apply (f a1); change with (a1 = a1); apply refl1;
| change with (a1 ∈ a → ∀y.a1 ♮(id1 REL o1) y→y∈a); intros;
change in f1 with (a1 = y); apply (. f1‡#); apply f;]
+qed.
+
+lemma hint2: ∀S,T. carr2 (arrows2 OA S T) → Type_OF_setoid2 (arrows2 OA S T).
+ intros; apply c;
+qed.
+coercion hint2.
+
+(* CSC: ???? forse un uncertain mancato *)
+lemma orelation_of_relation_preserves_composition:
+ ∀o1,o2,o3:REL.∀F: arrows1 ? o1 o2.∀G: arrows1 ? o2 o3.
+ orelation_of_relation ?? (G ∘ F) =
+ comp2 OA (SUBSETS o1) (SUBSETS o2) (SUBSETS o3)
+ ?? (*(orelation_of_relation ?? F) (orelation_of_relation ?? G)*).
+ [ apply (orelation_of_relation ?? F); | apply (orelation_of_relation ?? G); ]
+ intros; split; intro; split; whd; intro; whd in ⊢ (% → %); intros;
+ [ whd; intros; apply f; exists; [ apply x] split; assumption;
+ | cases f1; clear f1; cases x1; clear x1; apply (f w); assumption;
+ | cases e; cases x; cases f; cases x1; clear e x f x1; exists; [ apply w1 ]
+ split; [ assumption | exists; [apply w] split; assumption ]
+ | cases e; cases x; cases f1; cases x1; clear e x f1 x1; exists; [apply w1 ]
+ split; [ exists; [apply w] split; assumption | assumption ]
+ | cases e; cases x; cases f; cases x1; clear e x f x1; exists; [ apply w1 ]
+ split; [ assumption | exists; [apply w] split; assumption ]
+ | cases e; cases x; cases f1; cases x1; clear e x f1 x1; exists; [apply w1 ]
+ split; [ exists; [apply w] split; assumption | assumption ]
+ | whd; intros; apply f; exists; [ apply y] split; assumption;
+ | cases f1; clear f1; cases x; clear x; apply (f w); assumption;]
qed.
\ No newline at end of file