∀o1,o2.∀r,r':relation_pair_setoid o1 o2. r =_1 r' → r \sub\f ∘ ⊩ = r'\sub\f ∘ ⊩.
intros 7 (o1 o2 r r' H c1 f2);
split; intro H1;
- [ lapply (fi ?? (commute ?? r c1 f2) H1) as H2;
- lapply (if ?? (H c1 f2) H2) as H3;
- apply (if ?? (commute ?? r' c1 f2) H3);
- | lapply (fi ?? (commute ?? r' c1 f2) H1) as H2;
- lapply (fi ?? (H c1 f2) H2) as H3;
- apply (if ?? (commute ?? r c1 f2) H3);
+ [ apply (. (commute ?? r')^-1 ??);
+ apply (. H^-1 ??);
+ apply (. commute ?? r ??);
+ assumption;
+ | apply (. (commute ?? r)^-1 ??);
+ apply (. H ??);
+ apply (. commute ?? r' ??);
+ assumption;
]
qed.