lapply (frees_mono … Hz1 … Hf1) -Hz1 #H1
lapply (sor_eq_repl_back1 … Hz … H02) -g0 #Hz
lapply (sor_eq_repl_back2 … Hz … H1) -z1 #Hz
- lapply (sor_sym … Hz) -Hz #Hz
+ lapply (sor_comm … Hz) -Hz #Hz
lapply (sor_mono … f Hz ?) // -Hz #H
lapply (sor_inv_sle_sn … Hf) -Hf #Hf
lapply (frees_eq_repl_back … Hf0 (⫯f) ?) /2 width=5 by eq_next/ -z #Hf0
lapply (sor_eq_repl_back1 … Hg2 … H0) -z0 #Hg2
lapply (sor_eq_repl_back2 … Hg2 … H1) -z1 #Hg2
@(ex3_2_intro … Hf1 Hf0) -Hf1 -Hf0 (**) (* constructor needed *)
- /2 width=3 by sor_trans2_idem/
+ /2 width=3 by sor_comm_23_idem/
]
qed-.
(**************************************************************************)
include "basic_2/notation/relations/lrsubeqf_4.ma".
+include "ground_2/relocation/nstream_sor.ma".
include "basic_2/static/frees.ma".
(* RESTRICTED REFINEMENT FOR CONTEXT-SENSITIVE FREE VARIABLES ***************)
@ex2_intro [1,2,4,5: /2 width=2 by lsubf_push, lsubf_bind/ ] // (**) (* constructor needed *)
qed-.
+lemma lsubf_inv_sor_dx: ∀f1,f2,L1,L2. ⦃L1, f1⦄ ⫃𝐅* ⦃L2, f2⦄ →
+ ∀f2l,f2r. f2l⋓f2r ≡ f2 →
+ ∃∃f1l,f1r. ⦃L1, f1l⦄ ⫃𝐅* ⦃L2, f2l⦄ & ⦃L1, f1r⦄ ⫃𝐅* ⦃L2, f2r⦄ & f1l⋓f1r ≡ f1.
+#f1 #f2 #L1 #L2 #H elim H -f1 -f2 -L1 -L2
+[ /3 width=7 by sor_eq_repl_fwd3, ex3_2_intro/
+| #g1 #g2 #I1 #I2 #L1 #L2 #_ #IH #f2l #f2r #H
+ elim (sor_inv_xxp … H) -H [|*: // ] #g2l #g2r #Hg2 #Hl #Hr destruct
+ elim (IH … Hg2) -g2 /3 width=11 by lsubf_push, sor_pp, ex3_2_intro/
+| #g1 #g2 #I #L1 #L2 #_ #IH #f2l #f2r #H
+ elim (sor_inv_xxn … H) -H [1,3,4: * |*: // ] #g2l #g2r #Hg2 #Hl #Hr destruct
+ elim (IH … Hg2) -g2 /3 width=11 by lsubf_push, lsubf_bind, sor_np, sor_pn, sor_nn, ex3_2_intro/
+| #g #g0 #g1 #g2 #L1 #L2 #W #V #Hg #Hg1 #_ #IH #f2l #f2r #H
+ elim (sor_inv_xxn … H) -H [1,3,4: * |*: // ] #g2l #g2r #Hg2 #Hl #Hr destruct
+ elim (IH … Hg2) -g2 #g1l #g1r #Hl #Hr #Hg0
+ [ lapply (sor_comm_23 … Hg0 Hg1 ?) -g0 [3: |*: // ] #Hg1
+ /3 width=11 by lsubf_push, lsubf_beta, sor_np, ex3_2_intro/
+ | lapply (sor_assoc_dx … Hg1 … Hg0 ??) -g0 [3: |*: // ] #Hg1
+ /3 width=11 by lsubf_push, lsubf_beta, sor_pn, ex3_2_intro/
+ | lapply (sor_distr_dx … Hg0 … Hg1) -g0 [5: |*: // ] #Hg1
+ /3 width=11 by lsubf_beta, sor_nn, ex3_2_intro/
+ ]
+| #g #g0 #g1 #g2 #I1 #I2 #L1 #L2 #V #Hg #Hg1 #_ #IH #f2l #f2r #H
+ elim (sor_inv_xxn … H) -H [1,3,4: * |*: // ] #g2l #g2r #Hg2 #Hl #Hr destruct
+ elim (IH … Hg2) -g2 #g1l #g1r #Hl #Hr #Hg0
+ [ lapply (sor_comm_23 … Hg0 Hg1 ?) -g0 [3: |*: // ] #Hg1
+ /3 width=11 by lsubf_push, lsubf_unit, sor_np, ex3_2_intro/
+ | lapply (sor_assoc_dx … Hg1 … Hg0 ??) -g0 [3: |*: // ] #Hg1
+ /3 width=11 by lsubf_push, lsubf_unit, sor_pn, ex3_2_intro/
+ | lapply (sor_distr_dx … Hg0 … Hg1) -g0 [5: |*: // ] #Hg1
+ /3 width=11 by lsubf_unit, sor_nn, ex3_2_intro/
+ ]
+]
+qed-.
include "basic_2/static/lsubf.ma".
-axiom lsubf_inv_sor_dx: ∀f1,f2,L1,L2. ⦃L1, f1⦄ ⫃𝐅* ⦃L2, f2⦄ →
- ∀x2,y2. x2⋓y2 ≡ f2 →
- ∃∃x1,y1. ⦃L1, x1⦄ ⫃𝐅* ⦃L2, x2⦄ & ⦃L1, y1⦄ ⫃𝐅* ⦃L2, y2⦄ & x1⋓y1 ≡ f1.
-
(* RESTRICTED REFINEMENT FOR CONTEXT-SENSITIVE FREE VARIABLES ***************)
(* Properties with context-sensitive free variables *************************)
(* *)
(**************************************************************************)
-include "ground_2/relocation/nstream_sor.ma".
include "basic_2/static/frees_frees.ma".
include "basic_2/static/lsubf.ma".
]
]
elim (sor_inv_pnx … Hf) -Hf [1,6,11,16:|*: // ] #x #Hx #H destruct
- /3 width=12 by lsubf_unit, lsubf_beta, lsubf_bind, sor_trans2/
+ /3 width=12 by lsubf_unit, lsubf_beta, lsubf_bind, sor_assoc_sn/
| elim (sor_inv_npx … Hg) -Hg [|*: // ] #y #Hy #H destruct
elim (lsubf_inv_push1 … H2) -H2 #x2 #Z2 #Y2 #H2 #H #H0 destruct
generalize in match H1; -H1 cases J -J #J [| #V ] #H1
]
]
elim (sor_inv_npx … Hf) -Hf [1,6,11,16:|*: // ] #x #Hx #H destruct
- /3 width=12 by lsubf_unit, lsubf_beta, lsubf_bind, sor_trans1_sym/
+ /3 width=12 by lsubf_unit, lsubf_beta, lsubf_bind, sor_comm_23/
| elim (sor_inv_nnx … Hg) -Hg [|*: // ] #y #Hy #H destruct
generalize in match H2; generalize in match H1; -H1 -H2 cases J -J #J [| #V ] #H1 #H2
[ elim (lsubf_inv_unit1 … H1) -H1 #x1 #Y1 #H1 #H #H0 destruct
]
]
elim (sor_inv_nnx … Hf) -Hf [1,6,11,16:|*: // ] #x #Hx #H destruct
- /3 width=12 by lsubf_unit, lsubf_beta, lsubf_bind, sor_distr_dx/
+ /3 width=12 by lsubf_unit, lsubf_beta, lsubf_bind, sor_coll_dx/
]
]
qed-.
[ #f #Hf #f2 #Hf2 #f1 #Hf #f1a #f1b #Hf1
lapply (coafter_fwd_isid2 … Hf ??) -Hf // #H2f1
elim (sor_inv_isid3 … Hf1) -Hf1 //
- /3 width=5 by coafter_isid_dx, sor_refl, ex3_2_intro/
+ /3 width=5 by coafter_isid_dx, sor_idem, ex3_2_intro/
| #f #_ #IH #f2 #Hf2 #f1 #H1 #f1a #f1b #H2
elim (coafter_inv_xxp … H1) -H1 [1,3: * |*: // ]
[ #g2 #g1 #Hf #Hgf2 #Hgf1
#f1 #f2 @eq_repl_sym /2 width=3 by sor_eq_repl_back3/
qed-.
-corec lemma sor_refl: ∀f. f ⋓ f ≡ f.
+corec lemma sor_idem: ∀f. f ⋓ f ≡ f.
#f cases (pn_split f) * #g #H
[ @(sor_pp … H H H) | @(sor_nn … H H H) ] -H //
qed.
-corec lemma sor_sym: ∀f1,f2,f. f1 ⋓ f2 ≡ f → f2 ⋓ f1 ≡ f.
+corec lemma sor_comm: ∀f1,f2,f. f1 ⋓ f2 ≡ f → f2 ⋓ f1 ≡ f.
#f1 #f2 #f * -f1 -f2 -f
#f1 #f2 #f #g1 #g2 #g #Hf * * * -g1 -g2 -g
[ @sor_pp | @sor_pn | @sor_np | @sor_nn ] /2 width=7 by/
/3 width=5 by ex3_2_intro, or_introl, or_intror/
qed-.
+lemma sor_xnx_tl: ∀g1,g2,g. g1 ⋓ g2 ≡ g → ∀f2. ⫯f2 = g2 →
+ ∃∃f1,f. f1 ⋓ f2 ≡ f & ⫱g1 = f1 & ⫯f = g.
+#g1 elim (pn_split g1) * #f1 #H1 #g2 #g #H #f2 #H2
+[ elim (sor_inv_pnx … H … H1 H2) | elim (sor_inv_nnx … H … H1 H2) ] -g2 #f #Hf #H0
+/3 width=5 by ex3_2_intro/
+qed-.
+
(* Properties with iterated tail ********************************************)
lemma sor_tls: ∀f1,f2,f. f1 ⋓ f2 ≡ f →
lemma sor_fwd_fcla_dx_ex: ∀f,n. 𝐂⦃f⦄ ≡ n → ∀f1,f2. f1 ⋓ f2 ≡ f →
∃∃n2. 𝐂⦃f2⦄ ≡ n2 & n2 ≤ n.
-/3 width=4 by sor_fwd_fcla_sn_ex, sor_sym/ qed-.
+/3 width=4 by sor_fwd_fcla_sn_ex, sor_comm/ qed-.
(* Properties with test for finite colength *********************************)
axiom monotonic_sle_sor: ∀f1,g1. f1 ⊆ g1 → ∀f2,g2. f2 ⊆ g2 →
∀f. f1 ⋓ f2 ≡ f → ∀g. g1 ⋓ g2 ≡ g → f ⊆ g.
-axiom sor_trans1: ∀f0,f3,f4. f0 ⋓ f3 ≡ f4 →
- ∀f1,f2. f1 ⋓ f2 ≡ f0 →
- ∀f. f2 ⋓ f3 ≡ f → f1 ⋓ f ≡ f4.
+axiom sor_assoc_dx: ∀f0,f3,f4. f0 ⋓ f3 ≡ f4 →
+ ∀f1,f2. f1 ⋓ f2 ≡ f0 →
+ ∀f. f2 ⋓ f3 ≡ f → f1 ⋓ f ≡ f4.
-axiom sor_trans2: ∀f1,f0,f4. f1 ⋓ f0 ≡ f4 →
- ∀f2, f3. f2 ⋓ f3 ≡ f0 →
- ∀f. f1 ⋓ f2 ≡ f → f ⋓ f3 ≡ f4.
+axiom sor_assoc_sn: ∀f1,f0,f4. f1 ⋓ f0 ≡ f4 →
+ ∀f2, f3. f2 ⋓ f3 ≡ f0 →
+ ∀f. f1 ⋓ f2 ≡ f → f ⋓ f3 ≡ f4.
-lemma sor_trans1_sym: ∀f0,f1,f2,f3,f4,f.
- f0⋓f4 ≡ f1 → f1⋓f2 ≡ f → f0⋓f2 ≡ f3 → f3⋓f4 ≡ f.
-/4 width=6 by sor_sym, sor_trans1/ qed-.
+lemma sor_comm_23: ∀f0,f1,f2,f3,f4,f.
+ f0⋓f4 ≡ f1 → f1⋓f2 ≡ f → f0⋓f2 ≡ f3 → f3⋓f4 ≡ f.
+/4 width=6 by sor_comm, sor_assoc_dx/ qed-.
-corec theorem sor_trans2_idem: ∀f0,f1,f2. f0 ⋓ f1 ≡ f2 →
- ∀f. f1 ⋓ f2 ≡ f → f1 ⋓ f0 ≡ f.
+corec theorem sor_comm_23_idem: ∀f0,f1,f2. f0 ⋓ f1 ≡ f2 →
+ ∀f. f1 ⋓ f2 ≡ f → f1 ⋓ f0 ≡ f.
#f0 #f1 #f2 * -f0 -f1 -f2
#f0 #f1 #f2 #g0 #g1 #g2 #Hf2 #H0 #H1 #H2 #g #Hg
[ cases (sor_inv_ppx … Hg … H1 H2)
/3 width=7 by sor_nn, sor_np, sor_pn, sor_pp/
qed-.
-corec theorem sor_distr_dx: ∀f1,f2,f. f1 ⋓ f2 ≡ f → ∀g1,g2,g. g1 ⋓ g2 ≡ g →
- ∀g0. g1 ⋓ g0 ≡ f1 → g2 ⋓ g0 ≡ f2 → g ⋓ g0 ≡ f.
+corec theorem sor_coll_dx: ∀f1,f2,f. f1 ⋓ f2 ≡ f → ∀g1,g2,g. g1 ⋓ g2 ≡ g →
+ ∀g0. g1 ⋓ g0 ≡ f1 → g2 ⋓ g0 ≡ f2 → g ⋓ g0 ≡ f.
#f1 #f2 #f cases (pn_split f) * #x #Hx #Hf #g1 #g2 #g #Hg #g0 #Hf1 #Hf2
[ cases (sor_inv_xxp … Hf … Hx) -Hf #x1 #x2 #Hf #Hx1 #Hx2
cases (sor_inv_xxp … Hf1 … Hx1) -f1 #y1 #y0 #Hf1 #Hy1 #Hy0
]
qed-.
+corec theorem sor_distr_dx: ∀g0,g1,g2,g. g1 ⋓ g2 ≡ g →
+ ∀f1,f2,f. g1 ⋓ g0 ≡ f1 → g2 ⋓ g0 ≡ f2 → g ⋓ g0 ≡ f →
+ f1 ⋓ f2 ≡ f.
+#g0 cases (pn_split g0) * #y0 #H0 #g1 #g2 #g
+[ * -g1 -g2 -g #y1 #y2 #y #g1 #g2 #g #Hy #Hy1 #Hy2 #Hy #f1 #f2 #f #Hf1 #Hf2 #Hf
+ [ cases (sor_inv_ppx … Hf1 … Hy1 H0) -g1
+ cases (sor_inv_ppx … Hf2 … Hy2 H0) -g2
+ cases (sor_inv_ppx … Hf … Hy H0) -g
+ | cases (sor_inv_npx … Hf1 … Hy1 H0) -g1
+ cases (sor_inv_ppx … Hf2 … Hy2 H0) -g2
+ cases (sor_inv_npx … Hf … Hy H0) -g
+ | cases (sor_inv_ppx … Hf1 … Hy1 H0) -g1
+ cases (sor_inv_npx … Hf2 … Hy2 H0) -g2
+ cases (sor_inv_npx … Hf … Hy H0) -g
+ | cases (sor_inv_npx … Hf1 … Hy1 H0) -g1
+ cases (sor_inv_npx … Hf2 … Hy2 H0) -g2
+ cases (sor_inv_npx … Hf … Hy H0) -g
+ ] -g0 #y #Hy #H #y2 #Hy2 #H2 #y1 #Hy1 #H1
+ /3 width=8 by sor_nn, sor_np, sor_pn, sor_pp/
+| #H #f1 #f2 #f #Hf1 #Hf2 #Hf
+ cases (sor_xnx_tl … Hf1 … H0) -Hf1
+ cases (sor_xnx_tl … Hf2 … H0) -Hf2
+ cases (sor_xnx_tl … Hf … H0) -Hf
+ -g0 #y #x #Hx #Hy #H #y2 #x2 #Hx2 #Hy2 #H2 #y1 #x1 #Hx1 #Hy1 #H1
+ /4 width=8 by sor_tl, sor_nn/
+]
+qed-.