App :
∀In,Out,dir'.
Morphism_Theory In Out → Morphism_Context_List Hole dir dir' In →
- Morphism_Context Hole dir Out dir
+ Morphism_Context Hole dir Out dir'
| ToReplace : Morphism_Context Hole dir Hole dir
| ToKeep :
∀S,dir'.
Morphism_Context_List Hole dir dir'' L →
Morphism_Context_List Hole dir dir'' (cons ? S L).
+lemma Morphism_Context_rect2:
+ ∀Hole,dir.
+ ∀P:
+ ∀r:Relation_Class.∀r0:rewrite_direction.Morphism_Context Hole dir r r0 → Type.
+ ∀P0:
+ ∀r:rewrite_direction.∀a:Arguments.Morphism_Context_List Hole dir r a → Type.
+ (∀In,Out,dir'.
+ ∀m:Morphism_Theory In Out.∀m0:Morphism_Context_List Hole dir dir' In.
+ P0 dir' In m0 → P Out dir' (App Hole ? ? ? ? m m0)) →
+ P Hole dir (ToReplace Hole dir) →
+ (∀S:Reflexive_Relation_Class.∀dir'.∀c:carrier_of_reflexive_relation_class S.
+ P (relation_class_of_reflexive_relation_class S) dir'
+ (ToKeep Hole dir S dir' c)) →
+ (∀S:Areflexive_Relation_Class.∀dir'.
+ ∀x:carrier_of_areflexive_relation_class S.
+ ∀r:relation_of_areflexive_relation_class S x x.
+ P (relation_class_of_areflexive_relation_class S) dir'
+ (ProperElementToKeep Hole dir S dir' x r)) →
+ (∀S:Argument_Class.∀dir',dir''.
+ ∀c:check_if_variance_is_respected (variance_of_argument_class S) dir' dir''.
+ ∀m:Morphism_Context Hole dir (relation_class_of_argument_class S) dir'.
+ P (relation_class_of_argument_class S) dir' m ->
+ P0 dir'' (singl ? S) (fcl_singl ? ? S ? ? c m)) →
+ (∀S:Argument_Class.∀L:Arguments.∀dir',dir''.
+ ∀c:check_if_variance_is_respected (variance_of_argument_class S) dir' dir''.
+ ∀m:Morphism_Context Hole dir (relation_class_of_argument_class S) dir'.
+ P (relation_class_of_argument_class S) dir' m →
+ ∀m0:Morphism_Context_List Hole dir dir'' L.
+ P0 dir'' L m0 → P0 dir'' (cons ? S L) (fcl_cons ? ? S ? ? ? c m m0)) →
+ ∀r:Relation_Class.∀r0:rewrite_direction.∀m:Morphism_Context Hole dir r r0.
+ P r r0 m
+≝
+ λHole,dir,P,P0,f,f0,f1,f2,f3,f4.
+ let rec
+ F (rc:Relation_Class) (r0:rewrite_direction)
+ (m:Morphism_Context Hole dir rc r0) on m : P rc r0 m
+ ≝
+ match m return λrc.λr0.λm0.P rc r0 m0 with
+ [ App In Out dir' m0 m1 ⇒ f In Out dir' m0 m1 (F0 dir' In m1)
+ | ToReplace ⇒ f0
+ | ToKeep S dir' c ⇒ f1 S dir' c
+ | ProperElementToKeep S dir' x r1 ⇒ f2 S dir' x r1
+ ]
+ and
+ F0 (r:rewrite_direction) (a:Arguments)
+ (m:Morphism_Context_List Hole dir r a) on m : P0 r a m
+ ≝
+ match m return λr.λa.λm0.P0 r a m0 with
+ [ fcl_singl S dir' dir'' c m0 ⇒
+ f3 S dir' dir'' c m0 (F (relation_class_of_argument_class S) dir' m0)
+ | fcl_cons S L dir' dir'' c m0 m1 ⇒
+ f4 S L dir' dir'' c m0 (F (relation_class_of_argument_class S) dir' m0)
+ m1 (F0 dir'' L m1)
+ ]
+in F.
+
definition product_of_arguments : Arguments → Type.
intro;
elim a;
]
qed.
-(*
-Theorem apply_morphism_compatibility_Left2Right:
- ∀In Out (m1 m2: function_type_of_morphism_signature In Out)
- (args1 args2: product_of_arguments In).
+theorem apply_morphism_compatibility_Left2Right:
+ ∀In,Out.∀m1,m2: function_type_of_morphism_signature In Out.
+ ∀args1,args2: product_of_arguments In.
make_compatibility_goal_aux ? ? m1 m2 →
relation_of_product_of_arguments Left2Right ? args1 args2 →
directed_relation_of_relation_class Left2Right ?
(apply_morphism ? ? m1 args1)
(apply_morphism ? ? m2 args2).
- induction In; intros.
- simpl in m1. m2. args1. args2. H0 |- *.
- destruct a; simpl in H; hnf in H0.
- apply H; exact H0.
- destruct v; simpl in H0; apply H; exact H0.
- apply H; exact H0.
- destruct v; simpl in H0; apply H; exact H0.
- rewrite H0; apply H; exact H0.
-
- simpl in m1. m2. args1. args2. H0 |- *.
- destruct args1; destruct args2; simpl.
- destruct H0.
- simpl in H.
- destruct a; simpl in H.
- apply IHIn.
- apply H; exact H0.
- exact H1.
- destruct v.
- apply IHIn.
- apply H; exact H0.
- exact H1.
- apply IHIn.
- apply H; exact H0.
- exact H1.
- apply IHIn.
- apply H; exact H0.
- exact H1.
- apply IHIn.
- destruct v; simpl in H. H0; apply H; exact H0.
- exact H1.
- rewrite H0; apply IHIn.
- apply H.
- exact H1.
-Qed.
-
+ intro;
+ elim In;
+ [ simplify in m1 m2 args1 args2 ⊢ %;
+ change in H1 with
+ (directed_relation_of_argument_class
+ (get_rewrite_direction Left2Right t) t args1 args2);
+ generalize in match H1; clear H1;
+ generalize in match H; clear H;
+ generalize in match args2; clear args2;
+ generalize in match args1; clear args1;
+ generalize in match m2; clear m2;
+ generalize in match m1; clear m1;
+ elim t 0;
+ [ intros (T1 r Hs Hr m1 m2 args1 args2 H H1);
+ simplify in H;
+ simplify in H1;
+ simplify;
+ apply H;
+ exact H1
+ | intros 8 (v T1 r Hr m1 m2 args1 args2);
+ cases v;
+ intros (H H1);
+ simplify in H1;
+ apply H;
+ exact H1
+ | intros;
+ apply H1;
+ exact H2
+ | intros 7 (v);
+ cases v;
+ intros (H H1);
+ simplify in H1;
+ apply H;
+ exact H1
+ | intros;
+ simplify in H1;
+ rewrite > H1;
+ apply H;
+ exact H1
+ ]
+ | change in m1 with
+ (carrier_of_relation_class variance t →
+ function_type_of_morphism_signature n Out);
+ change in m2 with
+ (carrier_of_relation_class variance t →
+ function_type_of_morphism_signature n Out);
+ change in args1 with
+ ((carrier_of_relation_class ? t) × (product_of_arguments n));
+ change in args2 with
+ ((carrier_of_relation_class ? t) × (product_of_arguments n));
+ generalize in match H2; clear H2;
+ elim args2 0; clear args2;
+ elim args1; clear args1;
+ elim H2; clear H2;
+ change in H4 with
+ (relation_of_product_of_arguments Left2Right n t2 t4);
+ change with
+ (relation_of_relation_class unit Out (apply_morphism n Out (m1 t1) t2)
+ (apply_morphism n Out (m2 t3) t4));
+ generalize in match H3; clear H3;
+ generalize in match t3; clear t3;
+ generalize in match t1; clear t1;
+ generalize in match H1; clear H1;
+ generalize in match m2; clear m2;
+ generalize in match m1; clear m1;
+ elim t 0;
+ [ intros (T1 r Hs Hr m1 m2 H1 t1 t3 H3);
+ simplify in H3;
+ change in H1 with
+ (∀x1,x2:T1.r x1 x2 → make_compatibility_goal_aux n Out (m1 x1) (m2 x2));
+ | intro v;
+ elim v 0;
+ [ intros (T1 r Hr m1 m2 H1 t1 t3 H3);
+ simplify in H3;
+ change in H1 with
+ (∀x1,x2:T1.r x1 x2 → make_compatibility_goal_aux n Out (m1 x1) (m2 x2));
+ | intros (T1 r Hr m1 m2 H1 t1 t3 H3);
+ simplify in H3;
+ change in H1 with
+ (∀x1,x2:T1.r x2 x1 → make_compatibility_goal_aux n Out (m1 x1) (m2 x2));
+ ]
+ | intros (T1 r Hs m1 m2 H1 t1 t3 H3);
+ simplify in H3;
+ change in H1 with
+ (∀x1,x2:T1.r x1 x2 → make_compatibility_goal_aux n Out (m1 x1) (m2 x2));
+ | intro v;
+ elim v 0;
+ [ intros (T1 r m1 m2 H1 t1 t3 H3);
+ simplify in H3;
+ change in H1 with
+ (∀x1,x2:T1.r x1 x2 → make_compatibility_goal_aux n Out (m1 x1) (m2 x2));
+ | intros (T1 r m1 m2 H1 t1 t3 H3);
+ simplify in H3;
+ change in H1 with
+ (∀x1,x2:T1.r x2 x1 → make_compatibility_goal_aux n Out (m1 x1) (m2 x2));
+ ]
+ | intros (T m1 m2 H1 t1 t3 H3);
+ simplify in H3;
+ change in H1 with
+ (∀x:T. make_compatibility_goal_aux n Out (m1 x) (m2 x));
+ rewrite > H3;
+ simplify in H;
+ apply H;
+ [ apply H1
+ | assumption
+ ]
+ ] ;
+ simplify in H;
+ apply H;
+ [1,3,5,7,9,11:
+ apply H1;
+ assumption
+ |2,4,6,8,10,12:
+ assumption
+ ]
+ ]
+qed.
+(*
definition interp :
- ∀Hole dir Out dir'. carrier_of_relation_class Hole →
- Morphism_Context Hole dir Out dir' → carrier_of_relation_class Out.
- intros Hole dir Out dir' H t.
- elim t using
- (@Morphism_Context_rect2 Hole dir (fun S ? ? => carrier_of_relation_class S)
- (fun ? L fcl => product_of_arguments L));
+ ∀Hole,dir,Out,dir'. carrier_of_relation_class ? Hole →
+ Morphism_Context Hole dir Out dir' → carrier_of_relation_class ? Out.
+ intros (Hole dir Out dir' H t).
+ apply
+ (Morphism_Context_rect2 Hole dir (λS,xx,yy. carrier_of_relation_class S)
+ (λxx,L,fcl.product_of_arguments L));
intros.
exact (apply_morphism ? ? (Function m) X).
exact H.