qed.
interpretation "fintersects" 'fintersects U V = (fintersects _ U V).
-(*
-definition fintersectsS ≝
- λo: basic_pair.λa,b: Ω \sup (form o).
- {c | ext ?? (rel o) c ⊆ extS ?? (rel o) a ∩ extS ?? (rel o) b }.
+
+definition fintersectsS:
+ ∀o:basic_pair. Ω \sup (form o) → Ω \sup (form o) → Ω \sup (form o).
+ apply (λo: basic_pair.λa,b: Ω \sup (form o).
+ {c | ext ?? (rel o) c ⊆ extS ?? (rel o) a ∩ extS ?? (rel o) b });
+ intros; simplify; apply (.= (†H)‡#); apply refl1.
+qed.
interpretation "fintersectsS" 'fintersects U V = (fintersectsS _ U V).
-definition relS: ∀o: basic_pair. concr o → Ω \sup (form o) → CProp ≝
- λo,x,S. ∃y.y ∈ S ∧ x ⊩ y.
+(*
+definition relS: ∀o: basic_pair. concr o → Ω \sup (form o) → CProp.
+ apply (λo:basic_pair.λx:concr o.λS: Ω \sup (form o).∃y: form o.y ∈ S ∧ x ⊩ y);
interpretation "basic pair relation for subsets" 'Vdash2 x y = (relS _ x y).
interpretation "basic pair relation for subsets (non applied)" 'Vdash = (relS _).