prop1: ∀a,a',b,b'. eq1 ? a a' → eq1 ? b b' → eq1 ? (fun1 a b) (fun1 a' b')
}.
-notation "hbox(a break ⇒ b)" right associative with precedence 20 for @{ 'Imply $a $b }.
-interpretation "unary morphism" 'Imply a b = (unary_morphism a b).
-
notation "† c" with precedence 90 for @{'prop1 $c }.
notation "l ‡ r" with precedence 90 for @{'prop $l $r }.
notation "#" with precedence 90 for @{'refl}.
interpretation "category1 assoc" 'assoc1 = (comp_assoc1 ________).
interpretation "category composition" 'compose x y = (fun ___ (comp ____) y x).
interpretation "category assoc" 'assoc = (comp_assoc ________).
+
+definition unary_morphism_setoid: setoid → setoid → setoid.
+ intros;
+ constructor 1;
+ [ apply (unary_morphism s s1);
+ | constructor 1;
+ [ intros (f g); apply (∀a. f a = g a);
+ | intros 1; simplify; intros; apply refl;
+ | simplify; intros; apply sym; apply H;
+ | simplify; intros; apply trans; [2: apply H; | skip | apply H1]]]
+qed.
+
+notation "hbox(a break ⇒ b)" right associative with precedence 20 for @{ 'Imply $a $b }.
+interpretation "unary morphism" 'Imply a b = (unary_morphism_setoid a b).
+interpretation "unary morphism" 'Imply a b = (unary_morphism a b).
+
+definition SET: category1.
+ constructor 1;
+ [ apply setoid;
+ | apply rule (λS,T.unary_morphism_setoid S T);
+ | intros; constructor 1; [ apply (λx.x); | intros; assumption ]
+ | intros; constructor 1; [ intros; constructor 1; [ apply (λx. c1 (c x)); | intros;
+ apply († (†H));]
+ | intros; whd; intros; simplify; whd in H1; whd in H;
+ apply trans; [ apply (b (a' a1)); | lapply (prop_1 ?? b (a a1) (a' a1));
+ [ apply Hletin | apply (H a1); ] | apply H1; ]]
+ | intros; whd; intros; simplify; apply refl;
+ | intros; simplify; whd; intros; simplify; apply refl;
+ | intros; simplify; whd; intros; simplify; apply refl;
+ ]
+qed.
\ No newline at end of file