interpretation "ncovers" 'covers a U = (ncover ? U a).
-(*XXX
ntheorem ncover_cover_ok: ∀A:nAx.∀U.∀a:A. a ◃ U → cover (Ax_of_nAx A) U a.
#A; #U; #a; #H; nelim H
[ #n; #H1; @1; nassumption
| #a; #i; #IH; #H; @2 [ napply i ]
nnormalize; #y; *; #j; #E; nrewrite > E;
- napply H ]
+ napply H;
+ /2/ ]
nqed.
ntheorem cover_ncover_ok: ∀A:Ax.∀U.∀a:A. a ◃ U → ncover (nAx_of_Ax A) U a.
#A; #U; #a; #H; nelim H
[ #n; #H1; @1; nassumption
- | #a; #i; #IH; #H; @2 [ napply i ] #j; ncases j; #x; #K;
+ | #a; #i; #IH; #H; @2 [ napply i ] #y; *; #j; #E; nrewrite > E; ncases j; #x; #K;
napply H; nnormalize; nassumption.
nqed.
-*)
+
ndefinition ncoverage : ∀A:nAx.∀U:Ω^A.Ω^A ≝ λA,U.{ a | a ◃ U }.
interpretation "ncoverage cover" 'coverage U = (ncoverage ? U).