lemma cpcs_ind: ∀G,L,T1. ∀R:predicate term. R T1 →
(∀T,T2. ⦃G, L⦄ ⊢ T1 ⬌* T → ⦃G, L⦄ ⊢ T ⬌ T2 → R T → R T2) →
∀T2. ⦃G, L⦄ ⊢ T1 ⬌* T2 → R T2.
-#G #L #T1 #R #HT1 #IHT1 #T2 #HT12 @(TC_star_ind … HT1 IHT1 … HT12) //
+normalize /3 width=6 by TC_star_ind/
qed-.
lemma cpcs_ind_dx: ∀G,L,T2. ∀R:predicate term. R T2 →
(∀T1,T. ⦃G, L⦄ ⊢ T1 ⬌ T → ⦃G, L⦄ ⊢ T ⬌* T2 → R T → R T1) →
∀T1. ⦃G, L⦄ ⊢ T1 ⬌* T2 → R T1.
-#G #L #T2 #R #HT2 #IHT2 #T1 #HT12
-@(TC_star_ind_dx … HT2 IHT2 … HT12) //
+normalize /3 width=6 by TC_star_ind_dx/
qed-.
(* Basic properties *********************************************************)
(* Basic_1: was: pc3_s *)
lemma cpcs_sym: ∀G,L. symmetric … (cpcs G L).
-#G #L @TC_symmetric // qed-.
+#G #L @TC_symmetric // qed-. (**) (* auto fails even after normalize *)
lemma cpc_cpcs: ∀G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ⬌ T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
/2 width=1 by inj/ qed.
lemma cpcs_strap1: ∀G,L,T1,T,T2. ⦃G, L⦄ ⊢ T1 ⬌* T → ⦃G, L⦄ ⊢ T ⬌ T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
-#G #L @step qed-.
+normalize /2 width=3 by step/
+qed-.
lemma cpcs_strap2: ∀G,L,T1,T,T2. ⦃G, L⦄ ⊢ T1 ⬌ T → ⦃G, L⦄ ⊢ T ⬌* T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
-#G #L @TC_strap qed-.
+normalize /2 width=3 by TC_strap/
+qed-.
(* Basic_1: was: pc3_pr2_r *)
lemma cpr_cpcs_dx: ∀G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ➡ T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
(* Basic_1: was: pc3_pr3_r *)
lemma cpcs_cprs_dx: ∀G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ➡* T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
-#G #L #T1 #T2 #H @(cprs_ind … H) -T2 /3 width=3 by cpcs_cpr_strap1, cpcs_strap1, cpc_cpcs/
+#G #L #T1 #T2 #H @(cprs_ind … H) -T2
+/3 width=3 by cpcs_cpr_strap1, cpcs_strap1, cpc_cpcs/
qed.
(* Basic_1: was: pc3_pr3_x *)
lemma cpcs_cprs_sn: ∀G,L,T1,T2. ⦃G, L⦄ ⊢ T2 ➡* T1 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
-#G #L #T1 #T2 #H @(cprs_ind_dx … H) -T2 /3 width=3 by cpcs_cpr_div, cpcs_strap1, cpcs_cprs_dx/
+#G #L #T1 #T2 #H @(cprs_ind_dx … H) -T2
+/3 width=3 by cpcs_cpr_div, cpcs_strap1, cpcs_cprs_dx/
qed.
lemma cpcs_cprs_strap1: ∀G,L,T1,T. ⦃G, L⦄ ⊢ T1 ⬌* T → ∀T2. ⦃G, L⦄ ⊢ T ➡* T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2.
(* Basic_1: was: pc3_pr3_t *)
(* Basic_1: note: pc3_pr3_t should be renamed *)
lemma cprs_div: ∀G,L,T1,T. ⦃G, L⦄ ⊢ T1 ➡* T → ∀T2. ⦃G, L⦄ ⊢ T2 ➡* T → ⦃G, L⦄ ⊢ T1 ⬌* T2.
-#G #L #T1 #T #HT1 #T2 #H @(cprs_ind_dx … H) -T2 /2 width=3 by cpcs_cpr_div, cpcs_cprs_dx/
+#G #L #T1 #T #HT1 #T2 #H @(cprs_ind_dx … H) -T2
+/2 width=3 by cpcs_cpr_div, cpcs_cprs_dx/
qed.
lemma cprs_cpr_div: ∀G,L,T1,T. ⦃G, L⦄ ⊢ T1 ➡* T → ∀T2. ⦃G, L⦄ ⊢ T2 ➡ T → ⦃G, L⦄ ⊢ T1 ⬌* T2.