--- /dev/null
+(*
+ ||M|| This file is part of HELM, an Hypertextual, Electronic
+ ||A|| Library of Mathematics, developed at the Computer Science
+ ||T|| Department of the University of Bologna, Italy.
+ ||I||
+ ||T||
+ ||A||
+ \ / This file is distributed under the terms of the
+ \ / GNU General Public License Version 2
+ V_____________________________________________________________*)
+
+
+(* MOVE_CHAR (variant c) MACHINE
+
+Sposta il carattere binario su cui si trova la testina appena prima del primo # alla sua destra.
+
+Input:
+(ls,cs,rs can be empty; # is a parameter)
+
+ ls x cs # rs
+ ^
+ H
+
+Output:
+ ls cs x # rs
+ ^
+ H
+
+Initial state = 〈0,#〉
+Final state = 〈4,#〉
+
+*)
+
+include "turing/while_machine.ma".
+
+definition mcc_states : FinSet → FinSet ≝ λalpha:FinSet.FinProd (initN 5) alpha.
+
+definition mcc_step ≝
+ λalpha:FinSet.λsep:alpha.
+ mk_TM alpha (mcc_states alpha)
+ (λp.let 〈q,a〉 ≝ p in
+ let 〈q',b〉 ≝ q in
+ match a with
+ [ None ⇒ 〈〈4,sep〉,None ?〉
+ | Some a' ⇒
+ match q' with
+ [ O ⇒ (* qinit *)
+ match a' == sep with
+ [ true ⇒ 〈〈4,sep〉,None ?〉
+ | false ⇒ 〈〈1,a'〉,Some ? 〈a',L〉〉 ]
+ | S q' ⇒ match q' with
+ [ O ⇒ (* q1 *)
+ 〈〈2,a'〉,Some ? 〈b,R〉〉
+ | S q' ⇒ match q' with
+ [ O ⇒ (* q2 *)
+ 〈〈3,sep〉,Some ? 〈b,R〉〉
+ | S q' ⇒ match q' with
+ [ O ⇒ (* qacc *)
+ 〈〈3,sep〉,None ?〉
+ | S q' ⇒ (* qfail *)
+ 〈〈4,sep〉,None ?〉 ] ] ] ] ])
+ 〈0,sep〉
+ (λq.let 〈q',a〉 ≝ q in q' == 3 ∨ q' == 4).
+
+lemma mcc_q0_q1 :
+ ∀alpha:FinSet.∀sep,a,ls,a0,rs.
+ a0 == sep = false →
+ step alpha (mcc_step alpha sep)
+ (mk_config ?? 〈0,a〉 (mk_tape … ls (Some ? a0) rs)) =
+ mk_config alpha (states ? (mcc_step alpha sep)) 〈1,a0〉
+ (tape_move_left alpha ls a0 rs).
+#alpha #sep #a *
+[ #a0 #rs #Ha0 whd in ⊢ (??%?);
+ normalize in match (trans ???); >Ha0 %
+| #a1 #ls #a0 #rs #Ha0 whd in ⊢ (??%?);
+ normalize in match (trans ???); >Ha0 %
+]
+qed.
+
+lemma mcc_q1_q2 :
+ ∀alpha:FinSet.∀sep,a,ls,a0,rs.
+ step alpha (mcc_step alpha sep)
+ (mk_config ?? 〈1,a〉 (mk_tape … ls (Some ? a0) rs)) =
+ mk_config alpha (states ? (mcc_step alpha sep)) 〈2,a0〉
+ (tape_move_right alpha ls a rs).
+#alpha #sep #a #ls #a0 * //
+qed.
+
+lemma mcc_q2_q3 :
+ ∀alpha:FinSet.∀sep,a,ls,a0,rs.
+ step alpha (mcc_step alpha sep)
+ (mk_config ?? 〈2,a〉 (mk_tape … ls (Some ? a0) rs)) =
+ mk_config alpha (states ? (mcc_step alpha sep)) 〈3,sep〉
+ (tape_move_right alpha ls a rs).
+#alpha #sep #a #ls #a0 * //
+qed.
+
+definition Rmcc_step_true ≝
+ λalpha,sep,t1,t2.
+ ∀a,b,ls,rs.
+ t1 = midtape alpha (a::ls) b rs →
+ b ≠ sep ∧
+ t2 = mk_tape alpha (a::b::ls) (option_hd ? rs) (tail ? rs).
+
+definition Rmcc_step_false ≝
+ λalpha,sep,t1,t2.
+ left ? t1 ≠ [] → current alpha t1 ≠ None alpha →
+ current alpha t1 = Some alpha sep ∧ t2 = t1.
+
+lemma loop_S_true :
+ ∀A,n,f,p,a. p a = true →
+ loop A (S n) f p a = Some ? a. /2/
+qed.
+
+lemma loop_S_false :
+ ∀A,n,f,p,a. p a = false →
+ loop A (S n) f p a = loop A n f p (f a).
+normalize #A #n #f #p #a #Hpa >Hpa %
+qed.
+
+lemma trans_init_sep:
+ ∀alpha,sep,x.
+ trans ? (mcc_step alpha sep) 〈〈0,x〉,Some ? sep〉 = 〈〈4,sep〉,None ?〉.
+#alpha #sep #x normalize >(\b ?) //
+qed.
+
+lemma trans_init_not_sep:
+ ∀alpha,sep,x,y.y == sep = false →
+ trans ? (mcc_step alpha sep) 〈〈0,x〉,Some ? y〉 = 〈〈1,y〉,Some ? 〈y,L〉〉.
+#alpha #sep #x #y #H1 normalize >H1 //
+qed.
+
+lemma sem_mcc_step :
+ ∀alpha,sep.
+ accRealize alpha (mcc_step alpha sep)
+ 〈3,sep〉 (Rmcc_step_true alpha sep) (Rmcc_step_false alpha sep).
+#alpha #sep *
+[@(ex_intro ?? 2)
+ @(ex_intro … (mk_config ?? 〈4,sep〉 (niltape ?)))
+ % [% [whd in ⊢ (??%?);% |#Hfalse destruct ] |#H1 #H2 @False_ind @(absurd ?? H2) %]
+|#l0 #lt0 @(ex_intro ?? 2)
+ @(ex_intro … (mk_config ?? 〈4,sep〉 (leftof ? l0 lt0)))
+ % [% [whd in ⊢ (??%?);% |#Hfalse destruct ] |#H1 #H2 @False_ind @(absurd ?? H2) %]
+|#r0 #rt0 @(ex_intro ?? 2)
+ @(ex_intro … (mk_config ?? 〈4,sep〉 (rightof ? r0 rt0)))
+ % [% [whd in ⊢ (??%?);% |#Hfalse destruct ] |#H1 #H2 #H3 @False_ind @(absurd ?? H3) %]
+| #lt #c #rt cases (true_or_false (c == sep)) #Hc
+ [ @(ex_intro ?? 2)
+ @(ex_intro ?? (mk_config ?? 〈4,sep〉 (midtape ? lt c rt)))
+ % [ %
+ [ >(\P Hc) >loop_S_false // >loop_S_true
+ [ @eq_f whd in ⊢ (??%?); >trans_init_sep %
+ |>(\P Hc) whd in ⊢(??(???(???%))?); >trans_init_sep % ]
+ | #Hfalse destruct ]
+ |#_ #H1 #H2 % // normalize >(\P Hc) % ]
+ | @(ex_intro ?? 4) cases lt
+ [ @ex_intro
+ [|% [ %
+ [ >loop_S_false // >mcc_q0_q1 //
+ | normalize in ⊢ (%→?); #Hfalse destruct (Hfalse) ]
+ | normalize in ⊢ (%→?); #_ #H1 @False_ind @(absurd ?? H1) % ] ]
+ | #l0 #lt @ex_intro
+ [| % [ %
+ [ >loop_S_false // >mcc_q0_q1 //
+ | #_ #a #b #ls #rs #Hb destruct %
+ [ @(\Pf Hc)
+ | >mcc_q1_q2 >mcc_q2_q3 cases rs normalize // ] ]
+ | normalize in ⊢ (% → ?); * #Hfalse
+ @False_ind /2/ ]
+ ]
+ ]
+ ]
+]
+qed.
+
+(* the move_char (variant c) machine *)
+definition move_char_c ≝
+ λalpha,sep.whileTM alpha (mcc_step alpha sep) 〈3,sep〉.
+
+definition R_move_char_c ≝
+ λalpha,sep,t1,t2.
+ ∀b,a,ls,rs. t1 = midtape alpha (a::ls) b rs →
+ (b = sep → t2 = t1) ∧
+ (∀rs1,rs2.rs = rs1@sep::rs2 →
+ b ≠ sep → memb ? sep rs1 = false →
+ t2 = midtape alpha (a::reverse ? rs1@b::ls) sep rs2).
+
+lemma sem_while_move_char :
+ ∀alpha,sep.
+ WRealize alpha (move_char_c alpha sep) (R_move_char_c alpha sep).
+#alpha #sep #inc #i #outc #Hloop
+lapply (sem_while … (sem_mcc_step alpha sep) inc i outc Hloop) [%]
+-Hloop * #t1 * #Hstar @(star_ind_l ??????? Hstar)
+[ #tapea whd in ⊢ (% → ?); #H1 #b #a #ls #rs #Htapea
+ %
+ [ #Hb >Htapea in H1; >Hb normalize in ⊢ (%→?); #H1
+ cases (H1 ??)
+ [#_ #H2 >H2 %
+ |*: % #H2 destruct (H2) ]
+ | #rs1 #rs2 #Hrs #Hb #Hrs1
+ >Htapea in H1; normalize in ⊢ (% → ?); #H1
+ cases (H1 ??)
+ [ #Hfalse @False_ind @(absurd ?? Hb) destruct %
+ |*:% #H2 destruct (H2) ]
+ ]
+| #tapea #tapeb #tapec #Hstar1 #HRtrue #IH #HRfalse
+ lapply (IH HRfalse) -IH whd in ⊢ (%→%); #IH
+ #a0 #b0 #ls #rs #Htapea cases (Hstar1 … Htapea)
+ #Ha0 #Htapeb %
+ [ #Hfalse @False_ind @(absurd ?? Ha0) //
+ | *
+ [ #rs2 whd in ⊢ (???%→?); #Hrs #_ #_ normalize
+ >Hrs in Htapeb; normalize #Htapeb
+ cases (IH … Htapeb)
+ #Houtc #_ >Houtc //
+ | #r0 #rs0 #rs2 #Hrs #_ #Hrs0
+ cut (r0 ≠ sep ∧ memb … sep rs0 = false)
+ [ %
+ [ % #Hr0 >Hr0 in Hrs0; >memb_hd #Hfalse destruct
+ | whd in Hrs0:(??%?); cases (sep==r0) in Hrs0; normalize #Hfalse
+ [ destruct
+ | @Hfalse ]
+ ]
+ ] *
+ #Hr0 -Hrs0 #Hrs0 >Hrs in Htapeb;
+ normalize in ⊢ (%→?); #Htapeb
+ cases (IH … Htapeb) -IH #_ #IH
+ >reverse_cons >associative_append @IH //
+ ]
+ ]
+qed.
\ No newline at end of file
--- /dev/null
+(*
+ ||M|| This file is part of HELM, an Hypertextual, Electronic
+ ||A|| Library of Mathematics, developed at the Computer Science
+ ||T|| Department of the University of Bologna, Italy.
+ ||I||
+ ||T||
+ ||A||
+ \ / This file is distributed under the terms of the
+ \ / GNU General Public License Version 2
+ V_____________________________________________________________*)
+
+
+(* MOVE_CHAR (left) MACHINE
+
+Sposta il carattere binario su cui si trova la testina appena prima del primo # alla sua destra.
+
+Input:
+(ls,cs,rs can be empty; # is a parameter)
+
+ ls # cs x rs
+ ^
+ H
+
+Output:
+ ls # x cs rs
+ ^
+ H
+
+Initial state = 〈0,#〉
+Final state = 〈4,#〉
+
+*)
+
+include "turing/while_machine.ma".
+
+definition mcl_states : FinSet → FinSet ≝ λalpha:FinSet.FinProd (initN 5) alpha.
+
+definition mcl_step ≝
+ λalpha:FinSet.λsep:alpha.
+ mk_TM alpha (mcl_states alpha)
+ (λp.let 〈q,a〉 ≝ p in
+ let 〈q',b〉 ≝ q in
+ match a with
+ [ None ⇒ 〈〈4,sep〉,None ?〉
+ | Some a' ⇒
+ match q' with
+ [ O ⇒ (* qinit *)
+ match a' == sep with
+ [ true ⇒ 〈〈4,sep〉,None ?〉
+ | false ⇒ 〈〈1,a'〉,Some ? 〈a',R〉〉 ]
+ | S q' ⇒ match q' with
+ [ O ⇒ (* q1 *)
+ 〈〈2,a'〉,Some ? 〈b,L〉〉
+ | S q' ⇒ match q' with
+ [ O ⇒ (* q2 *)
+ 〈〈3,sep〉,Some ? 〈b,L〉〉
+ | S q' ⇒ match q' with
+ [ O ⇒ (* qacc *)
+ 〈〈3,sep〉,None ?〉
+ | S q' ⇒ (* qfail *)
+ 〈〈4,sep〉,None ?〉 ] ] ] ] ])
+ 〈0,sep〉
+ (λq.let 〈q',a〉 ≝ q in q' == 3 ∨ q' == 4).
+
+lemma mcc_q0_q1 :
+ ∀alpha:FinSet.∀sep,a,ls,a0,rs.
+ a0 == sep = false →
+ step alpha (mcl_step alpha sep)
+ (mk_config ?? 〈0,a〉 (mk_tape … ls (Some ? a0) rs)) =
+ mk_config alpha (states ? (mcl_step alpha sep)) 〈1,a0〉
+ (tape_move_right alpha ls a0 rs).
+#alpha #sep #a *
+[ #a0 #rs #Ha0 whd in ⊢ (??%?);
+ normalize in match (trans ???); >Ha0 %
+| #a1 #ls #a0 #rs #Ha0 whd in ⊢ (??%?);
+ normalize in match (trans ???); >Ha0 %
+]
+qed.
+
+lemma mcl_q1_q2 :
+ ∀alpha:FinSet.∀sep,a,ls,a0,rs.
+ step alpha (mcl_step alpha sep)
+ (mk_config ?? 〈1,a〉 (mk_tape … ls (Some ? a0) rs)) =
+ mk_config alpha (states ? (mcl_step alpha sep)) 〈2,a0〉
+ (tape_move_left alpha ls a rs).
+#alpha #sep #a #ls #a0 * //
+qed.
+
+lemma mcc_q2_q3 :
+ ∀alpha:FinSet.∀sep,a,ls,a0,rs.
+ step alpha (mcl_step alpha sep)
+ (mk_config ?? 〈2,a〉 (mk_tape … ls (Some ? a0) rs)) =
+ mk_config alpha (states ? (mcl_step alpha sep)) 〈3,sep〉
+ (tape_move_left alpha ls a rs).
+#alpha #sep #a #ls #a0 * //
+qed.
+
+definition Rmcl_step_true ≝
+ λalpha,sep,t1,t2.
+ ∀a,b,ls,rs.
+ t1 = midtape alpha ls b (a::rs) →
+ b ≠ sep ∧
+ t2 = mk_tape alpha (tail ? ls) (option_hd ? ls) (a::b::rs).
+
+definition Rmcl_step_false ≝
+ λalpha,sep,t1,t2.
+ right ? t1 ≠ [] → current alpha t1 ≠ None alpha →
+ current alpha t1 = Some alpha sep ∧ t2 = t1.
+
+lemma mcl_trans_init_sep:
+ ∀alpha,sep,x.
+ trans ? (mcl_step alpha sep) 〈〈0,x〉,Some ? sep〉 = 〈〈4,sep〉,None ?〉.
+#alpha #sep #x normalize >(\b ?) //
+qed.
+
+lemma mcl_trans_init_not_sep:
+ ∀alpha,sep,x,y.y == sep = false →
+ trans ? (mcl_step alpha sep) 〈〈0,x〉,Some ? y〉 = 〈〈1,y〉,Some ? 〈y,R〉〉.
+#alpha #sep #x #y #H1 normalize >H1 //
+qed.
+
+(*
+STOP
+
+lemma sem_mcl_step :
+ ∀alpha,sep.
+ accRealize alpha (mcl_step alpha sep)
+ 〈3,sep〉 (Rmcl_step_true alpha sep) (Rmcl_step_false alpha sep).
+#alpha #sep *
+[@(ex_intro ?? 2)
+ @(ex_intro … (mk_config ?? 〈4,sep〉 (niltape ?)))
+ % [% [whd in ⊢ (??%?);% |#Hfalse destruct ] |#H1 #H2 @False_ind @(absurd ?? H2) %]
+|#l0 #lt0 @(ex_intro ?? 2)
+ @(ex_intro … (mk_config ?? 〈4,sep〉 (rightof ? l0 lt0)))
+ % [% [whd in ⊢ (??%?);% |#Hfalse destruct ] |#H1 #H2 @False_ind @(absurd ?? H2) %]
+|#r0 #rt0 @(ex_intro ?? 2)
+ @(ex_intro … (mk_config ?? 〈4,sep〉 (leftof ? r0 rt0)))
+ % [% [whd in ⊢ (??%?);% |#Hfalse destruct ] |#H1 #H2 #H3 @False_ind @(absurd ?? H3) %]
+| #lt #c #rt cases (true_or_false (c == sep)) #Hc
+ [ @(ex_intro ?? 2)
+ @(ex_intro ?? (mk_config ?? 〈4,sep〉 (midtape ? lt c rt)))
+ % [ %
+ [ >(\P Hc) >loop_S_false // >loop_S_true
+ [ @eq_f whd in ⊢ (??%?); >trans_init_sep %
+ |>(\P Hc) whd in ⊢(??(???(???%))?); >trans_init_sep % ]
+ | #Hfalse destruct ]
+ |#_ #H1 #H2 % // normalize >(\P Hc) % ]
+ | @(ex_intro ?? 4) cases lt
+ [ @ex_intro
+ [|% [ %
+ [ >loop_S_false // >mcc_q0_q1 //
+ | normalize in ⊢ (%→?); #Hfalse destruct (Hfalse) ]
+ | normalize in ⊢ (%→?); #_ #H1 @False_ind @(absurd ?? H1) % ] ]
+ | #l0 #lt @ex_intro
+ [| % [ %
+ [ >loop_S_false // >mcc_q0_q1 //
+ | #_ #a #b #ls #rs #Hb destruct %
+ [ @(\Pf Hc)
+ | >mcc_q1_q2 >mcc_q2_q3 cases rs normalize // ] ]
+ | normalize in ⊢ (% → ?); * #Hfalse
+ @False_ind /2/ ]
+ ]
+ ]
+ ]
+]
+qed.
+
+(* the move_char (variant c) machine *)
+definition move_char_c ≝
+ λalpha,sep.whileTM alpha (mcc_step alpha sep) 〈3,sep〉.
+
+definition R_move_char_c ≝
+ λalpha,sep,t1,t2.
+ ∀b,a,ls,rs. t1 = midtape alpha (a::ls) b rs →
+ (b = sep → t2 = t1) ∧
+ (∀rs1,rs2.rs = rs1@sep::rs2 →
+ b ≠ sep → memb ? sep rs1 = false →
+ t2 = midtape alpha (a::reverse ? rs1@b::ls) sep rs2).
+
+lemma sem_while_move_char :
+ ∀alpha,sep.
+ WRealize alpha (move_char_c alpha sep) (R_move_char_c alpha sep).
+#alpha #sep #inc #i #outc #Hloop
+lapply (sem_while … (sem_mcc_step alpha sep) inc i outc Hloop) [%]
+-Hloop * #t1 * #Hstar @(star_ind_l ??????? Hstar)
+[ #tapea whd in ⊢ (% → ?); #H1 #b #a #ls #rs #Htapea
+ %
+ [ #Hb >Htapea in H1; >Hb normalize in ⊢ (%→?); #H1
+ cases (H1 ??)
+ [#_ #H2 >H2 %
+ |*: % #H2 destruct (H2) ]
+ | #rs1 #rs2 #Hrs #Hb #Hrs1
+ >Htapea in H1; normalize in ⊢ (% → ?); #H1
+ cases (H1 ??)
+ [ #Hfalse @False_ind @(absurd ?? Hb) destruct %
+ |*:% #H2 destruct (H2) ]
+ ]
+| #tapea #tapeb #tapec #Hstar1 #HRtrue #IH #HRfalse
+ lapply (IH HRfalse) -IH whd in ⊢ (%→%); #IH
+ #a0 #b0 #ls #rs #Htapea cases (Hstar1 … Htapea)
+ #Ha0 #Htapeb %
+ [ #Hfalse @False_ind @(absurd ?? Ha0) //
+ | *
+ [ #rs2 whd in ⊢ (???%→?); #Hrs #_ #_ normalize
+ >Hrs in Htapeb; normalize #Htapeb
+ cases (IH … Htapeb)
+ #Houtc #_ >Houtc //
+ | #r0 #rs0 #rs2 #Hrs #_ #Hrs0
+ cut (r0 ≠ sep ∧ memb … sep rs0 = false)
+ [ %
+ [ % #Hr0 >Hr0 in Hrs0; >memb_hd #Hfalse destruct
+ | whd in Hrs0:(??%?); cases (sep==r0) in Hrs0; normalize #Hfalse
+ [ destruct
+ | @Hfalse ]
+ ]
+ ] *
+ #Hr0 -Hrs0 #Hrs0 >Hrs in Htapeb;
+ normalize in ⊢ (%→?); #Htapeb
+ cases (IH … Htapeb) -IH #_ #IH
+ >reverse_cons >associative_append @IH //
+ ]
+ ]
+qed.
+*)
\ No newline at end of file