| apply lemma_10_2_c; ]
qed.
+lemma lemma_10_3_c: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* (R p)) = R p.
+ intros; apply oa_leq_antisym;
+ [ apply lemma_10_2_d;
+ | apply f_image_monotone;
+ apply (lemma_10_2_c ?? R p); ]
+qed.
+
+lemma lemma_10_3_d: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻* (R⎻ (R⎻* p)) = R⎻* p.
+ intros; apply oa_leq_antisym;
+ [ apply f_minus_star_image_monotone;
+ apply (lemma_10_2_b ?? R p);
+ | apply lemma_10_2_a; ]
+qed.
+
lemma lemma_10_4_a: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻* (R⎻ (R⎻* (R⎻ p))) = R⎻* (R⎻ p).
intros;
(* BAD *)
constructor 1;
[ apply (t \sub \f);
| unfold o_basic_topology_of_o_basic_pair; simplify; intros;
- lapply (.= †e); [3: apply rule t \sub \f; |4: apply Hletin; |1,2: skip]
- cut ((t \sub \f ∘ (⊩)) ∘ (⊩)* = ?);
- [
-
- lapply (Hcut U); apply Hletin;
- whd in Hcut;: apply rule (rel BP2);
-
- generalize in match U; clear e;
- change with (t \sub \f ((⊩) ((⊩)* U)) =(⊩) ((⊩)* (t \sub \f U)));
- change in ⊢ (? ? ? % ?) with ((t \sub \f ∘ ((⊩) ∘ (⊩)* )) U);
-
-
+ apply sym1;
+ alias symbol "refl" = "refl1".
+ apply (.= †?); [1: apply (t \sub \f (((◊_BP1∘(⊩)* ) U))); |
+ lapply (†e); [2: apply rule t \sub \f; | skip | apply Hletin]]
+ change in ⊢ (? ? ? % ?) with ((◊_BP2 ∘(⊩)* ) ((t \sub \f ∘ (◊_BP1∘(⊩)* )) U));
+ lapply (comp_assoc2 ????? (⊩)* (⊩) t \sub \f);
+ apply (.= †(Hletin ?)); clear Hletin;
+ change in ⊢ (? ? ? (? ? ? ? %) ?) with ((t \sub \f ∘ (⊩)) ((⊩)* U));
+ cut ?;
+ [3: apply CProp1; |5: cases (commute ?? t); [2: apply (e3 ^ -1 ((⊩)* U));] | 2,4: skip]
+ apply (.= †Hcut);
+ change in ⊢ (? ? ? % ?) with (((⊩) ∘ (⊩)* ) (((⊩) ∘ t \sub \c ∘ (⊩)* ) U));
+ apply (.= (lemma_10_3_c ?? (⊩) (t \sub \c ((⊩)* U))));
+ apply (.= Hcut ^ -1);
+ change in ⊢ (? ? ? % ?) with (t \sub \f (((⊩) ∘ (⊩)* ) U));
+ apply (prop11 ?? t \sub \f);
+ apply (e ^ -1);
| unfold o_basic_topology_of_o_basic_pair; simplify; intros;
- lapply (.= †e); [3: apply rule (t \sub \f ⎻* ); |4: apply Hletin; |1,2: skip]
- change with (t \sub \f ⎻* ((⊩)⎻* ((⊩)⎻ U)) = (⊩)⎻* ((⊩)⎻ (t \sub \f⎻* U)));
-
- ]
+ apply sym1;
+ apply (.= †?); [1: apply (t \sub \f⎻* ((((⊩)⎻* ∘ (⊩)⎻) U))); |
+ lapply (†e); [2: apply rule (t \sub \f⎻* ); | skip | apply Hletin]]
+ change in ⊢ (? ? ? % ?) with (((⊩)⎻* ∘(⊩)⎻ ) ((t \sub \f⎻* ∘ ((⊩)⎻*∘(⊩)⎻ )) U));
+ lapply (comp_assoc2 ????? (⊩)⎻ (⊩)⎻* t \sub \f⎻* );
+ apply (.= †(Hletin ?)); clear Hletin;
+ change in ⊢ (? ? ? (? ? ? ? %) ?) with ((t \sub \f⎻* ∘ (⊩)⎻* ) ((⊩)⎻ U));
+ cut ?;
+ [3: apply CProp1; |5: cases (commute ?? t); [2: apply (e1 ^ -1 ((⊩)⎻ U));] | 2,4: skip]
+ apply (.= †Hcut);
+ change in ⊢ (? ? ? % ?) with (((⊩)⎻* ∘ (⊩)⎻ ) (((⊩)⎻* ∘ t \sub \c⎻* ∘ (⊩)⎻ ) U));
+ apply (.= (lemma_10_3_d ?? (⊩) (t \sub \c⎻* ((⊩)⎻ U))));
+ apply (.= Hcut ^ -1);
+ change in ⊢ (? ? ? % ?) with (t \sub \f⎻* (((⊩)⎻* ∘ (⊩)⎻ ) U));
+ apply (prop11 ?? t \sub \f⎻* );
+ apply (e ^ -1); ]
qed.
\ No newline at end of file