∀o1,o2,o3: concrete_space.
binary_morphism1
(convergent_relation_space_setoid o1 o2)
- (convergent_relation_space_setoid o2 o3)
+ (convergentin ⊢ (? (? ? ? (? ? ? (? ? ? ? ? (? ? ? (? ? ? (% ? ?))) ?)) ?) ? ? ?)_relation_space_setoid o2 o3)
(convergent_relation_space_setoid o1 o3).
intros; constructor 1;
[ intros; whd in c c1 ⊢ %;
constructor 1;
- [ apply (fun1 ??? (comp1 BP ???)); [apply (bp o2) |*: apply rp; assumption]
+ [ apply (c1 ∘ c);
| intros;
change in ⊢ (? ? ? % ?) with (c\sub\c⎻ (c1\sub\c⎻ (Ext⎽o3 (b↓c2))));
alias symbol "trans" = "trans1".
| apply convergent_relation_space_setoid
| intro; constructor 1;
[ apply id1
- | intros;
- unfold id; simplify;
- apply (.= (equalset_extS_id_X_X ??));
- apply (.= (†((equalset_extS_id_X_X ??)\sup -1‡
- (equalset_extS_id_X_X ??)\sup -1)));
- apply refl1;
- | apply (.= (equalset_extS_id_X_X ??));
- apply refl1]
+ | intros; apply refl1;
+ | apply refl1]
| apply convergent_relation_space_composition
| intros; simplify;
change with (a34 ∘ (a23 ∘ a12) = (a34 ∘ a23) ∘ a12);
- apply (.= ASSOC1);
- apply refl1
+ apply ASSOC1;
| intros; simplify;
change with (a ∘ id1 ? o1 = a);
- apply (.= id_neutral_right1 ????);
- apply refl1
+ apply (id_neutral_right1 : ?);
| intros; simplify;
change with (id1 ? o2 ∘ a = a);
- apply (.= id_neutral_left1 ????);
- apply refl1]
-qed.
+ apply (id_neutral_left1 : ?);]
+qed.
\ No newline at end of file