lambda (H12: (pr0 x1 x4)).(\lambda (H13: (pr0 x2 x5)).(eq_ind_r T
+(THead (Bind x0) x4 (THead (Flat Appl) (lift (S O) O x3) x5)) (\lambda (t:
+T).(or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t (THead (Flat
+Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr2 c t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3:
+T).(eq T t (THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall
+(u: T).(pr2 (CHead c (Bind b) u) z1 t3)))))))) (ex6_6 B T T T T T (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T t (THead (Bind b)
+y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))))) (eq_ind_r T (THead (Bind
+x0) x1 x2) (\lambda (t: T).(or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T (THead (Bind x0) x4 (THead (Flat Appl) (lift (S O) O x3) x5)) (THead
+(Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))
+(\lambda (_: T).(\lambda (t3: T).(pr2 c t t3)))) (ex4_4 T T T T (\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t (THead (Bind
+Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(t3: T).(eq T (THead (Bind x0) x4 (THead (Flat Appl) (lift (S O) O x3) x5))
+(THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall (u: T).(pr2
+(CHead c (Bind b) u) z1 t3)))))))) (ex6_6 B T T T T T (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T (THead (Bind x0) x4 (THead
+(Flat Appl) (lift (S O) O x3) x5)) (THead (Bind b) y2 (THead (Flat Appl)
+(lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))))
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2
+(CHead c (Bind b) y2) z1 z2)))))))))) (or3_intro2 (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T (THead (Bind x0) x4 (THead (Flat Appl) (lift (S O)
+O x3) x5)) (THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c (THead (Bind x0) x1 x2)
+t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3:
+T).(eq T (THead (Bind x0) x4 (THead (Flat Appl) (lift (S O) O x3) x5)) (THead
+(Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall (u: T).(pr2
+(CHead c (Bind b) u) z1 t3)))))))) (ex6_6 B T T T T T (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind
+x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T
+(THead (Bind x0) x4 (THead (Flat Appl) (lift (S O) O x3) x5)) (THead (Bind b)
+y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))) (ex6_6_intro B T T T T T
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda
+(y2: T).(eq T (THead (Bind x0) x4 (THead (Flat Appl) (lift (S O) O x3) x5))
+(THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda
+(_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_: B).(\lambda (y1:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1
+y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))
+x0 x1 x2 x5 x3 x4 H8 (refl_equal T (THead (Bind x0) x1 x2)) (refl_equal T
+(THead (Bind x0) x4 (THead (Flat Appl) (lift (S O) O x3) x5))) (pr2_free c u1
+x3 H11) (pr2_free c x1 x4 H12) (pr2_free (CHead c (Bind x0) x4) x2 x5 H13)))
+t1 H9) x H10))))))))))))) H7)) (pr0_gen_appl u1 t1 x H6))) t2 (sym_eq T t2 x
+H5))) t0 (sym_eq T t0 (THead (Flat Appl) u1 t1) H4))) c0 (sym_eq C c0 c H1)
+H2 H3 H0)))) | (pr2_delta c0 d u i H0 t0 t2 H1 t H2) \Rightarrow (\lambda
+(H3: (eq C c0 c)).(\lambda (H4: (eq T t0 (THead (Flat Appl) u1 t1))).(\lambda
+(H5: (eq T t x)).(eq_ind C c (\lambda (c1: C).((eq T t0 (THead (Flat Appl) u1
+t1)) \to ((eq T t x) \to ((getl i c1 (CHead d (Bind Abbr) u)) \to ((pr0 t0
+t2) \to ((subst0 i u t2 t) \to (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T x (THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c t1 t3)))) (ex4_4 T T T T
+(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))
+(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(\forall
+(b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) z1 t3)))))))) (ex6_6 B T T
+T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T t1 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T x
+(THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda
+(_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_: B).(\lambda (y1:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1
+y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b) y2) z1
+z2))))))))))))))) (\lambda (H6: (eq T t0 (THead (Flat Appl) u1 t1))).(eq_ind
+T (THead (Flat Appl) u1 t1) (\lambda (t3: T).((eq T t x) \to ((getl i c
+(CHead d (Bind Abbr) u)) \to ((pr0 t3 t2) \to ((subst0 i u t2 t) \to (or3
+(ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T x (THead (Flat Appl) u2
+t4)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t4: T).(pr2 c t1 t4)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t4:
+T).(eq T x (THead (Bind Abbr) u2 t4)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t4: T).(\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) z1 t4)))))))) (ex6_6 B T T T T T (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T x (THead (Bind b)
+y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))))))))) (\lambda (H7: (eq T t
+x)).(eq_ind T x (\lambda (t3: T).((getl i c (CHead d (Bind Abbr) u)) \to
+((pr0 (THead (Flat Appl) u1 t1) t2) \to ((subst0 i u t2 t3) \to (or3 (ex3_2 T
+T (\lambda (u2: T).(\lambda (t4: T).(eq T x (THead (Flat Appl) u2 t4))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t4: T).(pr2 c t1 t4)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1))))))
+(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t4: T).(eq T x
+(THead (Bind Abbr) u2 t4)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (t4: T).(\forall (b: B).(\forall (u0: T).(pr2
+(CHead c (Bind b) u0) z1 t4)))))))) (ex6_6 B T T T T T (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T x (THead (Bind b) y2 (THead
+(Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2))))))))))))) (\lambda (H8: (getl i c
+(CHead d (Bind Abbr) u))).(\lambda (H9: (pr0 (THead (Flat Appl) u1 t1)
+t2)).(\lambda (H10: (subst0 i u t2 x)).(or3_ind (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind
+Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(u2: T).(\lambda (v2: T).(\lambda (t3: T).(eq T t2 (THead (Bind b) v2 (THead
+(Flat Appl) (lift (S O) O u2) t3))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0 u1
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(t3: T).(pr0 z1 t3)))))))) (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T x (THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c t1 t3)))) (ex4_4 T T T T
+(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))
+(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(\forall
+(b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) z1 t3)))))))) (ex6_6 B T T
+T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T t1 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T x
+(THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda
+(_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_: B).(\lambda (y1:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1
+y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))))
+(\lambda (H11: (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead
+(Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
+(_: T).(\lambda (t3: T).(pr0 t1 t3))))).(ex3_2_ind T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3))) (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat
+Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr2 c t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3:
+T).(eq T x (THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T x (THead (Bind b)
+y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2))))))))) (\lambda (x0: T).(\lambda
+(x1: T).(\lambda (H12: (eq T t2 (THead (Flat Appl) x0 x1))).(\lambda (H13:
+(pr0 u1 x0)).(\lambda (H14: (pr0 t1 x1)).(let H15 \def (eq_ind T t2 (\lambda
+(t3: T).(subst0 i u t3 x)) H10 (THead (Flat Appl) x0 x1) H12) in (or3_ind
+(ex2 T (\lambda (u2: T).(eq T x (THead (Flat Appl) u2 x1))) (\lambda (u2:
+T).(subst0 i u x0 u2))) (ex2 T (\lambda (t3: T).(eq T x (THead (Flat Appl) x0
+t3))) (\lambda (t3: T).(subst0 (s (Flat Appl) i) u x1 t3))) (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat Appl) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(subst0 i u x0 u2))) (\lambda (_:
+T).(\lambda (t3: T).(subst0 (s (Flat Appl) i) u x1 t3)))) (or3 (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat Appl) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t3: T).(pr2 c t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1))))))
+(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T x
+(THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2
+(CHead c (Bind b) u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T x (THead (Bind b) y2 (THead
+(Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2))))))))) (\lambda (H16: (ex2 T
+(\lambda (u2: T).(eq T x (THead (Flat Appl) u2 x1))) (\lambda (u2: T).(subst0
+i u x0 u2)))).(ex2_ind T (\lambda (u2: T).(eq T x (THead (Flat Appl) u2 x1)))
+(\lambda (u2: T).(subst0 i u x0 u2)) (or3 (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Flat Appl) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c t1
+t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind
+Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b)
+u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b
+Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind b) y1 z1))))))))
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda
+(u2: T).(\lambda (y2: T).(eq T x (THead (Bind b) y2 (THead (Flat Appl) (lift
+(S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))))
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2
+(CHead c (Bind b) y2) z1 z2))))))))) (\lambda (x2: T).(\lambda (H17: (eq T x
+(THead (Flat Appl) x2 x1))).(\lambda (H18: (subst0 i u x0 x2)).(eq_ind_r T
+(THead (Flat Appl) x2 x1) (\lambda (t3: T).(or3 (ex3_2 T T (\lambda (u2:
+T).(\lambda (t4: T).(eq T t3 (THead (Flat Appl) u2 t4)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t4: T).(pr2 c t1
+t4)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t4: T).(eq T t3 (THead (Bind
+Abbr) u2 t4)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t4: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b)
+u0) z1 t4)))))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b
+Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind b) y1 z1))))))))
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda
+(u2: T).(\lambda (y2: T).(eq T t3 (THead (Bind b) y2 (THead (Flat Appl) (lift
+(S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))))
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2
+(CHead c (Bind b) y2) z1 z2)))))))))) (or3_intro0 (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T (THead (Flat Appl) x2 x1) (THead (Flat Appl) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr2 c t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3:
+T).(eq T (THead (Flat Appl) x2 x1) (THead (Bind Abbr) u2 t3)))))) (\lambda
+(_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))
+(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(\forall
+(b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) z1 t3)))))))) (ex6_6 B T T
+T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T t1 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T
+(THead (Flat Appl) x2 x1) (THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O
+u2) z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b)
+y2) z1 z2)))))))) (ex3_2_intro T T (\lambda (u2: T).(\lambda (t3: T).(eq T
+(THead (Flat Appl) x2 x1) (THead (Flat Appl) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c t1
+t3))) x2 x1 (refl_equal T (THead (Flat Appl) x2 x1)) (pr2_delta c d u i H8 u1
+x0 H13 x2 H18) (pr2_free c t1 x1 H14))) x H17)))) H16)) (\lambda (H16: (ex2 T
+(\lambda (t3: T).(eq T x (THead (Flat Appl) x0 t3))) (\lambda (t3: T).(subst0
+(s (Flat Appl) i) u x1 t3)))).(ex2_ind T (\lambda (t3: T).(eq T x (THead
+(Flat Appl) x0 t3))) (\lambda (t3: T).(subst0 (s (Flat Appl) i) u x1 t3))
+(or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat Appl)
+u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr2 c t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3:
+T).(eq T x (THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T x (THead (Bind b)
+y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2))))))))) (\lambda (x2: T).(\lambda
+(H17: (eq T x (THead (Flat Appl) x0 x2))).(\lambda (H18: (subst0 (s (Flat
+Appl) i) u x1 x2)).(eq_ind_r T (THead (Flat Appl) x0 x2) (\lambda (t3:
+T).(or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T t3 (THead (Flat
+Appl) u2 t4)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t4: T).(pr2 c t1 t4)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t4:
+T).(eq T t3 (THead (Bind Abbr) u2 t4)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t4: T).(\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) z1 t4)))))))) (ex6_6 B T T T T T (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T t3 (THead (Bind
+b) y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr2 c u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2)))))))
+(\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda
+(_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b) y2) z1 z2))))))))))
+(or3_intro0 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Flat
+Appl) x0 x2) (THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c t1 t3)))) (ex4_4 T
+T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T
+t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda
+(u2: T).(\lambda (t3: T).(eq T (THead (Flat Appl) x0 x2) (THead (Bind Abbr)
+u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b)
+u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b
+Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind b) y1 z1))))))))
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda
+(u2: T).(\lambda (y2: T).(eq T (THead (Flat Appl) x0 x2) (THead (Bind b) y2
+(THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))) (ex3_2_intro T T (\lambda
+(u2: T).(\lambda (t3: T).(eq T (THead (Flat Appl) x0 x2) (THead (Flat Appl)
+u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr2 c t1 t3))) x0 x2 (refl_equal T (THead (Flat Appl) x0
+x2)) (pr2_free c u1 x0 H13) (pr2_delta c d u i H8 t1 x1 H14 x2 H18))) x
+H17)))) H16)) (\lambda (H16: (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq
+T x (THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i u
+x0 u2))) (\lambda (_: T).(\lambda (t3: T).(subst0 (s (Flat Appl) i) u x1
+t3))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat
+Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i u x0 u2)))
+(\lambda (_: T).(\lambda (t3: T).(subst0 (s (Flat Appl) i) u x1 t3))) (or3
+(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat Appl) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr2 c t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3:
+T).(eq T x (THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T x (THead (Bind b)
+y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2))))))))) (\lambda (x2: T).(\lambda
+(x3: T).(\lambda (H17: (eq T x (THead (Flat Appl) x2 x3))).(\lambda (H18:
+(subst0 i u x0 x2)).(\lambda (H19: (subst0 (s (Flat Appl) i) u x1
+x3)).(eq_ind_r T (THead (Flat Appl) x2 x3) (\lambda (t3: T).(or3 (ex3_2 T T
+(\lambda (u2: T).(\lambda (t4: T).(eq T t3 (THead (Flat Appl) u2 t4))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t4: T).(pr2 c t1 t4)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1))))))
+(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t4: T).(eq T t3
+(THead (Bind Abbr) u2 t4)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (t4: T).(\forall (b: B).(\forall (u0: T).(pr2
+(CHead c (Bind b) u0) z1 t4)))))))) (ex6_6 B T T T T T (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T t3 (THead (Bind b) y2 (THead
+(Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))))) (or3_intro0 (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Flat Appl) x2 x3) (THead
+(Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))
+(\lambda (_: T).(\lambda (t3: T).(pr2 c t1 t3)))) (ex4_4 T T T T (\lambda
+(y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead
+(Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (t3: T).(eq T (THead (Flat Appl) x2 x3) (THead (Bind Abbr) u2
+t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b)
+u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b
+Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind b) y1 z1))))))))
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda
+(u2: T).(\lambda (y2: T).(eq T (THead (Flat Appl) x2 x3) (THead (Bind b) y2
+(THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))) (ex3_2_intro T T (\lambda
+(u2: T).(\lambda (t3: T).(eq T (THead (Flat Appl) x2 x3) (THead (Flat Appl)
+u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr2 c t1 t3))) x2 x3 (refl_equal T (THead (Flat Appl) x2
+x3)) (pr2_delta c d u i H8 u1 x0 H13 x2 H18) (pr2_delta c d u i H8 t1 x1 H14
+x3 H19))) x H17)))))) H16)) (subst0_gen_head (Flat Appl) u x0 x1 x i
+H15)))))))) H11)) (\lambda (H11: (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3:
+T).(eq T t2 (THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))))) (\lambda (_: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3))))))).(ex4_4_ind T T T T
+(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2 t3)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))))) (\lambda
+(_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3))))) (or3
+(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat Appl) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr2 c t1 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3:
+T).(eq T x (THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t1
+(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T x (THead (Bind b)
+y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2))))))))) (\lambda (x0: T).(\lambda
+(x1: T).(\lambda (x2: T).(\lambda (x3: T).(\lambda (H12: (eq T t1 (THead
+(Bind Abst) x0 x1))).(\lambda (H13: (eq T t2 (THead (Bind Abbr) x2
+x3))).(\lambda (H14: (pr0 u1 x2)).(\lambda (H15: (pr0 x1 x3)).(let H16 \def
+(eq_ind T t2 (\lambda (t3: T).(subst0 i u t3 x)) H10 (THead (Bind Abbr) x2
+x3) H13) in (eq_ind_r T (THead (Bind Abst) x0 x1) (\lambda (t3: T).(or3
+(ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T x (THead (Flat Appl) u2
+t4)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t4: T).(pr2 c t3 t4)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t3 (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t4:
+T).(eq T x (THead (Bind Abbr) u2 t4)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t4: T).(\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) z1 t4)))))))) (ex6_6 B T T T T T (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t3
+(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T x (THead (Bind b)
+y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))))) (or3_ind (ex2 T (\lambda
+(u2: T).(eq T x (THead (Bind Abbr) u2 x3))) (\lambda (u2: T).(subst0 i u x2
+u2))) (ex2 T (\lambda (t3: T).(eq T x (THead (Bind Abbr) x2 t3))) (\lambda
+(t3: T).(subst0 (s (Bind Abbr) i) u x3 t3))) (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(subst0 i u x2 u2))) (\lambda (_: T).(\lambda (t3:
+T).(subst0 (s (Bind Abbr) i) u x3 t3)))) (or3 (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Flat Appl) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c
+(THead (Bind Abst) x0 x1) t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind Abst) x0 x1)
+(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))
+(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(\forall
+(b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) z1 t3)))))))) (ex6_6 B T T
+T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T (THead (Bind Abst) x0 x1) (THead (Bind b) y1 z1)))))))) (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2:
+T).(\lambda (y2: T).(eq T x (THead (Bind b) y2 (THead (Flat Appl) (lift (S O)
+O u2) z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b)
+y2) z1 z2))))))))) (\lambda (H17: (ex2 T (\lambda (u2: T).(eq T x (THead
+(Bind Abbr) u2 x3))) (\lambda (u2: T).(subst0 i u x2 u2)))).(ex2_ind T
+(\lambda (u2: T).(eq T x (THead (Bind Abbr) u2 x3))) (\lambda (u2: T).(subst0
+i u x2 u2)) (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead
+(Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))
+(\lambda (_: T).(\lambda (t3: T).(pr2 c (THead (Bind Abst) x0 x1) t3))))
+(ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_:
+T).(eq T (THead (Bind Abst) x0 x1) (THead (Bind Abst) y1 z1)))))) (\lambda
+(_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind
+Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b)
+u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b
+Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind Abst) x0 x1) (THead
+(Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T x (THead (Bind b)
+y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2))))))))) (\lambda (x4: T).(\lambda
+(H18: (eq T x (THead (Bind Abbr) x4 x3))).(\lambda (H19: (subst0 i u x2
+x4)).(eq_ind_r T (THead (Bind Abbr) x4 x3) (\lambda (t3: T).(or3 (ex3_2 T T
+(\lambda (u2: T).(\lambda (t4: T).(eq T t3 (THead (Flat Appl) u2 t4))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t4: T).(pr2 c (THead (Bind Abst) x0 x1) t4)))) (ex4_4 T T T T (\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind Abst)
+x0 x1) (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (t4: T).(eq T t3 (THead (Bind Abbr) u2 t4))))))
+(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t4:
+T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) z1 t4))))))))
+(ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T (THead (Bind Abst) x0 x1) (THead (Bind b) y1 z1)))))))) (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2:
+T).(\lambda (y2: T).(eq T t3 (THead (Bind b) y2 (THead (Flat Appl) (lift (S
+O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b)
+y2) z1 z2)))))))))) (or3_intro1 (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T (THead (Bind Abbr) x4 x3) (THead (Flat Appl) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c
+(THead (Bind Abst) x0 x1) t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind Abst) x0 x1)
+(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (t3: T).(eq T (THead (Bind Abbr) x4 x3) (THead (Bind Abbr) u2
+t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b)
+u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b
+Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind Abst) x0 x1) (THead
+(Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T (THead (Bind
+Abbr) x4 x3) (THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2)
+z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b)
+y2) z1 z2)))))))) (ex4_4_intro T T T T (\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind Abst) x0 x1) (THead
+(Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (t3: T).(eq T (THead (Bind Abbr) x4 x3) (THead (Bind Abbr) u2
+t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b)
+u0) z1 t3))))))) x0 x1 x4 x3 (refl_equal T (THead (Bind Abst) x0 x1))
+(refl_equal T (THead (Bind Abbr) x4 x3)) (pr2_delta c d u i H8 u1 x2 H14 x4
+H19) (\lambda (b: B).(\lambda (u0: T).(pr2_free (CHead c (Bind b) u0) x1 x3
+H15))))) x H18)))) H17)) (\lambda (H17: (ex2 T (\lambda (t3: T).(eq T x
+(THead (Bind Abbr) x2 t3))) (\lambda (t3: T).(subst0 (s (Bind Abbr) i) u x3
+t3)))).(ex2_ind T (\lambda (t3: T).(eq T x (THead (Bind Abbr) x2 t3)))
+(\lambda (t3: T).(subst0 (s (Bind Abbr) i) u x3 t3)) (or3 (ex3_2 T T (\lambda
+(u2: T).(\lambda (t3: T).(eq T x (THead (Flat Appl) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c
+(THead (Bind Abst) x0 x1) t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind Abst) x0 x1)
+(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))
+(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(\forall
+(b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) z1 t3)))))))) (ex6_6 B T T
+T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T (THead (Bind Abst) x0 x1) (THead (Bind b) y1 z1)))))))) (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2:
+T).(\lambda (y2: T).(eq T x (THead (Bind b) y2 (THead (Flat Appl) (lift (S O)
+O u2) z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b)
+y2) z1 z2))))))))) (\lambda (x4: T).(\lambda (H18: (eq T x (THead (Bind Abbr)
+x2 x4))).(\lambda (H19: (subst0 (s (Bind Abbr) i) u x3 x4)).(eq_ind_r T
+(THead (Bind Abbr) x2 x4) (\lambda (t3: T).(or3 (ex3_2 T T (\lambda (u2:
+T).(\lambda (t4: T).(eq T t3 (THead (Flat Appl) u2 t4)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t4: T).(pr2 c
+(THead (Bind Abst) x0 x1) t4)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind Abst) x0 x1)
+(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (t4: T).(eq T t3 (THead (Bind Abbr) u2 t4)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))
+(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t4: T).(\forall
+(b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) z1 t4)))))))) (ex6_6 B T T
+T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T (THead (Bind Abst) x0 x1) (THead (Bind b) y1 z1)))))))) (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2:
+T).(\lambda (y2: T).(eq T t3 (THead (Bind b) y2 (THead (Flat Appl) (lift (S
+O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b)
+y2) z1 z2)))))))))) (or3_intro1 (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T (THead (Bind Abbr) x2 x4) (THead (Flat Appl) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c
+(THead (Bind Abst) x0 x1) t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind Abst) x0 x1)
+(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (t3: T).(eq T (THead (Bind Abbr) x2 x4) (THead (Bind Abbr) u2
+t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b)
+u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b
+Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind Abst) x0 x1) (THead
+(Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T (THead (Bind
+Abbr) x2 x4) (THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2)
+z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b)
+y2) z1 z2)))))))) (ex4_4_intro T T T T (\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind Abst) x0 x1) (THead
+(Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (t3: T).(eq T (THead (Bind Abbr) x2 x4) (THead (Bind Abbr) u2
+t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b)
+u0) z1 t3))))))) x0 x1 x2 x4 (refl_equal T (THead (Bind Abst) x0 x1))
+(refl_equal T (THead (Bind Abbr) x2 x4)) (pr2_free c u1 x2 H14) (\lambda (b:
+B).(\lambda (u0: T).(pr2_delta (CHead c (Bind b) u0) d u (S i)
+(getl_clear_bind b (CHead c (Bind b) u0) c u0 (clear_bind b c u0) (CHead d
+(Bind Abbr) u) i H8) x1 x3 H15 x4 H19))))) x H18)))) H17)) (\lambda (H17:
+(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i u x2 u2))) (\lambda (_:
+T).(\lambda (t3: T).(subst0 (s (Bind Abbr) i) u x3 t3))))).(ex3_2_ind T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(subst0 i u x2 u2))) (\lambda (_:
+T).(\lambda (t3: T).(subst0 (s (Bind Abbr) i) u x3 t3))) (or3 (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat Appl) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t3: T).(pr2 c (THead (Bind Abst) x0 x1) t3)))) (ex4_4 T T T T (\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind Abst)
+x0 x1) (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3))))))
+(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3:
+T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) z1 t3))))))))
+(ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T (THead (Bind Abst) x0 x1) (THead (Bind b) y1 z1)))))))) (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2:
+T).(\lambda (y2: T).(eq T x (THead (Bind b) y2 (THead (Flat Appl) (lift (S O)
+O u2) z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b)
+y2) z1 z2))))))))) (\lambda (x4: T).(\lambda (x5: T).(\lambda (H18: (eq T x
+(THead (Bind Abbr) x4 x5))).(\lambda (H19: (subst0 i u x2 x4)).(\lambda (H20:
+(subst0 (s (Bind Abbr) i) u x3 x5)).(eq_ind_r T (THead (Bind Abbr) x4 x5)
+(\lambda (t3: T).(or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T t3
+(THead (Flat Appl) u2 t4)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))
+(\lambda (_: T).(\lambda (t4: T).(pr2 c (THead (Bind Abst) x0 x1) t4))))
+(ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_:
+T).(eq T (THead (Bind Abst) x0 x1) (THead (Bind Abst) y1 z1)))))) (\lambda
+(_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t4: T).(eq T t3 (THead
+(Bind Abbr) u2 t4)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (t4: T).(\forall (b: B).(\forall (u0: T).(pr2
+(CHead c (Bind b) u0) z1 t4)))))))) (ex6_6 B T T T T T (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind
+Abst) x0 x1) (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T
+t3 (THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2) z2)))))))))
+(\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_: B).(\lambda (y1:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1
+y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b) y2) z1
+z2)))))))))) (or3_intro1 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T
+(THead (Bind Abbr) x4 x5) (THead (Flat Appl) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c
+(THead (Bind Abst) x0 x1) t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind Abst) x0 x1)
+(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (t3: T).(eq T (THead (Bind Abbr) x4 x5) (THead (Bind Abbr) u2
+t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b)
+u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b
+Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind Abst) x0 x1) (THead
+(Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T (THead (Bind
+Abbr) x4 x5) (THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2)
+z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b)
+y2) z1 z2)))))))) (ex4_4_intro T T T T (\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind Abst) x0 x1) (THead
+(Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (t3: T).(eq T (THead (Bind Abbr) x4 x5) (THead (Bind Abbr) u2
+t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b)
+u0) z1 t3))))))) x0 x1 x4 x5 (refl_equal T (THead (Bind Abst) x0 x1))
+(refl_equal T (THead (Bind Abbr) x4 x5)) (pr2_delta c d u i H8 u1 x2 H14 x4
+H19) (\lambda (b: B).(\lambda (u0: T).(pr2_delta (CHead c (Bind b) u0) d u (S
+i) (getl_clear_bind b (CHead c (Bind b) u0) c u0 (clear_bind b c u0) (CHead d
+(Bind Abbr) u) i H8) x1 x3 H15 x5 H20))))) x H18)))))) H17)) (subst0_gen_head
+(Bind Abbr) u x2 x3 x i H16)) t1 H12)))))))))) H11)) (\lambda (H11: (ex6_6 B
+T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T t1 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (v2: T).(\lambda (t3: T).(eq T
+t2 (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O u2) t3)))))))))
+(\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_:
+T).(\lambda (_: T).(pr0 u1 u2))))))) (\lambda (_: B).(\lambda (y1:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1
+v2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3))))))))).(ex6_6_ind B T T T T
+T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda
+(y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq
+T t1 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (u2: T).(\lambda (v2: T).(\lambda (t3: T).(eq T t2 (THead
+(Bind b) v2 (THead (Flat Appl) (lift (S O) O u2) t3))))))))) (\lambda (_:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda
+(_: T).(pr0 u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2)))))))
+(\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (t3: T).(pr0 z1 t3))))))) (or3 (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Flat Appl) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c t1
+t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(eq T t1 (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind
+Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b)
+u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b
+Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(eq T t1 (THead (Bind b) y1 z1))))))))
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda
+(u2: T).(\lambda (y2: T).(eq T x (THead (Bind b) y2 (THead (Flat Appl) (lift
+(S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))))
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2
+(CHead c (Bind b) y2) z1 z2))))))))) (\lambda (x0: B).(\lambda (x1:
+T).(\lambda (x2: T).(\lambda (x3: T).(\lambda (x4: T).(\lambda (x5:
+T).(\lambda (H12: (not (eq B x0 Abst))).(\lambda (H13: (eq T t1 (THead (Bind
+x0) x1 x2))).(\lambda (H14: (eq T t2 (THead (Bind x0) x4 (THead (Flat Appl)
+(lift (S O) O x3) x5)))).(\lambda (H15: (pr0 u1 x3)).(\lambda (H16: (pr0 x1
+x4)).(\lambda (H17: (pr0 x2 x5)).(let H18 \def (eq_ind T t2 (\lambda (t3:
+T).(subst0 i u t3 x)) H10 (THead (Bind x0) x4 (THead (Flat Appl) (lift (S O)
+O x3) x5)) H14) in (eq_ind_r T (THead (Bind x0) x1 x2) (\lambda (t3: T).(or3
+(ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T x (THead (Flat Appl) u2
+t4)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t4: T).(pr2 c t3 t4)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t3 (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t4:
+T).(eq T x (THead (Bind Abbr) u2 t4)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t4: T).(\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) z1 t4)))))))) (ex6_6 B T T T T T (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t3
+(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T x (THead (Bind b)
+y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))))) (or3_ind (ex2 T (\lambda
+(u2: T).(eq T x (THead (Bind x0) u2 (THead (Flat Appl) (lift (S O) O x3)
+x5)))) (\lambda (u2: T).(subst0 i u x4 u2))) (ex2 T (\lambda (t3: T).(eq T x
+(THead (Bind x0) x4 t3))) (\lambda (t3: T).(subst0 (s (Bind x0) i) u (THead
+(Flat Appl) (lift (S O) O x3) x5) t3))) (ex3_2 T T (\lambda (u2: T).(\lambda
+(t3: T).(eq T x (THead (Bind x0) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(subst0 i u x4 u2))) (\lambda (_: T).(\lambda (t3: T).(subst0 (s (Bind x0)
+i) u (THead (Flat Appl) (lift (S O) O x3) x5) t3)))) (or3 (ex3_2 T T (\lambda
+(u2: T).(\lambda (t3: T).(eq T x (THead (Flat Appl) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c
+(THead (Bind x0) x1 x2) t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind
+Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(t3: T).(eq T x (THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda
+(y2: T).(eq T x (THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2)
+z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b)
+y2) z1 z2))))))))) (\lambda (H19: (ex2 T (\lambda (u2: T).(eq T x (THead
+(Bind x0) u2 (THead (Flat Appl) (lift (S O) O x3) x5)))) (\lambda (u2:
+T).(subst0 i u x4 u2)))).(ex2_ind T (\lambda (u2: T).(eq T x (THead (Bind x0)
+u2 (THead (Flat Appl) (lift (S O) O x3) x5)))) (\lambda (u2: T).(subst0 i u
+x4 u2)) (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead
+(Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))
+(\lambda (_: T).(\lambda (t3: T).(pr2 c (THead (Bind x0) x1 x2) t3)))) (ex4_4
+T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq
+T (THead (Bind x0) x1 x2) (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind
+Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b)
+u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b
+Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T x (THead (Bind b) y2 (THead
+(Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2))))))))) (\lambda (x6: T).(\lambda
+(H20: (eq T x (THead (Bind x0) x6 (THead (Flat Appl) (lift (S O) O x3)
+x5)))).(\lambda (H21: (subst0 i u x4 x6)).(eq_ind_r T (THead (Bind x0) x6
+(THead (Flat Appl) (lift (S O) O x3) x5)) (\lambda (t3: T).(or3 (ex3_2 T T
+(\lambda (u2: T).(\lambda (t4: T).(eq T t3 (THead (Flat Appl) u2 t4))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t4: T).(pr2 c (THead (Bind x0) x1 x2) t4)))) (ex4_4 T T T T (\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1
+x2) (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda
+(u2: T).(\lambda (t4: T).(eq T t3 (THead (Bind Abbr) u2 t4)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))
+(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t4: T).(\forall
+(b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) z1 t4)))))))) (ex6_6 B T T
+T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2:
+T).(\lambda (y2: T).(eq T t3 (THead (Bind b) y2 (THead (Flat Appl) (lift (S
+O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b)
+y2) z1 z2)))))))))) (or3_intro2 (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T (THead (Bind x0) x6 (THead (Flat Appl) (lift (S O) O x3) x5)) (THead
+(Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))
+(\lambda (_: T).(\lambda (t3: T).(pr2 c (THead (Bind x0) x1 x2) t3)))) (ex4_4
+T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq
+T (THead (Bind x0) x1 x2) (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind x0)
+x6 (THead (Flat Appl) (lift (S O) O x3) x5)) (THead (Bind Abbr) u2 t3))))))
+(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3:
+T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) z1 t3))))))))
+(ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2:
+T).(\lambda (y2: T).(eq T (THead (Bind x0) x6 (THead (Flat Appl) (lift (S O)
+O x3) x5)) (THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2)
+z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b)
+y2) z1 z2)))))))) (ex6_6_intro B T T T T T (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B
+b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T (THead (Bind x0) x6 (THead
+(Flat Appl) (lift (S O) O x3) x5)) (THead (Bind b) y2 (THead (Flat Appl)
+(lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))))
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2
+(CHead c (Bind b) y2) z1 z2))))))) x0 x1 x2 x5 x3 x6 H12 (refl_equal T (THead
+(Bind x0) x1 x2)) (refl_equal T (THead (Bind x0) x6 (THead (Flat Appl) (lift
+(S O) O x3) x5))) (pr2_free c u1 x3 H15) (pr2_delta c d u i H8 x1 x4 H16 x6
+H21) (pr2_free (CHead c (Bind x0) x6) x2 x5 H17))) x H20)))) H19)) (\lambda
+(H19: (ex2 T (\lambda (t3: T).(eq T x (THead (Bind x0) x4 t3))) (\lambda (t3:
+T).(subst0 (s (Bind x0) i) u (THead (Flat Appl) (lift (S O) O x3) x5)
+t3)))).(ex2_ind T (\lambda (t3: T).(eq T x (THead (Bind x0) x4 t3))) (\lambda
+(t3: T).(subst0 (s (Bind x0) i) u (THead (Flat Appl) (lift (S O) O x3) x5)
+t3)) (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Flat
+Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr2 c (THead (Bind x0) x1 x2) t3)))) (ex4_4 T T T T
+(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind x0) x1 x2) (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind
+Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b)
+u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b
+Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T x (THead (Bind b) y2 (THead
+(Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2))))))))) (\lambda (x6: T).(\lambda
+(H20: (eq T x (THead (Bind x0) x4 x6))).(\lambda (H21: (subst0 (s (Bind x0)
+i) u (THead (Flat Appl) (lift (S O) O x3) x5) x6)).(eq_ind_r T (THead (Bind
+x0) x4 x6) (\lambda (t3: T).(or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t4:
+T).(eq T t3 (THead (Flat Appl) u2 t4)))) (\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t4: T).(pr2 c (THead (Bind x0)
+x1 x2) t4)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t4:
+T).(eq T t3 (THead (Bind Abbr) u2 t4)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t4: T).(\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) z1 t4)))))))) (ex6_6 B T T T T T (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda
+(y2: T).(eq T t3 (THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2)
+z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b)
+y2) z1 z2)))))))))) (or3_ind (ex2 T (\lambda (u2: T).(eq T x6 (THead (Flat
+Appl) u2 x5))) (\lambda (u2: T).(subst0 (s (Bind x0) i) u (lift (S O) O x3)
+u2))) (ex2 T (\lambda (t3: T).(eq T x6 (THead (Flat Appl) (lift (S O) O x3)
+t3))) (\lambda (t3: T).(subst0 (s (Flat Appl) (s (Bind x0) i)) u x5 t3)))
+(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x6 (THead (Flat Appl) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(subst0 (s (Bind x0) i) u (lift (S O)
+O x3) u2))) (\lambda (_: T).(\lambda (t3: T).(subst0 (s (Flat Appl) (s (Bind
+x0) i)) u x5 t3)))) (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T
+(THead (Bind x0) x4 x6) (THead (Flat Appl) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c
+(THead (Bind x0) x1 x2) t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind
+Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(t3: T).(eq T (THead (Bind x0) x4 x6) (THead (Bind Abbr) u2 t3)))))) (\lambda
+(_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))
+(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(\forall
+(b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) z1 t3)))))))) (ex6_6 B T T
+T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2:
+T).(\lambda (y2: T).(eq T (THead (Bind x0) x4 x6) (THead (Bind b) y2 (THead
+(Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2))))))))) (\lambda (H22: (ex2 T
+(\lambda (u2: T).(eq T x6 (THead (Flat Appl) u2 x5))) (\lambda (u2:
+T).(subst0 (s (Bind x0) i) u (lift (S O) O x3) u2)))).(ex2_ind T (\lambda
+(u2: T).(eq T x6 (THead (Flat Appl) u2 x5))) (\lambda (u2: T).(subst0 (s
+(Bind x0) i) u (lift (S O) O x3) u2)) (or3 (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T (THead (Bind x0) x4 x6) (THead (Flat Appl) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr2 c (THead (Bind x0) x1 x2) t3)))) (ex4_4 T T T T
+(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind x0) x1 x2) (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind x0)
+x4 x6) (THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda
+(y2: T).(eq T (THead (Bind x0) x4 x6) (THead (Bind b) y2 (THead (Flat Appl)
+(lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))))
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2
+(CHead c (Bind b) y2) z1 z2))))))))) (\lambda (x7: T).(\lambda (H23: (eq T x6
+(THead (Flat Appl) x7 x5))).(\lambda (H24: (subst0 (s (Bind x0) i) u (lift (S
+O) O x3) x7)).(eq_ind_r T (THead (Flat Appl) x7 x5) (\lambda (t3: T).(or3
+(ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T (THead (Bind x0) x4 t3)
+(THead (Flat Appl) u2 t4)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))
+(\lambda (_: T).(\lambda (t4: T).(pr2 c (THead (Bind x0) x1 x2) t4)))) (ex4_4
+T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq
+T (THead (Bind x0) x1 x2) (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t4: T).(eq T (THead (Bind x0)
+x4 t3) (THead (Bind Abbr) u2 t4)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t4: T).(\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) z1 t4)))))))) (ex6_6 B T T T T T (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda
+(y2: T).(eq T (THead (Bind x0) x4 t3) (THead (Bind b) y2 (THead (Flat Appl)
+(lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))))
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2
+(CHead c (Bind b) y2) z1 z2)))))))))) (ex2_ind T (\lambda (t3: T).(eq T x7
+(lift (S O) O t3))) (\lambda (t3: T).(subst0 (minus (s (Bind x0) i) (S O)) u
+x3 t3)) (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind
+x0) x4 (THead (Flat Appl) x7 x5)) (THead (Flat Appl) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c
+(THead (Bind x0) x1 x2) t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind
+Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(t3: T).(eq T (THead (Bind x0) x4 (THead (Flat Appl) x7 x5)) (THead (Bind
+Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b)
+u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b
+Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T (THead (Bind x0) x4 (THead
+(Flat Appl) x7 x5)) (THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2)
+z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b)
+y2) z1 z2))))))))) (\lambda (x8: T).(\lambda (H25: (eq T x7 (lift (S O) O
+x8))).(\lambda (H26: (subst0 (minus (s (Bind x0) i) (S O)) u x3 x8)).(let H27
+\def (eq_ind nat (minus (s (Bind x0) i) (S O)) (\lambda (n: nat).(subst0 n u
+x3 x8)) H26 i (s_arith1 x0 i)) in (eq_ind_r T (lift (S O) O x8) (\lambda (t3:
+T).(or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T (THead (Bind x0)
+x4 (THead (Flat Appl) t3 x5)) (THead (Flat Appl) u2 t4)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t4: T).(pr2 c
+(THead (Bind x0) x1 x2) t4)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind
+Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(t4: T).(eq T (THead (Bind x0) x4 (THead (Flat Appl) t3 x5)) (THead (Bind
+Abbr) u2 t4)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t4: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b)
+u0) z1 t4)))))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b
+Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T (THead (Bind x0) x4 (THead
+(Flat Appl) t3 x5)) (THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2)
+z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b)
+y2) z1 z2)))))))))) (or3_intro2 (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T (THead (Bind x0) x4 (THead (Flat Appl) (lift (S O) O x8) x5)) (THead
+(Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))
+(\lambda (_: T).(\lambda (t3: T).(pr2 c (THead (Bind x0) x1 x2) t3)))) (ex4_4
+T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq
+T (THead (Bind x0) x1 x2) (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind x0)
+x4 (THead (Flat Appl) (lift (S O) O x8) x5)) (THead (Bind Abbr) u2 t3))))))
+(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3:
+T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) z1 t3))))))))
+(ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2:
+T).(\lambda (y2: T).(eq T (THead (Bind x0) x4 (THead (Flat Appl) (lift (S O)
+O x8) x5)) (THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2)
+z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b)
+y2) z1 z2)))))))) (ex6_6_intro B T T T T T (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B
+b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T (THead (Bind x0) x4 (THead
+(Flat Appl) (lift (S O) O x8) x5)) (THead (Bind b) y2 (THead (Flat Appl)
+(lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))))
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2
+(CHead c (Bind b) y2) z1 z2))))))) x0 x1 x2 x5 x8 x4 H12 (refl_equal T (THead
+(Bind x0) x1 x2)) (refl_equal T (THead (Bind x0) x4 (THead (Flat Appl) (lift
+(S O) O x8) x5))) (pr2_delta c d u i H8 u1 x3 H15 x8 H27) (pr2_free c x1 x4
+H16) (pr2_free (CHead c (Bind x0) x4) x2 x5 H17))) x7 H25)))))
+(subst0_gen_lift_ge u x3 x7 (s (Bind x0) i) (S O) O H24 (le_S_n (S O) (S i)
+(lt_le_S (S O) (S (S i)) (lt_n_S O (S i) (le_lt_n_Sm O i (le_O_n i))))))) x6
+H23)))) H22)) (\lambda (H22: (ex2 T (\lambda (t3: T).(eq T x6 (THead (Flat
+Appl) (lift (S O) O x3) t3))) (\lambda (t3: T).(subst0 (s (Flat Appl) (s
+(Bind x0) i)) u x5 t3)))).(ex2_ind T (\lambda (t3: T).(eq T x6 (THead (Flat
+Appl) (lift (S O) O x3) t3))) (\lambda (t3: T).(subst0 (s (Flat Appl) (s
+(Bind x0) i)) u x5 t3)) (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq
+T (THead (Bind x0) x4 x6) (THead (Flat Appl) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c
+(THead (Bind x0) x1 x2) t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind
+Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(t3: T).(eq T (THead (Bind x0) x4 x6) (THead (Bind Abbr) u2 t3)))))) (\lambda
+(_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))
+(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(\forall
+(b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) z1 t3)))))))) (ex6_6 B T T
+T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2:
+T).(\lambda (y2: T).(eq T (THead (Bind x0) x4 x6) (THead (Bind b) y2 (THead
+(Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2))))))))) (\lambda (x7: T).(\lambda
+(H23: (eq T x6 (THead (Flat Appl) (lift (S O) O x3) x7))).(\lambda (H24:
+(subst0 (s (Flat Appl) (s (Bind x0) i)) u x5 x7)).(eq_ind_r T (THead (Flat
+Appl) (lift (S O) O x3) x7) (\lambda (t3: T).(or3 (ex3_2 T T (\lambda (u2:
+T).(\lambda (t4: T).(eq T (THead (Bind x0) x4 t3) (THead (Flat Appl) u2
+t4)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t4: T).(pr2 c (THead (Bind x0) x1 x2) t4)))) (ex4_4 T T T T
+(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind x0) x1 x2) (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t4: T).(eq T (THead (Bind x0)
+x4 t3) (THead (Bind Abbr) u2 t4)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t4: T).(\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) z1 t4)))))))) (ex6_6 B T T T T T (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda
+(y2: T).(eq T (THead (Bind x0) x4 t3) (THead (Bind b) y2 (THead (Flat Appl)
+(lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))))
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2
+(CHead c (Bind b) y2) z1 z2)))))))))) (or3_intro2 (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T (THead (Bind x0) x4 (THead (Flat Appl) (lift (S O)
+O x3) x7)) (THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c (THead (Bind x0) x1 x2)
+t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3:
+T).(eq T (THead (Bind x0) x4 (THead (Flat Appl) (lift (S O) O x3) x7)) (THead
+(Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2
+(CHead c (Bind b) u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind
+x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T
+(THead (Bind x0) x4 (THead (Flat Appl) (lift (S O) O x3) x7)) (THead (Bind b)
+y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))) (ex6_6_intro B T T T T T
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda
+(y2: T).(eq T (THead (Bind x0) x4 (THead (Flat Appl) (lift (S O) O x3) x7))
+(THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda
+(_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_: B).(\lambda (y1:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1
+y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))
+x0 x1 x2 x7 x3 x4 H12 (refl_equal T (THead (Bind x0) x1 x2)) (refl_equal T
+(THead (Bind x0) x4 (THead (Flat Appl) (lift (S O) O x3) x7))) (pr2_free c u1
+x3 H15) (pr2_free c x1 x4 H16) (pr2_delta (CHead c (Bind x0) x4) d u (S i)
+(getl_clear_bind x0 (CHead c (Bind x0) x4) c x4 (clear_bind x0 c x4) (CHead d
+(Bind Abbr) u) i H8) x2 x5 H17 x7 H24))) x6 H23)))) H22)) (\lambda (H22:
+(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x6 (THead (Flat Appl) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(subst0 (s (Bind x0) i) u (lift (S O)
+O x3) u2))) (\lambda (_: T).(\lambda (t3: T).(subst0 (s (Flat Appl) (s (Bind
+x0) i)) u x5 t3))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda (t3: T).(eq T
+x6 (THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(subst0 (s
+(Bind x0) i) u (lift (S O) O x3) u2))) (\lambda (_: T).(\lambda (t3:
+T).(subst0 (s (Flat Appl) (s (Bind x0) i)) u x5 t3))) (or3 (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind x0) x4 x6) (THead (Flat
+Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr2 c (THead (Bind x0) x1 x2) t3)))) (ex4_4 T T T T
+(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind x0) x1 x2) (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind x0)
+x4 x6) (THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda
+(y2: T).(eq T (THead (Bind x0) x4 x6) (THead (Bind b) y2 (THead (Flat Appl)
+(lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))))
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2
+(CHead c (Bind b) y2) z1 z2))))))))) (\lambda (x7: T).(\lambda (x8:
+T).(\lambda (H23: (eq T x6 (THead (Flat Appl) x7 x8))).(\lambda (H24: (subst0
+(s (Bind x0) i) u (lift (S O) O x3) x7)).(\lambda (H25: (subst0 (s (Flat
+Appl) (s (Bind x0) i)) u x5 x8)).(eq_ind_r T (THead (Flat Appl) x7 x8)
+(\lambda (t3: T).(or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T
+(THead (Bind x0) x4 t3) (THead (Flat Appl) u2 t4)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t4: T).(pr2 c
+(THead (Bind x0) x1 x2) t4)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind
+Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(t4: T).(eq T (THead (Bind x0) x4 t3) (THead (Bind Abbr) u2 t4)))))) (\lambda
+(_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))
+(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t4: T).(\forall
+(b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) z1 t4)))))))) (ex6_6 B T T
+T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2:
+T).(\lambda (y2: T).(eq T (THead (Bind x0) x4 t3) (THead (Bind b) y2 (THead
+(Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))))) (ex2_ind T (\lambda (t3:
+T).(eq T x7 (lift (S O) O t3))) (\lambda (t3: T).(subst0 (minus (s (Bind x0)
+i) (S O)) u x3 t3)) (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T
+(THead (Bind x0) x4 (THead (Flat Appl) x7 x8)) (THead (Flat Appl) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t3: T).(pr2 c (THead (Bind x0) x1 x2) t3)))) (ex4_4 T T T T (\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1
+x2) (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda
+(u2: T).(\lambda (t3: T).(eq T (THead (Bind x0) x4 (THead (Flat Appl) x7 x8))
+(THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2
+(CHead c (Bind b) u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind
+x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T
+(THead (Bind x0) x4 (THead (Flat Appl) x7 x8)) (THead (Bind b) y2 (THead
+(Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2))))))))) (\lambda (x9: T).(\lambda
+(H26: (eq T x7 (lift (S O) O x9))).(\lambda (H27: (subst0 (minus (s (Bind x0)
+i) (S O)) u x3 x9)).(let H28 \def (eq_ind nat (minus (s (Bind x0) i) (S O))
+(\lambda (n: nat).(subst0 n u x3 x9)) H27 i (s_arith1 x0 i)) in (eq_ind_r T
+(lift (S O) O x9) (\lambda (t3: T).(or3 (ex3_2 T T (\lambda (u2: T).(\lambda
+(t4: T).(eq T (THead (Bind x0) x4 (THead (Flat Appl) t3 x8)) (THead (Flat
+Appl) u2 t4)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t4: T).(pr2 c (THead (Bind x0) x1 x2) t4)))) (ex4_4 T T T T
+(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind x0) x1 x2) (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t4: T).(eq T (THead (Bind x0)
+x4 (THead (Flat Appl) t3 x8)) (THead (Bind Abbr) u2 t4)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))
+(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t4: T).(\forall
+(b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) z1 t4)))))))) (ex6_6 B T T
+T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2:
+T).(\lambda (y2: T).(eq T (THead (Bind x0) x4 (THead (Flat Appl) t3 x8))
+(THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda
+(_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_: B).(\lambda (y1:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1
+y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b) y2) z1
+z2)))))))))) (or3_intro2 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T
+(THead (Bind x0) x4 (THead (Flat Appl) (lift (S O) O x9) x8)) (THead (Flat
+Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr2 c (THead (Bind x0) x1 x2) t3)))) (ex4_4 T T T T
+(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind x0) x1 x2) (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind x0)
+x4 (THead (Flat Appl) (lift (S O) O x9) x8)) (THead (Bind Abbr) u2 t3))))))
+(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3:
+T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) z1 t3))))))))
+(ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2:
+T).(\lambda (y2: T).(eq T (THead (Bind x0) x4 (THead (Flat Appl) (lift (S O)
+O x9) x8)) (THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2)
+z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b)
+y2) z1 z2)))))))) (ex6_6_intro B T T T T T (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B
+b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T (THead (Bind x0) x4 (THead
+(Flat Appl) (lift (S O) O x9) x8)) (THead (Bind b) y2 (THead (Flat Appl)
+(lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))))
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2
+(CHead c (Bind b) y2) z1 z2))))))) x0 x1 x2 x8 x9 x4 H12 (refl_equal T (THead
+(Bind x0) x1 x2)) (refl_equal T (THead (Bind x0) x4 (THead (Flat Appl) (lift
+(S O) O x9) x8))) (pr2_delta c d u i H8 u1 x3 H15 x9 H28) (pr2_free c x1 x4
+H16) (pr2_delta (CHead c (Bind x0) x4) d u (S i) (getl_clear_bind x0 (CHead c
+(Bind x0) x4) c x4 (clear_bind x0 c x4) (CHead d (Bind Abbr) u) i H8) x2 x5
+H17 x8 H25))) x7 H26))))) (subst0_gen_lift_ge u x3 x7 (s (Bind x0) i) (S O) O
+H24 (le_S_n (S O) (S i) (lt_le_S (S O) (S (S i)) (lt_n_S O (S i) (le_lt_n_Sm
+O i (le_O_n i))))))) x6 H23)))))) H22)) (subst0_gen_head (Flat Appl) u (lift
+(S O) O x3) x5 x6 (s (Bind x0) i) H21)) x H20)))) H19)) (\lambda (H19: (ex3_2
+T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind x0) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(subst0 i u x4 u2))) (\lambda (_:
+T).(\lambda (t3: T).(subst0 (s (Bind x0) i) u (THead (Flat Appl) (lift (S O)
+O x3) x5) t3))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda (t3: T).(eq T x
+(THead (Bind x0) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i u x4
+u2))) (\lambda (_: T).(\lambda (t3: T).(subst0 (s (Bind x0) i) u (THead (Flat
+Appl) (lift (S O) O x3) x5) t3))) (or3 (ex3_2 T T (\lambda (u2: T).(\lambda
+(t3: T).(eq T x (THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c (THead (Bind x0)
+x1 x2) t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3:
+T).(eq T x (THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda
+(y2: T).(eq T x (THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2)
+z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b)
+y2) z1 z2))))))))) (\lambda (x6: T).(\lambda (x7: T).(\lambda (H20: (eq T x
+(THead (Bind x0) x6 x7))).(\lambda (H21: (subst0 i u x4 x6)).(\lambda (H22:
+(subst0 (s (Bind x0) i) u (THead (Flat Appl) (lift (S O) O x3) x5)
+x7)).(eq_ind_r T (THead (Bind x0) x6 x7) (\lambda (t3: T).(or3 (ex3_2 T T
+(\lambda (u2: T).(\lambda (t4: T).(eq T t3 (THead (Flat Appl) u2 t4))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t4: T).(pr2 c (THead (Bind x0) x1 x2) t4)))) (ex4_4 T T T T (\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1
+x2) (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda
+(u2: T).(\lambda (t4: T).(eq T t3 (THead (Bind Abbr) u2 t4)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))
+(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t4: T).(\forall
+(b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) z1 t4)))))))) (ex6_6 B T T
+T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2:
+T).(\lambda (y2: T).(eq T t3 (THead (Bind b) y2 (THead (Flat Appl) (lift (S
+O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b)
+y2) z1 z2)))))))))) (or3_ind (ex2 T (\lambda (u2: T).(eq T x7 (THead (Flat
+Appl) u2 x5))) (\lambda (u2: T).(subst0 (s (Bind x0) i) u (lift (S O) O x3)
+u2))) (ex2 T (\lambda (t3: T).(eq T x7 (THead (Flat Appl) (lift (S O) O x3)
+t3))) (\lambda (t3: T).(subst0 (s (Flat Appl) (s (Bind x0) i)) u x5 t3)))
+(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x7 (THead (Flat Appl) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(subst0 (s (Bind x0) i) u (lift (S O)
+O x3) u2))) (\lambda (_: T).(\lambda (t3: T).(subst0 (s (Flat Appl) (s (Bind
+x0) i)) u x5 t3)))) (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T
+(THead (Bind x0) x6 x7) (THead (Flat Appl) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c
+(THead (Bind x0) x1 x2) t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind
+Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(t3: T).(eq T (THead (Bind x0) x6 x7) (THead (Bind Abbr) u2 t3)))))) (\lambda
+(_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))
+(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(\forall
+(b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) z1 t3)))))))) (ex6_6 B T T
+T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2:
+T).(\lambda (y2: T).(eq T (THead (Bind x0) x6 x7) (THead (Bind b) y2 (THead
+(Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2))))))))) (\lambda (H23: (ex2 T
+(\lambda (u2: T).(eq T x7 (THead (Flat Appl) u2 x5))) (\lambda (u2:
+T).(subst0 (s (Bind x0) i) u (lift (S O) O x3) u2)))).(ex2_ind T (\lambda
+(u2: T).(eq T x7 (THead (Flat Appl) u2 x5))) (\lambda (u2: T).(subst0 (s
+(Bind x0) i) u (lift (S O) O x3) u2)) (or3 (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T (THead (Bind x0) x6 x7) (THead (Flat Appl) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr2 c (THead (Bind x0) x1 x2) t3)))) (ex4_4 T T T T
+(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind x0) x1 x2) (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind x0)
+x6 x7) (THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda
+(y2: T).(eq T (THead (Bind x0) x6 x7) (THead (Bind b) y2 (THead (Flat Appl)
+(lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))))
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2
+(CHead c (Bind b) y2) z1 z2))))))))) (\lambda (x8: T).(\lambda (H24: (eq T x7
+(THead (Flat Appl) x8 x5))).(\lambda (H25: (subst0 (s (Bind x0) i) u (lift (S
+O) O x3) x8)).(eq_ind_r T (THead (Flat Appl) x8 x5) (\lambda (t3: T).(or3
+(ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T (THead (Bind x0) x6 t3)
+(THead (Flat Appl) u2 t4)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))
+(\lambda (_: T).(\lambda (t4: T).(pr2 c (THead (Bind x0) x1 x2) t4)))) (ex4_4
+T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq
+T (THead (Bind x0) x1 x2) (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t4: T).(eq T (THead (Bind x0)
+x6 t3) (THead (Bind Abbr) u2 t4)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t4: T).(\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) z1 t4)))))))) (ex6_6 B T T T T T (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda
+(y2: T).(eq T (THead (Bind x0) x6 t3) (THead (Bind b) y2 (THead (Flat Appl)
+(lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))))
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2
+(CHead c (Bind b) y2) z1 z2)))))))))) (ex2_ind T (\lambda (t3: T).(eq T x8
+(lift (S O) O t3))) (\lambda (t3: T).(subst0 (minus (s (Bind x0) i) (S O)) u
+x3 t3)) (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind
+x0) x6 (THead (Flat Appl) x8 x5)) (THead (Flat Appl) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c
+(THead (Bind x0) x1 x2) t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind
+Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(t3: T).(eq T (THead (Bind x0) x6 (THead (Flat Appl) x8 x5)) (THead (Bind
+Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b)
+u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b
+Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T (THead (Bind x0) x6 (THead
+(Flat Appl) x8 x5)) (THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2)
+z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b)
+y2) z1 z2))))))))) (\lambda (x9: T).(\lambda (H26: (eq T x8 (lift (S O) O
+x9))).(\lambda (H27: (subst0 (minus (s (Bind x0) i) (S O)) u x3 x9)).(let H28
+\def (eq_ind nat (minus (s (Bind x0) i) (S O)) (\lambda (n: nat).(subst0 n u
+x3 x9)) H27 i (s_arith1 x0 i)) in (eq_ind_r T (lift (S O) O x9) (\lambda (t3:
+T).(or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T (THead (Bind x0)
+x6 (THead (Flat Appl) t3 x5)) (THead (Flat Appl) u2 t4)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t4: T).(pr2 c
+(THead (Bind x0) x1 x2) t4)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind
+Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(t4: T).(eq T (THead (Bind x0) x6 (THead (Flat Appl) t3 x5)) (THead (Bind
+Abbr) u2 t4)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(_: T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t4: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b)
+u0) z1 t4)))))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b
+Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T (THead (Bind x0) x6 (THead
+(Flat Appl) t3 x5)) (THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2)
+z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b)
+y2) z1 z2)))))))))) (or3_intro2 (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T (THead (Bind x0) x6 (THead (Flat Appl) (lift (S O) O x9) x5)) (THead
+(Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))
+(\lambda (_: T).(\lambda (t3: T).(pr2 c (THead (Bind x0) x1 x2) t3)))) (ex4_4
+T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq
+T (THead (Bind x0) x1 x2) (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind x0)
+x6 (THead (Flat Appl) (lift (S O) O x9) x5)) (THead (Bind Abbr) u2 t3))))))
+(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3:
+T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) z1 t3))))))))
+(ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2:
+T).(\lambda (y2: T).(eq T (THead (Bind x0) x6 (THead (Flat Appl) (lift (S O)
+O x9) x5)) (THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2)
+z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b)
+y2) z1 z2)))))))) (ex6_6_intro B T T T T T (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B
+b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T (THead (Bind x0) x6 (THead
+(Flat Appl) (lift (S O) O x9) x5)) (THead (Bind b) y2 (THead (Flat Appl)
+(lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))))
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2
+(CHead c (Bind b) y2) z1 z2))))))) x0 x1 x2 x5 x9 x6 H12 (refl_equal T (THead
+(Bind x0) x1 x2)) (refl_equal T (THead (Bind x0) x6 (THead (Flat Appl) (lift
+(S O) O x9) x5))) (pr2_delta c d u i H8 u1 x3 H15 x9 H28) (pr2_delta c d u i
+H8 x1 x4 H16 x6 H21) (pr2_free (CHead c (Bind x0) x6) x2 x5 H17))) x8
+H26))))) (subst0_gen_lift_ge u x3 x8 (s (Bind x0) i) (S O) O H25 (le_S_n (S
+O) (S i) (lt_le_S (S O) (S (S i)) (lt_n_S O (S i) (le_lt_n_Sm O i (le_O_n
+i))))))) x7 H24)))) H23)) (\lambda (H23: (ex2 T (\lambda (t3: T).(eq T x7
+(THead (Flat Appl) (lift (S O) O x3) t3))) (\lambda (t3: T).(subst0 (s (Flat
+Appl) (s (Bind x0) i)) u x5 t3)))).(ex2_ind T (\lambda (t3: T).(eq T x7
+(THead (Flat Appl) (lift (S O) O x3) t3))) (\lambda (t3: T).(subst0 (s (Flat
+Appl) (s (Bind x0) i)) u x5 t3)) (or3 (ex3_2 T T (\lambda (u2: T).(\lambda
+(t3: T).(eq T (THead (Bind x0) x6 x7) (THead (Flat Appl) u2 t3)))) (\lambda
+(u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2
+c (THead (Bind x0) x1 x2) t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead
+(Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (t3: T).(eq T (THead (Bind x0) x6 x7) (THead (Bind Abbr) u2
+t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b)
+u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b
+Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T (THead (Bind x0) x6 x7)
+(THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda
+(_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_: B).(\lambda (y1:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1
+y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))))
+(\lambda (x8: T).(\lambda (H24: (eq T x7 (THead (Flat Appl) (lift (S O) O x3)
+x8))).(\lambda (H25: (subst0 (s (Flat Appl) (s (Bind x0) i)) u x5
+x8)).(eq_ind_r T (THead (Flat Appl) (lift (S O) O x3) x8) (\lambda (t3:
+T).(or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T (THead (Bind x0)
+x6 t3) (THead (Flat Appl) u2 t4)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c
+u1 u2))) (\lambda (_: T).(\lambda (t4: T).(pr2 c (THead (Bind x0) x1 x2)
+t4)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind Abst) y1
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t4:
+T).(eq T (THead (Bind x0) x6 t3) (THead (Bind Abbr) u2 t4)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))
+(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t4: T).(\forall
+(b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) z1 t4)))))))) (ex6_6 B T T
+T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2:
+T).(\lambda (y2: T).(eq T (THead (Bind x0) x6 t3) (THead (Bind b) y2 (THead
+(Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))))) (or3_intro2 (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind x0) x6 (THead (Flat
+Appl) (lift (S O) O x3) x8)) (THead (Flat Appl) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c
+(THead (Bind x0) x1 x2) t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind
+Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(t3: T).(eq T (THead (Bind x0) x6 (THead (Flat Appl) (lift (S O) O x3) x8))
+(THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2
+(CHead c (Bind b) u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind
+x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T
+(THead (Bind x0) x6 (THead (Flat Appl) (lift (S O) O x3) x8)) (THead (Bind b)
+y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))) (ex6_6_intro B T T T T T
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda
+(y2: T).(eq T (THead (Bind x0) x6 (THead (Flat Appl) (lift (S O) O x3) x8))
+(THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda
+(_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_: B).(\lambda (y1:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1
+y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))
+x0 x1 x2 x8 x3 x6 H12 (refl_equal T (THead (Bind x0) x1 x2)) (refl_equal T
+(THead (Bind x0) x6 (THead (Flat Appl) (lift (S O) O x3) x8))) (pr2_free c u1
+x3 H15) (pr2_delta c d u i H8 x1 x4 H16 x6 H21) (pr2_delta (CHead c (Bind x0)
+x6) d u (S i) (getl_clear_bind x0 (CHead c (Bind x0) x6) c x6 (clear_bind x0
+c x6) (CHead d (Bind Abbr) u) i H8) x2 x5 H17 x8 H25))) x7 H24)))) H23))
+(\lambda (H23: (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x7 (THead
+(Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(subst0 (s (Bind x0)
+i) u (lift (S O) O x3) u2))) (\lambda (_: T).(\lambda (t3: T).(subst0 (s
+(Flat Appl) (s (Bind x0) i)) u x5 t3))))).(ex3_2_ind T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x7 (THead (Flat Appl) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(subst0 (s (Bind x0) i) u (lift (S O) O x3) u2))) (\lambda
+(_: T).(\lambda (t3: T).(subst0 (s (Flat Appl) (s (Bind x0) i)) u x5 t3)))
+(or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind x0) x6
+x7) (THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c (THead (Bind x0) x1 x2) t3))))
+(ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_:
+T).(eq T (THead (Bind x0) x1 x2) (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind x0)
+x6 x7) (THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda
+(y2: T).(eq T (THead (Bind x0) x6 x7) (THead (Bind b) y2 (THead (Flat Appl)
+(lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))))
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2
+(CHead c (Bind b) y2) z1 z2))))))))) (\lambda (x8: T).(\lambda (x9:
+T).(\lambda (H24: (eq T x7 (THead (Flat Appl) x8 x9))).(\lambda (H25: (subst0
+(s (Bind x0) i) u (lift (S O) O x3) x8)).(\lambda (H26: (subst0 (s (Flat
+Appl) (s (Bind x0) i)) u x5 x9)).(eq_ind_r T (THead (Flat Appl) x8 x9)
+(\lambda (t3: T).(or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T
+(THead (Bind x0) x6 t3) (THead (Flat Appl) u2 t4)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t4: T).(pr2 c
+(THead (Bind x0) x1 x2) t4)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind
+Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(t4: T).(eq T (THead (Bind x0) x6 t3) (THead (Bind Abbr) u2 t4)))))) (\lambda
+(_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))
+(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t4: T).(\forall
+(b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) z1 t4)))))))) (ex6_6 B T T
+T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2:
+T).(\lambda (y2: T).(eq T (THead (Bind x0) x6 t3) (THead (Bind b) y2 (THead
+(Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))))) (ex2_ind T (\lambda (t3:
+T).(eq T x8 (lift (S O) O t3))) (\lambda (t3: T).(subst0 (minus (s (Bind x0)
+i) (S O)) u x3 t3)) (or3 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T
+(THead (Bind x0) x6 (THead (Flat Appl) x8 x9)) (THead (Flat Appl) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t3: T).(pr2 c (THead (Bind x0) x1 x2) t3)))) (ex4_4 T T T T (\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1
+x2) (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda
+(u2: T).(\lambda (t3: T).(eq T (THead (Bind x0) x6 (THead (Flat Appl) x8 x9))
+(THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))))) (\lambda (_: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2
+(CHead c (Bind b) u0) z1 t3)))))))) (ex6_6 B T T T T T (\lambda (b:
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind
+x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T
+(THead (Bind x0) x6 (THead (Flat Appl) x8 x9)) (THead (Bind b) y2 (THead
+(Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b:
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 (CHead c (Bind b) y2) z1 z2))))))))) (\lambda (x10: T).(\lambda
+(H27: (eq T x8 (lift (S O) O x10))).(\lambda (H28: (subst0 (minus (s (Bind
+x0) i) (S O)) u x3 x10)).(let H29 \def (eq_ind nat (minus (s (Bind x0) i) (S
+O)) (\lambda (n: nat).(subst0 n u x3 x10)) H28 i (s_arith1 x0 i)) in
+(eq_ind_r T (lift (S O) O x10) (\lambda (t3: T).(or3 (ex3_2 T T (\lambda (u2:
+T).(\lambda (t4: T).(eq T (THead (Bind x0) x6 (THead (Flat Appl) t3 x9))
+(THead (Flat Appl) u2 t4)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))
+(\lambda (_: T).(\lambda (t4: T).(pr2 c (THead (Bind x0) x1 x2) t4)))) (ex4_4
+T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq
+T (THead (Bind x0) x1 x2) (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t4: T).(eq T (THead (Bind x0)
+x6 (THead (Flat Appl) t3 x9)) (THead (Bind Abbr) u2 t4)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))
+(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t4: T).(\forall
+(b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) z1 t4)))))))) (ex6_6 B T T
+T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2:
+T).(\lambda (y2: T).(eq T (THead (Bind x0) x6 (THead (Flat Appl) t3 x9))
+(THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda
+(_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_: B).(\lambda (y1:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1
+y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2:
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b) y2) z1
+z2)))))))))) (or3_intro2 (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T
+(THead (Bind x0) x6 (THead (Flat Appl) (lift (S O) O x10) x9)) (THead (Flat
+Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(pr2 c (THead (Bind x0) x1 x2) t3)))) (ex4_4 T T T T
+(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T
+(THead (Bind x0) x1 x2) (THead (Bind Abst) y1 z1)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind x0)
+x6 (THead (Flat Appl) (lift (S O) O x10) x9)) (THead (Bind Abbr) u2 t3))))))
+(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3:
+T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) z1 t3))))))))
+(ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind b) y1 z1)))))))) (\lambda
+(b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2:
+T).(\lambda (y2: T).(eq T (THead (Bind x0) x6 (THead (Flat Appl) (lift (S O)
+O x10) x9)) (THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2)
+z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))))))) (\lambda (_:
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1:
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b)
+y2) z1 z2)))))))) (ex6_6_intro B T T T T T (\lambda (b: B).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B
+b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
+(z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T (THead (Bind x0) x6 (THead
+(Flat Appl) (lift (S O) O x10) x9)) (THead (Bind b) y2 (THead (Flat Appl)
+(lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))))))
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_:
+T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b: B).(\lambda (_:
+T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr2
+(CHead c (Bind b) y2) z1 z2))))))) x0 x1 x2 x9 x10 x6 H12 (refl_equal T
+(THead (Bind x0) x1 x2)) (refl_equal T (THead (Bind x0) x6 (THead (Flat Appl)
+(lift (S O) O x10) x9))) (pr2_delta c d u i H8 u1 x3 H15 x10 H29) (pr2_delta
+c d u i H8 x1 x4 H16 x6 H21) (pr2_delta (CHead c (Bind x0) x6) d u (S i)
+(getl_clear_bind x0 (CHead c (Bind x0) x6) c x6 (clear_bind x0 c x6) (CHead d
+(Bind Abbr) u) i H8) x2 x5 H17 x9 H26))) x8 H27))))) (subst0_gen_lift_ge u x3
+x8 (s (Bind x0) i) (S O) O H25 (le_S_n (S O) (S i) (lt_le_S (S O) (S (S i))
+(lt_n_S O (S i) (le_lt_n_Sm O i (le_O_n i))))))) x7 H24)))))) H23))
+(subst0_gen_head (Flat Appl) u (lift (S O) O x3) x5 x7 (s (Bind x0) i) H22))
+x H20)))))) H19)) (subst0_gen_head (Bind x0) u x4 (THead (Flat Appl) (lift (S
+O) O x3) x5) x i H18)) t1 H13)))))))))))))) H11)) (pr0_gen_appl u1 t1 t2
+H9))))) t (sym_eq T t x H7))) t0 (sym_eq T t0 (THead (Flat Appl) u1 t1) H6)))
+c0 (sym_eq C c0 c H3) H4 H5 H0 H1 H2))))]) in (H0 (refl_equal C c)
+(refl_equal T (THead (Flat Appl) u1 t1)) (refl_equal T x))))))).
+
+theorem pr2_gen_abbr:
+ \forall (c: C).(\forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr2 c
+(THead (Bind Abbr) u1 t1) x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda
+(t2: T).(eq T x (THead (Bind Abbr) u2 t2)))) (\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t2: T).(or3 (\forall (b:
+B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1 t2))) (ex2 T (\lambda (u:
+T).(pr0 u1 u)) (\lambda (u: T).(pr2 (CHead c (Bind Abbr) u) t1 t2))) (ex3_2 T
+T (\lambda (y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr) u1) t1 y)))
+(\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda (_: T).(\lambda (z:
+T).(pr2 (CHead c (Bind Abbr) u1) z t2)))))))) (\forall (b: B).(\forall (u:
+T).(pr2 (CHead c (Bind b) u) t1 (lift (S O) O x)))))))))
+\def
+ \lambda (c: C).(\lambda (u1: T).(\lambda (t1: T).(\lambda (x: T).(\lambda
+(H: (pr2 c (THead (Bind Abbr) u1 t1) x)).(let H0 \def (match H in pr2 return
+(\lambda (c0: C).(\lambda (t: T).(\lambda (t0: T).(\lambda (_: (pr2 c0 t
+t0)).((eq C c0 c) \to ((eq T t (THead (Bind Abbr) u1 t1)) \to ((eq T t0 x)
+\to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead (Bind
+Abbr) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t2: T).(or3 (\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind
+b) u) t1 t2))) (ex2 T (\lambda (u: T).(pr0 u1 u)) (\lambda (u: T).(pr2 (CHead
+c (Bind Abbr) u) t1 t2))) (ex3_2 T T (\lambda (y: T).(\lambda (_: T).(pr2
+(CHead c (Bind Abbr) u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0 y z)))
+(\lambda (_: T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z t2))))))))
+(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1 (lift (S O) O
+x)))))))))))) with [(pr2_free c0 t0 t2 H0) \Rightarrow (\lambda (H1: (eq C c0
+c)).(\lambda (H2: (eq T t0 (THead (Bind Abbr) u1 t1))).(\lambda (H3: (eq T t2
+x)).(eq_ind C c (\lambda (_: C).((eq T t0 (THead (Bind Abbr) u1 t1)) \to ((eq
+T t2 x) \to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T x (THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(or3 (\forall (b: B).(\forall (u:
+T).(pr2 (CHead c (Bind b) u) t1 t3))) (ex2 T (\lambda (u: T).(pr0 u1 u))
+(\lambda (u: T).(pr2 (CHead c (Bind Abbr) u) t1 t3))) (ex3_2 T T (\lambda (y:
+T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr) u1) t1 y))) (\lambda (y:
+T).(\lambda (z: T).(pr0 y z))) (\lambda (_: T).(\lambda (z: T).(pr2 (CHead c
+(Bind Abbr) u1) z t3)))))))) (\forall (b: B).(\forall (u: T).(pr2 (CHead c
+(Bind b) u) t1 (lift (S O) O x))))))))) (\lambda (H4: (eq T t0 (THead (Bind
+Abbr) u1 t1))).(eq_ind T (THead (Bind Abbr) u1 t1) (\lambda (t: T).((eq T t2
+x) \to ((pr0 t t2) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T
+x (THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))) (\lambda (_: T).(\lambda (t3: T).(or3 (\forall (b: B).(\forall (u:
+T).(pr2 (CHead c (Bind b) u) t1 t3))) (ex2 T (\lambda (u: T).(pr0 u1 u))
+(\lambda (u: T).(pr2 (CHead c (Bind Abbr) u) t1 t3))) (ex3_2 T T (\lambda (y:
+T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr) u1) t1 y))) (\lambda (y:
+T).(\lambda (z: T).(pr0 y z))) (\lambda (_: T).(\lambda (z: T).(pr2 (CHead c
+(Bind Abbr) u1) z t3)))))))) (\forall (b: B).(\forall (u: T).(pr2 (CHead c
+(Bind b) u) t1 (lift (S O) O x)))))))) (\lambda (H5: (eq T t2 x)).(eq_ind T x
+(\lambda (t: T).((pr0 (THead (Bind Abbr) u1 t1) t) \to (or (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t3: T).(or3 (\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1
+t3))) (ex2 T (\lambda (u: T).(pr0 u1 u)) (\lambda (u: T).(pr2 (CHead c (Bind
+Abbr) u) t1 t3))) (ex3_2 T T (\lambda (y: T).(\lambda (_: T).(pr2 (CHead c
+(Bind Abbr) u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda
+(_: T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z t3)))))))) (\forall
+(b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1 (lift (S O) O x)))))))
+(\lambda (H6: (pr0 (THead (Bind Abbr) u1 t1) x)).(or_ind (ex3_2 T T (\lambda
+(u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t3: T).(or (pr0
+t1 t3) (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O u2 y
+t3))))))) (pr0 t1 (lift (S O) O x)) (or (ex3_2 T T (\lambda (u2: T).(\lambda
+(t3: T).(eq T x (THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(or3 (\forall (b:
+B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1 t3))) (ex2 T (\lambda (u:
+T).(pr0 u1 u)) (\lambda (u: T).(pr2 (CHead c (Bind Abbr) u) t1 t3))) (ex3_2 T
+T (\lambda (y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr) u1) t1 y)))
+(\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda (_: T).(\lambda (z:
+T).(pr2 (CHead c (Bind Abbr) u1) z t3)))))))) (\forall (b: B).(\forall (u:
+T).(pr2 (CHead c (Bind b) u) t1 (lift (S O) O x))))) (\lambda (H7: (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t3:
+T).(or (pr0 t1 t3) (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0
+O u2 y t3)))))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda (t3: T).(eq T x
+(THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2)))
+(\lambda (u2: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y: T).(pr0
+t1 y)) (\lambda (y: T).(subst0 O u2 y t3)))))) (or (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(or3
+(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1 t3))) (ex2 T
+(\lambda (u: T).(pr0 u1 u)) (\lambda (u: T).(pr2 (CHead c (Bind Abbr) u) t1
+t3))) (ex3_2 T T (\lambda (y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr)
+u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda (_:
+T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z t3)))))))) (\forall (b:
+B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1 (lift (S O) O x))))) (\lambda
+(x0: T).(\lambda (x1: T).(\lambda (H8: (eq T x (THead (Bind Abbr) x0
+x1))).(\lambda (H9: (pr0 u1 x0)).(\lambda (H_x: (or (pr0 t1 x1) (ex2 T
+(\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O x0 y x1))))).(or_ind
+(pr0 t1 x1) (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O x0 y
+x1))) (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind
+Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(or3 (\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind
+b) u) t1 t3))) (ex2 T (\lambda (u: T).(pr0 u1 u)) (\lambda (u: T).(pr2 (CHead
+c (Bind Abbr) u) t1 t3))) (ex3_2 T T (\lambda (y: T).(\lambda (_: T).(pr2
+(CHead c (Bind Abbr) u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0 y z)))
+(\lambda (_: T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z t3))))))))
+(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1 (lift (S O) O
+x))))) (\lambda (H10: (pr0 t1 x1)).(eq_ind_r T (THead (Bind Abbr) x0 x1)
+(\lambda (t: T).(or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t
+(THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))
+(\lambda (_: T).(\lambda (t3: T).(or3 (\forall (b: B).(\forall (u: T).(pr2
+(CHead c (Bind b) u) t1 t3))) (ex2 T (\lambda (u: T).(pr0 u1 u)) (\lambda (u:
+T).(pr2 (CHead c (Bind Abbr) u) t1 t3))) (ex3_2 T T (\lambda (y: T).(\lambda
+(_: T).(pr2 (CHead c (Bind Abbr) u1) t1 y))) (\lambda (y: T).(\lambda (z:
+T).(pr0 y z))) (\lambda (_: T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1)
+z t3)))))))) (\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1
+(lift (S O) O t)))))) (or_introl (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T (THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(or3
+(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1 t3))) (ex2 T
+(\lambda (u: T).(pr0 u1 u)) (\lambda (u: T).(pr2 (CHead c (Bind Abbr) u) t1
+t3))) (ex3_2 T T (\lambda (y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr)
+u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda (_:
+T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z t3)))))))) (\forall (b:
+B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1 (lift (S O) O (THead (Bind
+Abbr) x0 x1))))) (ex3_2_intro T T (\lambda (u2: T).(\lambda (t3: T).(eq T
+(THead (Bind Abbr) x0 x1) (THead (Bind Abbr) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(or3
+(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1 t3))) (ex2 T
+(\lambda (u: T).(pr0 u1 u)) (\lambda (u: T).(pr2 (CHead c (Bind Abbr) u) t1
+t3))) (ex3_2 T T (\lambda (y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr)
+u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda (_:
+T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z t3))))))) x0 x1
+(refl_equal T (THead (Bind Abbr) x0 x1)) (pr2_free c u1 x0 H9) (or3_intro0
+(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1 x1))) (ex2 T
+(\lambda (u: T).(pr0 u1 u)) (\lambda (u: T).(pr2 (CHead c (Bind Abbr) u) t1
+x1))) (ex3_2 T T (\lambda (y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr)
+u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda (_:
+T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z x1)))) (\lambda (b:
+B).(\lambda (u: T).(pr2_free (CHead c (Bind b) u) t1 x1 H10)))))) x H8))
+(\lambda (H_x0: (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O
+x0 y x1)))).(ex2_ind T (\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O
+x0 y x1)) (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead
+(Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))
+(\lambda (_: T).(\lambda (t3: T).(or3 (\forall (b: B).(\forall (u: T).(pr2
+(CHead c (Bind b) u) t1 t3))) (ex2 T (\lambda (u: T).(pr0 u1 u)) (\lambda (u:
+T).(pr2 (CHead c (Bind Abbr) u) t1 t3))) (ex3_2 T T (\lambda (y: T).(\lambda
+(_: T).(pr2 (CHead c (Bind Abbr) u1) t1 y))) (\lambda (y: T).(\lambda (z:
+T).(pr0 y z))) (\lambda (_: T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1)
+z t3)))))))) (\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1
+(lift (S O) O x))))) (\lambda (x2: T).(\lambda (H10: (pr0 t1 x2)).(\lambda
+(H11: (subst0 O x0 x2 x1)).(eq_ind_r T (THead (Bind Abbr) x0 x1) (\lambda (t:
+T).(or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t (THead (Bind
+Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(or3 (\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind
+b) u) t1 t3))) (ex2 T (\lambda (u: T).(pr0 u1 u)) (\lambda (u: T).(pr2 (CHead
+c (Bind Abbr) u) t1 t3))) (ex3_2 T T (\lambda (y: T).(\lambda (_: T).(pr2
+(CHead c (Bind Abbr) u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0 y z)))
+(\lambda (_: T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z t3))))))))
+(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1 (lift (S O) O
+t)))))) (ex2_ind T (\lambda (t: T).(subst0 O u1 x2 t)) (\lambda (t: T).(pr0 t
+x1)) (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind
+Abbr) x0 x1) (THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(or3 (\forall (b:
+B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1 t3))) (ex2 T (\lambda (u:
+T).(pr0 u1 u)) (\lambda (u: T).(pr2 (CHead c (Bind Abbr) u) t1 t3))) (ex3_2 T
+T (\lambda (y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr) u1) t1 y)))
+(\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda (_: T).(\lambda (z:
+T).(pr2 (CHead c (Bind Abbr) u1) z t3)))))))) (\forall (b: B).(\forall (u:
+T).(pr2 (CHead c (Bind b) u) t1 (lift (S O) O (THead (Bind Abbr) x0 x1))))))
+(\lambda (x3: T).(\lambda (_: (subst0 O u1 x2 x3)).(\lambda (_: (pr0 x3
+x1)).(or_introl (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T (THead
+(Bind Abbr) x0 x1) (THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(or3 (\forall (b:
+B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1 t3))) (ex2 T (\lambda (u:
+T).(pr0 u1 u)) (\lambda (u: T).(pr2 (CHead c (Bind Abbr) u) t1 t3))) (ex3_2 T
+T (\lambda (y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr) u1) t1 y)))
+(\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda (_: T).(\lambda (z:
+T).(pr2 (CHead c (Bind Abbr) u1) z t3)))))))) (\forall (b: B).(\forall (u:
+T).(pr2 (CHead c (Bind b) u) t1 (lift (S O) O (THead (Bind Abbr) x0 x1)))))
+(ex3_2_intro T T (\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind Abbr)
+x0 x1) (THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c
+u1 u2))) (\lambda (_: T).(\lambda (t3: T).(or3 (\forall (b: B).(\forall (u:
+T).(pr2 (CHead c (Bind b) u) t1 t3))) (ex2 T (\lambda (u: T).(pr0 u1 u))
+(\lambda (u: T).(pr2 (CHead c (Bind Abbr) u) t1 t3))) (ex3_2 T T (\lambda (y:
+T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr) u1) t1 y))) (\lambda (y:
+T).(\lambda (z: T).(pr0 y z))) (\lambda (_: T).(\lambda (z: T).(pr2 (CHead c
+(Bind Abbr) u1) z t3))))))) x0 x1 (refl_equal T (THead (Bind Abbr) x0 x1))
+(pr2_free c u1 x0 H9) (or3_intro1 (\forall (b: B).(\forall (u: T).(pr2 (CHead
+c (Bind b) u) t1 x1))) (ex2 T (\lambda (u: T).(pr0 u1 u)) (\lambda (u:
+T).(pr2 (CHead c (Bind Abbr) u) t1 x1))) (ex3_2 T T (\lambda (y: T).(\lambda
+(_: T).(pr2 (CHead c (Bind Abbr) u1) t1 y))) (\lambda (y: T).(\lambda (z:
+T).(pr0 y z))) (\lambda (_: T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1)
+z x1)))) (ex_intro2 T (\lambda (u: T).(pr0 u1 u)) (\lambda (u: T).(pr2 (CHead
+c (Bind Abbr) u) t1 x1)) x0 H9 (pr2_delta (CHead c (Bind Abbr) x0) c x0 O
+(getl_refl Abbr c x0) t1 x2 H10 x1 H11)))))))) (pr0_subst0_back x0 x2 x1 O
+H11 u1 H9)) x H8)))) H_x0)) H_x)))))) H7)) (\lambda (H7: (pr0 t1 (lift (S O)
+O x))).(or_intror (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead
+(Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))
+(\lambda (_: T).(\lambda (t3: T).(or3 (\forall (b: B).(\forall (u: T).(pr2
+(CHead c (Bind b) u) t1 t3))) (ex2 T (\lambda (u: T).(pr0 u1 u)) (\lambda (u:
+T).(pr2 (CHead c (Bind Abbr) u) t1 t3))) (ex3_2 T T (\lambda (y: T).(\lambda
+(_: T).(pr2 (CHead c (Bind Abbr) u1) t1 y))) (\lambda (y: T).(\lambda (z:
+T).(pr0 y z))) (\lambda (_: T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1)
+z t3)))))))) (\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1
+(lift (S O) O x)))) (\lambda (b: B).(\lambda (u: T).(pr2_free (CHead c (Bind
+b) u) t1 (lift (S O) O x) H7))))) (pr0_gen_abbr u1 t1 x H6))) t2 (sym_eq T t2
+x H5))) t0 (sym_eq T t0 (THead (Bind Abbr) u1 t1) H4))) c0 (sym_eq C c0 c H1)
+H2 H3 H0)))) | (pr2_delta c0 d u i H0 t0 t2 H1 t H2) \Rightarrow (\lambda
+(H3: (eq C c0 c)).(\lambda (H4: (eq T t0 (THead (Bind Abbr) u1 t1))).(\lambda
+(H5: (eq T t x)).(eq_ind C c (\lambda (c1: C).((eq T t0 (THead (Bind Abbr) u1
+t1)) \to ((eq T t x) \to ((getl i c1 (CHead d (Bind Abbr) u)) \to ((pr0 t0
+t2) \to ((subst0 i u t2 t) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T x (THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(or3 (\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) t1 t3))) (ex2 T (\lambda (u0: T).(pr0 u1
+u0)) (\lambda (u0: T).(pr2 (CHead c (Bind Abbr) u0) t1 t3))) (ex3_2 T T
+(\lambda (y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr) u1) t1 y)))
+(\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda (_: T).(\lambda (z:
+T).(pr2 (CHead c (Bind Abbr) u1) z t3)))))))) (\forall (b: B).(\forall (u0:
+T).(pr2 (CHead c (Bind b) u0) t1 (lift (S O) O x))))))))))) (\lambda (H6: (eq
+T t0 (THead (Bind Abbr) u1 t1))).(eq_ind T (THead (Bind Abbr) u1 t1) (\lambda
+(t3: T).((eq T t x) \to ((getl i c (CHead d (Bind Abbr) u)) \to ((pr0 t3 t2)
+\to ((subst0 i u t2 t) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t4:
+T).(eq T x (THead (Bind Abbr) u2 t4)))) (\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))) (\lambda (_: T).(\lambda (t4: T).(or3 (\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) t1 t4))) (ex2 T (\lambda (u0: T).(pr0 u1
+u0)) (\lambda (u0: T).(pr2 (CHead c (Bind Abbr) u0) t1 t4))) (ex3_2 T T
+(\lambda (y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr) u1) t1 y)))
+(\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda (_: T).(\lambda (z:
+T).(pr2 (CHead c (Bind Abbr) u1) z t4)))))))) (\forall (b: B).(\forall (u0:
+T).(pr2 (CHead c (Bind b) u0) t1 (lift (S O) O x)))))))))) (\lambda (H7: (eq
+T t x)).(eq_ind T x (\lambda (t3: T).((getl i c (CHead d (Bind Abbr) u)) \to
+((pr0 (THead (Bind Abbr) u1 t1) t2) \to ((subst0 i u t2 t3) \to (or (ex3_2 T
+T (\lambda (u2: T).(\lambda (t4: T).(eq T x (THead (Bind Abbr) u2 t4))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t4: T).(or3 (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1
+t4))) (ex2 T (\lambda (u0: T).(pr0 u1 u0)) (\lambda (u0: T).(pr2 (CHead c
+(Bind Abbr) u0) t1 t4))) (ex3_2 T T (\lambda (y: T).(\lambda (_: T).(pr2
+(CHead c (Bind Abbr) u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0 y z)))
+(\lambda (_: T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z t4))))))))
+(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 (lift (S O) O
+x))))))))) (\lambda (H8: (getl i c (CHead d (Bind Abbr) u))).(\lambda (H9:
+(pr0 (THead (Bind Abbr) u1 t1) t2)).(\lambda (H10: (subst0 i u t2 x)).(or_ind
+(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (u2:
+T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y: T).(pr0 t1 y))
+(\lambda (y: T).(subst0 O u2 y t3))))))) (pr0 t1 (lift (S O) O t2)) (or
+(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(or3 (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind
+b) u0) t1 t3))) (ex2 T (\lambda (u0: T).(pr0 u1 u0)) (\lambda (u0: T).(pr2
+(CHead c (Bind Abbr) u0) t1 t3))) (ex3_2 T T (\lambda (y: T).(\lambda (_:
+T).(pr2 (CHead c (Bind Abbr) u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0
+y z))) (\lambda (_: T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z
+t3)))))))) (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1
+(lift (S O) O x))))) (\lambda (H11: (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T t2 (THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(pr0 u1 u2))) (\lambda (u2: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T
+(\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O u2 y
+t3)))))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead
+(Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda
+(u2: T).(\lambda (t3: T).(or (pr0 t1 t3) (ex2 T (\lambda (y: T).(pr0 t1 y))
+(\lambda (y: T).(subst0 O u2 y t3)))))) (or (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(or3
+(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 t3))) (ex2 T
+(\lambda (u0: T).(pr0 u1 u0)) (\lambda (u0: T).(pr2 (CHead c (Bind Abbr) u0)
+t1 t3))) (ex3_2 T T (\lambda (y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr)
+u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda (_:
+T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z t3)))))))) (\forall (b:
+B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 (lift (S O) O x)))))
+(\lambda (x0: T).(\lambda (x1: T).(\lambda (H12: (eq T t2 (THead (Bind Abbr)
+x0 x1))).(\lambda (H13: (pr0 u1 x0)).(\lambda (H_x: (or (pr0 t1 x1) (ex2 T
+(\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O x0 y x1))))).(or_ind
+(pr0 t1 x1) (ex2 T (\lambda (y: T).(pr0 t1 y)) (\lambda (y: T).(subst0 O x0 y
+x1))) (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind
+Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(or3 (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind
+b) u0) t1 t3))) (ex2 T (\lambda (u0: T).(pr0 u1 u0)) (\lambda (u0: T).(pr2
+(CHead c (Bind Abbr) u0) t1 t3))) (ex3_2 T T (\lambda (y: T).(\lambda (_:
+T).(pr2 (CHead c (Bind Abbr) u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0
+y z))) (\lambda (_: T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z
+t3)))))))) (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1
+(lift (S O) O x))))) (\lambda (H14: (pr0 t1 x1)).(let H15 \def (eq_ind T t2
+(\lambda (t3: T).(subst0 i u t3 x)) H10 (THead (Bind Abbr) x0 x1) H12) in
+(or3_ind (ex2 T (\lambda (u2: T).(eq T x (THead (Bind Abbr) u2 x1))) (\lambda
+(u2: T).(subst0 i u x0 u2))) (ex2 T (\lambda (t3: T).(eq T x (THead (Bind
+Abbr) x0 t3))) (\lambda (t3: T).(subst0 (s (Bind Abbr) i) u x1 t3))) (ex3_2 T
+T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(subst0 i u x0 u2))) (\lambda (_:
+T).(\lambda (t3: T).(subst0 (s (Bind Abbr) i) u x1 t3)))) (or (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t3: T).(or3 (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1
+t3))) (ex2 T (\lambda (u0: T).(pr0 u1 u0)) (\lambda (u0: T).(pr2 (CHead c
+(Bind Abbr) u0) t1 t3))) (ex3_2 T T (\lambda (y: T).(\lambda (_: T).(pr2
+(CHead c (Bind Abbr) u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0 y z)))
+(\lambda (_: T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z t3))))))))
+(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 (lift (S O) O
+x))))) (\lambda (H16: (ex2 T (\lambda (u2: T).(eq T x (THead (Bind Abbr) u2
+x1))) (\lambda (u2: T).(subst0 i u x0 u2)))).(ex2_ind T (\lambda (u2: T).(eq
+T x (THead (Bind Abbr) u2 x1))) (\lambda (u2: T).(subst0 i u x0 u2)) (or
+(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(or3 (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind
+b) u0) t1 t3))) (ex2 T (\lambda (u0: T).(pr0 u1 u0)) (\lambda (u0: T).(pr2
+(CHead c (Bind Abbr) u0) t1 t3))) (ex3_2 T T (\lambda (y: T).(\lambda (_:
+T).(pr2 (CHead c (Bind Abbr) u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0
+y z))) (\lambda (_: T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z
+t3)))))))) (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1
+(lift (S O) O x))))) (\lambda (x2: T).(\lambda (H17: (eq T x (THead (Bind
+Abbr) x2 x1))).(\lambda (H18: (subst0 i u x0 x2)).(or_introl (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t3: T).(or3 (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1
+t3))) (ex2 T (\lambda (u0: T).(pr0 u1 u0)) (\lambda (u0: T).(pr2 (CHead c
+(Bind Abbr) u0) t1 t3))) (ex3_2 T T (\lambda (y: T).(\lambda (_: T).(pr2
+(CHead c (Bind Abbr) u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0 y z)))
+(\lambda (_: T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z t3))))))))
+(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 (lift (S O) O
+x)))) (ex3_2_intro T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind
+Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(or3 (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind
+b) u0) t1 t3))) (ex2 T (\lambda (u0: T).(pr0 u1 u0)) (\lambda (u0: T).(pr2
+(CHead c (Bind Abbr) u0) t1 t3))) (ex3_2 T T (\lambda (y: T).(\lambda (_:
+T).(pr2 (CHead c (Bind Abbr) u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0
+y z))) (\lambda (_: T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z
+t3))))))) x2 x1 H17 (pr2_delta c d u i H8 u1 x0 H13 x2 H18) (or3_intro0
+(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 x1))) (ex2 T
+(\lambda (u0: T).(pr0 u1 u0)) (\lambda (u0: T).(pr2 (CHead c (Bind Abbr) u0)
+t1 x1))) (ex3_2 T T (\lambda (y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr)
+u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda (_:
+T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z x1)))) (\lambda (b:
+B).(\lambda (u0: T).(pr2_free (CHead c (Bind b) u0) t1 x1 H14))))))))) H16))
+(\lambda (H16: (ex2 T (\lambda (t3: T).(eq T x (THead (Bind Abbr) x0 t3)))
+(\lambda (t3: T).(subst0 (s (Bind Abbr) i) u x1 t3)))).(ex2_ind T (\lambda
+(t3: T).(eq T x (THead (Bind Abbr) x0 t3))) (\lambda (t3: T).(subst0 (s (Bind
+Abbr) i) u x1 t3)) (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x
+(THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))
+(\lambda (_: T).(\lambda (t3: T).(or3 (\forall (b: B).(\forall (u0: T).(pr2
+(CHead c (Bind b) u0) t1 t3))) (ex2 T (\lambda (u0: T).(pr0 u1 u0)) (\lambda
+(u0: T).(pr2 (CHead c (Bind Abbr) u0) t1 t3))) (ex3_2 T T (\lambda (y:
+T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr) u1) t1 y))) (\lambda (y:
+T).(\lambda (z: T).(pr0 y z))) (\lambda (_: T).(\lambda (z: T).(pr2 (CHead c
+(Bind Abbr) u1) z t3)))))))) (\forall (b: B).(\forall (u0: T).(pr2 (CHead c
+(Bind b) u0) t1 (lift (S O) O x))))) (\lambda (x2: T).(\lambda (H17: (eq T x
+(THead (Bind Abbr) x0 x2))).(\lambda (H18: (subst0 (s (Bind Abbr) i) u x1
+x2)).(or_introl (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead
+(Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))
+(\lambda (_: T).(\lambda (t3: T).(or3 (\forall (b: B).(\forall (u0: T).(pr2
+(CHead c (Bind b) u0) t1 t3))) (ex2 T (\lambda (u0: T).(pr0 u1 u0)) (\lambda
+(u0: T).(pr2 (CHead c (Bind Abbr) u0) t1 t3))) (ex3_2 T T (\lambda (y:
+T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr) u1) t1 y))) (\lambda (y:
+T).(\lambda (z: T).(pr0 y z))) (\lambda (_: T).(\lambda (z: T).(pr2 (CHead c
+(Bind Abbr) u1) z t3)))))))) (\forall (b: B).(\forall (u0: T).(pr2 (CHead c
+(Bind b) u0) t1 (lift (S O) O x)))) (ex3_2_intro T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(or3
+(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 t3))) (ex2 T
+(\lambda (u0: T).(pr0 u1 u0)) (\lambda (u0: T).(pr2 (CHead c (Bind Abbr) u0)
+t1 t3))) (ex3_2 T T (\lambda (y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr)
+u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda (_:
+T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z t3))))))) x0 x2 H17
+(pr2_free c u1 x0 H13) (or3_intro0 (\forall (b: B).(\forall (u0: T).(pr2
+(CHead c (Bind b) u0) t1 x2))) (ex2 T (\lambda (u0: T).(pr0 u1 u0)) (\lambda
+(u0: T).(pr2 (CHead c (Bind Abbr) u0) t1 x2))) (ex3_2 T T (\lambda (y:
+T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr) u1) t1 y))) (\lambda (y:
+T).(\lambda (z: T).(pr0 y z))) (\lambda (_: T).(\lambda (z: T).(pr2 (CHead c
+(Bind Abbr) u1) z x2)))) (\lambda (b: B).(\lambda (u0: T).(pr2_delta (CHead c
+(Bind b) u0) d u (S i) (getl_head (Bind b) i c (CHead d (Bind Abbr) u) H8 u0)
+t1 x1 H14 x2 H18))))))))) H16)) (\lambda (H16: (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(subst0 i u x0 u2))) (\lambda (_: T).(\lambda (t3:
+T).(subst0 (s (Bind Abbr) i) u x1 t3))))).(ex3_2_ind T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(subst0 i u x0 u2))) (\lambda (_: T).(\lambda (t3:
+T).(subst0 (s (Bind Abbr) i) u x1 t3))) (or (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(or3
+(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 t3))) (ex2 T
+(\lambda (u0: T).(pr0 u1 u0)) (\lambda (u0: T).(pr2 (CHead c (Bind Abbr) u0)
+t1 t3))) (ex3_2 T T (\lambda (y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr)
+u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda (_:
+T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z t3)))))))) (\forall (b:
+B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 (lift (S O) O x)))))
+(\lambda (x2: T).(\lambda (x3: T).(\lambda (H17: (eq T x (THead (Bind Abbr)
+x2 x3))).(\lambda (H18: (subst0 i u x0 x2)).(\lambda (H19: (subst0 (s (Bind
+Abbr) i) u x1 x3)).(or_introl (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T x (THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(or3 (\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) t1 t3))) (ex2 T (\lambda (u0: T).(pr0 u1
+u0)) (\lambda (u0: T).(pr2 (CHead c (Bind Abbr) u0) t1 t3))) (ex3_2 T T
+(\lambda (y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr) u1) t1 y)))
+(\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda (_: T).(\lambda (z:
+T).(pr2 (CHead c (Bind Abbr) u1) z t3)))))))) (\forall (b: B).(\forall (u0:
+T).(pr2 (CHead c (Bind b) u0) t1 (lift (S O) O x)))) (ex3_2_intro T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t3: T).(or3 (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1
+t3))) (ex2 T (\lambda (u0: T).(pr0 u1 u0)) (\lambda (u0: T).(pr2 (CHead c
+(Bind Abbr) u0) t1 t3))) (ex3_2 T T (\lambda (y: T).(\lambda (_: T).(pr2
+(CHead c (Bind Abbr) u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0 y z)))
+(\lambda (_: T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z t3))))))) x2
+x3 H17 (pr2_delta c d u i H8 u1 x0 H13 x2 H18) (or3_intro0 (\forall (b:
+B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 x3))) (ex2 T (\lambda (u0:
+T).(pr0 u1 u0)) (\lambda (u0: T).(pr2 (CHead c (Bind Abbr) u0) t1 x3)))
+(ex3_2 T T (\lambda (y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr) u1) t1
+y))) (\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda (_: T).(\lambda (z:
+T).(pr2 (CHead c (Bind Abbr) u1) z x3)))) (\lambda (b: B).(\lambda (u0:
+T).(pr2_delta (CHead c (Bind b) u0) d u (S i) (getl_head (Bind b) i c (CHead
+d (Bind Abbr) u) H8 u0) t1 x1 H14 x3 H19))))))))))) H16)) (subst0_gen_head
+(Bind Abbr) u x0 x1 x i H15)))) (\lambda (H_x0: (ex2 T (\lambda (y: T).(pr0
+t1 y)) (\lambda (y: T).(subst0 O x0 y x1)))).(ex2_ind T (\lambda (y: T).(pr0
+t1 y)) (\lambda (y: T).(subst0 O x0 y x1)) (or (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(or3
+(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 t3))) (ex2 T
+(\lambda (u0: T).(pr0 u1 u0)) (\lambda (u0: T).(pr2 (CHead c (Bind Abbr) u0)
+t1 t3))) (ex3_2 T T (\lambda (y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr)
+u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda (_:
+T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z t3)))))))) (\forall (b:
+B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 (lift (S O) O x)))))
+(\lambda (x2: T).(\lambda (H14: (pr0 t1 x2)).(\lambda (H15: (subst0 O x0 x2
+x1)).(let H16 \def (eq_ind T t2 (\lambda (t3: T).(subst0 i u t3 x)) H10
+(THead (Bind Abbr) x0 x1) H12) in (or3_ind (ex2 T (\lambda (u2: T).(eq T x
+(THead (Bind Abbr) u2 x1))) (\lambda (u2: T).(subst0 i u x0 u2))) (ex2 T
+(\lambda (t3: T).(eq T x (THead (Bind Abbr) x0 t3))) (\lambda (t3: T).(subst0
+(s (Bind Abbr) i) u x1 t3))) (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq
+T x (THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i u
+x0 u2))) (\lambda (_: T).(\lambda (t3: T).(subst0 (s (Bind Abbr) i) u x1
+t3)))) (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind
+Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(or3 (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind
+b) u0) t1 t3))) (ex2 T (\lambda (u0: T).(pr0 u1 u0)) (\lambda (u0: T).(pr2
+(CHead c (Bind Abbr) u0) t1 t3))) (ex3_2 T T (\lambda (y: T).(\lambda (_:
+T).(pr2 (CHead c (Bind Abbr) u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0
+y z))) (\lambda (_: T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z
+t3)))))))) (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1
+(lift (S O) O x))))) (\lambda (H17: (ex2 T (\lambda (u2: T).(eq T x (THead
+(Bind Abbr) u2 x1))) (\lambda (u2: T).(subst0 i u x0 u2)))).(ex2_ind T
+(\lambda (u2: T).(eq T x (THead (Bind Abbr) u2 x1))) (\lambda (u2: T).(subst0
+i u x0 u2)) (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead
+(Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))
+(\lambda (_: T).(\lambda (t3: T).(or3 (\forall (b: B).(\forall (u0: T).(pr2
+(CHead c (Bind b) u0) t1 t3))) (ex2 T (\lambda (u0: T).(pr0 u1 u0)) (\lambda
+(u0: T).(pr2 (CHead c (Bind Abbr) u0) t1 t3))) (ex3_2 T T (\lambda (y:
+T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr) u1) t1 y))) (\lambda (y:
+T).(\lambda (z: T).(pr0 y z))) (\lambda (_: T).(\lambda (z: T).(pr2 (CHead c
+(Bind Abbr) u1) z t3)))))))) (\forall (b: B).(\forall (u0: T).(pr2 (CHead c
+(Bind b) u0) t1 (lift (S O) O x))))) (\lambda (x3: T).(\lambda (H18: (eq T x
+(THead (Bind Abbr) x3 x1))).(\lambda (H19: (subst0 i u x0 x3)).(ex2_ind T
+(\lambda (t3: T).(subst0 O u1 x2 t3)) (\lambda (t3: T).(pr0 t3 x1)) (or
+(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(or3 (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind
+b) u0) t1 t3))) (ex2 T (\lambda (u0: T).(pr0 u1 u0)) (\lambda (u0: T).(pr2
+(CHead c (Bind Abbr) u0) t1 t3))) (ex3_2 T T (\lambda (y: T).(\lambda (_:
+T).(pr2 (CHead c (Bind Abbr) u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0
+y z))) (\lambda (_: T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z
+t3)))))))) (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1
+(lift (S O) O x))))) (\lambda (x4: T).(\lambda (_: (subst0 O u1 x2
+x4)).(\lambda (_: (pr0 x4 x1)).(or_introl (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(or3
+(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 t3))) (ex2 T
+(\lambda (u0: T).(pr0 u1 u0)) (\lambda (u0: T).(pr2 (CHead c (Bind Abbr) u0)
+t1 t3))) (ex3_2 T T (\lambda (y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr)
+u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda (_:
+T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z t3)))))))) (\forall (b:
+B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 (lift (S O) O x))))
+(ex3_2_intro T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr)
+u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(or3 (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind
+b) u0) t1 t3))) (ex2 T (\lambda (u0: T).(pr0 u1 u0)) (\lambda (u0: T).(pr2
+(CHead c (Bind Abbr) u0) t1 t3))) (ex3_2 T T (\lambda (y: T).(\lambda (_:
+T).(pr2 (CHead c (Bind Abbr) u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0
+y z))) (\lambda (_: T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z
+t3))))))) x3 x1 H18 (pr2_delta c d u i H8 u1 x0 H13 x3 H19) (or3_intro1
+(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 x1))) (ex2 T
+(\lambda (u0: T).(pr0 u1 u0)) (\lambda (u0: T).(pr2 (CHead c (Bind Abbr) u0)
+t1 x1))) (ex3_2 T T (\lambda (y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr)
+u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda (_:
+T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z x1)))) (ex_intro2 T
+(\lambda (u0: T).(pr0 u1 u0)) (\lambda (u0: T).(pr2 (CHead c (Bind Abbr) u0)
+t1 x1)) x0 H13 (pr2_delta (CHead c (Bind Abbr) x0) c x0 O (getl_refl Abbr c
+x0) t1 x2 H14 x1 H15)))))))) (pr0_subst0_back x0 x2 x1 O H15 u1 H13)))))
+H17)) (\lambda (H17: (ex2 T (\lambda (t3: T).(eq T x (THead (Bind Abbr) x0
+t3))) (\lambda (t3: T).(subst0 (s (Bind Abbr) i) u x1 t3)))).(ex2_ind T
+(\lambda (t3: T).(eq T x (THead (Bind Abbr) x0 t3))) (\lambda (t3: T).(subst0
+(s (Bind Abbr) i) u x1 t3)) (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T x (THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(or3 (\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) t1 t3))) (ex2 T (\lambda (u0: T).(pr0 u1
+u0)) (\lambda (u0: T).(pr2 (CHead c (Bind Abbr) u0) t1 t3))) (ex3_2 T T
+(\lambda (y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr) u1) t1 y)))
+(\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda (_: T).(\lambda (z:
+T).(pr2 (CHead c (Bind Abbr) u1) z t3)))))))) (\forall (b: B).(\forall (u0:
+T).(pr2 (CHead c (Bind b) u0) t1 (lift (S O) O x))))) (\lambda (x3:
+T).(\lambda (H18: (eq T x (THead (Bind Abbr) x0 x3))).(\lambda (H19: (subst0
+(s (Bind Abbr) i) u x1 x3)).(ex2_ind T (\lambda (t3: T).(subst0 O u1 x2 t3))
+(\lambda (t3: T).(pr0 t3 x1)) (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T x (THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(or3 (\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) t1 t3))) (ex2 T (\lambda (u0: T).(pr0 u1
+u0)) (\lambda (u0: T).(pr2 (CHead c (Bind Abbr) u0) t1 t3))) (ex3_2 T T
+(\lambda (y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr) u1) t1 y)))
+(\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda (_: T).(\lambda (z:
+T).(pr2 (CHead c (Bind Abbr) u1) z t3)))))))) (\forall (b: B).(\forall (u0:
+T).(pr2 (CHead c (Bind b) u0) t1 (lift (S O) O x))))) (\lambda (x4:
+T).(\lambda (H20: (subst0 O u1 x2 x4)).(\lambda (H21: (pr0 x4 x1)).(or_introl
+(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(or3 (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind
+b) u0) t1 t3))) (ex2 T (\lambda (u0: T).(pr0 u1 u0)) (\lambda (u0: T).(pr2
+(CHead c (Bind Abbr) u0) t1 t3))) (ex3_2 T T (\lambda (y: T).(\lambda (_:
+T).(pr2 (CHead c (Bind Abbr) u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0
+y z))) (\lambda (_: T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z
+t3)))))))) (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1
+(lift (S O) O x)))) (ex3_2_intro T T (\lambda (u2: T).(\lambda (t3: T).(eq T
+x (THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1
+u2))) (\lambda (_: T).(\lambda (t3: T).(or3 (\forall (b: B).(\forall (u0:
+T).(pr2 (CHead c (Bind b) u0) t1 t3))) (ex2 T (\lambda (u0: T).(pr0 u1 u0))
+(\lambda (u0: T).(pr2 (CHead c (Bind Abbr) u0) t1 t3))) (ex3_2 T T (\lambda
+(y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr) u1) t1 y))) (\lambda (y:
+T).(\lambda (z: T).(pr0 y z))) (\lambda (_: T).(\lambda (z: T).(pr2 (CHead c
+(Bind Abbr) u1) z t3))))))) x0 x3 H18 (pr2_free c u1 x0 H13) (or3_intro2
+(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 x3))) (ex2 T
+(\lambda (u0: T).(pr0 u1 u0)) (\lambda (u0: T).(pr2 (CHead c (Bind Abbr) u0)
+t1 x3))) (ex3_2 T T (\lambda (y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr)
+u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda (_:
+T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z x3)))) (ex3_2_intro T T
+(\lambda (y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr) u1) t1 y)))
+(\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda (_: T).(\lambda (z:
+T).(pr2 (CHead c (Bind Abbr) u1) z x3))) x4 x1 (pr2_delta (CHead c (Bind
+Abbr) u1) c u1 O (getl_refl Abbr c u1) t1 x2 H14 x4 H20) H21 (pr2_delta
+(CHead c (Bind Abbr) u1) d u (S i) (getl_head (Bind Abbr) i c (CHead d (Bind
+Abbr) u) H8 u1) x1 x1 (pr0_refl x1) x3 H19)))))))) (pr0_subst0_back x0 x2 x1
+O H15 u1 H13))))) H17)) (\lambda (H17: (ex3_2 T T (\lambda (u2: T).(\lambda
+(t3: T).(eq T x (THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(subst0 i u x0 u2))) (\lambda (_: T).(\lambda (t3: T).(subst0 (s (Bind
+Abbr) i) u x1 t3))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda (t3: T).(eq T
+x (THead (Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i u
+x0 u2))) (\lambda (_: T).(\lambda (t3: T).(subst0 (s (Bind Abbr) i) u x1
+t3))) (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind
+Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(or3 (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind
+b) u0) t1 t3))) (ex2 T (\lambda (u0: T).(pr0 u1 u0)) (\lambda (u0: T).(pr2
+(CHead c (Bind Abbr) u0) t1 t3))) (ex3_2 T T (\lambda (y: T).(\lambda (_:
+T).(pr2 (CHead c (Bind Abbr) u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0
+y z))) (\lambda (_: T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z
+t3)))))))) (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1
+(lift (S O) O x))))) (\lambda (x3: T).(\lambda (x4: T).(\lambda (H18: (eq T x
+(THead (Bind Abbr) x3 x4))).(\lambda (H19: (subst0 i u x0 x3)).(\lambda (H20:
+(subst0 (s (Bind Abbr) i) u x1 x4)).(ex2_ind T (\lambda (t3: T).(subst0 O u1
+x2 t3)) (\lambda (t3: T).(pr0 t3 x1)) (or (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(or3
+(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 t3))) (ex2 T
+(\lambda (u0: T).(pr0 u1 u0)) (\lambda (u0: T).(pr2 (CHead c (Bind Abbr) u0)
+t1 t3))) (ex3_2 T T (\lambda (y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr)
+u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda (_:
+T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z t3)))))))) (\forall (b:
+B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 (lift (S O) O x)))))
+(\lambda (x5: T).(\lambda (H21: (subst0 O u1 x2 x5)).(\lambda (H22: (pr0 x5
+x1)).(or_introl (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead
+(Bind Abbr) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))
+(\lambda (_: T).(\lambda (t3: T).(or3 (\forall (b: B).(\forall (u0: T).(pr2
+(CHead c (Bind b) u0) t1 t3))) (ex2 T (\lambda (u0: T).(pr0 u1 u0)) (\lambda
+(u0: T).(pr2 (CHead c (Bind Abbr) u0) t1 t3))) (ex3_2 T T (\lambda (y:
+T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr) u1) t1 y))) (\lambda (y:
+T).(\lambda (z: T).(pr0 y z))) (\lambda (_: T).(\lambda (z: T).(pr2 (CHead c
+(Bind Abbr) u1) z t3)))))))) (\forall (b: B).(\forall (u0: T).(pr2 (CHead c
+(Bind b) u0) t1 (lift (S O) O x)))) (ex3_2_intro T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(or3
+(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 t3))) (ex2 T
+(\lambda (u0: T).(pr0 u1 u0)) (\lambda (u0: T).(pr2 (CHead c (Bind Abbr) u0)
+t1 t3))) (ex3_2 T T (\lambda (y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr)
+u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda (_:
+T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z t3))))))) x3 x4 H18
+(pr2_delta c d u i H8 u1 x0 H13 x3 H19) (or3_intro2 (\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) t1 x4))) (ex2 T (\lambda (u0: T).(pr0 u1
+u0)) (\lambda (u0: T).(pr2 (CHead c (Bind Abbr) u0) t1 x4))) (ex3_2 T T
+(\lambda (y: T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr) u1) t1 y)))
+(\lambda (y: T).(\lambda (z: T).(pr0 y z))) (\lambda (_: T).(\lambda (z:
+T).(pr2 (CHead c (Bind Abbr) u1) z x4)))) (ex3_2_intro T T (\lambda (y:
+T).(\lambda (_: T).(pr2 (CHead c (Bind Abbr) u1) t1 y))) (\lambda (y:
+T).(\lambda (z: T).(pr0 y z))) (\lambda (_: T).(\lambda (z: T).(pr2 (CHead c
+(Bind Abbr) u1) z x4))) x5 x1 (pr2_delta (CHead c (Bind Abbr) u1) c u1 O
+(getl_refl Abbr c u1) t1 x2 H14 x5 H21) H22 (pr2_delta (CHead c (Bind Abbr)
+u1) d u (S i) (getl_head (Bind Abbr) i c (CHead d (Bind Abbr) u) H8 u1) x1 x1
+(pr0_refl x1) x4 H20)))))))) (pr0_subst0_back x0 x2 x1 O H15 u1 H13)))))))
+H17)) (subst0_gen_head (Bind Abbr) u x0 x1 x i H16)))))) H_x0)) H_x))))))
+H11)) (\lambda (H11: (pr0 t1 (lift (S O) O t2))).(or_intror (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Abbr) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t3: T).(or3 (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1
+t3))) (ex2 T (\lambda (u0: T).(pr0 u1 u0)) (\lambda (u0: T).(pr2 (CHead c
+(Bind Abbr) u0) t1 t3))) (ex3_2 T T (\lambda (y: T).(\lambda (_: T).(pr2
+(CHead c (Bind Abbr) u1) t1 y))) (\lambda (y: T).(\lambda (z: T).(pr0 y z)))
+(\lambda (_: T).(\lambda (z: T).(pr2 (CHead c (Bind Abbr) u1) z t3))))))))
+(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 (lift (S O) O
+x)))) (\lambda (b: B).(\lambda (u0: T).(pr2_delta (CHead c (Bind b) u0) d u
+(S i) (getl_head (Bind b) i c (CHead d (Bind Abbr) u) H8 u0) t1 (lift (S O) O
+t2) H11 (lift (S O) O x) (subst0_lift_ge_S t2 x u i H10 O (le_O_n i)))))))
+(pr0_gen_abbr u1 t1 t2 H9))))) t (sym_eq T t x H7))) t0 (sym_eq T t0 (THead
+(Bind Abbr) u1 t1) H6))) c0 (sym_eq C c0 c H3) H4 H5 H0 H1 H2))))]) in (H0
+(refl_equal C c) (refl_equal T (THead (Bind Abbr) u1 t1)) (refl_equal T
+x))))))).
+
+theorem pr2_gen_void:
+ \forall (c: C).(\forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr2 c
+(THead (Bind Void) u1 t1) x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda
+(t2: T).(eq T x (THead (Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t2: T).(\forall (b: B).(\forall
+(u: T).(pr2 (CHead c (Bind b) u) t1 t2)))))) (\forall (b: B).(\forall (u:
+T).(pr2 (CHead c (Bind b) u) t1 (lift (S O) O x)))))))))
+\def
+ \lambda (c: C).(\lambda (u1: T).(\lambda (t1: T).(\lambda (x: T).(\lambda
+(H: (pr2 c (THead (Bind Void) u1 t1) x)).(let H0 \def (match H in pr2 return
+(\lambda (c0: C).(\lambda (t: T).(\lambda (t0: T).(\lambda (_: (pr2 c0 t
+t0)).((eq C c0 c) \to ((eq T t (THead (Bind Void) u1 t1)) \to ((eq T t0 x)
+\to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead (Bind
+Void) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t2: T).(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u)
+t1 t2)))))) (\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1
+(lift (S O) O x)))))))))))) with [(pr2_free c0 t0 t2 H0) \Rightarrow (\lambda
+(H1: (eq C c0 c)).(\lambda (H2: (eq T t0 (THead (Bind Void) u1 t1))).(\lambda
+(H3: (eq T t2 x)).(eq_ind C c (\lambda (_: C).((eq T t0 (THead (Bind Void) u1
+t1)) \to ((eq T t2 x) \to ((pr0 t0 t2) \to (or (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Void) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(\forall
+(b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1 t3)))))) (\forall (b:
+B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1 (lift (S O) O x)))))))))
+(\lambda (H4: (eq T t0 (THead (Bind Void) u1 t1))).(eq_ind T (THead (Bind
+Void) u1 t1) (\lambda (t: T).((eq T t2 x) \to ((pr0 t t2) \to (or (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Void) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t3: T).(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1 t3))))))
+(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1 (lift (S O) O
+x)))))))) (\lambda (H5: (eq T t2 x)).(eq_ind T x (\lambda (t: T).((pr0 (THead
+(Bind Void) u1 t1) t) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T x (THead (Bind Void) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall (u:
+T).(pr2 (CHead c (Bind b) u) t1 t3)))))) (\forall (b: B).(\forall (u: T).(pr2
+(CHead c (Bind b) u) t1 (lift (S O) O x))))))) (\lambda (H6: (pr0 (THead
+(Bind Void) u1 t1) x)).(or_ind (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T x (THead (Bind Void) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0
+u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3)))) (pr0 t1 (lift (S O)
+O x)) (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind
+Void) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u)
+t1 t3)))))) (\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1
+(lift (S O) O x))))) (\lambda (H7: (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T x (THead (Bind Void) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0
+u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3))))).(ex3_2_ind T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Void) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3:
+T).(pr0 t1 t3))) (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x
+(THead (Bind Void) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))
+(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall (u: T).(pr2 (CHead
+c (Bind b) u) t1 t3)))))) (\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind
+b) u) t1 (lift (S O) O x))))) (\lambda (x0: T).(\lambda (x1: T).(\lambda (H8:
+(eq T x (THead (Bind Void) x0 x1))).(\lambda (H9: (pr0 u1 x0)).(\lambda (H10:
+(pr0 t1 x1)).(eq_ind_r T (THead (Bind Void) x0 x1) (\lambda (t: T).(or (ex3_2
+T T (\lambda (u2: T).(\lambda (t3: T).(eq T t (THead (Bind Void) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t3: T).(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1 t3))))))
+(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) t1 (lift (S O) O
+t)))))) (or_introl (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T (THead
+(Bind Void) x0 x1) (THead (Bind Void) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall
+(u: T).(pr2 (CHead c (Bind b) u) t1 t3)))))) (\forall (b: B).(\forall (u:
+T).(pr2 (CHead c (Bind b) u) t1 (lift (S O) O (THead (Bind Void) x0 x1)))))
+(ex3_2_intro T T (\lambda (u2: T).(\lambda (t3: T).(eq T (THead (Bind Void)
+x0 x1) (THead (Bind Void) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c
+u1 u2))) (\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall (u:
+T).(pr2 (CHead c (Bind b) u) t1 t3))))) x0 x1 (refl_equal T (THead (Bind
+Void) x0 x1)) (pr2_free c u1 x0 H9) (\lambda (b: B).(\lambda (u: T).(pr2_free
+(CHead c (Bind b) u) t1 x1 H10))))) x H8)))))) H7)) (\lambda (H7: (pr0 t1
+(lift (S O) O x))).(or_intror (ex3_2 T T (\lambda (u2: T).(\lambda (t3:
+T).(eq T x (THead (Bind Void) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2
+c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall (u:
+T).(pr2 (CHead c (Bind b) u) t1 t3)))))) (\forall (b: B).(\forall (u: T).(pr2
+(CHead c (Bind b) u) t1 (lift (S O) O x)))) (\lambda (b: B).(\lambda (u:
+T).(pr2_free (CHead c (Bind b) u) t1 (lift (S O) O x) H7))))) (pr0_gen_void
+u1 t1 x H6))) t2 (sym_eq T t2 x H5))) t0 (sym_eq T t0 (THead (Bind Void) u1
+t1) H4))) c0 (sym_eq C c0 c H1) H2 H3 H0)))) | (pr2_delta c0 d u i H0 t0 t2
+H1 t H2) \Rightarrow (\lambda (H3: (eq C c0 c)).(\lambda (H4: (eq T t0 (THead
+(Bind Void) u1 t1))).(\lambda (H5: (eq T t x)).(eq_ind C c (\lambda (c1:
+C).((eq T t0 (THead (Bind Void) u1 t1)) \to ((eq T t x) \to ((getl i c1
+(CHead d (Bind Abbr) u)) \to ((pr0 t0 t2) \to ((subst0 i u t2 t) \to (or
+(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Void) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b)
+u0) t1 t3)))))) (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0)
+t1 (lift (S O) O x))))))))))) (\lambda (H6: (eq T t0 (THead (Bind Void) u1
+t1))).(eq_ind T (THead (Bind Void) u1 t1) (\lambda (t3: T).((eq T t x) \to
+((getl i c (CHead d (Bind Abbr) u)) \to ((pr0 t3 t2) \to ((subst0 i u t2 t)
+\to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T x (THead (Bind
+Void) u2 t4)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t4: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b)
+u0) t1 t4)))))) (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0)
+t1 (lift (S O) O x)))))))))) (\lambda (H7: (eq T t x)).(eq_ind T x (\lambda
+(t3: T).((getl i c (CHead d (Bind Abbr) u)) \to ((pr0 (THead (Bind Void) u1
+t1) t2) \to ((subst0 i u t2 t3) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda
+(t4: T).(eq T x (THead (Bind Void) u2 t4)))) (\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t4: T).(\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) t1 t4)))))) (\forall (b: B).(\forall (u0:
+T).(pr2 (CHead c (Bind b) u0) t1 (lift (S O) O x))))))))) (\lambda (H8: (getl
+i c (CHead d (Bind Abbr) u))).(\lambda (H9: (pr0 (THead (Bind Void) u1 t1)
+t2)).(\lambda (H10: (subst0 i u t2 x)).(or_ind (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T t2 (THead (Bind Void) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t1
+t3)))) (pr0 t1 (lift (S O) O t2)) (or (ex3_2 T T (\lambda (u2: T).(\lambda
+(t3: T).(eq T x (THead (Bind Void) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) t1 t3)))))) (\forall (b: B).(\forall (u0:
+T).(pr2 (CHead c (Bind b) u0) t1 (lift (S O) O x))))) (\lambda (H11: (ex3_2 T
+T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Void) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2))) (\lambda (_: T).(\lambda (t3:
+T).(pr0 t1 t3))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2
+(THead (Bind Void) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 u1 u2)))
+(\lambda (_: T).(\lambda (t3: T).(pr0 t1 t3))) (or (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Void) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(\forall
+(b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 t3)))))) (\forall (b:
+B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 (lift (S O) O x)))))
+(\lambda (x0: T).(\lambda (x1: T).(\lambda (H12: (eq T t2 (THead (Bind Void)
+x0 x1))).(\lambda (H13: (pr0 u1 x0)).(\lambda (H14: (pr0 t1 x1)).(let H15
+\def (eq_ind T t2 (\lambda (t3: T).(subst0 i u t3 x)) H10 (THead (Bind Void)
+x0 x1) H12) in (or3_ind (ex2 T (\lambda (u2: T).(eq T x (THead (Bind Void) u2
+x1))) (\lambda (u2: T).(subst0 i u x0 u2))) (ex2 T (\lambda (t3: T).(eq T x
+(THead (Bind Void) x0 t3))) (\lambda (t3: T).(subst0 (s (Bind Void) i) u x1
+t3))) (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Void)
+u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(subst0 i u x0 u2))) (\lambda (_:
+T).(\lambda (t3: T).(subst0 (s (Bind Void) i) u x1 t3)))) (or (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Void) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t3: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1
+t3)))))) (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 (lift
+(S O) O x))))) (\lambda (H16: (ex2 T (\lambda (u2: T).(eq T x (THead (Bind
+Void) u2 x1))) (\lambda (u2: T).(subst0 i u x0 u2)))).(ex2_ind T (\lambda
+(u2: T).(eq T x (THead (Bind Void) u2 x1))) (\lambda (u2: T).(subst0 i u x0
+u2)) (or (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind
+Void) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b)
+u0) t1 t3)))))) (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0)
+t1 (lift (S O) O x))))) (\lambda (x2: T).(\lambda (H17: (eq T x (THead (Bind
+Void) x2 x1))).(\lambda (H18: (subst0 i u x0 x2)).(or_introl (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Void) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t3: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1
+t3)))))) (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 (lift
+(S O) O x)))) (ex3_2_intro T T (\lambda (u2: T).(\lambda (t3: T).(eq T x
+(THead (Bind Void) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2)))
+(\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead
+c (Bind b) u0) t1 t3))))) x2 x1 H17 (pr2_delta c d u i H8 u1 x0 H13 x2 H18)
+(\lambda (b: B).(\lambda (u0: T).(pr2_free (CHead c (Bind b) u0) t1 x1
+H14)))))))) H16)) (\lambda (H16: (ex2 T (\lambda (t3: T).(eq T x (THead (Bind
+Void) x0 t3))) (\lambda (t3: T).(subst0 (s (Bind Void) i) u x1
+t3)))).(ex2_ind T (\lambda (t3: T).(eq T x (THead (Bind Void) x0 t3)))
+(\lambda (t3: T).(subst0 (s (Bind Void) i) u x1 t3)) (or (ex3_2 T T (\lambda
+(u2: T).(\lambda (t3: T).(eq T x (THead (Bind Void) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(\forall
+(b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 t3)))))) (\forall (b:
+B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 (lift (S O) O x)))))
+(\lambda (x2: T).(\lambda (H17: (eq T x (THead (Bind Void) x0 x2))).(\lambda
+(H18: (subst0 (s (Bind Void) i) u x1 x2)).(or_introl (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Void) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(\forall
+(b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 t3)))))) (\forall (b:
+B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 (lift (S O) O x))))
+(ex3_2_intro T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Void)
+u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b)
+u0) t1 t3))))) x0 x2 H17 (pr2_free c u1 x0 H13) (\lambda (b: B).(\lambda (u0:
+T).(pr2_delta (CHead c (Bind b) u0) d u (S i) (getl_head (Bind b) i c (CHead
+d (Bind Abbr) u) H8 u0) t1 x1 H14 x2 H18)))))))) H16)) (\lambda (H16: (ex3_2
+T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Void) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(subst0 i u x0 u2))) (\lambda (_:
+T).(\lambda (t3: T).(subst0 (s (Bind Void) i) u x1 t3))))).(ex3_2_ind T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Void) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(subst0 i u x0 u2))) (\lambda (_:
+T).(\lambda (t3: T).(subst0 (s (Bind Void) i) u x1 t3))) (or (ex3_2 T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Void) u2 t3))))
+(\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda
+(t3: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1
+t3)))))) (\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 (lift
+(S O) O x))))) (\lambda (x2: T).(\lambda (x3: T).(\lambda (H17: (eq T x
+(THead (Bind Void) x2 x3))).(\lambda (H18: (subst0 i u x0 x2)).(\lambda (H19:
+(subst0 (s (Bind Void) i) u x1 x3)).(or_introl (ex3_2 T T (\lambda (u2:
+T).(\lambda (t3: T).(eq T x (THead (Bind Void) u2 t3)))) (\lambda (u2:
+T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(\forall
+(b: B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 t3)))))) (\forall (b:
+B).(\forall (u0: T).(pr2 (CHead c (Bind b) u0) t1 (lift (S O) O x))))
+(ex3_2_intro T T (\lambda (u2: T).(\lambda (t3: T).(eq T x (THead (Bind Void)
+u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c u1 u2))) (\lambda (_:
+T).(\lambda (t3: T).(\forall (b: B).(\forall (u0: T).(pr2 (CHead c (Bind b)
+u0) t1 t3))))) x2 x3 H17 (pr2_delta c d u i H8 u1 x0 H13 x2 H18) (\lambda (b:
+B).(\lambda (u0: T).(pr2_delta (CHead c (Bind b) u0) d u (S i) (getl_head
+(Bind b) i c (CHead d (Bind Abbr) u) H8 u0) t1 x1 H14 x3 H19)))))))))) H16))
+(subst0_gen_head (Bind Void) u x0 x1 x i H15)))))))) H11)) (\lambda (H11:
+(pr0 t1 (lift (S O) O t2))).(or_intror (ex3_2 T T (\lambda (u2: T).(\lambda
+(t3: T).(eq T x (THead (Bind Void) u2 t3)))) (\lambda (u2: T).(\lambda (_:
+T).(pr2 c u1 u2))) (\lambda (_: T).(\lambda (t3: T).(\forall (b: B).(\forall
+(u0: T).(pr2 (CHead c (Bind b) u0) t1 t3)))))) (\forall (b: B).(\forall (u0:
+T).(pr2 (CHead c (Bind b) u0) t1 (lift (S O) O x)))) (\lambda (b: B).(\lambda
+(u0: T).(pr2_delta (CHead c (Bind b) u0) d u (S i) (getl_head (Bind b) i c
+(CHead d (Bind Abbr) u) H8 u0) t1 (lift (S O) O t2) H11 (lift (S O) O x)
+(subst0_lift_ge_S t2 x u i H10 O (le_O_n i))))))) (pr0_gen_void u1 t1 t2
+H9))))) t (sym_eq T t x H7))) t0 (sym_eq T t0 (THead (Bind Void) u1 t1) H6)))
+c0 (sym_eq C c0 c H3) H4 H5 H0 H1 H2))))]) in (H0 (refl_equal C c)
+(refl_equal T (THead (Bind Void) u1 t1)) (refl_equal T x))))))).
+
+theorem pr2_gen_lift:
+ \forall (c: C).(\forall (t1: T).(\forall (x: T).(\forall (h: nat).(\forall
+(d: nat).((pr2 c (lift h d t1) x) \to (\forall (e: C).((drop h d c e) \to
+(ex2 T (\lambda (t2: T).(eq T x (lift h d t2))) (\lambda (t2: T).(pr2 e t1
+t2))))))))))
+\def
+ \lambda (c: C).(\lambda (t1: T).(\lambda (x: T).(\lambda (h: nat).(\lambda
+(d: nat).(\lambda (H: (pr2 c (lift h d t1) x)).(\lambda (e: C).(\lambda (H0:
+(drop h d c e)).(let H1 \def (match H in pr2 return (\lambda (c0: C).(\lambda
+(t: T).(\lambda (t0: T).(\lambda (_: (pr2 c0 t t0)).((eq C c0 c) \to ((eq T t
+(lift h d t1)) \to ((eq T t0 x) \to (ex2 T (\lambda (t2: T).(eq T x (lift h d
+t2))) (\lambda (t2: T).(pr2 e t1 t2)))))))))) with [(pr2_free c0 t0 t2 H1)
+\Rightarrow (\lambda (H2: (eq C c0 c)).(\lambda (H3: (eq T t0 (lift h d
+t1))).(\lambda (H4: (eq T t2 x)).(eq_ind C c (\lambda (_: C).((eq T t0 (lift
+h d t1)) \to ((eq T t2 x) \to ((pr0 t0 t2) \to (ex2 T (\lambda (t3: T).(eq T
+x (lift h d t3))) (\lambda (t3: T).(pr2 e t1 t3))))))) (\lambda (H5: (eq T t0
+(lift h d t1))).(eq_ind T (lift h d t1) (\lambda (t: T).((eq T t2 x) \to
+((pr0 t t2) \to (ex2 T (\lambda (t3: T).(eq T x (lift h d t3))) (\lambda (t3:
+T).(pr2 e t1 t3)))))) (\lambda (H6: (eq T t2 x)).(eq_ind T x (\lambda (t:
+T).((pr0 (lift h d t1) t) \to (ex2 T (\lambda (t3: T).(eq T x (lift h d t3)))
+(\lambda (t3: T).(pr2 e t1 t3))))) (\lambda (H7: (pr0 (lift h d t1)
+x)).(ex2_ind T (\lambda (t3: T).(eq T x (lift h d t3))) (\lambda (t3: T).(pr0
+t1 t3)) (ex2 T (\lambda (t3: T).(eq T x (lift h d t3))) (\lambda (t3: T).(pr2
+e t1 t3))) (\lambda (x0: T).(\lambda (H8: (eq T x (lift h d x0))).(\lambda
+(H9: (pr0 t1 x0)).(eq_ind_r T (lift h d x0) (\lambda (t: T).(ex2 T (\lambda
+(t3: T).(eq T t (lift h d t3))) (\lambda (t3: T).(pr2 e t1 t3)))) (ex_intro2
+T (\lambda (t3: T).(eq T (lift h d x0) (lift h d t3))) (\lambda (t3: T).(pr2
+e t1 t3)) x0 (refl_equal T (lift h d x0)) (pr2_free e t1 x0 H9)) x H8))))
+(pr0_gen_lift t1 x h d H7))) t2 (sym_eq T t2 x H6))) t0 (sym_eq T t0 (lift h
+d t1) H5))) c0 (sym_eq C c0 c H2) H3 H4 H1)))) | (pr2_delta c0 d0 u i H1 t0
+t2 H2 t H3) \Rightarrow (\lambda (H4: (eq C c0 c)).(\lambda (H5: (eq T t0
+(lift h d t1))).(\lambda (H6: (eq T t x)).(eq_ind C c (\lambda (c1: C).((eq T
+t0 (lift h d t1)) \to ((eq T t x) \to ((getl i c1 (CHead d0 (Bind Abbr) u))
+\to ((pr0 t0 t2) \to ((subst0 i u t2 t) \to (ex2 T (\lambda (t3: T).(eq T x
+(lift h d t3))) (\lambda (t3: T).(pr2 e t1 t3))))))))) (\lambda (H7: (eq T t0
+(lift h d t1))).(eq_ind T (lift h d t1) (\lambda (t3: T).((eq T t x) \to
+((getl i c (CHead d0 (Bind Abbr) u)) \to ((pr0 t3 t2) \to ((subst0 i u t2 t)
+\to (ex2 T (\lambda (t4: T).(eq T x (lift h d t4))) (\lambda (t4: T).(pr2 e
+t1 t4)))))))) (\lambda (H8: (eq T t x)).(eq_ind T x (\lambda (t3: T).((getl i
+c (CHead d0 (Bind Abbr) u)) \to ((pr0 (lift h d t1) t2) \to ((subst0 i u t2
+t3) \to (ex2 T (\lambda (t4: T).(eq T x (lift h d t4))) (\lambda (t4: T).(pr2
+e t1 t4))))))) (\lambda (H9: (getl i c (CHead d0 (Bind Abbr) u))).(\lambda
+(H10: (pr0 (lift h d t1) t2)).(\lambda (H11: (subst0 i u t2 x)).(ex2_ind T
+(\lambda (t3: T).(eq T t2 (lift h d t3))) (\lambda (t3: T).(pr0 t1 t3)) (ex2
+T (\lambda (t3: T).(eq T x (lift h d t3))) (\lambda (t3: T).(pr2 e t1 t3)))
+(\lambda (x0: T).(\lambda (H12: (eq T t2 (lift h d x0))).(\lambda (H13: (pr0
+t1 x0)).(let H14 \def (eq_ind T t2 (\lambda (t3: T).(subst0 i u t3 x)) H11
+(lift h d x0) H12) in (lt_le_e i d (ex2 T (\lambda (t3: T).(eq T x (lift h d
+t3))) (\lambda (t3: T).(pr2 e t1 t3))) (\lambda (H15: (lt i d)).(let H16 \def
+(eq_ind nat d (\lambda (n: nat).(drop h n c e)) H0 (S (plus i (minus d (S
+i)))) (lt_plus_minus i d H15)) in (let H17 \def (eq_ind nat d (\lambda (n:
+nat).(subst0 i u (lift h n x0) x)) H14 (S (plus i (minus d (S i))))
+(lt_plus_minus i d H15)) in (ex3_2_ind T C (\lambda (v: T).(\lambda (_:
+C).(eq T u (lift h (minus d (S i)) v)))) (\lambda (v: T).(\lambda (e0:
+C).(getl i e (CHead e0 (Bind Abbr) v)))) (\lambda (_: T).(\lambda (e0:
+C).(drop h (minus d (S i)) d0 e0))) (ex2 T (\lambda (t3: T).(eq T x (lift h d
+t3))) (\lambda (t3: T).(pr2 e t1 t3))) (\lambda (x1: T).(\lambda (x2:
+C).(\lambda (H18: (eq T u (lift h (minus d (S i)) x1))).(\lambda (H19: (getl
+i e (CHead x2 (Bind Abbr) x1))).(\lambda (_: (drop h (minus d (S i)) d0
+x2)).(let H21 \def (eq_ind T u (\lambda (t3: T).(subst0 i t3 (lift h (S (plus
+i (minus d (S i)))) x0) x)) H17 (lift h (minus d (S i)) x1) H18) in (ex2_ind
+T (\lambda (t3: T).(eq T x (lift h (S (plus i (minus d (S i)))) t3)))
+(\lambda (t3: T).(subst0 i x1 x0 t3)) (ex2 T (\lambda (t3: T).(eq T x (lift h
+d t3))) (\lambda (t3: T).(pr2 e t1 t3))) (\lambda (x3: T).(\lambda (H22: (eq
+T x (lift h (S (plus i (minus d (S i)))) x3))).(\lambda (H23: (subst0 i x1 x0
+x3)).(let H24 \def (eq_ind_r nat (S (plus i (minus d (S i)))) (\lambda (n:
+nat).(eq T x (lift h n x3))) H22 d (lt_plus_minus i d H15)) in (ex_intro2 T
+(\lambda (t3: T).(eq T x (lift h d t3))) (\lambda (t3: T).(pr2 e t1 t3)) x3
+H24 (pr2_delta e x2 x1 i H19 t1 x0 H13 x3 H23)))))) (subst0_gen_lift_lt x1 x0
+x i h (minus d (S i)) H21)))))))) (getl_drop_conf_lt Abbr c d0 u i H9 e h
+(minus d (S i)) H16))))) (\lambda (H15: (le d i)).(lt_le_e i (plus d h) (ex2
+T (\lambda (t3: T).(eq T x (lift h d t3))) (\lambda (t3: T).(pr2 e t1 t3)))
+(\lambda (H16: (lt i (plus d h))).(subst0_gen_lift_false x0 u x h d i H15 H16
+H14 (ex2 T (\lambda (t3: T).(eq T x (lift h d t3))) (\lambda (t3: T).(pr2 e
+t1 t3))))) (\lambda (H16: (le (plus d h) i)).(ex2_ind T (\lambda (t3: T).(eq
+T x (lift h d t3))) (\lambda (t3: T).(subst0 (minus i h) u x0 t3)) (ex2 T
+(\lambda (t3: T).(eq T x (lift h d t3))) (\lambda (t3: T).(pr2 e t1 t3)))
+(\lambda (x1: T).(\lambda (H17: (eq T x (lift h d x1))).(\lambda (H18:
+(subst0 (minus i h) u x0 x1)).(ex_intro2 T (\lambda (t3: T).(eq T x (lift h d
+t3))) (\lambda (t3: T).(pr2 e t1 t3)) x1 H17 (pr2_delta e d0 u (minus i h)
+(getl_drop_conf_ge i (CHead d0 (Bind Abbr) u) c H9 e h d H0 H16) t1 x0 H13 x1
+H18))))) (subst0_gen_lift_ge u x0 x i h d H14 H16)))))))))) (pr0_gen_lift t1
+t2 h d H10))))) t (sym_eq T t x H8))) t0 (sym_eq T t0 (lift h d t1) H7))) c0
+(sym_eq C c0 c H4) H5 H6 H1 H2 H3))))]) in (H1 (refl_equal C c) (refl_equal T
+(lift h d t1)) (refl_equal T x)))))))))).
+
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/LambdaDelta/pr2/pr2".
+
+include "pr2/defs.ma".
+
+include "pr0/pr0.ma".
+
+include "getl/props.ma".
+
+theorem pr2_confluence__pr2_free_free:
+ \forall (c: C).(\forall (t0: T).(\forall (t1: T).(\forall (t2: T).((pr0 t0
+t1) \to ((pr0 t0 t2) \to (ex2 T (\lambda (t: T).(pr2 c t1 t)) (\lambda (t:
+T).(pr2 c t2 t))))))))
+\def
+ \lambda (c: C).(\lambda (t0: T).(\lambda (t1: T).(\lambda (t2: T).(\lambda
+(H: (pr0 t0 t1)).(\lambda (H0: (pr0 t0 t2)).(ex2_ind T (\lambda (t: T).(pr0
+t2 t)) (\lambda (t: T).(pr0 t1 t)) (ex2 T (\lambda (t: T).(pr2 c t1 t))
+(\lambda (t: T).(pr2 c t2 t))) (\lambda (x: T).(\lambda (H1: (pr0 t2
+x)).(\lambda (H2: (pr0 t1 x)).(ex_intro2 T (\lambda (t: T).(pr2 c t1 t))
+(\lambda (t: T).(pr2 c t2 t)) x (pr2_free c t1 x H2) (pr2_free c t2 x H1)))))
+(pr0_confluence t0 t2 H0 t1 H))))))).
+
+theorem pr2_confluence__pr2_free_delta:
+ \forall (c: C).(\forall (d: C).(\forall (t0: T).(\forall (t1: T).(\forall
+(t2: T).(\forall (t4: T).(\forall (u: T).(\forall (i: nat).((pr0 t0 t1) \to
+((getl i c (CHead d (Bind Abbr) u)) \to ((pr0 t0 t4) \to ((subst0 i u t4 t2)
+\to (ex2 T (\lambda (t: T).(pr2 c t1 t)) (\lambda (t: T).(pr2 c t2
+t))))))))))))))
+\def
+ \lambda (c: C).(\lambda (d: C).(\lambda (t0: T).(\lambda (t1: T).(\lambda
+(t2: T).(\lambda (t4: T).(\lambda (u: T).(\lambda (i: nat).(\lambda (H: (pr0
+t0 t1)).(\lambda (H0: (getl i c (CHead d (Bind Abbr) u))).(\lambda (H1: (pr0
+t0 t4)).(\lambda (H2: (subst0 i u t4 t2)).(ex2_ind T (\lambda (t: T).(pr0 t4
+t)) (\lambda (t: T).(pr0 t1 t)) (ex2 T (\lambda (t: T).(pr2 c t1 t)) (\lambda
+(t: T).(pr2 c t2 t))) (\lambda (x: T).(\lambda (H3: (pr0 t4 x)).(\lambda (H4:
+(pr0 t1 x)).(or_ind (pr0 t2 x) (ex2 T (\lambda (w2: T).(pr0 t2 w2)) (\lambda
+(w2: T).(subst0 i u x w2))) (ex2 T (\lambda (t: T).(pr2 c t1 t)) (\lambda (t:
+T).(pr2 c t2 t))) (\lambda (H5: (pr0 t2 x)).(ex_intro2 T (\lambda (t: T).(pr2
+c t1 t)) (\lambda (t: T).(pr2 c t2 t)) x (pr2_free c t1 x H4) (pr2_free c t2
+x H5))) (\lambda (H5: (ex2 T (\lambda (w2: T).(pr0 t2 w2)) (\lambda (w2:
+T).(subst0 i u x w2)))).(ex2_ind T (\lambda (w2: T).(pr0 t2 w2)) (\lambda
+(w2: T).(subst0 i u x w2)) (ex2 T (\lambda (t: T).(pr2 c t1 t)) (\lambda (t:
+T).(pr2 c t2 t))) (\lambda (x0: T).(\lambda (H6: (pr0 t2 x0)).(\lambda (H7:
+(subst0 i u x x0)).(ex_intro2 T (\lambda (t: T).(pr2 c t1 t)) (\lambda (t:
+T).(pr2 c t2 t)) x0 (pr2_delta c d u i H0 t1 x H4 x0 H7) (pr2_free c t2 x0
+H6))))) H5)) (pr0_subst0 t4 x H3 u t2 i H2 u (pr0_refl u))))))
+(pr0_confluence t0 t4 H1 t1 H))))))))))))).
+
+theorem pr2_confluence__pr2_delta_delta:
+ \forall (c: C).(\forall (d: C).(\forall (d0: C).(\forall (t0: T).(\forall
+(t1: T).(\forall (t2: T).(\forall (t3: T).(\forall (t4: T).(\forall (u:
+T).(\forall (u0: T).(\forall (i: nat).(\forall (i0: nat).((getl i c (CHead d
+(Bind Abbr) u)) \to ((pr0 t0 t3) \to ((subst0 i u t3 t1) \to ((getl i0 c
+(CHead d0 (Bind Abbr) u0)) \to ((pr0 t0 t4) \to ((subst0 i0 u0 t4 t2) \to
+(ex2 T (\lambda (t: T).(pr2 c t1 t)) (\lambda (t: T).(pr2 c t2
+t))))))))))))))))))))
+\def
+ \lambda (c: C).(\lambda (d: C).(\lambda (d0: C).(\lambda (t0: T).(\lambda
+(t1: T).(\lambda (t2: T).(\lambda (t3: T).(\lambda (t4: T).(\lambda (u:
+T).(\lambda (u0: T).(\lambda (i: nat).(\lambda (i0: nat).(\lambda (H: (getl i
+c (CHead d (Bind Abbr) u))).(\lambda (H0: (pr0 t0 t3)).(\lambda (H1: (subst0
+i u t3 t1)).(\lambda (H2: (getl i0 c (CHead d0 (Bind Abbr) u0))).(\lambda
+(H3: (pr0 t0 t4)).(\lambda (H4: (subst0 i0 u0 t4 t2)).(ex2_ind T (\lambda (t:
+T).(pr0 t4 t)) (\lambda (t: T).(pr0 t3 t)) (ex2 T (\lambda (t: T).(pr2 c t1
+t)) (\lambda (t: T).(pr2 c t2 t))) (\lambda (x: T).(\lambda (H5: (pr0 t4
+x)).(\lambda (H6: (pr0 t3 x)).(or_ind (pr0 t1 x) (ex2 T (\lambda (w2: T).(pr0
+t1 w2)) (\lambda (w2: T).(subst0 i u x w2))) (ex2 T (\lambda (t: T).(pr2 c t1
+t)) (\lambda (t: T).(pr2 c t2 t))) (\lambda (H7: (pr0 t1 x)).(or_ind (pr0 t2
+x) (ex2 T (\lambda (w2: T).(pr0 t2 w2)) (\lambda (w2: T).(subst0 i0 u0 x
+w2))) (ex2 T (\lambda (t: T).(pr2 c t1 t)) (\lambda (t: T).(pr2 c t2 t)))
+(\lambda (H8: (pr0 t2 x)).(ex_intro2 T (\lambda (t: T).(pr2 c t1 t)) (\lambda
+(t: T).(pr2 c t2 t)) x (pr2_free c t1 x H7) (pr2_free c t2 x H8))) (\lambda
+(H8: (ex2 T (\lambda (w2: T).(pr0 t2 w2)) (\lambda (w2: T).(subst0 i0 u0 x
+w2)))).(ex2_ind T (\lambda (w2: T).(pr0 t2 w2)) (\lambda (w2: T).(subst0 i0
+u0 x w2)) (ex2 T (\lambda (t: T).(pr2 c t1 t)) (\lambda (t: T).(pr2 c t2 t)))
+(\lambda (x0: T).(\lambda (H9: (pr0 t2 x0)).(\lambda (H10: (subst0 i0 u0 x
+x0)).(ex_intro2 T (\lambda (t: T).(pr2 c t1 t)) (\lambda (t: T).(pr2 c t2 t))
+x0 (pr2_delta c d0 u0 i0 H2 t1 x H7 x0 H10) (pr2_free c t2 x0 H9))))) H8))
+(pr0_subst0 t4 x H5 u0 t2 i0 H4 u0 (pr0_refl u0)))) (\lambda (H7: (ex2 T
+(\lambda (w2: T).(pr0 t1 w2)) (\lambda (w2: T).(subst0 i u x w2)))).(ex2_ind
+T (\lambda (w2: T).(pr0 t1 w2)) (\lambda (w2: T).(subst0 i u x w2)) (ex2 T
+(\lambda (t: T).(pr2 c t1 t)) (\lambda (t: T).(pr2 c t2 t))) (\lambda (x0:
+T).(\lambda (H8: (pr0 t1 x0)).(\lambda (H9: (subst0 i u x x0)).(or_ind (pr0
+t2 x) (ex2 T (\lambda (w2: T).(pr0 t2 w2)) (\lambda (w2: T).(subst0 i0 u0 x
+w2))) (ex2 T (\lambda (t: T).(pr2 c t1 t)) (\lambda (t: T).(pr2 c t2 t)))
+(\lambda (H10: (pr0 t2 x)).(ex_intro2 T (\lambda (t: T).(pr2 c t1 t))
+(\lambda (t: T).(pr2 c t2 t)) x0 (pr2_free c t1 x0 H8) (pr2_delta c d u i H
+t2 x H10 x0 H9))) (\lambda (H10: (ex2 T (\lambda (w2: T).(pr0 t2 w2))
+(\lambda (w2: T).(subst0 i0 u0 x w2)))).(ex2_ind T (\lambda (w2: T).(pr0 t2
+w2)) (\lambda (w2: T).(subst0 i0 u0 x w2)) (ex2 T (\lambda (t: T).(pr2 c t1
+t)) (\lambda (t: T).(pr2 c t2 t))) (\lambda (x1: T).(\lambda (H11: (pr0 t2
+x1)).(\lambda (H12: (subst0 i0 u0 x x1)).(neq_eq_e i i0 (ex2 T (\lambda (t:
+T).(pr2 c t1 t)) (\lambda (t: T).(pr2 c t2 t))) (\lambda (H13: (not (eq nat i
+i0))).(ex2_ind T (\lambda (t: T).(subst0 i u x1 t)) (\lambda (t: T).(subst0
+i0 u0 x0 t)) (ex2 T (\lambda (t: T).(pr2 c t1 t)) (\lambda (t: T).(pr2 c t2
+t))) (\lambda (x2: T).(\lambda (H14: (subst0 i u x1 x2)).(\lambda (H15:
+(subst0 i0 u0 x0 x2)).(ex_intro2 T (\lambda (t: T).(pr2 c t1 t)) (\lambda (t:
+T).(pr2 c t2 t)) x2 (pr2_delta c d0 u0 i0 H2 t1 x0 H8 x2 H15) (pr2_delta c d
+u i H t2 x1 H11 x2 H14))))) (subst0_confluence_neq x x1 u0 i0 H12 x0 u i H9
+(sym_not_eq nat i i0 H13)))) (\lambda (H13: (eq nat i i0)).(let H14 \def
+(eq_ind_r nat i0 (\lambda (n: nat).(subst0 n u0 x x1)) H12 i H13) in (let H15
+\def (eq_ind_r nat i0 (\lambda (n: nat).(getl n c (CHead d0 (Bind Abbr) u0)))
+H2 i H13) in (let H16 \def (eq_ind C (CHead d (Bind Abbr) u) (\lambda (c0:
+C).(getl i c c0)) H (CHead d0 (Bind Abbr) u0) (getl_mono c (CHead d (Bind
+Abbr) u) i H (CHead d0 (Bind Abbr) u0) H15)) in (let H17 \def (f_equal C C
+(\lambda (e: C).(match e in C return (\lambda (_: C).C) with [(CSort _)
+\Rightarrow d | (CHead c0 _ _) \Rightarrow c0])) (CHead d (Bind Abbr) u)
+(CHead d0 (Bind Abbr) u0) (getl_mono c (CHead d (Bind Abbr) u) i H (CHead d0
+(Bind Abbr) u0) H15)) in ((let H18 \def (f_equal C T (\lambda (e: C).(match e
+in C return (\lambda (_: C).T) with [(CSort _) \Rightarrow u | (CHead _ _ t)
+\Rightarrow t])) (CHead d (Bind Abbr) u) (CHead d0 (Bind Abbr) u0) (getl_mono
+c (CHead d (Bind Abbr) u) i H (CHead d0 (Bind Abbr) u0) H15)) in (\lambda
+(H19: (eq C d d0)).(let H20 \def (eq_ind_r T u0 (\lambda (t: T).(subst0 i t x
+x1)) H14 u H18) in (let H21 \def (eq_ind_r T u0 (\lambda (t: T).(getl i c
+(CHead d0 (Bind Abbr) t))) H16 u H18) in (let H22 \def (eq_ind_r C d0
+(\lambda (c0: C).(getl i c (CHead c0 (Bind Abbr) u))) H21 d H19) in (or4_ind
+(eq T x1 x0) (ex2 T (\lambda (t: T).(subst0 i u x1 t)) (\lambda (t:
+T).(subst0 i u x0 t))) (subst0 i u x1 x0) (subst0 i u x0 x1) (ex2 T (\lambda
+(t: T).(pr2 c t1 t)) (\lambda (t: T).(pr2 c t2 t))) (\lambda (H23: (eq T x1
+x0)).(let H24 \def (eq_ind T x1 (\lambda (t: T).(pr0 t2 t)) H11 x0 H23) in
+(ex_intro2 T (\lambda (t: T).(pr2 c t1 t)) (\lambda (t: T).(pr2 c t2 t)) x0
+(pr2_free c t1 x0 H8) (pr2_free c t2 x0 H24)))) (\lambda (H23: (ex2 T
+(\lambda (t: T).(subst0 i u x1 t)) (\lambda (t: T).(subst0 i u x0
+t)))).(ex2_ind T (\lambda (t: T).(subst0 i u x1 t)) (\lambda (t: T).(subst0 i
+u x0 t)) (ex2 T (\lambda (t: T).(pr2 c t1 t)) (\lambda (t: T).(pr2 c t2 t)))
+(\lambda (x2: T).(\lambda (H24: (subst0 i u x1 x2)).(\lambda (H25: (subst0 i
+u x0 x2)).(ex_intro2 T (\lambda (t: T).(pr2 c t1 t)) (\lambda (t: T).(pr2 c
+t2 t)) x2 (pr2_delta c d u i H22 t1 x0 H8 x2 H25) (pr2_delta c d u i H22 t2
+x1 H11 x2 H24))))) H23)) (\lambda (H23: (subst0 i u x1 x0)).(ex_intro2 T
+(\lambda (t: T).(pr2 c t1 t)) (\lambda (t: T).(pr2 c t2 t)) x0 (pr2_free c t1
+x0 H8) (pr2_delta c d u i H22 t2 x1 H11 x0 H23))) (\lambda (H23: (subst0 i u
+x0 x1)).(ex_intro2 T (\lambda (t: T).(pr2 c t1 t)) (\lambda (t: T).(pr2 c t2
+t)) x1 (pr2_delta c d u i H22 t1 x0 H8 x1 H23) (pr2_free c t2 x1 H11)))
+(subst0_confluence_eq x x1 u i H20 x0 H9))))))) H17)))))))))) H10))
+(pr0_subst0 t4 x H5 u0 t2 i0 H4 u0 (pr0_refl u0)))))) H7)) (pr0_subst0 t3 x
+H6 u t1 i H1 u (pr0_refl u)))))) (pr0_confluence t0 t4 H3 t3
+H0))))))))))))))))))).
+
+theorem pr2_confluence:
+ \forall (c: C).(\forall (t0: T).(\forall (t1: T).((pr2 c t0 t1) \to (\forall
+(t2: T).((pr2 c t0 t2) \to (ex2 T (\lambda (t: T).(pr2 c t1 t)) (\lambda (t:
+T).(pr2 c t2 t))))))))
+\def
+ \lambda (c: C).(\lambda (t0: T).(\lambda (t1: T).(\lambda (H: (pr2 c t0
+t1)).(\lambda (t2: T).(\lambda (H0: (pr2 c t0 t2)).(let H1 \def (match H in
+pr2 return (\lambda (c0: C).(\lambda (t: T).(\lambda (t3: T).(\lambda (_:
+(pr2 c0 t t3)).((eq C c0 c) \to ((eq T t t0) \to ((eq T t3 t1) \to (ex2 T
+(\lambda (t4: T).(pr2 c t1 t4)) (\lambda (t4: T).(pr2 c t2 t4)))))))))) with
+[(pr2_free c0 t3 t4 H1) \Rightarrow (\lambda (H2: (eq C c0 c)).(\lambda (H3:
+(eq T t3 t0)).(\lambda (H4: (eq T t4 t1)).(eq_ind C c (\lambda (_: C).((eq T
+t3 t0) \to ((eq T t4 t1) \to ((pr0 t3 t4) \to (ex2 T (\lambda (t: T).(pr2 c
+t1 t)) (\lambda (t: T).(pr2 c t2 t))))))) (\lambda (H5: (eq T t3 t0)).(eq_ind
+T t0 (\lambda (t: T).((eq T t4 t1) \to ((pr0 t t4) \to (ex2 T (\lambda (t5:
+T).(pr2 c t1 t5)) (\lambda (t5: T).(pr2 c t2 t5)))))) (\lambda (H6: (eq T t4
+t1)).(eq_ind T t1 (\lambda (t: T).((pr0 t0 t) \to (ex2 T (\lambda (t5:
+T).(pr2 c t1 t5)) (\lambda (t5: T).(pr2 c t2 t5))))) (\lambda (H7: (pr0 t0
+t1)).(let H8 \def (match H0 in pr2 return (\lambda (c1: C).(\lambda (t:
+T).(\lambda (t5: T).(\lambda (_: (pr2 c1 t t5)).((eq C c1 c) \to ((eq T t t0)
+\to ((eq T t5 t2) \to (ex2 T (\lambda (t6: T).(pr2 c t1 t6)) (\lambda (t6:
+T).(pr2 c t2 t6)))))))))) with [(pr2_free c1 t5 t6 H8) \Rightarrow (\lambda
+(H9: (eq C c1 c)).(\lambda (H10: (eq T t5 t0)).(\lambda (H11: (eq T t6
+t2)).(eq_ind C c (\lambda (_: C).((eq T t5 t0) \to ((eq T t6 t2) \to ((pr0 t5
+t6) \to (ex2 T (\lambda (t: T).(pr2 c t1 t)) (\lambda (t: T).(pr2 c t2
+t))))))) (\lambda (H12: (eq T t5 t0)).(eq_ind T t0 (\lambda (t: T).((eq T t6
+t2) \to ((pr0 t t6) \to (ex2 T (\lambda (t7: T).(pr2 c t1 t7)) (\lambda (t7:
+T).(pr2 c t2 t7)))))) (\lambda (H13: (eq T t6 t2)).(eq_ind T t2 (\lambda (t:
+T).((pr0 t0 t) \to (ex2 T (\lambda (t7: T).(pr2 c t1 t7)) (\lambda (t7:
+T).(pr2 c t2 t7))))) (\lambda (H14: (pr0 t0
+t2)).(pr2_confluence__pr2_free_free c t0 t1 t2 H7 H14)) t6 (sym_eq T t6 t2
+H13))) t5 (sym_eq T t5 t0 H12))) c1 (sym_eq C c1 c H9) H10 H11 H8)))) |
+(pr2_delta c1 d u i H8 t5 t6 H9 t H10) \Rightarrow (\lambda (H11: (eq C c1
+c)).(\lambda (H12: (eq T t5 t0)).(\lambda (H13: (eq T t t2)).(eq_ind C c
+(\lambda (c2: C).((eq T t5 t0) \to ((eq T t t2) \to ((getl i c2 (CHead d
+(Bind Abbr) u)) \to ((pr0 t5 t6) \to ((subst0 i u t6 t) \to (ex2 T (\lambda
+(t7: T).(pr2 c t1 t7)) (\lambda (t7: T).(pr2 c t2 t7))))))))) (\lambda (H14:
+(eq T t5 t0)).(eq_ind T t0 (\lambda (t7: T).((eq T t t2) \to ((getl i c
+(CHead d (Bind Abbr) u)) \to ((pr0 t7 t6) \to ((subst0 i u t6 t) \to (ex2 T
+(\lambda (t8: T).(pr2 c t1 t8)) (\lambda (t8: T).(pr2 c t2 t8))))))))
+(\lambda (H15: (eq T t t2)).(eq_ind T t2 (\lambda (t7: T).((getl i c (CHead d
+(Bind Abbr) u)) \to ((pr0 t0 t6) \to ((subst0 i u t6 t7) \to (ex2 T (\lambda
+(t8: T).(pr2 c t1 t8)) (\lambda (t8: T).(pr2 c t2 t8))))))) (\lambda (H16:
+(getl i c (CHead d (Bind Abbr) u))).(\lambda (H17: (pr0 t0 t6)).(\lambda
+(H18: (subst0 i u t6 t2)).(pr2_confluence__pr2_free_delta c d t0 t1 t2 t6 u i
+H7 H16 H17 H18)))) t (sym_eq T t t2 H15))) t5 (sym_eq T t5 t0 H14))) c1
+(sym_eq C c1 c H11) H12 H13 H8 H9 H10))))]) in (H8 (refl_equal C c)
+(refl_equal T t0) (refl_equal T t2)))) t4 (sym_eq T t4 t1 H6))) t3 (sym_eq T
+t3 t0 H5))) c0 (sym_eq C c0 c H2) H3 H4 H1)))) | (pr2_delta c0 d u i H1 t3 t4
+H2 t H3) \Rightarrow (\lambda (H4: (eq C c0 c)).(\lambda (H5: (eq T t3
+t0)).(\lambda (H6: (eq T t t1)).(eq_ind C c (\lambda (c1: C).((eq T t3 t0)
+\to ((eq T t t1) \to ((getl i c1 (CHead d (Bind Abbr) u)) \to ((pr0 t3 t4)
+\to ((subst0 i u t4 t) \to (ex2 T (\lambda (t5: T).(pr2 c t1 t5)) (\lambda
+(t5: T).(pr2 c t2 t5))))))))) (\lambda (H7: (eq T t3 t0)).(eq_ind T t0
+(\lambda (t5: T).((eq T t t1) \to ((getl i c (CHead d (Bind Abbr) u)) \to
+((pr0 t5 t4) \to ((subst0 i u t4 t) \to (ex2 T (\lambda (t6: T).(pr2 c t1
+t6)) (\lambda (t6: T).(pr2 c t2 t6)))))))) (\lambda (H8: (eq T t t1)).(eq_ind
+T t1 (\lambda (t5: T).((getl i c (CHead d (Bind Abbr) u)) \to ((pr0 t0 t4)
+\to ((subst0 i u t4 t5) \to (ex2 T (\lambda (t6: T).(pr2 c t1 t6)) (\lambda
+(t6: T).(pr2 c t2 t6))))))) (\lambda (H9: (getl i c (CHead d (Bind Abbr)
+u))).(\lambda (H10: (pr0 t0 t4)).(\lambda (H11: (subst0 i u t4 t1)).(let H12
+\def (match H0 in pr2 return (\lambda (c1: C).(\lambda (t5: T).(\lambda (t6:
+T).(\lambda (_: (pr2 c1 t5 t6)).((eq C c1 c) \to ((eq T t5 t0) \to ((eq T t6
+t2) \to (ex2 T (\lambda (t7: T).(pr2 c t1 t7)) (\lambda (t7: T).(pr2 c t2
+t7)))))))))) with [(pr2_free c1 t5 t6 H12) \Rightarrow (\lambda (H13: (eq C
+c1 c)).(\lambda (H14: (eq T t5 t0)).(\lambda (H15: (eq T t6 t2)).(eq_ind C c
+(\lambda (_: C).((eq T t5 t0) \to ((eq T t6 t2) \to ((pr0 t5 t6) \to (ex2 T
+(\lambda (t7: T).(pr2 c t1 t7)) (\lambda (t7: T).(pr2 c t2 t7))))))) (\lambda
+(H16: (eq T t5 t0)).(eq_ind T t0 (\lambda (t7: T).((eq T t6 t2) \to ((pr0 t7
+t6) \to (ex2 T (\lambda (t8: T).(pr2 c t1 t8)) (\lambda (t8: T).(pr2 c t2
+t8)))))) (\lambda (H17: (eq T t6 t2)).(eq_ind T t2 (\lambda (t7: T).((pr0 t0
+t7) \to (ex2 T (\lambda (t8: T).(pr2 c t1 t8)) (\lambda (t8: T).(pr2 c t2
+t8))))) (\lambda (H18: (pr0 t0 t2)).(ex2_sym T (pr2 c t2) (pr2 c t1)
+(pr2_confluence__pr2_free_delta c d t0 t2 t1 t4 u i H18 H9 H10 H11))) t6
+(sym_eq T t6 t2 H17))) t5 (sym_eq T t5 t0 H16))) c1 (sym_eq C c1 c H13) H14
+H15 H12)))) | (pr2_delta c1 d0 u0 i0 H12 t5 t6 H13 t7 H14) \Rightarrow
+(\lambda (H15: (eq C c1 c)).(\lambda (H16: (eq T t5 t0)).(\lambda (H17: (eq T
+t7 t2)).(eq_ind C c (\lambda (c2: C).((eq T t5 t0) \to ((eq T t7 t2) \to
+((getl i0 c2 (CHead d0 (Bind Abbr) u0)) \to ((pr0 t5 t6) \to ((subst0 i0 u0
+t6 t7) \to (ex2 T (\lambda (t8: T).(pr2 c t1 t8)) (\lambda (t8: T).(pr2 c t2
+t8))))))))) (\lambda (H18: (eq T t5 t0)).(eq_ind T t0 (\lambda (t8: T).((eq T
+t7 t2) \to ((getl i0 c (CHead d0 (Bind Abbr) u0)) \to ((pr0 t8 t6) \to
+((subst0 i0 u0 t6 t7) \to (ex2 T (\lambda (t9: T).(pr2 c t1 t9)) (\lambda
+(t9: T).(pr2 c t2 t9)))))))) (\lambda (H19: (eq T t7 t2)).(eq_ind T t2
+(\lambda (t8: T).((getl i0 c (CHead d0 (Bind Abbr) u0)) \to ((pr0 t0 t6) \to
+((subst0 i0 u0 t6 t8) \to (ex2 T (\lambda (t9: T).(pr2 c t1 t9)) (\lambda
+(t9: T).(pr2 c t2 t9))))))) (\lambda (H20: (getl i0 c (CHead d0 (Bind Abbr)
+u0))).(\lambda (H21: (pr0 t0 t6)).(\lambda (H22: (subst0 i0 u0 t6
+t2)).(pr2_confluence__pr2_delta_delta c d d0 t0 t1 t2 t4 t6 u u0 i i0 H9 H10
+H11 H20 H21 H22)))) t7 (sym_eq T t7 t2 H19))) t5 (sym_eq T t5 t0 H18))) c1
+(sym_eq C c1 c H15) H16 H17 H12 H13 H14))))]) in (H12 (refl_equal C c)
+(refl_equal T t0) (refl_equal T t2)))))) t (sym_eq T t t1 H8))) t3 (sym_eq T
+t3 t0 H7))) c0 (sym_eq C c0 c H4) H5 H6 H1 H2 H3))))]) in (H1 (refl_equal C
+c) (refl_equal T t0) (refl_equal T t1)))))))).
+
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/LambdaDelta/pr2/props".
+
+include "pr2/defs.ma".
+
+include "pr0/props.ma".
+
+include "getl/drop.ma".
+
+include "getl/clear.ma".
+
+theorem pr2_thin_dx:
+ \forall (c: C).(\forall (t1: T).(\forall (t2: T).((pr2 c t1 t2) \to (\forall
+(u: T).(\forall (f: F).(pr2 c (THead (Flat f) u t1) (THead (Flat f) u
+t2)))))))
+\def
+ \lambda (c: C).(\lambda (t1: T).(\lambda (t2: T).(\lambda (H: (pr2 c t1
+t2)).(\lambda (u: T).(\lambda (f: F).(pr2_ind (\lambda (c0: C).(\lambda (t:
+T).(\lambda (t0: T).(pr2 c0 (THead (Flat f) u t) (THead (Flat f) u t0)))))
+(\lambda (c0: C).(\lambda (t0: T).(\lambda (t3: T).(\lambda (H0: (pr0 t0
+t3)).(pr2_free c0 (THead (Flat f) u t0) (THead (Flat f) u t3) (pr0_comp u u
+(pr0_refl u) t0 t3 H0 (Flat f))))))) (\lambda (c0: C).(\lambda (d:
+C).(\lambda (u0: T).(\lambda (i: nat).(\lambda (H0: (getl i c0 (CHead d (Bind
+Abbr) u0))).(\lambda (t0: T).(\lambda (t3: T).(\lambda (H1: (pr0 t0
+t3)).(\lambda (t: T).(\lambda (H2: (subst0 i u0 t3 t)).(pr2_delta c0 d u0 i
+H0 (THead (Flat f) u t0) (THead (Flat f) u t3) (pr0_comp u u (pr0_refl u) t0
+t3 H1 (Flat f)) (THead (Flat f) u t) (subst0_snd (Flat f) u0 t t3 i H2
+u)))))))))))) c t1 t2 H)))))).
+
+theorem pr2_head_1:
+ \forall (c: C).(\forall (u1: T).(\forall (u2: T).((pr2 c u1 u2) \to (\forall
+(k: K).(\forall (t: T).(pr2 c (THead k u1 t) (THead k u2 t)))))))
+\def
+ \lambda (c: C).(\lambda (u1: T).(\lambda (u2: T).(\lambda (H: (pr2 c u1
+u2)).(\lambda (k: K).(\lambda (t: T).(pr2_ind (\lambda (c0: C).(\lambda (t0:
+T).(\lambda (t1: T).(pr2 c0 (THead k t0 t) (THead k t1 t))))) (\lambda (c0:
+C).(\lambda (t1: T).(\lambda (t2: T).(\lambda (H0: (pr0 t1 t2)).(pr2_free c0
+(THead k t1 t) (THead k t2 t) (pr0_comp t1 t2 H0 t t (pr0_refl t) k))))))
+(\lambda (c0: C).(\lambda (d: C).(\lambda (u: T).(\lambda (i: nat).(\lambda
+(H0: (getl i c0 (CHead d (Bind Abbr) u))).(\lambda (t1: T).(\lambda (t2:
+T).(\lambda (H1: (pr0 t1 t2)).(\lambda (t0: T).(\lambda (H2: (subst0 i u t2
+t0)).(pr2_delta c0 d u i H0 (THead k t1 t) (THead k t2 t) (pr0_comp t1 t2 H1
+t t (pr0_refl t) k) (THead k t0 t) (subst0_fst u t0 t2 i H2 t k)))))))))))) c
+u1 u2 H)))))).
+
+theorem pr2_head_2:
+ \forall (c: C).(\forall (u: T).(\forall (t1: T).(\forall (t2: T).(\forall
+(k: K).((pr2 (CHead c k u) t1 t2) \to (pr2 c (THead k u t1) (THead k u
+t2)))))))
+\def
+ \lambda (c: C).(\lambda (u: T).(\lambda (t1: T).(\lambda (t2: T).(\lambda
+(k: K).(K_ind (\lambda (k0: K).((pr2 (CHead c k0 u) t1 t2) \to (pr2 c (THead
+k0 u t1) (THead k0 u t2)))) (\lambda (b: B).(\lambda (H: (pr2 (CHead c (Bind
+b) u) t1 t2)).(let H0 \def (match H in pr2 return (\lambda (c0: C).(\lambda
+(t: T).(\lambda (t0: T).(\lambda (_: (pr2 c0 t t0)).((eq C c0 (CHead c (Bind
+b) u)) \to ((eq T t t1) \to ((eq T t0 t2) \to (pr2 c (THead (Bind b) u t1)
+(THead (Bind b) u t2))))))))) with [(pr2_free c0 t0 t3 H0) \Rightarrow
+(\lambda (H1: (eq C c0 (CHead c (Bind b) u))).(\lambda (H2: (eq T t0
+t1)).(\lambda (H3: (eq T t3 t2)).(eq_ind C (CHead c (Bind b) u) (\lambda (_:
+C).((eq T t0 t1) \to ((eq T t3 t2) \to ((pr0 t0 t3) \to (pr2 c (THead (Bind
+b) u t1) (THead (Bind b) u t2)))))) (\lambda (H4: (eq T t0 t1)).(eq_ind T t1
+(\lambda (t: T).((eq T t3 t2) \to ((pr0 t t3) \to (pr2 c (THead (Bind b) u
+t1) (THead (Bind b) u t2))))) (\lambda (H5: (eq T t3 t2)).(eq_ind T t2
+(\lambda (t: T).((pr0 t1 t) \to (pr2 c (THead (Bind b) u t1) (THead (Bind b)
+u t2)))) (\lambda (H6: (pr0 t1 t2)).(pr2_free c (THead (Bind b) u t1) (THead
+(Bind b) u t2) (pr0_comp u u (pr0_refl u) t1 t2 H6 (Bind b)))) t3 (sym_eq T
+t3 t2 H5))) t0 (sym_eq T t0 t1 H4))) c0 (sym_eq C c0 (CHead c (Bind b) u) H1)
+H2 H3 H0)))) | (pr2_delta c0 d u0 i H0 t0 t3 H1 t H2) \Rightarrow (\lambda
+(H3: (eq C c0 (CHead c (Bind b) u))).(\lambda (H4: (eq T t0 t1)).(\lambda
+(H5: (eq T t t2)).(eq_ind C (CHead c (Bind b) u) (\lambda (c1: C).((eq T t0
+t1) \to ((eq T t t2) \to ((getl i c1 (CHead d (Bind Abbr) u0)) \to ((pr0 t0
+t3) \to ((subst0 i u0 t3 t) \to (pr2 c (THead (Bind b) u t1) (THead (Bind b)
+u t2)))))))) (\lambda (H6: (eq T t0 t1)).(eq_ind T t1 (\lambda (t4: T).((eq T
+t t2) \to ((getl i (CHead c (Bind b) u) (CHead d (Bind Abbr) u0)) \to ((pr0
+t4 t3) \to ((subst0 i u0 t3 t) \to (pr2 c (THead (Bind b) u t1) (THead (Bind
+b) u t2))))))) (\lambda (H7: (eq T t t2)).(eq_ind T t2 (\lambda (t4:
+T).((getl i (CHead c (Bind b) u) (CHead d (Bind Abbr) u0)) \to ((pr0 t1 t3)
+\to ((subst0 i u0 t3 t4) \to (pr2 c (THead (Bind b) u t1) (THead (Bind b) u
+t2)))))) (\lambda (H8: (getl i (CHead c (Bind b) u) (CHead d (Bind Abbr)
+u0))).(\lambda (H9: (pr0 t1 t3)).(\lambda (H10: (subst0 i u0 t3 t2)).((match
+i in nat return (\lambda (n: nat).((getl n (CHead c (Bind b) u) (CHead d
+(Bind Abbr) u0)) \to ((subst0 n u0 t3 t2) \to (pr2 c (THead (Bind b) u t1)
+(THead (Bind b) u t2))))) with [O \Rightarrow (\lambda (H11: (getl O (CHead c
+(Bind b) u) (CHead d (Bind Abbr) u0))).(\lambda (H12: (subst0 O u0 t3
+t2)).(let H13 \def (f_equal C C (\lambda (e: C).(match e in C return (\lambda
+(_: C).C) with [(CSort _) \Rightarrow d | (CHead c1 _ _) \Rightarrow c1]))
+(CHead d (Bind Abbr) u0) (CHead c (Bind b) u) (clear_gen_bind b c (CHead d
+(Bind Abbr) u0) u (getl_gen_O (CHead c (Bind b) u) (CHead d (Bind Abbr) u0)
+H11))) in ((let H14 \def (f_equal C B (\lambda (e: C).(match e in C return
+(\lambda (_: C).B) with [(CSort _) \Rightarrow Abbr | (CHead _ k0 _)
+\Rightarrow (match k0 in K return (\lambda (_: K).B) with [(Bind b0)
+\Rightarrow b0 | (Flat _) \Rightarrow Abbr])])) (CHead d (Bind Abbr) u0)
+(CHead c (Bind b) u) (clear_gen_bind b c (CHead d (Bind Abbr) u0) u
+(getl_gen_O (CHead c (Bind b) u) (CHead d (Bind Abbr) u0) H11))) in ((let H15
+\def (f_equal C T (\lambda (e: C).(match e in C return (\lambda (_: C).T)
+with [(CSort _) \Rightarrow u0 | (CHead _ _ t4) \Rightarrow t4])) (CHead d
+(Bind Abbr) u0) (CHead c (Bind b) u) (clear_gen_bind b c (CHead d (Bind Abbr)
+u0) u (getl_gen_O (CHead c (Bind b) u) (CHead d (Bind Abbr) u0) H11))) in
+(\lambda (H16: (eq B Abbr b)).(\lambda (_: (eq C d c)).(let H18 \def (eq_ind
+T u0 (\lambda (t4: T).(subst0 O t4 t3 t2)) H12 u H15) in (eq_ind B Abbr
+(\lambda (b0: B).(pr2 c (THead (Bind b0) u t1) (THead (Bind b0) u t2)))
+(pr2_free c (THead (Bind Abbr) u t1) (THead (Bind Abbr) u t2) (pr0_delta u u
+(pr0_refl u) t1 t3 H9 t2 H18)) b H16))))) H14)) H13)))) | (S n) \Rightarrow
+(\lambda (H11: (getl (S n) (CHead c (Bind b) u) (CHead d (Bind Abbr)
+u0))).(\lambda (H12: (subst0 (S n) u0 t3 t2)).(pr2_delta c d u0 (r (Bind b)
+n) (getl_gen_S (Bind b) c (CHead d (Bind Abbr) u0) u n H11) (THead (Bind b) u
+t1) (THead (Bind b) u t3) (pr0_comp u u (pr0_refl u) t1 t3 H9 (Bind b))
+(THead (Bind b) u t2) (subst0_snd (Bind b) u0 t2 t3 (r (Bind b) n) H12
+u))))]) H8 H10)))) t (sym_eq T t t2 H7))) t0 (sym_eq T t0 t1 H6))) c0 (sym_eq
+C c0 (CHead c (Bind b) u) H3) H4 H5 H0 H1 H2))))]) in (H0 (refl_equal C
+(CHead c (Bind b) u)) (refl_equal T t1) (refl_equal T t2))))) (\lambda (f:
+F).(\lambda (H: (pr2 (CHead c (Flat f) u) t1 t2)).(let H0 \def (match H in
+pr2 return (\lambda (c0: C).(\lambda (t: T).(\lambda (t0: T).(\lambda (_:
+(pr2 c0 t t0)).((eq C c0 (CHead c (Flat f) u)) \to ((eq T t t1) \to ((eq T t0
+t2) \to (pr2 c (THead (Flat f) u t1) (THead (Flat f) u t2))))))))) with
+[(pr2_free c0 t0 t3 H0) \Rightarrow (\lambda (H1: (eq C c0 (CHead c (Flat f)
+u))).(\lambda (H2: (eq T t0 t1)).(\lambda (H3: (eq T t3 t2)).(eq_ind C (CHead
+c (Flat f) u) (\lambda (_: C).((eq T t0 t1) \to ((eq T t3 t2) \to ((pr0 t0
+t3) \to (pr2 c (THead (Flat f) u t1) (THead (Flat f) u t2)))))) (\lambda (H4:
+(eq T t0 t1)).(eq_ind T t1 (\lambda (t: T).((eq T t3 t2) \to ((pr0 t t3) \to
+(pr2 c (THead (Flat f) u t1) (THead (Flat f) u t2))))) (\lambda (H5: (eq T t3
+t2)).(eq_ind T t2 (\lambda (t: T).((pr0 t1 t) \to (pr2 c (THead (Flat f) u
+t1) (THead (Flat f) u t2)))) (\lambda (H6: (pr0 t1 t2)).(pr2_free c (THead
+(Flat f) u t1) (THead (Flat f) u t2) (pr0_comp u u (pr0_refl u) t1 t2 H6
+(Flat f)))) t3 (sym_eq T t3 t2 H5))) t0 (sym_eq T t0 t1 H4))) c0 (sym_eq C c0
+(CHead c (Flat f) u) H1) H2 H3 H0)))) | (pr2_delta c0 d u0 i H0 t0 t3 H1 t
+H2) \Rightarrow (\lambda (H3: (eq C c0 (CHead c (Flat f) u))).(\lambda (H4:
+(eq T t0 t1)).(\lambda (H5: (eq T t t2)).(eq_ind C (CHead c (Flat f) u)
+(\lambda (c1: C).((eq T t0 t1) \to ((eq T t t2) \to ((getl i c1 (CHead d
+(Bind Abbr) u0)) \to ((pr0 t0 t3) \to ((subst0 i u0 t3 t) \to (pr2 c (THead
+(Flat f) u t1) (THead (Flat f) u t2)))))))) (\lambda (H6: (eq T t0
+t1)).(eq_ind T t1 (\lambda (t4: T).((eq T t t2) \to ((getl i (CHead c (Flat
+f) u) (CHead d (Bind Abbr) u0)) \to ((pr0 t4 t3) \to ((subst0 i u0 t3 t) \to
+(pr2 c (THead (Flat f) u t1) (THead (Flat f) u t2))))))) (\lambda (H7: (eq T
+t t2)).(eq_ind T t2 (\lambda (t4: T).((getl i (CHead c (Flat f) u) (CHead d
+(Bind Abbr) u0)) \to ((pr0 t1 t3) \to ((subst0 i u0 t3 t4) \to (pr2 c (THead
+(Flat f) u t1) (THead (Flat f) u t2)))))) (\lambda (H8: (getl i (CHead c
+(Flat f) u) (CHead d (Bind Abbr) u0))).(\lambda (H9: (pr0 t1 t3)).(\lambda
+(H10: (subst0 i u0 t3 t2)).((match i in nat return (\lambda (n: nat).((getl n
+(CHead c (Flat f) u) (CHead d (Bind Abbr) u0)) \to ((subst0 n u0 t3 t2) \to
+(pr2 c (THead (Flat f) u t1) (THead (Flat f) u t2))))) with [O \Rightarrow
+(\lambda (H11: (getl O (CHead c (Flat f) u) (CHead d (Bind Abbr)
+u0))).(\lambda (H12: (subst0 O u0 t3 t2)).(pr2_delta c d u0 O (getl_intro O c
+(CHead d (Bind Abbr) u0) c (drop_refl c) (clear_gen_flat f c (CHead d (Bind
+Abbr) u0) u (getl_gen_O (CHead c (Flat f) u) (CHead d (Bind Abbr) u0) H11)))
+(THead (Flat f) u t1) (THead (Flat f) u t3) (pr0_comp u u (pr0_refl u) t1 t3
+H9 (Flat f)) (THead (Flat f) u t2) (subst0_snd (Flat f) u0 t2 t3 O H12 u))))
+| (S n) \Rightarrow (\lambda (H11: (getl (S n) (CHead c (Flat f) u) (CHead d
+(Bind Abbr) u0))).(\lambda (H12: (subst0 (S n) u0 t3 t2)).(pr2_delta c d u0
+(r (Flat f) n) (getl_gen_S (Flat f) c (CHead d (Bind Abbr) u0) u n H11)
+(THead (Flat f) u t1) (THead (Flat f) u t3) (pr0_comp u u (pr0_refl u) t1 t3
+H9 (Flat f)) (THead (Flat f) u t2) (subst0_snd (Flat f) u0 t2 t3 (r (Flat f)
+n) H12 u))))]) H8 H10)))) t (sym_eq T t t2 H7))) t0 (sym_eq T t0 t1 H6))) c0
+(sym_eq C c0 (CHead c (Flat f) u) H3) H4 H5 H0 H1 H2))))]) in (H0 (refl_equal
+C (CHead c (Flat f) u)) (refl_equal T t1) (refl_equal T t2))))) k))))).
+
+theorem clear_pr2_trans:
+ \forall (c2: C).(\forall (t1: T).(\forall (t2: T).((pr2 c2 t1 t2) \to
+(\forall (c1: C).((clear c1 c2) \to (pr2 c1 t1 t2))))))
+\def
+ \lambda (c2: C).(\lambda (t1: T).(\lambda (t2: T).(\lambda (H: (pr2 c2 t1
+t2)).(\lambda (c1: C).(\lambda (H0: (clear c1 c2)).(let H1 \def (match H in
+pr2 return (\lambda (c: C).(\lambda (t: T).(\lambda (t0: T).(\lambda (_: (pr2
+c t t0)).((eq C c c2) \to ((eq T t t1) \to ((eq T t0 t2) \to (pr2 c1 t1
+t2)))))))) with [(pr2_free c t0 t3 H1) \Rightarrow (\lambda (H2: (eq C c
+c2)).(\lambda (H3: (eq T t0 t1)).(\lambda (H4: (eq T t3 t2)).(eq_ind C c2
+(\lambda (_: C).((eq T t0 t1) \to ((eq T t3 t2) \to ((pr0 t0 t3) \to (pr2 c1
+t1 t2))))) (\lambda (H5: (eq T t0 t1)).(eq_ind T t1 (\lambda (t: T).((eq T t3
+t2) \to ((pr0 t t3) \to (pr2 c1 t1 t2)))) (\lambda (H6: (eq T t3 t2)).(eq_ind
+T t2 (\lambda (t: T).((pr0 t1 t) \to (pr2 c1 t1 t2))) (\lambda (H7: (pr0 t1
+t2)).(pr2_free c1 t1 t2 H7)) t3 (sym_eq T t3 t2 H6))) t0 (sym_eq T t0 t1
+H5))) c (sym_eq C c c2 H2) H3 H4 H1)))) | (pr2_delta c d u i H1 t0 t3 H2 t
+H3) \Rightarrow (\lambda (H4: (eq C c c2)).(\lambda (H5: (eq T t0
+t1)).(\lambda (H6: (eq T t t2)).(eq_ind C c2 (\lambda (c0: C).((eq T t0 t1)
+\to ((eq T t t2) \to ((getl i c0 (CHead d (Bind Abbr) u)) \to ((pr0 t0 t3)
+\to ((subst0 i u t3 t) \to (pr2 c1 t1 t2))))))) (\lambda (H7: (eq T t0
+t1)).(eq_ind T t1 (\lambda (t4: T).((eq T t t2) \to ((getl i c2 (CHead d
+(Bind Abbr) u)) \to ((pr0 t4 t3) \to ((subst0 i u t3 t) \to (pr2 c1 t1
+t2)))))) (\lambda (H8: (eq T t t2)).(eq_ind T t2 (\lambda (t4: T).((getl i c2
+(CHead d (Bind Abbr) u)) \to ((pr0 t1 t3) \to ((subst0 i u t3 t4) \to (pr2 c1
+t1 t2))))) (\lambda (H9: (getl i c2 (CHead d (Bind Abbr) u))).(\lambda (H10:
+(pr0 t1 t3)).(\lambda (H11: (subst0 i u t3 t2)).(pr2_delta c1 d u i
+(clear_getl_trans i c2 (CHead d (Bind Abbr) u) H9 c1 H0) t1 t3 H10 t2 H11))))
+t (sym_eq T t t2 H8))) t0 (sym_eq T t0 t1 H7))) c (sym_eq C c c2 H4) H5 H6 H1
+H2 H3))))]) in (H1 (refl_equal C c2) (refl_equal T t1) (refl_equal T
+t2)))))))).
+
+theorem pr2_cflat:
+ \forall (c: C).(\forall (t1: T).(\forall (t2: T).((pr2 c t1 t2) \to (\forall
+(f: F).(\forall (v: T).(pr2 (CHead c (Flat f) v) t1 t2))))))
+\def
+ \lambda (c: C).(\lambda (t1: T).(\lambda (t2: T).(\lambda (H: (pr2 c t1
+t2)).(pr2_ind (\lambda (c0: C).(\lambda (t: T).(\lambda (t0: T).(\forall (f:
+F).(\forall (v: T).(pr2 (CHead c0 (Flat f) v) t t0)))))) (\lambda (c0:
+C).(\lambda (t3: T).(\lambda (t4: T).(\lambda (H0: (pr0 t3 t4)).(\lambda (f:
+F).(\lambda (v: T).(pr2_free (CHead c0 (Flat f) v) t3 t4 H0))))))) (\lambda
+(c0: C).(\lambda (d: C).(\lambda (u: T).(\lambda (i: nat).(\lambda (H0: (getl
+i c0 (CHead d (Bind Abbr) u))).(\lambda (t3: T).(\lambda (t4: T).(\lambda
+(H1: (pr0 t3 t4)).(\lambda (t: T).(\lambda (H2: (subst0 i u t4 t)).(\lambda
+(f: F).(\lambda (v: T).(pr2_delta (CHead c0 (Flat f) v) d u i (getl_flat c0
+(CHead d (Bind Abbr) u) i H0 f v) t3 t4 H1 t H2))))))))))))) c t1 t2 H)))).
+
+theorem pr2_ctail:
+ \forall (c: C).(\forall (t1: T).(\forall (t2: T).((pr2 c t1 t2) \to (\forall
+(k: K).(\forall (u: T).(pr2 (CTail k u c) t1 t2))))))
+\def
+ \lambda (c: C).(\lambda (t1: T).(\lambda (t2: T).(\lambda (H: (pr2 c t1
+t2)).(\lambda (k: K).(\lambda (u: T).(pr2_ind (\lambda (c0: C).(\lambda (t:
+T).(\lambda (t0: T).(pr2 (CTail k u c0) t t0)))) (\lambda (c0: C).(\lambda
+(t3: T).(\lambda (t4: T).(\lambda (H0: (pr0 t3 t4)).(pr2_free (CTail k u c0)
+t3 t4 H0))))) (\lambda (c0: C).(\lambda (d: C).(\lambda (u0: T).(\lambda (i:
+nat).(\lambda (H0: (getl i c0 (CHead d (Bind Abbr) u0))).(\lambda (t3:
+T).(\lambda (t4: T).(\lambda (H1: (pr0 t3 t4)).(\lambda (t: T).(\lambda (H2:
+(subst0 i u0 t4 t)).(pr2_delta (CTail k u c0) (CTail k u d) u0 i (getl_ctail
+Abbr c0 d u0 i H0 k u) t3 t4 H1 t H2))))))))))) c t1 t2 H)))))).
+
+theorem pr2_lift:
+ \forall (c: C).(\forall (e: C).(\forall (h: nat).(\forall (d: nat).((drop h
+d c e) \to (\forall (t1: T).(\forall (t2: T).((pr2 e t1 t2) \to (pr2 c (lift
+h d t1) (lift h d t2)))))))))
+\def
+ \lambda (c: C).(\lambda (e: C).(\lambda (h: nat).(\lambda (d: nat).(\lambda
+(H: (drop h d c e)).(\lambda (t1: T).(\lambda (t2: T).(\lambda (H0: (pr2 e t1
+t2)).(let H1 \def (match H0 in pr2 return (\lambda (c0: C).(\lambda (t:
+T).(\lambda (t0: T).(\lambda (_: (pr2 c0 t t0)).((eq C c0 e) \to ((eq T t t1)
+\to ((eq T t0 t2) \to (pr2 c (lift h d t1) (lift h d t2))))))))) with
+[(pr2_free c0 t0 t3 H1) \Rightarrow (\lambda (H2: (eq C c0 e)).(\lambda (H3:
+(eq T t0 t1)).(\lambda (H4: (eq T t3 t2)).(eq_ind C e (\lambda (_: C).((eq T
+t0 t1) \to ((eq T t3 t2) \to ((pr0 t0 t3) \to (pr2 c (lift h d t1) (lift h d
+t2)))))) (\lambda (H5: (eq T t0 t1)).(eq_ind T t1 (\lambda (t: T).((eq T t3
+t2) \to ((pr0 t t3) \to (pr2 c (lift h d t1) (lift h d t2))))) (\lambda (H6:
+(eq T t3 t2)).(eq_ind T t2 (\lambda (t: T).((pr0 t1 t) \to (pr2 c (lift h d
+t1) (lift h d t2)))) (\lambda (H7: (pr0 t1 t2)).(pr2_free c (lift h d t1)
+(lift h d t2) (pr0_lift t1 t2 H7 h d))) t3 (sym_eq T t3 t2 H6))) t0 (sym_eq T
+t0 t1 H5))) c0 (sym_eq C c0 e H2) H3 H4 H1)))) | (pr2_delta c0 d0 u i H1 t0
+t3 H2 t H3) \Rightarrow (\lambda (H4: (eq C c0 e)).(\lambda (H5: (eq T t0
+t1)).(\lambda (H6: (eq T t t2)).(eq_ind C e (\lambda (c1: C).((eq T t0 t1)
+\to ((eq T t t2) \to ((getl i c1 (CHead d0 (Bind Abbr) u)) \to ((pr0 t0 t3)
+\to ((subst0 i u t3 t) \to (pr2 c (lift h d t1) (lift h d t2)))))))) (\lambda
+(H7: (eq T t0 t1)).(eq_ind T t1 (\lambda (t4: T).((eq T t t2) \to ((getl i e
+(CHead d0 (Bind Abbr) u)) \to ((pr0 t4 t3) \to ((subst0 i u t3 t) \to (pr2 c
+(lift h d t1) (lift h d t2))))))) (\lambda (H8: (eq T t t2)).(eq_ind T t2
+(\lambda (t4: T).((getl i e (CHead d0 (Bind Abbr) u)) \to ((pr0 t1 t3) \to
+((subst0 i u t3 t4) \to (pr2 c (lift h d t1) (lift h d t2)))))) (\lambda (H9:
+(getl i e (CHead d0 (Bind Abbr) u))).(\lambda (H10: (pr0 t1 t3)).(\lambda
+(H11: (subst0 i u t3 t2)).(lt_le_e i d (pr2 c (lift h d t1) (lift h d t2))
+(\lambda (H12: (lt i d)).(let H13 \def (drop_getl_trans_le i d (le_S_n i d
+(le_S (S i) d H12)) c e h H (CHead d0 (Bind Abbr) u) H9) in (ex3_2_ind C C
+(\lambda (e0: C).(\lambda (_: C).(drop i O c e0))) (\lambda (e0: C).(\lambda
+(e1: C).(drop h (minus d i) e0 e1))) (\lambda (_: C).(\lambda (e1: C).(clear
+e1 (CHead d0 (Bind Abbr) u)))) (pr2 c (lift h d t1) (lift h d t2)) (\lambda
+(x0: C).(\lambda (x1: C).(\lambda (H14: (drop i O c x0)).(\lambda (H15: (drop
+h (minus d i) x0 x1)).(\lambda (H16: (clear x1 (CHead d0 (Bind Abbr)
+u))).(let H17 \def (eq_ind nat (minus d i) (\lambda (n: nat).(drop h n x0
+x1)) H15 (S (minus d (S i))) (minus_x_Sy d i H12)) in (let H18 \def
+(drop_clear_S x1 x0 h (minus d (S i)) H17 Abbr d0 u H16) in (ex2_ind C
+(\lambda (c1: C).(clear x0 (CHead c1 (Bind Abbr) (lift h (minus d (S i))
+u)))) (\lambda (c1: C).(drop h (minus d (S i)) c1 d0)) (pr2 c (lift h d t1)
+(lift h d t2)) (\lambda (x: C).(\lambda (H19: (clear x0 (CHead x (Bind Abbr)
+(lift h (minus d (S i)) u)))).(\lambda (_: (drop h (minus d (S i)) x
+d0)).(pr2_delta c x (lift h (minus d (S i)) u) i (getl_intro i c (CHead x
+(Bind Abbr) (lift h (minus d (S i)) u)) x0 H14 H19) (lift h d t1) (lift h d
+t3) (pr0_lift t1 t3 H10 h d) (lift h d t2) (subst0_lift_lt t3 t2 u i H11 d
+H12 h))))) H18)))))))) H13))) (\lambda (H12: (le d i)).(pr2_delta c d0 u
+(plus i h) (drop_getl_trans_ge i c e d h H (CHead d0 (Bind Abbr) u) H9 H12)
+(lift h d t1) (lift h d t3) (pr0_lift t1 t3 H10 h d) (lift h d t2)
+(subst0_lift_ge t3 t2 u i h H11 d H12))))))) t (sym_eq T t t2 H8))) t0
+(sym_eq T t0 t1 H7))) c0 (sym_eq C c0 e H4) H5 H6 H1 H2 H3))))]) in (H1
+(refl_equal C e) (refl_equal T t1) (refl_equal T t2)))))))))).
+
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/LambdaDelta/pr2/subst1".
+
+include "pr2/defs.ma".
+
+include "pr0/subst1.ma".
+
+include "csubst1/defs.ma".
+
+include "subst1/subst1.ma".
+
+include "getl/props.ma".
+
+theorem pr2_delta1:
+ \forall (c: C).(\forall (d: C).(\forall (u: T).(\forall (i: nat).((getl i c
+(CHead d (Bind Abbr) u)) \to (\forall (t1: T).(\forall (t2: T).((pr0 t1 t2)
+\to (\forall (t: T).((subst1 i u t2 t) \to (pr2 c t1 t))))))))))
+\def
+ \lambda (c: C).(\lambda (d: C).(\lambda (u: T).(\lambda (i: nat).(\lambda
+(H: (getl i c (CHead d (Bind Abbr) u))).(\lambda (t1: T).(\lambda (t2:
+T).(\lambda (H0: (pr0 t1 t2)).(\lambda (t: T).(\lambda (H1: (subst1 i u t2
+t)).(subst1_ind i u t2 (\lambda (t0: T).(pr2 c t1 t0)) (pr2_free c t1 t2 H0)
+(\lambda (t0: T).(\lambda (H2: (subst0 i u t2 t0)).(pr2_delta c d u i H t1 t2
+H0 t0 H2))) t H1)))))))))).
+
+theorem pr2_subst1:
+ \forall (c: C).(\forall (e: C).(\forall (v: T).(\forall (i: nat).((getl i c
+(CHead e (Bind Abbr) v)) \to (\forall (t1: T).(\forall (t2: T).((pr2 c t1 t2)
+\to (\forall (w1: T).((subst1 i v t1 w1) \to (ex2 T (\lambda (w2: T).(pr2 c
+w1 w2)) (\lambda (w2: T).(subst1 i v t2 w2))))))))))))
+\def
+ \lambda (c: C).(\lambda (e: C).(\lambda (v: T).(\lambda (i: nat).(\lambda
+(H: (getl i c (CHead e (Bind Abbr) v))).(\lambda (t1: T).(\lambda (t2:
+T).(\lambda (H0: (pr2 c t1 t2)).(let H1 \def (match H0 in pr2 return (\lambda
+(c0: C).(\lambda (t: T).(\lambda (t0: T).(\lambda (_: (pr2 c0 t t0)).((eq C
+c0 c) \to ((eq T t t1) \to ((eq T t0 t2) \to (\forall (w1: T).((subst1 i v t1
+w1) \to (ex2 T (\lambda (w2: T).(pr2 c w1 w2)) (\lambda (w2: T).(subst1 i v
+t2 w2)))))))))))) with [(pr2_free c0 t0 t3 H1) \Rightarrow (\lambda (H2: (eq
+C c0 c)).(\lambda (H3: (eq T t0 t1)).(\lambda (H4: (eq T t3 t2)).(eq_ind C c
+(\lambda (_: C).((eq T t0 t1) \to ((eq T t3 t2) \to ((pr0 t0 t3) \to (\forall
+(w1: T).((subst1 i v t1 w1) \to (ex2 T (\lambda (w2: T).(pr2 c w1 w2))
+(\lambda (w2: T).(subst1 i v t2 w2))))))))) (\lambda (H5: (eq T t0
+t1)).(eq_ind T t1 (\lambda (t: T).((eq T t3 t2) \to ((pr0 t t3) \to (\forall
+(w1: T).((subst1 i v t1 w1) \to (ex2 T (\lambda (w2: T).(pr2 c w1 w2))
+(\lambda (w2: T).(subst1 i v t2 w2)))))))) (\lambda (H6: (eq T t3
+t2)).(eq_ind T t2 (\lambda (t: T).((pr0 t1 t) \to (\forall (w1: T).((subst1 i
+v t1 w1) \to (ex2 T (\lambda (w2: T).(pr2 c w1 w2)) (\lambda (w2: T).(subst1
+i v t2 w2))))))) (\lambda (H7: (pr0 t1 t2)).(\lambda (w1: T).(\lambda (H8:
+(subst1 i v t1 w1)).(ex2_ind T (\lambda (w2: T).(pr0 w1 w2)) (\lambda (w2:
+T).(subst1 i v t2 w2)) (ex2 T (\lambda (w2: T).(pr2 c w1 w2)) (\lambda (w2:
+T).(subst1 i v t2 w2))) (\lambda (x: T).(\lambda (H9: (pr0 w1 x)).(\lambda
+(H10: (subst1 i v t2 x)).(ex_intro2 T (\lambda (w2: T).(pr2 c w1 w2))
+(\lambda (w2: T).(subst1 i v t2 w2)) x (pr2_free c w1 x H9) H10))))
+(pr0_subst1 t1 t2 H7 v w1 i H8 v (pr0_refl v)))))) t3 (sym_eq T t3 t2 H6)))
+t0 (sym_eq T t0 t1 H5))) c0 (sym_eq C c0 c H2) H3 H4 H1)))) | (pr2_delta c0 d
+u i0 H1 t0 t3 H2 t H3) \Rightarrow (\lambda (H4: (eq C c0 c)).(\lambda (H5:
+(eq T t0 t1)).(\lambda (H6: (eq T t t2)).(eq_ind C c (\lambda (c1: C).((eq T
+t0 t1) \to ((eq T t t2) \to ((getl i0 c1 (CHead d (Bind Abbr) u)) \to ((pr0
+t0 t3) \to ((subst0 i0 u t3 t) \to (\forall (w1: T).((subst1 i v t1 w1) \to
+(ex2 T (\lambda (w2: T).(pr2 c w1 w2)) (\lambda (w2: T).(subst1 i v t2
+w2))))))))))) (\lambda (H7: (eq T t0 t1)).(eq_ind T t1 (\lambda (t4: T).((eq
+T t t2) \to ((getl i0 c (CHead d (Bind Abbr) u)) \to ((pr0 t4 t3) \to
+((subst0 i0 u t3 t) \to (\forall (w1: T).((subst1 i v t1 w1) \to (ex2 T
+(\lambda (w2: T).(pr2 c w1 w2)) (\lambda (w2: T).(subst1 i v t2 w2))))))))))
+(\lambda (H8: (eq T t t2)).(eq_ind T t2 (\lambda (t4: T).((getl i0 c (CHead d
+(Bind Abbr) u)) \to ((pr0 t1 t3) \to ((subst0 i0 u t3 t4) \to (\forall (w1:
+T).((subst1 i v t1 w1) \to (ex2 T (\lambda (w2: T).(pr2 c w1 w2)) (\lambda
+(w2: T).(subst1 i v t2 w2))))))))) (\lambda (H9: (getl i0 c (CHead d (Bind
+Abbr) u))).(\lambda (H10: (pr0 t1 t3)).(\lambda (H11: (subst0 i0 u t3
+t2)).(\lambda (w1: T).(\lambda (H12: (subst1 i v t1 w1)).(ex2_ind T (\lambda
+(w2: T).(pr0 w1 w2)) (\lambda (w2: T).(subst1 i v t3 w2)) (ex2 T (\lambda
+(w2: T).(pr2 c w1 w2)) (\lambda (w2: T).(subst1 i v t2 w2))) (\lambda (x:
+T).(\lambda (H13: (pr0 w1 x)).(\lambda (H14: (subst1 i v t3 x)).(neq_eq_e i
+i0 (ex2 T (\lambda (w2: T).(pr2 c w1 w2)) (\lambda (w2: T).(subst1 i v t2
+w2))) (\lambda (H15: (not (eq nat i i0))).(ex2_ind T (\lambda (t4: T).(subst1
+i v t2 t4)) (\lambda (t4: T).(subst1 i0 u x t4)) (ex2 T (\lambda (w2: T).(pr2
+c w1 w2)) (\lambda (w2: T).(subst1 i v t2 w2))) (\lambda (x0: T).(\lambda
+(H16: (subst1 i v t2 x0)).(\lambda (H17: (subst1 i0 u x x0)).(ex_intro2 T
+(\lambda (w2: T).(pr2 c w1 w2)) (\lambda (w2: T).(subst1 i v t2 w2)) x0
+(pr2_delta1 c d u i0 H9 w1 x H13 x0 H17) H16)))) (subst1_confluence_neq t3 t2
+u i0 (subst1_single i0 u t3 t2 H11) x v i H14 (sym_not_eq nat i i0 H15))))
+(\lambda (H15: (eq nat i i0)).(let H16 \def (eq_ind_r nat i0 (\lambda (n:
+nat).(subst0 n u t3 t2)) H11 i H15) in (let H17 \def (eq_ind_r nat i0
+(\lambda (n: nat).(getl n c (CHead d (Bind Abbr) u))) H9 i H15) in (let H18
+\def (eq_ind C (CHead e (Bind Abbr) v) (\lambda (c1: C).(getl i c c1)) H
+(CHead d (Bind Abbr) u) (getl_mono c (CHead e (Bind Abbr) v) i H (CHead d
+(Bind Abbr) u) H17)) in (let H19 \def (f_equal C C (\lambda (e0: C).(match e0
+in C return (\lambda (_: C).C) with [(CSort _) \Rightarrow e | (CHead c1 _ _)
+\Rightarrow c1])) (CHead e (Bind Abbr) v) (CHead d (Bind Abbr) u) (getl_mono
+c (CHead e (Bind Abbr) v) i H (CHead d (Bind Abbr) u) H17)) in ((let H20 \def
+(f_equal C T (\lambda (e0: C).(match e0 in C return (\lambda (_: C).T) with
+[(CSort _) \Rightarrow v | (CHead _ _ t4) \Rightarrow t4])) (CHead e (Bind
+Abbr) v) (CHead d (Bind Abbr) u) (getl_mono c (CHead e (Bind Abbr) v) i H
+(CHead d (Bind Abbr) u) H17)) in (\lambda (H21: (eq C e d)).(let H22 \def
+(eq_ind_r T u (\lambda (t4: T).(getl i c (CHead d (Bind Abbr) t4))) H18 v
+H20) in (let H23 \def (eq_ind_r T u (\lambda (t4: T).(subst0 i t4 t3 t2)) H16
+v H20) in (let H24 \def (eq_ind_r C d (\lambda (c1: C).(getl i c (CHead c1
+(Bind Abbr) v))) H22 e H21) in (ex2_ind T (\lambda (t4: T).(subst1 i v t2
+t4)) (\lambda (t4: T).(subst1 i v x t4)) (ex2 T (\lambda (w2: T).(pr2 c w1
+w2)) (\lambda (w2: T).(subst1 i v t2 w2))) (\lambda (x0: T).(\lambda (H25:
+(subst1 i v t2 x0)).(\lambda (H26: (subst1 i v x x0)).(ex_intro2 T (\lambda
+(w2: T).(pr2 c w1 w2)) (\lambda (w2: T).(subst1 i v t2 w2)) x0 (pr2_delta1 c
+e v i H24 w1 x H13 x0 H26) H25)))) (subst1_confluence_eq t3 t2 v i
+(subst1_single i v t3 t2 H23) x H14))))))) H19)))))))))) (pr0_subst1 t1 t3
+H10 v w1 i H12 v (pr0_refl v)))))))) t (sym_eq T t t2 H8))) t0 (sym_eq T t0
+t1 H7))) c0 (sym_eq C c0 c H4) H5 H6 H1 H2 H3))))]) in (H1 (refl_equal C c)
+(refl_equal T t1) (refl_equal T t2)))))))))).
+
+axiom pr2_gen_cabbr:
+ \forall (c: C).(\forall (t1: T).(\forall (t2: T).((pr2 c t1 t2) \to (\forall
+(e: C).(\forall (u: T).(\forall (d: nat).((getl d c (CHead e (Bind Abbr) u))
+\to (\forall (a0: C).((csubst1 d u c a0) \to (\forall (a: C).((drop (S O) d
+a0 a) \to (\forall (x1: T).((subst1 d u t1 (lift (S O) d x1)) \to (ex2 T
+(\lambda (x2: T).(subst1 d u t2 (lift (S O) d x2))) (\lambda (x2: T).(pr2 a
+x1 x2))))))))))))))))
+.
+
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/LambdaDelta/pr3/defs".
+
+include "pr2/defs.ma".
+
+inductive pr3 (c:C): T \to (T \to Prop) \def
+| pr3_refl: \forall (t: T).(pr3 c t t)
+| pr3_sing: \forall (t2: T).(\forall (t1: T).((pr2 c t1 t2) \to (\forall (t3:
+T).((pr3 c t2 t3) \to (pr3 c t1 t3))))).
+
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/LambdaDelta/tau1/cnt".
+
+include "tau1/props.ma".
+
+include "cnt/props.ma".
+
+theorem tau1_cnt:
+ \forall (g: G).(\forall (c: C).(\forall (t1: T).(\forall (t: T).((tau0 g c
+t1 t) \to (ex2 T (\lambda (t2: T).(tau1 g c t1 t2)) (\lambda (t2: T).(cnt
+t2)))))))
+\def
+ \lambda (g: G).(\lambda (c: C).(\lambda (t1: T).(\lambda (t: T).(\lambda (H:
+(tau0 g c t1 t)).(tau0_ind g (\lambda (c0: C).(\lambda (t0: T).(\lambda (_:
+T).(ex2 T (\lambda (t3: T).(tau1 g c0 t0 t3)) (\lambda (t3: T).(cnt t3))))))
+(\lambda (c0: C).(\lambda (n: nat).(ex_intro2 T (\lambda (t2: T).(tau1 g c0
+(TSort n) t2)) (\lambda (t2: T).(cnt t2)) (TSort (next g n)) (tau1_tau0 g c0
+(TSort n) (TSort (next g n)) (tau0_sort g c0 n)) (cnt_sort (next g n)))))
+(\lambda (c0: C).(\lambda (d: C).(\lambda (v: T).(\lambda (i: nat).(\lambda
+(H0: (getl i c0 (CHead d (Bind Abbr) v))).(\lambda (w: T).(\lambda (_: (tau0
+g d v w)).(\lambda (H2: (ex2 T (\lambda (t2: T).(tau1 g d v t2)) (\lambda
+(t2: T).(cnt t2)))).(let H3 \def H2 in (ex2_ind T (\lambda (t2: T).(tau1 g d
+v t2)) (\lambda (t2: T).(cnt t2)) (ex2 T (\lambda (t2: T).(tau1 g c0 (TLRef
+i) t2)) (\lambda (t2: T).(cnt t2))) (\lambda (x: T).(\lambda (H4: (tau1 g d v
+x)).(\lambda (H5: (cnt x)).(ex_intro2 T (\lambda (t2: T).(tau1 g c0 (TLRef i)
+t2)) (\lambda (t2: T).(cnt t2)) (lift (S i) O x) (tau1_abbr g c0 d v i H0 x
+H4) (cnt_lift x H5 (S i) O))))) H3)))))))))) (\lambda (c0: C).(\lambda (d:
+C).(\lambda (v: T).(\lambda (i: nat).(\lambda (H0: (getl i c0 (CHead d (Bind
+Abst) v))).(\lambda (w: T).(\lambda (H1: (tau0 g d v w)).(\lambda (H2: (ex2 T
+(\lambda (t2: T).(tau1 g d v t2)) (\lambda (t2: T).(cnt t2)))).(let H3 \def
+H2 in (ex2_ind T (\lambda (t2: T).(tau1 g d v t2)) (\lambda (t2: T).(cnt t2))
+(ex2 T (\lambda (t2: T).(tau1 g c0 (TLRef i) t2)) (\lambda (t2: T).(cnt t2)))
+(\lambda (x: T).(\lambda (H4: (tau1 g d v x)).(\lambda (H5: (cnt
+x)).(ex_intro2 T (\lambda (t2: T).(tau1 g c0 (TLRef i) t2)) (\lambda (t2:
+T).(cnt t2)) (lift (S i) O x) (tau1_trans g c0 (TLRef i) (lift (S i) O v)
+(tau1_tau0 g c0 (TLRef i) (lift (S i) O v) (tau0_abst g c0 d v i H0 w H1))
+(lift (S i) O x) (tau1_lift g d v x H4 c0 (S i) O (getl_drop Abst c0 d v i
+H0))) (cnt_lift x H5 (S i) O))))) H3)))))))))) (\lambda (b: B).(\lambda (c0:
+C).(\lambda (v: T).(\lambda (t2: T).(\lambda (t3: T).(\lambda (_: (tau0 g
+(CHead c0 (Bind b) v) t2 t3)).(\lambda (H1: (ex2 T (\lambda (t4: T).(tau1 g
+(CHead c0 (Bind b) v) t2 t4)) (\lambda (t4: T).(cnt t4)))).(let H2 \def H1 in
+(ex2_ind T (\lambda (t4: T).(tau1 g (CHead c0 (Bind b) v) t2 t4)) (\lambda
+(t4: T).(cnt t4)) (ex2 T (\lambda (t4: T).(tau1 g c0 (THead (Bind b) v t2)
+t4)) (\lambda (t4: T).(cnt t4))) (\lambda (x: T).(\lambda (H3: (tau1 g (CHead
+c0 (Bind b) v) t2 x)).(\lambda (H4: (cnt x)).(ex_intro2 T (\lambda (t4:
+T).(tau1 g c0 (THead (Bind b) v t2) t4)) (\lambda (t4: T).(cnt t4)) (THead
+(Bind b) v x) (tau1_bind g b c0 v t2 x H3) (cnt_head x H4 (Bind b) v)))))
+H2))))))))) (\lambda (c0: C).(\lambda (v: T).(\lambda (t2: T).(\lambda (t3:
+T).(\lambda (_: (tau0 g c0 t2 t3)).(\lambda (H1: (ex2 T (\lambda (t4:
+T).(tau1 g c0 t2 t4)) (\lambda (t4: T).(cnt t4)))).(let H2 \def H1 in
+(ex2_ind T (\lambda (t4: T).(tau1 g c0 t2 t4)) (\lambda (t4: T).(cnt t4))
+(ex2 T (\lambda (t4: T).(tau1 g c0 (THead (Flat Appl) v t2) t4)) (\lambda
+(t4: T).(cnt t4))) (\lambda (x: T).(\lambda (H3: (tau1 g c0 t2 x)).(\lambda
+(H4: (cnt x)).(ex_intro2 T (\lambda (t4: T).(tau1 g c0 (THead (Flat Appl) v
+t2) t4)) (\lambda (t4: T).(cnt t4)) (THead (Flat Appl) v x) (tau1_appl g c0 v
+t2 x H3) (cnt_head x H4 (Flat Appl) v))))) H2)))))))) (\lambda (c0:
+C).(\lambda (v1: T).(\lambda (v2: T).(\lambda (H0: (tau0 g c0 v1
+v2)).(\lambda (_: (ex2 T (\lambda (t2: T).(tau1 g c0 v1 t2)) (\lambda (t2:
+T).(cnt t2)))).(\lambda (t2: T).(\lambda (t3: T).(\lambda (_: (tau0 g c0 t2
+t3)).(\lambda (H3: (ex2 T (\lambda (t4: T).(tau1 g c0 t2 t4)) (\lambda (t4:
+T).(cnt t4)))).(let H4 \def H3 in (ex2_ind T (\lambda (t4: T).(tau1 g c0 t2
+t4)) (\lambda (t4: T).(cnt t4)) (ex2 T (\lambda (t4: T).(tau1 g c0 (THead
+(Flat Cast) v1 t2) t4)) (\lambda (t4: T).(cnt t4))) (\lambda (x: T).(\lambda
+(H5: (tau1 g c0 t2 x)).(\lambda (H6: (cnt x)).(let H_x \def (tau1_cast2 g c0
+t2 x H5 v1 v2 H0) in (let H7 \def H_x in (ex2_ind T (\lambda (v3: T).(tau1 g
+c0 v1 v3)) (\lambda (v3: T).(tau1 g c0 (THead (Flat Cast) v1 t2) (THead (Flat
+Cast) v3 x))) (ex2 T (\lambda (t4: T).(tau1 g c0 (THead (Flat Cast) v1 t2)
+t4)) (\lambda (t4: T).(cnt t4))) (\lambda (x0: T).(\lambda (_: (tau1 g c0 v1
+x0)).(\lambda (H9: (tau1 g c0 (THead (Flat Cast) v1 t2) (THead (Flat Cast) x0
+x))).(ex_intro2 T (\lambda (t4: T).(tau1 g c0 (THead (Flat Cast) v1 t2) t4))
+(\lambda (t4: T).(cnt t4)) (THead (Flat Cast) x0 x) H9 (cnt_head x H6 (Flat
+Cast) x0))))) H7)))))) H4))))))))))) c t1 t H))))).
+
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/LambdaDelta/tau1/defs".
+
+include "tau0/defs.ma".
+
+inductive tau1 (g:G) (c:C) (t1:T): T \to Prop \def
+| tau1_tau0: \forall (t2: T).((tau0 g c t1 t2) \to (tau1 g c t1 t2))
+| tau1_sing: \forall (t: T).((tau1 g c t1 t) \to (\forall (t2: T).((tau0 g c
+t t2) \to (tau1 g c t1 t2)))).
+
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/LambdaDelta/tau1/props".
+
+include "tau1/defs.ma".
+
+include "tau0/props.ma".
+
+theorem tau1_trans:
+ \forall (g: G).(\forall (c: C).(\forall (t1: T).(\forall (t: T).((tau1 g c
+t1 t) \to (\forall (t2: T).((tau1 g c t t2) \to (tau1 g c t1 t2)))))))
+\def
+ \lambda (g: G).(\lambda (c: C).(\lambda (t1: T).(\lambda (t: T).(\lambda (H:
+(tau1 g c t1 t)).(\lambda (t2: T).(\lambda (H0: (tau1 g c t t2)).(tau1_ind g
+c t (\lambda (t0: T).(tau1 g c t1 t0)) (\lambda (t3: T).(\lambda (H1: (tau0 g
+c t t3)).(tau1_sing g c t1 t H t3 H1))) (\lambda (t0: T).(\lambda (_: (tau1 g
+c t t0)).(\lambda (H2: (tau1 g c t1 t0)).(\lambda (t3: T).(\lambda (H3: (tau0
+g c t0 t3)).(tau1_sing g c t1 t0 H2 t3 H3)))))) t2 H0))))))).
+
+theorem tau1_bind:
+ \forall (g: G).(\forall (b: B).(\forall (c: C).(\forall (v: T).(\forall (t1:
+T).(\forall (t2: T).((tau1 g (CHead c (Bind b) v) t1 t2) \to (tau1 g c (THead
+(Bind b) v t1) (THead (Bind b) v t2))))))))
+\def
+ \lambda (g: G).(\lambda (b: B).(\lambda (c: C).(\lambda (v: T).(\lambda (t1:
+T).(\lambda (t2: T).(\lambda (H: (tau1 g (CHead c (Bind b) v) t1
+t2)).(tau1_ind g (CHead c (Bind b) v) t1 (\lambda (t: T).(tau1 g c (THead
+(Bind b) v t1) (THead (Bind b) v t))) (\lambda (t3: T).(\lambda (H0: (tau0 g
+(CHead c (Bind b) v) t1 t3)).(tau1_tau0 g c (THead (Bind b) v t1) (THead
+(Bind b) v t3) (tau0_bind g b c v t1 t3 H0)))) (\lambda (t: T).(\lambda (_:
+(tau1 g (CHead c (Bind b) v) t1 t)).(\lambda (H1: (tau1 g c (THead (Bind b) v
+t1) (THead (Bind b) v t))).(\lambda (t3: T).(\lambda (H2: (tau0 g (CHead c
+(Bind b) v) t t3)).(tau1_sing g c (THead (Bind b) v t1) (THead (Bind b) v t)
+H1 (THead (Bind b) v t3) (tau0_bind g b c v t t3 H2))))))) t2 H))))))).
+
+theorem tau1_appl:
+ \forall (g: G).(\forall (c: C).(\forall (v: T).(\forall (t1: T).(\forall
+(t2: T).((tau1 g c t1 t2) \to (tau1 g c (THead (Flat Appl) v t1) (THead (Flat
+Appl) v t2)))))))
+\def
+ \lambda (g: G).(\lambda (c: C).(\lambda (v: T).(\lambda (t1: T).(\lambda
+(t2: T).(\lambda (H: (tau1 g c t1 t2)).(tau1_ind g c t1 (\lambda (t: T).(tau1
+g c (THead (Flat Appl) v t1) (THead (Flat Appl) v t))) (\lambda (t3:
+T).(\lambda (H0: (tau0 g c t1 t3)).(tau1_tau0 g c (THead (Flat Appl) v t1)
+(THead (Flat Appl) v t3) (tau0_appl g c v t1 t3 H0)))) (\lambda (t:
+T).(\lambda (_: (tau1 g c t1 t)).(\lambda (H1: (tau1 g c (THead (Flat Appl) v
+t1) (THead (Flat Appl) v t))).(\lambda (t3: T).(\lambda (H2: (tau0 g c t
+t3)).(tau1_sing g c (THead (Flat Appl) v t1) (THead (Flat Appl) v t) H1
+(THead (Flat Appl) v t3) (tau0_appl g c v t t3 H2))))))) t2 H)))))).
+
+theorem tau1_lift:
+ \forall (g: G).(\forall (e: C).(\forall (t1: T).(\forall (t2: T).((tau1 g e
+t1 t2) \to (\forall (c: C).(\forall (h: nat).(\forall (d: nat).((drop h d c
+e) \to (tau1 g c (lift h d t1) (lift h d t2))))))))))
+\def
+ \lambda (g: G).(\lambda (e: C).(\lambda (t1: T).(\lambda (t2: T).(\lambda
+(H: (tau1 g e t1 t2)).(tau1_ind g e t1 (\lambda (t: T).(\forall (c:
+C).(\forall (h: nat).(\forall (d: nat).((drop h d c e) \to (tau1 g c (lift h
+d t1) (lift h d t))))))) (\lambda (t3: T).(\lambda (H0: (tau0 g e t1
+t3)).(\lambda (c: C).(\lambda (h: nat).(\lambda (d: nat).(\lambda (H1: (drop
+h d c e)).(tau1_tau0 g c (lift h d t1) (lift h d t3) (tau0_lift g e t1 t3 H0
+c h d H1)))))))) (\lambda (t: T).(\lambda (_: (tau1 g e t1 t)).(\lambda (H1:
+((\forall (c: C).(\forall (h: nat).(\forall (d: nat).((drop h d c e) \to
+(tau1 g c (lift h d t1) (lift h d t)))))))).(\lambda (t3: T).(\lambda (H2:
+(tau0 g e t t3)).(\lambda (c: C).(\lambda (h: nat).(\lambda (d: nat).(\lambda
+(H3: (drop h d c e)).(tau1_sing g c (lift h d t1) (lift h d t) (H1 c h d H3)
+(lift h d t3) (tau0_lift g e t t3 H2 c h d H3))))))))))) t2 H))))).
+
+theorem tau1_correct:
+ \forall (g: G).(\forall (c: C).(\forall (t1: T).(\forall (t: T).((tau1 g c
+t1 t) \to (ex T (\lambda (t2: T).(tau0 g c t t2)))))))
+\def
+ \lambda (g: G).(\lambda (c: C).(\lambda (t1: T).(\lambda (t: T).(\lambda (H:
+(tau1 g c t1 t)).(tau1_ind g c t1 (\lambda (t0: T).(ex T (\lambda (t2:
+T).(tau0 g c t0 t2)))) (\lambda (t2: T).(\lambda (H0: (tau0 g c t1
+t2)).(tau0_correct g c t1 t2 H0))) (\lambda (t0: T).(\lambda (_: (tau1 g c t1
+t0)).(\lambda (_: (ex T (\lambda (t2: T).(tau0 g c t0 t2)))).(\lambda (t2:
+T).(\lambda (H2: (tau0 g c t0 t2)).(tau0_correct g c t0 t2 H2)))))) t H))))).
+
+theorem tau1_abbr:
+ \forall (g: G).(\forall (c: C).(\forall (d: C).(\forall (v: T).(\forall (i:
+nat).((getl i c (CHead d (Bind Abbr) v)) \to (\forall (w: T).((tau1 g d v w)
+\to (tau1 g c (TLRef i) (lift (S i) O w)))))))))
+\def
+ \lambda (g: G).(\lambda (c: C).(\lambda (d: C).(\lambda (v: T).(\lambda (i:
+nat).(\lambda (H: (getl i c (CHead d (Bind Abbr) v))).(\lambda (w:
+T).(\lambda (H0: (tau1 g d v w)).(tau1_ind g d v (\lambda (t: T).(tau1 g c
+(TLRef i) (lift (S i) O t))) (\lambda (t2: T).(\lambda (H1: (tau0 g d v
+t2)).(tau1_tau0 g c (TLRef i) (lift (S i) O t2) (tau0_abbr g c d v i H t2
+H1)))) (\lambda (t: T).(\lambda (_: (tau1 g d v t)).(\lambda (H2: (tau1 g c
+(TLRef i) (lift (S i) O t))).(\lambda (t2: T).(\lambda (H3: (tau0 g d t
+t2)).(tau1_sing g c (TLRef i) (lift (S i) O t) H2 (lift (S i) O t2)
+(tau0_lift g d t t2 H3 c (S i) O (getl_drop Abbr c d v i H)))))))) w
+H0)))))))).
+
+theorem tau1_cast2:
+ \forall (g: G).(\forall (c: C).(\forall (t1: T).(\forall (t2: T).((tau1 g c
+t1 t2) \to (\forall (v1: T).(\forall (v2: T).((tau0 g c v1 v2) \to (ex2 T
+(\lambda (v3: T).(tau1 g c v1 v3)) (\lambda (v3: T).(tau1 g c (THead (Flat
+Cast) v1 t1) (THead (Flat Cast) v3 t2)))))))))))
+\def
+ \lambda (g: G).(\lambda (c: C).(\lambda (t1: T).(\lambda (t2: T).(\lambda
+(H: (tau1 g c t1 t2)).(tau1_ind g c t1 (\lambda (t: T).(\forall (v1:
+T).(\forall (v2: T).((tau0 g c v1 v2) \to (ex2 T (\lambda (v3: T).(tau1 g c
+v1 v3)) (\lambda (v3: T).(tau1 g c (THead (Flat Cast) v1 t1) (THead (Flat
+Cast) v3 t)))))))) (\lambda (t3: T).(\lambda (H0: (tau0 g c t1 t3)).(\lambda
+(v1: T).(\lambda (v2: T).(\lambda (H1: (tau0 g c v1 v2)).(ex_intro2 T
+(\lambda (v3: T).(tau1 g c v1 v3)) (\lambda (v3: T).(tau1 g c (THead (Flat
+Cast) v1 t1) (THead (Flat Cast) v3 t3))) v2 (tau1_tau0 g c v1 v2 H1)
+(tau1_tau0 g c (THead (Flat Cast) v1 t1) (THead (Flat Cast) v2 t3) (tau0_cast
+g c v1 v2 H1 t1 t3 H0)))))))) (\lambda (t: T).(\lambda (_: (tau1 g c t1
+t)).(\lambda (H1: ((\forall (v1: T).(\forall (v2: T).((tau0 g c v1 v2) \to
+(ex2 T (\lambda (v3: T).(tau1 g c v1 v3)) (\lambda (v3: T).(tau1 g c (THead
+(Flat Cast) v1 t1) (THead (Flat Cast) v3 t))))))))).(\lambda (t3: T).(\lambda
+(H2: (tau0 g c t t3)).(\lambda (v1: T).(\lambda (v2: T).(\lambda (H3: (tau0 g
+c v1 v2)).(let H_x \def (H1 v1 v2 H3) in (let H4 \def H_x in (ex2_ind T
+(\lambda (v3: T).(tau1 g c v1 v3)) (\lambda (v3: T).(tau1 g c (THead (Flat
+Cast) v1 t1) (THead (Flat Cast) v3 t))) (ex2 T (\lambda (v3: T).(tau1 g c v1
+v3)) (\lambda (v3: T).(tau1 g c (THead (Flat Cast) v1 t1) (THead (Flat Cast)
+v3 t3)))) (\lambda (x: T).(\lambda (H5: (tau1 g c v1 x)).(\lambda (H6: (tau1
+g c (THead (Flat Cast) v1 t1) (THead (Flat Cast) x t))).(let H_x0 \def
+(tau1_correct g c v1 x H5) in (let H7 \def H_x0 in (ex_ind T (\lambda (t4:
+T).(tau0 g c x t4)) (ex2 T (\lambda (v3: T).(tau1 g c v1 v3)) (\lambda (v3:
+T).(tau1 g c (THead (Flat Cast) v1 t1) (THead (Flat Cast) v3 t3)))) (\lambda
+(x0: T).(\lambda (H8: (tau0 g c x x0)).(ex_intro2 T (\lambda (v3: T).(tau1 g
+c v1 v3)) (\lambda (v3: T).(tau1 g c (THead (Flat Cast) v1 t1) (THead (Flat
+Cast) v3 t3))) x0 (tau1_sing g c v1 x H5 x0 H8) (tau1_sing g c (THead (Flat
+Cast) v1 t1) (THead (Flat Cast) x t) H6 (THead (Flat Cast) x0 t3) (tau0_cast
+g c x x0 H8 t t3 H2))))) H7)))))) H4))))))))))) t2 H))))).
+
include "tau0/props.ma".
+include "tau1/defs.ma".
+
+include "tau1/props.ma".
+
+include "tau1/cnt.ma".
+
include "A/defs.ma".
include "asucc/defs.ma".
include "arity/aprem.ma".
+include "pr0/defs.ma".
+
+include "pr0/fwd.ma".
+
+include "pr0/props.ma".
+
+include "pr0/pr0.ma".
+
+include "pr0/subst1.ma".
+
+include "pr0/dec.ma".
+
+include "pr1/defs.ma".
+
+include "pr1/props.ma".
+
+include "pr1/pr1.ma".
+
+include "pr2/defs.ma".
+
+include "pr2/fwd.ma".
+
+include "pr2/props.ma".
+
+include "pr2/clen.ma".
+
+include "pr2/pr2.ma".
+
+include "pr2/subst1.ma".
+
+include "pr3/defs.ma".
+
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* Problematic objects for disambiguation/typechecking ********************)
+
+set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/problems".
+
+include "LambdaDelta/theory.ma".
+
+theorem pr2_gen_cabbr:
+ \forall (c: C).(\forall (t1: T).(\forall (t2: T).((pr2 c t1 t2) \to (\forall
+(e: C).(\forall (u: T).(\forall (d: nat).((getl d c (CHead e (Bind Abbr) u))
+\to (\forall (a0: C).((csubst1 d u c a0) \to (\forall (a: C).((drop (S O) d
+a0 a) \to (\forall (x1: T).((subst1 d u t1 (lift (S O) d x1)) \to (ex2 T
+(\lambda (x2: T).(subst1 d u t2 (lift (S O) d x2))) (\lambda (x2: T).(pr2 a
+x1 x2))))))))))))))))
+\def
+ \lambda (c: C).(\lambda (t1: T).(\lambda (t2: T).(\lambda (H: (pr2 c t1
+t2)).(pr2_ind (\lambda (c0: C).(\lambda (t: T).(\lambda (t0: T).(\forall (e:
+C).(\forall (u: T).(\forall (d: nat).((getl d c0 (CHead e (Bind Abbr) u)) \to
+(\forall (a0: C).((csubst1 d u c0 a0) \to (\forall (a: C).((drop (S O) d a0
+a) \to (\forall (x1: T).((subst1 d u t (lift (S O) d x1)) \to (ex2 T (\lambda
+(x2: T).(subst1 d u t0 (lift (S O) d x2))) (\lambda (x2: T).(pr2 a x1
+x2)))))))))))))))) (\lambda (c0: C).(\lambda (t3: T).(\lambda (t4:
+T).(\lambda (H0: (pr0 t3 t4)).(\lambda (e: C).(\lambda (u: T).(\lambda (d:
+nat).(\lambda (_: (getl d c0 (CHead e (Bind Abbr) u))).(\lambda (a0:
+C).(\lambda (_: (csubst1 d u c0 a0)).(\lambda (a: C).(\lambda (_: (drop (S O)
+d a0 a)).(\lambda (x1: T).(\lambda (H4: (subst1 d u t3 (lift (S O) d
+x1))).(ex2_ind T (\lambda (w2: T).(pr0 (lift (S O) d x1) w2)) (\lambda (w2:
+T).(subst1 d u t4 w2)) (ex2 T (\lambda (x2: T).(subst1 d u t4 (lift (S O) d
+x2))) (\lambda (x2: T).(pr2 a x1 x2))) (\lambda (x: T).(\lambda (H5: (pr0
+(lift (S O) d x1) x)).(\lambda (H6: (subst1 d u t4 x)).(ex2_ind T (\lambda
+(t5: T).(eq T x (lift (S O) d t5))) (\lambda (t5: T).(pr0 x1 t5)) (ex2 T
+(\lambda (x2: T).(subst1 d u t4 (lift (S O) d x2))) (\lambda (x2: T).(pr2 a
+x1 x2))) (\lambda (x0: T).(\lambda (H7: (eq T x (lift (S O) d x0))).(\lambda
+(H8: (pr0 x1 x0)).(let H9 \def (eq_ind T x (\lambda (t: T).(subst1 d u t4 t))
+H6 (lift (S O) d x0) H7) in (ex_intro2 T (\lambda (x2: T).(subst1 d u t4
+(lift (S O) d x2))) (\lambda (x2: T).(pr2 a x1 x2)) x0 H9 (pr2_free a x1 x0
+H8)))))) (pr0_gen_lift x1 x (S O) d H5))))) (pr0_subst1 t3 t4 H0 u (lift (S
+O) d x1) d H4 u (pr0_refl u))))))))))))))))) (\lambda (c0: C).(\lambda (d:
+C).(\lambda (u: T).(\lambda (i: nat).(\lambda (H0: (getl i c0 (CHead d (Bind
+Abbr) u))).(\lambda (t3: T).(\lambda (t4: T).(\lambda (H1: (pr0 t3
+t4)).(\lambda (t: T).(\lambda (H2: (subst0 i u t4 t)).(\lambda (e:
+C).(\lambda (u0: T).(\lambda (d0: nat).(\lambda (H3: (getl d0 c0 (CHead e
+(Bind Abbr) u0))).(\lambda (a0: C).(\lambda (H4: (csubst1 d0 u0 c0
+a0)).(\lambda (a: C).(\lambda (H5: (drop (S O) d0 a0 a)).(\lambda (x1:
+T).(\lambda (H6: (subst1 d0 u0 t3 (lift (S O) d0 x1))).(ex2_ind T (\lambda
+(w2: T).(pr0 (lift (S O) d0 x1) w2)) (\lambda (w2: T).(subst1 d0 u0 t4 w2))
+(ex2 T (\lambda (x2: T).(subst1 d0 u0 t (lift (S O) d0 x2))) (\lambda (x2:
+T).(pr2 a x1 x2))) (\lambda (x: T).(\lambda (H7: (pr0 (lift (S O) d0 x1)
+x)).(\lambda (H8: (subst1 d0 u0 t4 x)).(ex2_ind T (\lambda (t5: T).(eq T x
+(lift (S O) d0 t5))) (\lambda (t5: T).(pr0 x1 t5)) (ex2 T (\lambda (x2:
+T).(subst1 d0 u0 t (lift (S O) d0 x2))) (\lambda (x2: T).(pr2 a x1 x2)))
+(\lambda (x0: T).(\lambda (H9: (eq T x (lift (S O) d0 x0))).(\lambda (H10:
+(pr0 x1 x0)).(let H11 \def (eq_ind T x (\lambda (t0: T).(subst1 d0 u0 t4 t0))
+H8 (lift (S O) d0 x0) H9) in (lt_eq_gt_e i d0 (ex2 T (\lambda (x2: T).(subst1
+d0 u0 t (lift (S O) d0 x2))) (\lambda (x2: T).(pr2 a x1 x2))) (\lambda (H12:
+(lt i d0)).(ex2_ind T (\lambda (t0: T).(subst1 d0 u0 t t0)) (\lambda (t0:
+T).(subst1 i u (lift (S O) d0 x0) t0)) (ex2 T (\lambda (x2: T).(subst1 d0 u0
+t (lift (S O) d0 x2))) (\lambda (x2: T).(pr2 a x1 x2))) (\lambda (x2:
+T).(\lambda (H13: (subst1 d0 u0 t x2)).(\lambda (H14: (subst1 i u (lift (S O)
+d0 x0) x2)).(ex2_ind C (\lambda (e2: C).(csubst1 (minus d0 i) u0 (CHead d
+(Bind Abbr) u) e2)) (\lambda (e2: C).(getl i a0 e2)) (ex2 T (\lambda (x3:
+T).(subst1 d0 u0 t (lift (S O) d0 x3))) (\lambda (x3: T).(pr2 a x1 x3)))
+(\lambda (x3: C).(\lambda (H15: (csubst1 (minus d0 i) u0 (CHead d (Bind Abbr)
+u) x3)).(\lambda (H16: (getl i a0 x3)).(let H17 \def (eq_ind nat (minus d0 i)
+(\lambda (n: nat).(csubst1 n u0 (CHead d (Bind Abbr) u) x3)) H15 (S (minus d0
+(S i))) (minus_x_Sy d0 i H12)) in (let H18 \def (csubst1_gen_head (Bind Abbr)
+d x3 u u0 (minus d0 (S i)) H17) in (ex3_2_ind T C (\lambda (u2: T).(\lambda
+(c2: C).(eq C x3 (CHead c2 (Bind Abbr) u2)))) (\lambda (u2: T).(\lambda (_:
+C).(subst1 (minus d0 (S i)) u0 u u2))) (\lambda (_: T).(\lambda (c2:
+C).(csubst1 (minus d0 (S i)) u0 d c2))) (ex2 T (\lambda (x4: T).(subst1 d0 u0
+t (lift (S O) d0 x4))) (\lambda (x4: T).(pr2 a x1 x4))) (\lambda (x4:
+T).(\lambda (x5: C).(\lambda (H19: (eq C x3 (CHead x5 (Bind Abbr)
+x4))).(\lambda (H20: (subst1 (minus d0 (S i)) u0 u x4)).(\lambda (_: (csubst1
+(minus d0 (S i)) u0 d x5)).(let H22 \def (eq_ind C x3 (\lambda (c1: C).(getl
+i a0 c1)) H16 (CHead x5 (Bind Abbr) x4) H19) in (let H23 \def (eq_ind nat d0
+(\lambda (n: nat).(drop (S O) n a0 a)) H5 (S (plus i (minus d0 (S i))))
+(lt_plus_minus i d0 H12)) in (ex3_2_ind T C (\lambda (v: T).(\lambda (_:
+C).(eq T x4 (lift (S O) (minus d0 (S i)) v)))) (\lambda (v: T).(\lambda (e0:
+C).(getl i a (CHead e0 (Bind Abbr) v)))) (\lambda (_: T).(\lambda (e0:
+C).(drop (S O) (minus d0 (S i)) x5 e0))) (ex2 T (\lambda (x6: T).(subst1 d0
+u0 t (lift (S O) d0 x6))) (\lambda (x6: T).(pr2 a x1 x6))) (\lambda (x6:
+T).(\lambda (x7: C).(\lambda (H24: (eq T x4 (lift (S O) (minus d0 (S i))
+x6))).(\lambda (H25: (getl i a (CHead x7 (Bind Abbr) x6))).(\lambda (_: (drop
+(S O) (minus d0 (S i)) x5 x7)).(let H27 \def (eq_ind T x4 (\lambda (t0:
+T).(subst1 (minus d0 (S i)) u0 u t0)) H20 (lift (S O) (minus d0 (S i)) x6)
+H24) in (ex2_ind T (\lambda (t0: T).(subst1 i (lift (S O) (minus d0 (S i))
+x6) (lift (S O) d0 x0) t0)) (\lambda (t0: T).(subst1 (S (plus (minus d0 (S
+i)) i)) u0 x2 t0)) (ex2 T (\lambda (x8: T).(subst1 d0 u0 t (lift (S O) d0
+x8))) (\lambda (x8: T).(pr2 a x1 x8))) (\lambda (x8: T).(\lambda (H28:
+(subst1 i (lift (S O) (minus d0 (S i)) x6) (lift (S O) d0 x0) x8)).(\lambda
+(H29: (subst1 (S (plus (minus d0 (S i)) i)) u0 x2 x8)).(let H30 \def (eq_ind
+nat d0 (\lambda (n: nat).(subst1 i (lift (S O) (minus d0 (S i)) x6) (lift (S
+O) n x0) x8)) H28 (S (plus i (minus d0 (S i)))) (lt_plus_minus i d0 H12)) in
+(ex2_ind T (\lambda (t5: T).(eq T x8 (lift (S O) (S (plus i (minus d0 (S
+i)))) t5))) (\lambda (t5: T).(subst1 i x6 x0 t5)) (ex2 T (\lambda (x9:
+T).(subst1 d0 u0 t (lift (S O) d0 x9))) (\lambda (x9: T).(pr2 a x1 x9)))
+(\lambda (x9: T).(\lambda (H31: (eq T x8 (lift (S O) (S (plus i (minus d0 (S
+i)))) x9))).(\lambda (H32: (subst1 i x6 x0 x9)).(let H33 \def (eq_ind T x8
+(\lambda (t0: T).(subst1 (S (plus (minus d0 (S i)) i)) u0 x2 t0)) H29 (lift
+(S O) (S (plus i (minus d0 (S i)))) x9) H31) in (let H34 \def (eq_ind_r nat
+(S (plus i (minus d0 (S i)))) (\lambda (n: nat).(subst1 (S (plus (minus d0 (S
+i)) i)) u0 x2 (lift (S O) n x9))) H33 d0 (lt_plus_minus i d0 H12)) in (let
+H35 \def (eq_ind_r nat (S (plus (minus d0 (S i)) i)) (\lambda (n:
+nat).(subst1 n u0 x2 (lift (S O) d0 x9))) H34 d0 (lt_plus_minus_r i d0 H12))
+in (ex_intro2 T (\lambda (x10: T).(subst1 d0 u0 t (lift (S O) d0 x10)))
+(\lambda (x10: T).(pr2 a x1 x10)) x9 (subst1_trans x2 t u0 d0 H13 (lift (S O)
+d0 x9) H35) (pr2_delta1 a x7 x6 i H25 x1 x0 H10 x9 H32))))))))
+(subst1_gen_lift_lt x6 x0 x8 i (S O) (minus d0 (S i)) H30))))))
+(subst1_subst1_back (lift (S O) d0 x0) x2 u i H14 (lift (S O) (minus d0 (S
+i)) x6) u0 (minus d0 (S i)) H27)))))))) (getl_drop_conf_lt Abbr a0 x5 x4 i
+H22 a (S O) (minus d0 (S i)) H23))))))))) H18)))))) (csubst1_getl_lt d0 i H12
+c0 a0 u0 H4 (CHead d (Bind Abbr) u) H0))))) (subst1_confluence_neq t4 t u i
+(subst1_single i u t4 t H2) (lift (S O) d0 x0) u0 d0 H11 (lt_neq i d0 H12))))
+(\lambda (H12: (eq nat i d0)).(let H13 \def (eq_ind_r nat d0 (\lambda (n:
+nat).(subst1 n u0 t4 (lift (S O) n x0))) H11 i H12) in (let H14 \def
+(eq_ind_r nat d0 (\lambda (n: nat).(drop (S O) n a0 a)) H5 i H12) in (let H15
+\def (eq_ind_r nat d0 (\lambda (n: nat).(csubst1 n u0 c0 a0)) H4 i H12) in
+(let H16 \def (eq_ind_r nat d0 (\lambda (n: nat).(getl n c0 (CHead e (Bind
+Abbr) u0))) H3 i H12) in (eq_ind nat i (\lambda (n: nat).(ex2 T (\lambda (x2:
+T).(subst1 n u0 t (lift (S O) n x2))) (\lambda (x2: T).(pr2 a x1 x2)))) (let
+H17 \def (eq_ind C (CHead d (Bind Abbr) u) (\lambda (c1: C).(getl i c0 c1))
+H0 (CHead e (Bind Abbr) u0) (getl_mono c0 (CHead d (Bind Abbr) u) i H0 (CHead
+e (Bind Abbr) u0) H16)) in (let H18 \def (f_equal C C (\lambda (e0: C).(match
+e0 in C return (\lambda (_: C).C) with [(CSort _) \Rightarrow d | (CHead c1 _
+_) \Rightarrow c1])) (CHead d (Bind Abbr) u) (CHead e (Bind Abbr) u0)
+(getl_mono c0 (CHead d (Bind Abbr) u) i H0 (CHead e (Bind Abbr) u0) H16)) in
+((let H19 \def (f_equal C T (\lambda (e0: C).(match e0 in C return (\lambda
+(_: C).T) with [(CSort _) \Rightarrow u | (CHead _ _ t0) \Rightarrow t0]))
+(CHead d (Bind Abbr) u) (CHead e (Bind Abbr) u0) (getl_mono c0 (CHead d (Bind
+Abbr) u) i H0 (CHead e (Bind Abbr) u0) H16)) in (\lambda (H20: (eq C d
+e)).(let H21 \def (eq_ind_r T u0 (\lambda (t0: T).(getl i c0 (CHead e (Bind
+Abbr) t0))) H17 u H19) in (let H22 \def (eq_ind_r T u0 (\lambda (t0:
+T).(subst1 i t0 t4 (lift (S O) i x0))) H13 u H19) in (let H23 \def (eq_ind_r
+T u0 (\lambda (t0: T).(csubst1 i t0 c0 a0)) H15 u H19) in (eq_ind T u
+(\lambda (t0: T).(ex2 T (\lambda (x2: T).(subst1 i t0 t (lift (S O) i x2)))
+(\lambda (x2: T).(pr2 a x1 x2)))) (let H24 \def (eq_ind_r C e (\lambda (c1:
+C).(getl i c0 (CHead c1 (Bind Abbr) u))) H21 d H20) in (ex2_ind T (\lambda
+(t0: T).(subst1 i u t t0)) (\lambda (t0: T).(subst1 i u (lift (S O) i x0)
+t0)) (ex2 T (\lambda (x2: T).(subst1 i u t (lift (S O) i x2))) (\lambda (x2:
+T).(pr2 a x1 x2))) (\lambda (x2: T).(\lambda (H25: (subst1 i u t
+x2)).(\lambda (H26: (subst1 i u (lift (S O) i x0) x2)).(let H27 \def (eq_ind
+T x2 (\lambda (t0: T).(subst1 i u t t0)) H25 (lift (S O) i x0)
+(subst1_gen_lift_eq x0 u x2 (S O) i i (le_n i) (eq_ind_r nat (plus (S O) i)
+(\lambda (n: nat).(lt i n)) (le_n (plus (S O) i)) (plus i (S O)) (plus_comm i
+(S O))) H26)) in (ex_intro2 T (\lambda (x3: T).(subst1 i u t (lift (S O) i
+x3))) (\lambda (x3: T).(pr2 a x1 x3)) x0 H27 (pr2_free a x1 x0 H10))))))
+(subst1_confluence_eq t4 t u i (subst1_single i u t4 t H2) (lift (S O) i x0)
+H22))) u0 H19)))))) H18))) d0 H12)))))) (\lambda (H12: (lt d0 i)).(ex2_ind T
+(\lambda (t0: T).(subst1 d0 u0 t t0)) (\lambda (t0: T).(subst1 i u (lift (S
+O) d0 x0) t0)) (ex2 T (\lambda (x2: T).(subst1 d0 u0 t (lift (S O) d0 x2)))
+(\lambda (x2: T).(pr2 a x1 x2))) (\lambda (x2: T).(\lambda (H13: (subst1 d0
+u0 t x2)).(\lambda (H14: (subst1 i u (lift (S O) d0 x0) x2)).(ex2_ind T
+(\lambda (t5: T).(eq T x2 (lift (S O) d0 t5))) (\lambda (t5: T).(subst1
+(minus i (S O)) u x0 t5)) (ex2 T (\lambda (x3: T).(subst1 d0 u0 t (lift (S O)
+d0 x3))) (\lambda (x3: T).(pr2 a x1 x3))) (\lambda (x3: T).(\lambda (H15: (eq
+T x2 (lift (S O) d0 x3))).(\lambda (H16: (subst1 (minus i (S O)) u x0
+x3)).(let H17 \def (eq_ind T x2 (\lambda (t0: T).(subst1 d0 u0 t t0)) H13
+(lift (S O) d0 x3) H15) in (ex_intro2 T (\lambda (x4: T).(subst1 d0 u0 t
+(lift (S O) d0 x4))) (\lambda (x4: T).(pr2 a x1 x4)) x3 H17 (pr2_delta1 a d u
+(minus i (S O)) (getl_drop_conf_ge i (CHead d (Bind Abbr) u) a0
+(csubst1_getl_ge d0 i (le_S_n d0 i (le_S (S d0) i H12)) c0 a0 u0 H4 (CHead d
+(Bind Abbr) u) H0) a (S O) d0 H5 (eq_ind_r nat (plus (S O) d0) (\lambda (n:
+nat).(le n i)) H12 (plus d0 (S O)) (plus_comm d0 (S O)))) x1 x0 H10 x3
+H16)))))) (subst1_gen_lift_ge u x0 x2 i (S O) d0 H14 (eq_ind_r nat (plus (S
+O) d0) (\lambda (n: nat).(le n i)) H12 (plus d0 (S O)) (plus_comm d0 (S
+O)))))))) (subst1_confluence_neq t4 t u i (subst1_single i u t4 t H2) (lift
+(S O) d0 x0) u0 d0 H11 (sym_not_equal nat d0 i (lt_neq d0 i H12))))))))))
+(pr0_gen_lift x1 x (S O) d0 H7))))) (pr0_subst1 t3 t4 H1 u0 (lift (S O) d0
+x1) d0 H6 u0 (pr0_refl u0))))))))))))))))))))))) c t1 t2 H)))).
+