--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| A.Asperti, C.Sacerdoti Coen, *)
+(* ||A|| E.Tassi, S.Zacchiroli *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU Lesser General Public License Version 2.1 *)
+(* *)
+(**************************************************************************)
+
+include "arithmetics/nat.ma".
+
+ninductive compare : Type[0] ≝
+| LT : compare
+| EQ : compare
+| GT : compare.
+
+ndefinition compare_invert: compare → compare ≝
+ λc.match c with
+ [ LT ⇒ GT
+ | EQ ⇒ EQ
+ | GT ⇒ LT ].
+
+nlet rec nat_compare n m: compare ≝
+match n with
+[ O ⇒ match m with
+ [ O ⇒ EQ
+ | (S q) ⇒ LT ]
+| S p ⇒ match m with
+ [ O ⇒ GT
+ | S q ⇒ nat_compare p q]].
+
+ntheorem nat_compare_n_n: ∀n. nat_compare n n = EQ.
+#n;nelim n
+##[//
+##|#m;#IH;nnormalize;//]
+nqed.
+
+ntheorem nat_compare_S_S: ∀n,m:nat.nat_compare n m = nat_compare (S n) (S m).
+//;
+nqed.
+
+ntheorem nat_compare_pred_pred:
+ ∀n,m.O < n → O < m → nat_compare n m = nat_compare (pred n) (pred m).
+#n;#m;#Hn;#Hm;
+napply (lt_O_n_elim n Hn);
+napply (lt_O_n_elim m Hm);
+#p;#q;//;
+nqed.
+
+ntheorem nat_compare_to_Prop:
+ ∀n,m.match (nat_compare n m) with
+ [ LT ⇒ n < m
+ | EQ ⇒ n = m
+ | GT ⇒ m < n ].
+#n;#m;
+napply (nat_elim2 (λn,m.match (nat_compare n m) with
+ [ LT ⇒ n < m
+ | EQ ⇒ n = m
+ | GT ⇒ m < n ]) ?????) (* FIXME: don't want to put all these ?, especially when … does not work! *)
+##[##1,2:#n1;ncases n1;//;
+##|#n1;#m1;nnormalize;ncases (nat_compare n1 m1);
+ ##[##1,3:nnormalize;#IH;napply le_S_S;//;
+ ##|nnormalize;#IH;nrewrite > IH;//]
+nqed.
+
+ntheorem nat_compare_n_m_m_n:
+ ∀n,m:nat.nat_compare n m = compare_invert (nat_compare m n).
+#n;#m;
+napply (nat_elim2 (λn,m. nat_compare n m = compare_invert (nat_compare m n)))
+##[##1,2:#n1;ncases n1;//;
+##|#n1;#m1;#IH;nnormalize;napply IH]
+nqed.
+
+ntheorem nat_compare_elim :
+ ∀n,m. ∀P:compare → Prop.
+ (n < m → P LT) → (n=m → P EQ) → (m < n → P GT) → P (nat_compare n m).
+#n;#m;#P;#Hlt;#Heq;#Hgt;
+ncut (match (nat_compare n m) with
+ [ LT ⇒ n < m
+ | EQ ⇒ n=m
+ | GT ⇒ m < n] →
+ P (nat_compare n m))
+##[ncases (nat_compare n m);
+ ##[napply Hlt
+ ##|napply Heq
+ ##|napply Hgt]
+##|#Hcut;napply Hcut;//;
+nqed.
+
+ninductive cmp_cases (n,m:nat) : CProp[0] ≝
+ | cmp_le : n ≤ m → cmp_cases n m
+ | cmp_gt : m < n → cmp_cases n m.
+
+ntheorem lt_to_le : ∀n,m:nat. n < m → n ≤ m.
+(* sic
+#n;#m;#H;nelim H
+##[//
+##|/2/] *)
+/2/; nqed.
+
+nlemma cmp_nat: ∀n,m.cmp_cases n m.
+#n;#m; nlapply (nat_compare_to_Prop n m);
+ncases (nat_compare n m);nnormalize; /3/;
+nqed.
include "basics/functions.ma".
include "basics/eq.ma".
-ntheorem foo: ∀A:Type.∀a,b:A.∀f:A→A.∀g:A→A→A.
-(∀x,y.f (g x y) = x) → ∀x. g (f a) x = b → f a = f b.
-//; nqed.
-
-ninductive nat : Type[0] ≝
+ninductive nat : Type ≝
| O : nat
| S : nat → nat.
*)
ndefinition pred ≝
- λn. match n with [ O ⇒ O | (S p) ⇒ p].
+ λn. match n with [ O ⇒ O | S p ⇒ p].
ntheorem pred_Sn : ∀n. n = pred (S n).
//; nqed.
ntheorem le_S_S_to_le: ∀n,m:nat. S n ≤ S m → n ≤ m.
(* XXX *) nletin hint ≝ monotonic.
+#a; #b; #H; napplyS monotonic_pred;
/2/; nqed.
(* this are instances of the le versions
ntheorem monotonic_le_plus_l:
∀m:nat.monotonic nat le (λn.n + m).
-#m; #x; #y; #H; napplyS monotonic_le_plus_r;
/2/; nqed.
(*
#n; #m; #Hltb; napply lt_to_leb_false; /2/;
nqed. *)
-ninductive compare : Type[0] ≝
-| LT : compare
-| EQ : compare
-| GT : compare.
-
-ndefinition compare_invert: compare → compare ≝
- λc.match c with
- [ LT ⇒ GT
- | EQ ⇒ EQ
- | GT ⇒ LT ].
-
-nlet rec nat_compare n m: compare ≝
-match n with
-[ O ⇒ match m with
- [ O ⇒ EQ
- | (S q) ⇒ LT ]
-| S p ⇒ match m with
- [ O ⇒ GT
- | S q ⇒ nat_compare p q]].
-
-ntheorem nat_compare_n_n: ∀n. nat_compare n n = EQ.
-#n;nelim n
-##[//
-##|#m;#IH;nnormalize;//]
-nqed.
-
-ntheorem nat_compare_S_S: ∀n,m:nat.nat_compare n m = nat_compare (S n) (S m).
-//;
-nqed.
-
-ntheorem nat_compare_pred_pred:
- ∀n,m.O < n → O < m → nat_compare n m = nat_compare (pred n) (pred m).
-#n;#m;#Hn;#Hm;
-napply (lt_O_n_elim n Hn);
-napply (lt_O_n_elim m Hm);
-#p;#q;//;
-nqed.
-
-ntheorem nat_compare_to_Prop:
- ∀n,m.match (nat_compare n m) with
- [ LT ⇒ n < m
- | EQ ⇒ n = m
- | GT ⇒ m < n ].
-#n;#m;
-napply (nat_elim2 (λn,m.match (nat_compare n m) with
- [ LT ⇒ n < m
- | EQ ⇒ n = m
- | GT ⇒ m < n ]) ?????) (* FIXME: don't want to put all these ?, especially when … does not work! *)
-##[##1,2:#n1;ncases n1;//;
-##|#n1;#m1;nnormalize;ncases (nat_compare n1 m1);
- ##[##1,3:nnormalize;#IH;napply le_S_S;//;
- ##|nnormalize;#IH;nrewrite > IH;//]
-nqed.
-
-ntheorem nat_compare_n_m_m_n:
- ∀n,m:nat.nat_compare n m = compare_invert (nat_compare m n).
-#n;#m;
-napply (nat_elim2 (λn,m. nat_compare n m = compare_invert (nat_compare m n)))
-##[##1,2:#n1;ncases n1;//;
-##|#n1;#m1;#IH;nnormalize;napply IH]
-nqed.
-
-ntheorem nat_compare_elim :
- ∀n,m. ∀P:compare → Prop.
- (n < m → P LT) → (n=m → P EQ) → (m < n → P GT) → P (nat_compare n m).
-#n;#m;#P;#Hlt;#Heq;#Hgt;
-ncut (match (nat_compare n m) with
- [ LT ⇒ n < m
- | EQ ⇒ n=m
- | GT ⇒ m < n] →
- P (nat_compare n m))
-##[ncases (nat_compare n m);
- ##[napply Hlt
- ##|napply Heq
- ##|napply Hgt]
-##|#Hcut;napply Hcut;//;
-nqed.
-
-ninductive cmp_cases (n,m:nat) : CProp[0] ≝
- | cmp_le : n ≤ m → cmp_cases n m
- | cmp_gt : m < n → cmp_cases n m.
-
-ntheorem lt_to_le : ∀n,m:nat. n < m → n ≤ m.
-#n;#m;#H;nelim H
-##[//
-##|/2/]
-nqed.
-
-nlemma cmp_nat: ∀n,m.cmp_cases n m.
-#n;#m; nlapply (nat_compare_to_Prop n m);
-ncases (nat_compare n m);#H
-##[@;napply lt_to_le;//
-##|@;//
-##|@2;//]
-nqed.