lemma lsx_lref_free: ∀h,g,G,L,d,i. |L| ≤ i → G ⊢ ⋕⬊*[h, g, #i, d] L.
#h #g #G #L1 #d #i #HL1 @lsx_intro
#L2 #HL12 #H elim H -H
-/4 width=6 by lpxs_fwd_length, lleq_free, le_repl_sn_aux/
+/4 width=6 by lpxs_fwd_length, lleq_free, le_repl_sn_conf_aux/
qed.
lemma lsx_lref_skip: ∀h,g,G,L,d,i. yinj i < d → G ⊢ ⋕⬊*[h, g, #i, d] L.
(* Basic forward lemmas *****************************************************)
-lemma leq_fwd_length: ∀L1,L2,d,e. L1 ≃[d, e] L2 → |L2| = |L1|.
+lemma leq_fwd_length: ∀L1,L2,d,e. L1 ≃[d, e] L2 → |L1| = |L2|.
#L1 #L2 #d #e #H elim H -L1 -L2 -d -e normalize //
qed-.
(* Properties ***************************************************************)
-fact le_repl_sn_aux: ∀x,y,z:nat. x ≤ z → x = y → y ≤ z.
+fact le_repl_sn_conf_aux: ∀x,y,z:nat. x ≤ z → x = y → y ≤ z.
+// qed-.
+
+fact le_repl_sn_trans_aux: ∀x,y,z:nat. x ≤ z → y = x → y ≤ z.
// qed-.
lemma monotonic_le_minus_l2: ∀x1,x2,y,z. x1 ≤ x2 → x1 - y - z ≤ x2 - y - z.