interpretation "leibnitz's equality" 'eq t x y = (eq t x y).
lemma eq_rect_r:
- ∀A.∀a,x.∀p:\ 5A href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/A\ 6 ? x a.∀P:
- ∀x:A. x \ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6 a → Type[2]. P a (refl A a) → P x p.
+ ∀A.∀a,x.∀p:\ 5a href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/a\ 6 ? x a.∀P:
+ ∀x:A. x \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 a → Type[2]. P a (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 A a) → P x p.
#A #a #x #p (cases p) // qed.
lemma eq_ind_r :
- ∀A.∀a.∀P: ∀x:A. x \ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6 a → Prop. P a (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 A a) →
- ∀x.∀p:\ 5A href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/A\ 6 ? x a.P x p.
- #A #a #P #p #x0 #p0; @(\ 5A href="cic:/matita/basics/logic/eq_rect_r.def(1)"\ 6eq_rect_r\ 5/A\ 6 ? ? ? p0) //; qed.
+ ∀A.∀a.∀P: ∀x:A. x \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 a → Prop. P a (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 A a) →
+ ∀x.∀p:\ 5a href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/a\ 6 ? x a.P x p.
+ #A #a #P #p #x0 #p0; @(\ 5a href="cic:/matita/basics/logic/eq_rect_r.def(1)"\ 6eq_rect_r\ 5/a\ 6 ? ? ? p0) //; qed.
lemma eq_rect_Type2_r:
- ∀A.∀a.∀P: ∀x:A. \ 5A href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/A\ 6 ? x a → Type[2]. P a (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 A a) →
- ∀x.∀p:\ 5A href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/A\ 6 ? x a.P x p.
+ ∀A.∀a.∀P: ∀x:A. \ 5a href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/a\ 6 ? x a → Type[2]. P a (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 A a) →
+ ∀x.∀p:\ 5a href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/a\ 6 ? x a.P x p.
#A #a #P #H #x #p (generalize in match H) (generalize in match P)
cases p; //; qed.
-theorem rewrite_l: ∀A:Type[1].∀x.∀P:A → Type[1]. P x → ∀y. x \ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6 y → P y.
+theorem rewrite_l: ∀A:Type[1].∀x.∀P:A → Type[1]. P x → ∀y. x \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 y → P y.
#A #x #P #Hx #y #Heq (cases Heq); //; qed.
-theorem sym_eq: ∀A.∀x,y:A. x \ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6 y → y \ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6 x.
-#A #x #y #Heq @(\ 5A href="cic:/matita/basics/logic/rewrite_l.def(1)"\ 6rewrite_l\ 5/A\ 6 A x (λz.z\ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6x)); //; qed.
+theorem sym_eq: ∀A.∀x,y:A. x \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 y → y \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 x.
+#A #x #y #Heq @(\ 5a href="cic:/matita/basics/logic/rewrite_l.def(1)"\ 6rewrite_l\ 5/a\ 6 A x (λz.z\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6x)); //; qed.
-theorem rewrite_r: ∀A:Type[1].∀x.∀P:A → Type[1]. P x → ∀y. y \ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6 x → P y.
-#A #x #P #Hx #y #Heq (cases (\ 5A href="cic:/matita/basics/logic/sym_eq.def(2)"\ 6sym_eq\ 5/A\ 6 ? ? ? Heq)); //; qed.
+theorem rewrite_r: ∀A:Type[1].∀x.∀P:A → Type[1]. P x → ∀y. y \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 x → P y.
+#A #x #P #Hx #y #Heq (cases (\ 5a href="cic:/matita/basics/logic/sym_eq.def(2)"\ 6sym_eq\ 5/a\ 6 ? ? ? Heq)); //; qed.
-theorem eq_coerc: ∀A,B:Type[0].A→(A\ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6B)→B.
+theorem eq_coerc: ∀A,B:Type[0].A→(A\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6B)→B.
#A #B #Ha #Heq (elim Heq); //; qed.
-theorem trans_eq : ∀A.∀x,y,z:A. x \ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6 y → y \ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6 z → x \ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6 z.
+theorem trans_eq : ∀A.∀x,y,z:A. x \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 y → y \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 z → x \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 z.
#A #x #y #z #H1 #H2 >H1; //; qed.
-theorem eq_f: ∀A,B.∀f:A→B.∀x,y:A. x\ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6y → f x \ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6 f y.
+theorem eq_f: ∀A,B.∀f:A→B.∀x,y:A. x\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6y → f x \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 f y.
#A #B #f #x #y #H >H; //; qed.
(* deleterio per auto? *)
theorem eq_f2: ∀A,B,C.∀f:A→B→C.
-∀x1,x2:A.∀y1,y2:B. x1\ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6x2 → y1\ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6y2 → f x1 y1 \ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6 f x2 y2.
+∀x1,x2:A.∀y1,y2:B. x1\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6x2 → y1\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6y2 → f x1 y1 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 f x2 y2.
#A #B #C #f #x1 #x2 #y1 #y2 #E1 #E2 >E1; >E2; //; qed.
(* hint to genereric equality
λA. A → False. *)
inductive Not (A:Prop): Prop ≝
-nmk: (A → \ 5A href="cic:/matita/basics/logic/False.ind(1,0,0)"\ 6False\ 5/A\ 6) → Not A.
+nmk: (A → \ 5a href="cic:/matita/basics/logic/False.ind(1,0,0)"\ 6False\ 5/a\ 6) → Not A.
interpretation "logical not" 'not x = (Not x).
-theorem absurd : ∀A:Prop. A → \ 5A title="logical not" href="cic:/fakeuri.def(1)"\ 6¬\ 5/A\ 6A → \ 5A href="cic:/matita/basics/logic/False.ind(1,0,0)"\ 6False\ 5/A\ 6.
+theorem absurd : ∀A:Prop. A → \ 5a title="logical not" href="cic:/fakeuri.def(1)"\ 6¬\ 5/a\ 6A → \ 5a href="cic:/matita/basics/logic/False.ind(1,0,0)"\ 6False\ 5/a\ 6.
#A #H #Hn (elim Hn); /2/; qed.
(*
#A; #C; #H; #Hn; nelim (Hn H).
nqed. *)
-theorem not_to_not : ∀A,B:Prop. (A → B) → \ 5A title="logical not" href="cic:/fakeuri.def(1)"\ 6¬\ 5/A\ 6B →\ 5A title="logical not" href="cic:/fakeuri.def(1)"\ 6¬\ 5/A\ 6A.
+theorem not_to_not : ∀A,B:Prop. (A → B) → \ 5a title="logical not" href="cic:/fakeuri.def(1)"\ 6¬\ 5/a\ 6B →\ 5a title="logical not" href="cic:/fakeuri.def(1)"\ 6¬\ 5/a\ 6A.
/4/; qed.
(* inequality *)
interpretation "leibnitz's non-equality" 'neq t x y = (Not (eq t x y)).
-theorem sym_not_eq: ∀A.∀x,y:A. x \ 5A title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"\ 6≠\ 5/A\ 6 y → y \ 5A title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"\ 6≠\ 5/A\ 6 x.
+theorem sym_not_eq: ∀A.∀x,y:A. x \ 5a title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"\ 6≠\ 5/a\ 6 y → y \ 5a title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"\ 6≠\ 5/a\ 6 x.
/3/; qed.
(* and *)
interpretation "logical and" 'and x y = (And x y).
-theorem proj1: ∀A,B:Prop. A \ 5A title="logical and" href="cic:/fakeuri.def(1)"\ 6∧\ 5/A\ 6 B → A.
+theorem proj1: ∀A,B:Prop. A \ 5a title="logical and" href="cic:/fakeuri.def(1)"\ 6∧\ 5/a\ 6 B → A.
#A #B #AB (elim AB) //; qed.
-theorem proj2: ∀ A,B:Prop. A \ 5A title="logical and" href="cic:/fakeuri.def(1)"\ 6∧\ 5/A\ 6 B → B.
+theorem proj2: ∀ A,B:Prop. A \ 5a title="logical and" href="cic:/fakeuri.def(1)"\ 6∧\ 5/a\ 6 B → B.
#A #B #AB (elim AB) //; qed.
(* or *)
interpretation "logical or" 'or x y = (Or x y).
definition decidable : Prop → Prop ≝
-λ A:Prop. A \ 5A title="logical or" href="cic:/fakeuri.def(1)"\ 6∨\ 5/A\ 6 \ 5A title="logical not" href="cic:/fakeuri.def(1)"\ 6¬\ 5/A\ 6 A.
+λ A:Prop. A \ 5a title="logical or" href="cic:/fakeuri.def(1)"\ 6∨\ 5/a\ 6 \ 5a title="logical not" href="cic:/fakeuri.def(1)"\ 6¬\ 5/a\ 6 A.
(* exists *)
inductive ex (A:Type[0]) (P:A → Prop) : Prop ≝
(* iff *)
definition iff :=
- λ A,B. (A → B) \ 5A title="logical and" href="cic:/fakeuri.def(1)"\ 6∧\ 5/A\ 6 (B → A).
+ λ A,B. (A → B) \ 5a title="logical and" href="cic:/fakeuri.def(1)"\ 6∧\ 5/a\ 6 (B → A).
interpretation "iff" 'iff a b = (iff a b).
definition R0 ≝ λT:Type[0].λt:T.t.
-definition R1 ≝ \ 5A href="cic:/matita/basics/logic/eq_rect_Type0.fix(0,5,1)"\ 6eq_rect_Type0\ 5/A\ 6.
+definition R1 ≝ \ 5a href="cic:/matita/basics/logic/eq_rect_Type0.fix(0,5,1)"\ 6eq_rect_Type0\ 5/a\ 6.
(* useless stuff *)
definition R2 :
∀T0:Type[0].
∀a0:T0.
- ∀T1:∀x0:T0. a0\ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6x0 → Type[0].
- ∀a1:T1 a0 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 ? a0).
- ∀T2:∀x0:T0. ∀p0:a0\ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6x0. ∀x1:T1 x0 p0. \ 5A href="cic:/matita/basics/logic/R1.def(2)"\ 6R1\ 5/A\ 6 ?? T1 a1 ? p0 \ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6 x1 → Type[0].
- ∀a2:T2 a0 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 ? a0) a1 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 ? a1).
+ ∀T1:∀x0:T0. a0\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6x0 → Type[0].
+ ∀a1:T1 a0 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 ? a0).
+ ∀T2:∀x0:T0. ∀p0:a0\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6x0. ∀x1:T1 x0 p0. \ 5a href="cic:/matita/basics/logic/R1.def(2)"\ 6R1\ 5/a\ 6 ?? T1 a1 ? p0 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 x1 → Type[0].
+ ∀a2:T2 a0 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 ? a0) a1 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 ? a1).
∀b0:T0.
- ∀e0:a0 \ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6 b0.
+ ∀e0:a0 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 b0.
∀b1: T1 b0 e0.
- ∀e1:\ 5A href="cic:/matita/basics/logic/R1.def(2)"\ 6R1\ 5/A\ 6 ?? T1 a1 ? e0 \ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6 b1.
+ ∀e1:\ 5a href="cic:/matita/basics/logic/R1.def(2)"\ 6R1\ 5/a\ 6 ?? T1 a1 ? e0 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 b1.
T2 b0 e0 b1 e1.
#T0 #a0 #T1 #a1 #T2 #a2 #b0 #e0 #b1 #e1
-@(\ 5A href="cic:/matita/basics/logic/eq_rect_Type0.fix(0,5,1)"\ 6eq_rect_Type0\ 5/A\ 6 ????? e1)
-@(\ 5A href="cic:/matita/basics/logic/R1.def(2)"\ 6R1\ 5/A\ 6 ?? ? ?? e0)
+@(\ 5a href="cic:/matita/basics/logic/eq_rect_Type0.fix(0,5,1)"\ 6eq_rect_Type0\ 5/a\ 6 ????? e1)
+@(\ 5a href="cic:/matita/basics/logic/R1.def(2)"\ 6R1\ 5/a\ 6 ?? ? ?? e0)
@a2
qed.
definition R3 :
∀T0:Type[0].
∀a0:T0.
- ∀T1:∀x0:T0. a0\ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6x0 → Type[0].
- ∀a1:T1 a0 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 ? a0).
- ∀T2:∀x0:T0. ∀p0:a0\ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6x0. ∀x1:T1 x0 p0. \ 5A href="cic:/matita/basics/logic/R1.def(2)"\ 6R1\ 5/A\ 6 ?? T1 a1 ? p0 \ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6 x1 → Type[0].
- ∀a2:T2 a0 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 ? a0) a1 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 ? a1).
- ∀T3:∀x0:T0. ∀p0:a0\ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6x0. ∀x1:T1 x0 p0.∀p1:\ 5A href="cic:/matita/basics/logic/R1.def(2)"\ 6R1\ 5/A\ 6 ?? T1 a1 ? p0 \ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6 x1.
- ∀x2:T2 x0 p0 x1 p1.\ 5A href="cic:/matita/basics/logic/R2.def(3)"\ 6R2\ 5/A\ 6 ???? T2 a2 x0 p0 ? p1 \ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6 x2 → Type[0].
- ∀a3:T3 a0 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 ? a0) a1 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 ? a1) a2 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 ? a2).
+ ∀T1:∀x0:T0. a0\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6x0 → Type[0].
+ ∀a1:T1 a0 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 ? a0).
+ ∀T2:∀x0:T0. ∀p0:a0\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6x0. ∀x1:T1 x0 p0. \ 5a href="cic:/matita/basics/logic/R1.def(2)"\ 6R1\ 5/a\ 6 ?? T1 a1 ? p0 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 x1 → Type[0].
+ ∀a2:T2 a0 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 ? a0) a1 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 ? a1).
+ ∀T3:∀x0:T0. ∀p0:a0\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6x0. ∀x1:T1 x0 p0.∀p1:\ 5a href="cic:/matita/basics/logic/R1.def(2)"\ 6R1\ 5/a\ 6 ?? T1 a1 ? p0 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 x1.
+ ∀x2:T2 x0 p0 x1 p1.\ 5a href="cic:/matita/basics/logic/R2.def(3)"\ 6R2\ 5/a\ 6 ???? T2 a2 x0 p0 ? p1 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 x2 → Type[0].
+ ∀a3:T3 a0 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 ? a0) a1 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 ? a1) a2 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 ? a2).
∀b0:T0.
- ∀e0:a0 \ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6 b0.
+ ∀e0:a0 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 b0.
∀b1: T1 b0 e0.
- ∀e1:\ 5A href="cic:/matita/basics/logic/R1.def(2)"\ 6R1\ 5/A\ 6 ?? T1 a1 ? e0 \ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6 b1.
+ ∀e1:\ 5a href="cic:/matita/basics/logic/R1.def(2)"\ 6R1\ 5/a\ 6 ?? T1 a1 ? e0 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 b1.
∀b2: T2 b0 e0 b1 e1.
- ∀e2:\ 5A href="cic:/matita/basics/logic/R2.def(3)"\ 6R2\ 5/A\ 6 ???? T2 a2 b0 e0 ? e1 \ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6 b2.
+ ∀e2:\ 5a href="cic:/matita/basics/logic/R2.def(3)"\ 6R2\ 5/a\ 6 ???? T2 a2 b0 e0 ? e1 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 b2.
T3 b0 e0 b1 e1 b2 e2.
#T0 #a0 #T1 #a1 #T2 #a2 #T3 #a3 #b0 #e0 #b1 #e1 #b2 #e2
-@(\ 5A href="cic:/matita/basics/logic/eq_rect_Type0.fix(0,5,1)"\ 6eq_rect_Type0\ 5/A\ 6 ????? e2)
-@(\ 5A href="cic:/matita/basics/logic/R2.def(3)"\ 6R2\ 5/A\ 6 ?? ? ???? e0 ? e1)
+@(\ 5a href="cic:/matita/basics/logic/eq_rect_Type0.fix(0,5,1)"\ 6eq_rect_Type0\ 5/a\ 6 ????? e2)
+@(\ 5a href="cic:/matita/basics/logic/R2.def(3)"\ 6R2\ 5/a\ 6 ?? ? ???? e0 ? e1)
@a3
qed.
definition R4 :
∀T0:Type[0].
∀a0:T0.
- ∀T1:∀x0:T0. \ 5A href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/A\ 6 T0 a0 x0 → Type[0].
- ∀a1:T1 a0 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 T0 a0).
- ∀T2:∀x0:T0. ∀p0:\ 5A href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/A\ 6 (T0 …) a0 x0. ∀x1:T1 x0 p0.\ 5A href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/A\ 6 (T1 …) (\ 5A href="cic:/matita/basics/logic/R1.def(2)"\ 6R1\ 5/A\ 6 T0 a0 T1 a1 x0 p0) x1 → Type[0].
- ∀a2:T2 a0 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 T0 a0) a1 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 (T1 a0 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 T0 a0)) a1).
- ∀T3:∀x0:T0. ∀p0:\ 5A href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/A\ 6 (T0 …) a0 x0. ∀x1:T1 x0 p0.∀p1:\ 5A href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/A\ 6 (T1 …) (\ 5A href="cic:/matita/basics/logic/R1.def(2)"\ 6R1\ 5/A\ 6 T0 a0 T1 a1 x0 p0) x1.
- ∀x2:T2 x0 p0 x1 p1.\ 5A href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/A\ 6 (T2 …) (\ 5A href="cic:/matita/basics/logic/R2.def(3)"\ 6R2\ 5/A\ 6 T0 a0 T1 a1 T2 a2 x0 p0 x1 p1) x2 → Type[0].
- ∀a3:T3 a0 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 T0 a0) a1 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 (T1 a0 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 T0 a0)) a1)
- a2 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 (T2 a0 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 T0 a0) a1 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 (T1 a0 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 T0 a0)) a1)) a2).
- ∀T4:∀x0:T0. ∀p0:\ 5A href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/A\ 6 (T0 …) a0 x0. ∀x1:T1 x0 p0.∀p1:\ 5A href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/A\ 6 (T1 …) (\ 5A href="cic:/matita/basics/logic/R1.def(2)"\ 6R1\ 5/A\ 6 T0 a0 T1 a1 x0 p0) x1.
- ∀x2:T2 x0 p0 x1 p1.∀p2:\ 5A href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/A\ 6 (T2 …) (\ 5A href="cic:/matita/basics/logic/R2.def(3)"\ 6R2\ 5/A\ 6 T0 a0 T1 a1 T2 a2 x0 p0 x1 p1) x2.
- ∀x3:T3 x0 p0 x1 p1 x2 p2.∀p3:\ 5A href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/A\ 6 (T3 …) (\ 5A href="cic:/matita/basics/logic/R3.def(4)"\ 6R3\ 5/A\ 6 T0 a0 T1 a1 T2 a2 T3 a3 x0 p0 x1 p1 x2 p2) x3.
+ ∀T1:∀x0:T0. \ 5a href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/a\ 6 T0 a0 x0 → Type[0].
+ ∀a1:T1 a0 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 T0 a0).
+ ∀T2:∀x0:T0. ∀p0:\ 5a href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/a\ 6 (T0 …) a0 x0. ∀x1:T1 x0 p0.\ 5a href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/a\ 6 (T1 …) (\ 5a href="cic:/matita/basics/logic/R1.def(2)"\ 6R1\ 5/a\ 6 T0 a0 T1 a1 x0 p0) x1 → Type[0].
+ ∀a2:T2 a0 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 T0 a0) a1 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 (T1 a0 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 T0 a0)) a1).
+ ∀T3:∀x0:T0. ∀p0:\ 5a href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/a\ 6 (T0 …) a0 x0. ∀x1:T1 x0 p0.∀p1:\ 5a href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/a\ 6 (T1 …) (\ 5a href="cic:/matita/basics/logic/R1.def(2)"\ 6R1\ 5/a\ 6 T0 a0 T1 a1 x0 p0) x1.
+ ∀x2:T2 x0 p0 x1 p1.\ 5a href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/a\ 6 (T2 …) (\ 5a href="cic:/matita/basics/logic/R2.def(3)"\ 6R2\ 5/a\ 6 T0 a0 T1 a1 T2 a2 x0 p0 x1 p1) x2 → Type[0].
+ ∀a3:T3 a0 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 T0 a0) a1 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 (T1 a0 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 T0 a0)) a1)
+ a2 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 (T2 a0 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 T0 a0) a1 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 (T1 a0 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 T0 a0)) a1)) a2).
+ ∀T4:∀x0:T0. ∀p0:\ 5a href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/a\ 6 (T0 …) a0 x0. ∀x1:T1 x0 p0.∀p1:\ 5a href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/a\ 6 (T1 …) (\ 5a href="cic:/matita/basics/logic/R1.def(2)"\ 6R1\ 5/a\ 6 T0 a0 T1 a1 x0 p0) x1.
+ ∀x2:T2 x0 p0 x1 p1.∀p2:\ 5a href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/a\ 6 (T2 …) (\ 5a href="cic:/matita/basics/logic/R2.def(3)"\ 6R2\ 5/a\ 6 T0 a0 T1 a1 T2 a2 x0 p0 x1 p1) x2.
+ ∀x3:T3 x0 p0 x1 p1 x2 p2.∀p3:\ 5a href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/a\ 6 (T3 …) (\ 5a href="cic:/matita/basics/logic/R3.def(4)"\ 6R3\ 5/a\ 6 T0 a0 T1 a1 T2 a2 T3 a3 x0 p0 x1 p1 x2 p2) x3.
Type[0].
- ∀a4:T4 a0 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 T0 a0) a1 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 (T1 a0 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 T0 a0)) a1)
- a2 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 (T2 a0 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 T0 a0) a1 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 (T1 a0 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 T0 a0)) a1)) a2)
- a3 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 (T3 a0 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 T0 a0) a1 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 (T1 a0 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 T0 a0)) a1)
- a2 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 (T2 a0 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 T0 a0) a1 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 (T1 a0 (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 T0 a0)) a1)) a2))
+ ∀a4:T4 a0 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 T0 a0) a1 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 (T1 a0 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 T0 a0)) a1)
+ a2 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 (T2 a0 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 T0 a0) a1 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 (T1 a0 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 T0 a0)) a1)) a2)
+ a3 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 (T3 a0 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 T0 a0) a1 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 (T1 a0 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 T0 a0)) a1)
+ a2 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 (T2 a0 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 T0 a0) a1 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 (T1 a0 (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 T0 a0)) a1)) a2))
a3).
∀b0:T0.
- ∀e0:\ 5A href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/A\ 6 (T0 …) a0 b0.
+ ∀e0:\ 5a href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/a\ 6 (T0 …) a0 b0.
∀b1: T1 b0 e0.
- ∀e1:\ 5A href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/A\ 6 (T1 …) (\ 5A href="cic:/matita/basics/logic/R1.def(2)"\ 6R1\ 5/A\ 6 T0 a0 T1 a1 b0 e0) b1.
+ ∀e1:\ 5a href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/a\ 6 (T1 …) (\ 5a href="cic:/matita/basics/logic/R1.def(2)"\ 6R1\ 5/a\ 6 T0 a0 T1 a1 b0 e0) b1.
∀b2: T2 b0 e0 b1 e1.
- ∀e2:\ 5A href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/A\ 6 (T2 …) (\ 5A href="cic:/matita/basics/logic/R2.def(3)"\ 6R2\ 5/A\ 6 T0 a0 T1 a1 T2 a2 b0 e0 b1 e1) b2.
+ ∀e2:\ 5a href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/a\ 6 (T2 …) (\ 5a href="cic:/matita/basics/logic/R2.def(3)"\ 6R2\ 5/a\ 6 T0 a0 T1 a1 T2 a2 b0 e0 b1 e1) b2.
∀b3: T3 b0 e0 b1 e1 b2 e2.
- ∀e3:\ 5A href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/A\ 6 (T3 …) (\ 5A href="cic:/matita/basics/logic/R3.def(4)"\ 6R3\ 5/A\ 6 T0 a0 T1 a1 T2 a2 T3 a3 b0 e0 b1 e1 b2 e2) b3.
+ ∀e3:\ 5a href="cic:/matita/basics/logic/eq.ind(1,0,2)"\ 6eq\ 5/a\ 6 (T3 …) (\ 5a href="cic:/matita/basics/logic/R3.def(4)"\ 6R3\ 5/a\ 6 T0 a0 T1 a1 T2 a2 T3 a3 b0 e0 b1 e1 b2 e2) b3.
T4 b0 e0 b1 e1 b2 e2 b3 e3.
#T0 #a0 #T1 #a1 #T2 #a2 #T3 #a3 #T4 #a4 #b0 #e0 #b1 #e1 #b2 #e2 #b3 #e3
-@(\ 5A href="cic:/matita/basics/logic/eq_rect_Type0.fix(0,5,1)"\ 6eq_rect_Type0\ 5/A\ 6 ????? e3)
-@(\ 5A href="cic:/matita/basics/logic/R3.def(4)"\ 6R3\ 5/A\ 6 ????????? e0 ? e1 ? e2)
+@(\ 5a href="cic:/matita/basics/logic/eq_rect_Type0.fix(0,5,1)"\ 6eq_rect_Type0\ 5/a\ 6 ????? e3)
+@(\ 5a href="cic:/matita/basics/logic/R3.def(4)"\ 6R3\ 5/a\ 6 ????????? e0 ? e1 ? e2)
@a4
qed.
(* TODO concrete definition by means of proof irrelevance *)
-axiom streicherK : ∀T:Type[1].∀t:T.∀P:t \ 5A title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/A\ 6 t → Type[2].P (\ 5A href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/A\ 6 ? t) → ∀p.P p.
+axiom streicherK : ∀T:Type[1].∀t:T.∀P:t \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 t → Type[2].P (\ 5a href="cic:/matita/basics/logic/eq.con(0,1,2)"\ 6refl\ 5/a\ 6 ? t) → ∀p.P p.
+