$(H)rm -rf .matita
TEST_DIRS = \
+ legacy \
library \
tests \
dama \
set "baseuri" "cic:/matita/CoRN-Decl/preamble".
-include "legacy/coq.ma".
+include "../../legacy/coq.ma".
alias id "refl_equal" = "cic:/Coq/Init/Logic/eq.ind#xpointer(1/1/1)".
alias id "False" = "cic:/Coq/Init/Logic/False.ind#xpointer(1/1)".
set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/Base/ext/preamble".
-include' "legacy/coq.ma".
+include' "../../../../legacy/coq.ma".
(* FG: This is because "and" is a reserved keyword of the parser *)
alias id "land" = "cic:/Coq/Init/Logic/and.ind#xpointer(1/1)".
--- /dev/null
+Root directories of current matita developments
+
+software/matita/legacy
+software/matita/library
+software/matita/tests
+software/matita/dama
+software/matita/contribs/CoRN
+software/matita/contribs/PREDICATIVE-TOPOLOGY
+software/matita/contribs/RELATIONAL
+software/matita/contribs/LAMBDA-TYPES/Unified
+software/matita/contribs/LAMBDA-TYPES/Level-1/Base
+software/matita/contribs/LAMBDA-TYPES/Level-1/LambdaDelta
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| A.Asperti, C.Sacerdoti Coen, *)
+(* ||A|| E.Tassi, S.Zacchiroli *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU Lesser General Public License Version 2.1 *)
+(* *)
+(**************************************************************************)
+
+set "baseuri" "cic:/matita/legacy/coq/".
+
+default "equality"
+ cic:/Coq/Init/Logic/eq.ind
+ cic:/Coq/Init/Logic/sym_eq.con
+ cic:/Coq/Init/Logic/trans_eq.con
+ cic:/Coq/Init/Logic/eq_ind.con
+ cic:/Coq/Init/Logic/eq_ind_r.con
+ cic:/Coq/Init/Logic/f_equal.con
+ cic:/matita/legacy/coq/f_equal1.con.
+
+default "true"
+ cic:/Coq/Init/Logic/True.ind.
+default "false"
+ cic:/Coq/Init/Logic/False.ind.
+default "absurd"
+ cic:/Coq/Init/Logic/absurd.con.
+
+(* aritmetic operators *)
+
+interpretation "Coq's natural plus" 'plus x y = (cic:/Coq/Init/Peano/plus.con x y).
+interpretation "Coq's real plus" 'plus x y = (cic:/Coq/Reals/Rdefinitions/Rplus.con x y).
+interpretation "Coq's binary integer plus" 'plus x y = (cic:/Coq/ZArith/BinInt/Zplus.con x y).
+interpretation "Coq's binary positive plus" 'plus x y = (cic:/Coq/NArith/BinPos/Pplus.con x y).
+interpretation "Coq's natural minus" 'minus x y = (cic:/Coq/Init/Peano/minus.con x y).
+interpretation "Coq's real minus" 'minus x y = (cic:/Coq/Reals/Rdefinitions/Rminus.con x y).
+interpretation "Coq's binary integer minus" 'minus x y = (cic:/Coq/ZArith/BinInt/Zminus.con x y).
+interpretation "Coq's binary positive minus" 'minus x y = (cic:/Coq/NArith/BinPos/Pminus.con x y).
+interpretation "Coq's natural times" 'times x y = (cic:/Coq/Init/Peano/mult.con x y).
+interpretation "Coq's real times" 'times x y = (cic:/Coq/Reals/Rdefinitions/Rmult.con x y).
+interpretation "Coq's binary positive times" 'times x y = (cic:/Coq/NArith/BinPos/Pmult.con x y).
+interpretation "Coq's binary integer times" 'times x y = (cic:/Coq/ZArith/BinInt/Zmult.con x y).
+interpretation "Coq's real power" 'power x y = (cic:/Coq/Reals/Rfunctions/pow.con x y).
+interpretation "Coq's integer power" 'power x y = (cic:/Coq/ZArith/Zpower/Zpower.con x y).
+interpretation "Coq's real divide" 'divide x y = (cic:/Coq/Reals/Rdefinitions/Rdiv.con x y).
+interpretation "Coq's real unary minus" 'uminus x = (cic:/Coq/Reals/Rdefinitions/Ropp.con x).
+interpretation "Coq's binary integer negative sign" 'uminus x = (cic:/Coq/ZArith/BinInt/Z.ind#xpointer(1/1/3) x).
+interpretation "Coq's binary integer unary minus" 'uminus x = (cic:/Coq/ZArith/BinInt/Zopp.con x).
+
+(* logical operators *)
+
+interpretation "Coq's logical and" 'and x y = (cic:/Coq/Init/Logic/and.ind#xpointer(1/1) x y).
+interpretation "Coq's logical or" 'or x y = (cic:/Coq/Init/Logic/or.ind#xpointer(1/1) x y).
+interpretation "Coq's logical not" 'not x = (cic:/Coq/Init/Logic/not.con x).
+interpretation "Coq's exists" 'exists \eta.x = (cic:/Coq/Init/Logic/ex.ind#xpointer(1/1) _ x).
+
+(* relational operators *)
+
+interpretation "Coq's natural 'less or equal to'" 'leq x y = (cic:/Coq/Init/Peano/le.ind#xpointer(1/1) x y).
+interpretation "Coq's real 'less or equal to'" 'leq x y = (cic:/Coq/Reals/Rdefinitions/Rle.con x y).
+interpretation "Coq's natural 'greater or equal to'" 'geq x y = (cic:/Coq/Init/Peano/ge.con x y).
+interpretation "Coq's real 'greater or equal to'" 'geq x y = (cic:/Coq/Reals/Rdefinitions/Rge.con x y).
+interpretation "Coq's natural 'less than'" 'lt x y = (cic:/Coq/Init/Peano/lt.con x y).
+interpretation "Coq's real 'less than'" 'lt x y = (cic:/Coq/Reals/Rdefinitions/Rlt.con x y).
+interpretation "Coq's natural 'greater than'" 'gt x y = (cic:/Coq/Init/Peano/gt.con x y).
+interpretation "Coq's real 'greater than'" 'gt x y = (cic:/Coq/Reals/Rdefinitions/Rgt.con x y).
+
+interpretation "Coq's leibnitz's equality" 'eq x y = (cic:/Coq/Init/Logic/eq.ind#xpointer(1/1) _ x y).
+interpretation "Coq's not equal to (leibnitz)" 'neq x y = (cic:/Coq/Init/Logic/not.con (cic:/Coq/Init/Logic/eq.ind#xpointer(1/1) _ x y)).
+
+interpretation "Coq's natural 'not less or equal than'"
+ 'nleq x y = (cic:/Coq/Init/Logic/not.con
+ (cic:/Coq/Init/Peano/le.ind#xpointer(1/1) x y)).
+
+theorem f_equal1 : \forall A,B:Type.\forall f:A\to B.\forall x,y:A.
+ x = y \to (f y) = (f x).
+ intros.
+ symmetry.
+ apply cic:/Coq/Init/Logic/f_equal.con.
+ assumption.
+qed.
+(* aliases *)
+
+(* FG: This is because "and" is a reserved keyword of the parser *)
+alias id "land" = "cic:/Coq/Init/Logic/and.ind#xpointer(1/1)".
+
--- /dev/null
+H=@
+
+RT_BASEDIR=../
+OPTIONS=-bench
+MMAKE=$(RT_BASEDIR)matitamake $(OPTIONS)
+CLEAN=$(RT_BASEDIR)matitaclean $(OPTIONS)
+MMAKEO=$(RT_BASEDIR)matitamake.opt $(OPTIONS)
+CLEANO=$(RT_BASEDIR)matitaclean.opt $(OPTIONS)
+
+devel:=$(shell basename `pwd`)
+
+ifneq "$(SRC)" ""
+ XXX="SRC=$(SRC)"
+endif
+
+all: preall
+ $(H)$(XXX) MATITA_FLAGS=$(MATITA_FLAGS) $(MMAKE) build $(devel)
+clean: preall
+ $(H)$(XXX) MATITA_FLAGS=$(MATITA_FLAGS) $(MMAKE) clean $(devel)
+cleanall: preall
+ $(H)$(XXX) MATITA_FLAGS=$(MATITA_FLAGS) $(MCLEAN) all
+
+all.opt opt: preall.opt
+ $(H)$(XXX) MATITA_FLAGS=$(MATITA_FLAGS) $(MMAKEO) build $(devel)
+clean.opt: preall.opt
+ $(H)$(XXX) MATITA_FLAGS=$(MATITA_FLAGS) $(MMAKEO) clean $(devel)
+cleanall.opt: preall.opt
+ $(H)$(XXX) MATITA_FLAGS=$(MATITA_FLAGS) $(MCLEANO) all
+
+%.mo: preall
+ $(H)$(XXX) MATITA_FLAGS=$(MATITA_FLAGS) $(MMAKE) $@
+%.mo.opt: preall.opt
+ $(H)$(XXX) MATITA_FLAGS=$(MATITA_FLAGS) $(MMAKEO) $@
+
+preall:
+ $(H)$(XXX) MATITA_FLAGS=$(MATITA_FLAGS) $(MMAKE) init $(devel)
+
+preall.opt:
+ $(H)$(XXX) MATITA_FLAGS=$(MATITA_FLAGS) $(MMAKEO) init $(devel)
+++ /dev/null
-(**************************************************************************)
-(* ___ *)
-(* ||M|| *)
-(* ||A|| A project by Andrea Asperti *)
-(* ||T|| *)
-(* ||I|| Developers: *)
-(* ||T|| A.Asperti, C.Sacerdoti Coen, *)
-(* ||A|| E.Tassi, S.Zacchiroli *)
-(* \ / *)
-(* \ / This file is distributed under the terms of the *)
-(* v GNU Lesser General Public License Version 2.1 *)
-(* *)
-(**************************************************************************)
-
-set "baseuri" "cic:/matita/legacy/coq/".
-
-default "equality"
- cic:/Coq/Init/Logic/eq.ind
- cic:/Coq/Init/Logic/sym_eq.con
- cic:/Coq/Init/Logic/trans_eq.con
- cic:/Coq/Init/Logic/eq_ind.con
- cic:/Coq/Init/Logic/eq_ind_r.con
- cic:/Coq/Init/Logic/f_equal.con
- cic:/matita/legacy/coq/f_equal1.con.
-
-default "true"
- cic:/Coq/Init/Logic/True.ind.
-default "false"
- cic:/Coq/Init/Logic/False.ind.
-default "absurd"
- cic:/Coq/Init/Logic/absurd.con.
-
-(* aritmetic operators *)
-
-interpretation "Coq's natural plus" 'plus x y = (cic:/Coq/Init/Peano/plus.con x y).
-interpretation "Coq's real plus" 'plus x y = (cic:/Coq/Reals/Rdefinitions/Rplus.con x y).
-interpretation "Coq's binary integer plus" 'plus x y = (cic:/Coq/ZArith/BinInt/Zplus.con x y).
-interpretation "Coq's binary positive plus" 'plus x y = (cic:/Coq/NArith/BinPos/Pplus.con x y).
-interpretation "Coq's natural minus" 'minus x y = (cic:/Coq/Init/Peano/minus.con x y).
-interpretation "Coq's real minus" 'minus x y = (cic:/Coq/Reals/Rdefinitions/Rminus.con x y).
-interpretation "Coq's binary integer minus" 'minus x y = (cic:/Coq/ZArith/BinInt/Zminus.con x y).
-interpretation "Coq's binary positive minus" 'minus x y = (cic:/Coq/NArith/BinPos/Pminus.con x y).
-interpretation "Coq's natural times" 'times x y = (cic:/Coq/Init/Peano/mult.con x y).
-interpretation "Coq's real times" 'times x y = (cic:/Coq/Reals/Rdefinitions/Rmult.con x y).
-interpretation "Coq's binary positive times" 'times x y = (cic:/Coq/NArith/BinPos/Pmult.con x y).
-interpretation "Coq's binary integer times" 'times x y = (cic:/Coq/ZArith/BinInt/Zmult.con x y).
-interpretation "Coq's real power" 'power x y = (cic:/Coq/Reals/Rfunctions/pow.con x y).
-interpretation "Coq's integer power" 'power x y = (cic:/Coq/ZArith/Zpower/Zpower.con x y).
-interpretation "Coq's real divide" 'divide x y = (cic:/Coq/Reals/Rdefinitions/Rdiv.con x y).
-interpretation "Coq's real unary minus" 'uminus x = (cic:/Coq/Reals/Rdefinitions/Ropp.con x).
-interpretation "Coq's binary integer negative sign" 'uminus x = (cic:/Coq/ZArith/BinInt/Z.ind#xpointer(1/1/3) x).
-interpretation "Coq's binary integer unary minus" 'uminus x = (cic:/Coq/ZArith/BinInt/Zopp.con x).
-
-(* logical operators *)
-
-interpretation "Coq's logical and" 'and x y = (cic:/Coq/Init/Logic/and.ind#xpointer(1/1) x y).
-interpretation "Coq's logical or" 'or x y = (cic:/Coq/Init/Logic/or.ind#xpointer(1/1) x y).
-interpretation "Coq's logical not" 'not x = (cic:/Coq/Init/Logic/not.con x).
-interpretation "Coq's exists" 'exists \eta.x = (cic:/Coq/Init/Logic/ex.ind#xpointer(1/1) _ x).
-
-(* relational operators *)
-
-interpretation "Coq's natural 'less or equal to'" 'leq x y = (cic:/Coq/Init/Peano/le.ind#xpointer(1/1) x y).
-interpretation "Coq's real 'less or equal to'" 'leq x y = (cic:/Coq/Reals/Rdefinitions/Rle.con x y).
-interpretation "Coq's natural 'greater or equal to'" 'geq x y = (cic:/Coq/Init/Peano/ge.con x y).
-interpretation "Coq's real 'greater or equal to'" 'geq x y = (cic:/Coq/Reals/Rdefinitions/Rge.con x y).
-interpretation "Coq's natural 'less than'" 'lt x y = (cic:/Coq/Init/Peano/lt.con x y).
-interpretation "Coq's real 'less than'" 'lt x y = (cic:/Coq/Reals/Rdefinitions/Rlt.con x y).
-interpretation "Coq's natural 'greater than'" 'gt x y = (cic:/Coq/Init/Peano/gt.con x y).
-interpretation "Coq's real 'greater than'" 'gt x y = (cic:/Coq/Reals/Rdefinitions/Rgt.con x y).
-
-interpretation "Coq's leibnitz's equality" 'eq x y = (cic:/Coq/Init/Logic/eq.ind#xpointer(1/1) _ x y).
-interpretation "Coq's not equal to (leibnitz)" 'neq x y = (cic:/Coq/Init/Logic/not.con (cic:/Coq/Init/Logic/eq.ind#xpointer(1/1) _ x y)).
-
-interpretation "Coq's natural 'not less or equal than'"
- 'nleq x y = (cic:/Coq/Init/Logic/not.con
- (cic:/Coq/Init/Peano/le.ind#xpointer(1/1) x y)).
-
-theorem f_equal1 : \forall A,B:Type.\forall f:A\to B.\forall x,y:A.
- x = y \to (f y) = (f x).
- intros.
- symmetry.
- apply cic:/Coq/Init/Logic/f_equal.con.
- assumption.
-qed.
-(* aliases *)
-
-(* FG: This is because "and" is a reserved keyword of the parser *)
-alias id "land" = "cic:/Coq/Init/Logic/and.ind#xpointer(1/1)".
-
include "nat/times.ma".
include "nat/fermat_little_theorem.ma".
include "nat/nat.ma".
-include "legacy/coq.ma".
+(* FG: coq non c'entra con library, o sbaglio? *)
+(* include "legacy/coq.ma". *)
include "Z/compare.ma".
include "Z/plus.ma".
include "Z/times.ma".